Physical processes influence on the dynamics of the main greenhouse gases in mountain tropical reservoirs
ilustraciones, diagramas, mapas
- Autores:
-
Bohórquez Bedoya, Eliana
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84240
- Palabra clave:
- 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Gases de invernadero
Canales (Ingeniería hidráulica)
Greenhouse gases
Channels (hydraulic engineering)
Tropical mountain reservoirs
Greenhouse gases
Gas transfer at the water-atmosphere interface
Seasonal variability
Diurnal cycle
Rainfall rate
Embalses tropicales de montaña
Gases efecto invernadero
Transferencia de gases en la interfaz agua-atmósfera
Variabilidad estacional
Ciclo diurno
Tasa de lluvia
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_d3e768482064174e20923c3f29e66825 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84240 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Physical processes influence on the dynamics of the main greenhouse gases in mountain tropical reservoirs |
dc.title.translated.spa.fl_str_mv |
Influencia de los procesos físicos en la dinámica de los principales gases de efecto invernadero en embalses tropicales de montaña |
title |
Physical processes influence on the dynamics of the main greenhouse gases in mountain tropical reservoirs |
spellingShingle |
Physical processes influence on the dynamics of the main greenhouse gases in mountain tropical reservoirs 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica Gases de invernadero Canales (Ingeniería hidráulica) Greenhouse gases Channels (hydraulic engineering) Tropical mountain reservoirs Greenhouse gases Gas transfer at the water-atmosphere interface Seasonal variability Diurnal cycle Rainfall rate Embalses tropicales de montaña Gases efecto invernadero Transferencia de gases en la interfaz agua-atmósfera Variabilidad estacional Ciclo diurno Tasa de lluvia |
title_short |
Physical processes influence on the dynamics of the main greenhouse gases in mountain tropical reservoirs |
title_full |
Physical processes influence on the dynamics of the main greenhouse gases in mountain tropical reservoirs |
title_fullStr |
Physical processes influence on the dynamics of the main greenhouse gases in mountain tropical reservoirs |
title_full_unstemmed |
Physical processes influence on the dynamics of the main greenhouse gases in mountain tropical reservoirs |
title_sort |
Physical processes influence on the dynamics of the main greenhouse gases in mountain tropical reservoirs |
dc.creator.fl_str_mv |
Bohórquez Bedoya, Eliana |
dc.contributor.advisor.none.fl_str_mv |
Lorke, Andreas Gómez Giraldo, Andrés León Hernández, Juan Gabriel |
dc.contributor.author.none.fl_str_mv |
Bohórquez Bedoya, Eliana |
dc.contributor.orcid.spa.fl_str_mv |
Bohórquez Bedoya, Eliana [0000000153189570] Lorke, Andreas [0000-0001-5533-1817] Gómez Giraldo, Andrés [0000-0001-7103-9429] |
dc.contributor.cvlac.spa.fl_str_mv |
BOHÓRQUEZ BEDOYA, ELIANA |
dc.contributor.scopus.spa.fl_str_mv |
Bohórquez, Eliana [56957160300] |
dc.contributor.researchgate.spa.fl_str_mv |
https://www.researchgate.net/profile/Eliana-Bohorquez Bohórquez, Eliana [https://www.researchgate.net/profile/Eliana-Bohorquez] |
dc.contributor.googlescholar.spa.fl_str_mv |
Bohórquez, Eliana [Eliana Bohórquez] |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica |
topic |
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica Gases de invernadero Canales (Ingeniería hidráulica) Greenhouse gases Channels (hydraulic engineering) Tropical mountain reservoirs Greenhouse gases Gas transfer at the water-atmosphere interface Seasonal variability Diurnal cycle Rainfall rate Embalses tropicales de montaña Gases efecto invernadero Transferencia de gases en la interfaz agua-atmósfera Variabilidad estacional Ciclo diurno Tasa de lluvia |
dc.subject.lemb.spa.fl_str_mv |
Gases de invernadero Canales (Ingeniería hidráulica) |
dc.subject.lemb.eng.fl_str_mv |
Greenhouse gases Channels (hydraulic engineering) |
dc.subject.proposal.eng.fl_str_mv |
Tropical mountain reservoirs Greenhouse gases Gas transfer at the water-atmosphere interface Seasonal variability Diurnal cycle Rainfall rate |
dc.subject.proposal.spa.fl_str_mv |
Embalses tropicales de montaña Gases efecto invernadero Transferencia de gases en la interfaz agua-atmósfera Variabilidad estacional Ciclo diurno Tasa de lluvia |
description |
ilustraciones, diagramas, mapas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-21T15:23:16Z |
dc.date.available.none.fl_str_mv |
2023-07-21T15:23:16Z |
dc.date.issued.none.fl_str_mv |
2023-07-13 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84240 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.repo.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84240 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.indexed.spa.fl_str_mv |
RedCol LaReferencia |
dc.relation.references.spa.fl_str_mv |
Abe, D. S., Adams, D. D., Sidagis Galli, C. V., Sikar, E., & Tundisi, J. G. (2005). Sediment greenhouse gases (methane and carbon dioxide) in the Lobo-Broa Reservoir, São Paulo State, Brazil: Concentrations and diffuse emission fluxes for carbon budget considerations. Lakes and Reservoirs: Research and Management, 10(4), 201–209. https://doi.org/10.1111/j.1440-1770.2005.00277. Abril, G., Bouillon, S., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Ochieng Omengo, F., Geeraert, N., Deirmendjian, L., Polsenaere, P., & Borges, A. V. (2015). Technical note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences, 12(1), 67–78. https://doi.org/10.5194/bg-12-67-2015 Abril, G., Bouillon, S., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Ochieng Omengo, F., Geeraert, N., Deirmendjian, L., Polsenaere, P., & Borges, A. V. (2015). Technical note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences, 12(1), 67–78. https://doi.org/10.5194/bg-12-67-2015 Anthony, K. W., & MacIntyre, S. (2016). Nocturnal escape route for marsh gas. Nature, 535(7612), 363–365. https://doi.org/10.1038/535363a Baker, M. A., & Gibson, C. H. (1987). Sampling turbulence in the stratified ocean: statistical consequences of strong intermittency. In J. Phys. Oceanogr. (Vol. 17, Issues 10, Oct. 1987, pp. 1817–1836). https://doi.org/10.1175/1520-0485(1987)017<1817:stitso>2.0.co;2 Banks, R. B., Wickramanayake, B., & Lohani, B. N. (1984). Effect of Wind and Rain on Surface Reaeration. Journal of the Environmental Engineering, 110, 1–14. https://doi.org/10.1061/(ASCE)0733-9372(1984)110:1(1) Barbosa, P. M., Melack, J. M., Amaral, J. H. F., MacIntyre, S., Kasper, D., Cortés, A., Farjalla, V. F., & Forsberg, B. R. (2020). Dissolved methane concentrations and fluxes to the atmosphere from a tropical floodplain lake. Biogeochemistry, 148(2), 129–151. https://doi.org/10.1007/s10533-020-00650-1 Barbosa, P. M., Melack, J. M., Amaral, J. H. F., MacIntyre, S., Kasper, D., Cortés, A., Farjalla, V. F., & Forsberg, B. R. (2020). Dissolved methane concentrations and fluxes to the atmosphere from a tropical floodplain lake. Biogeochemistry, 148(2), 129–151. https://doi.org/10.1007/s10533-020-00650-1 Barros, N., Cole, J. J., Tranvik, L. J., Prairie, Y. T., Bastviken, D., Huszar, V. L. M., del Giorgio, P., & Roland, F. (2011). Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nature Geoscience, 4(9), 593–596. https://doi.org/10.1038/ngeo1211 Barros, N., Cole, J. J., Tranvik, L. J., Prairie, Y. T., Bastviken, D., Huszar, V. L. M., del Giorgio, P., & Roland, F. (2011). Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nature Geoscience, 4(9), 593–596. https://doi.org/10.1038/ngeo1211 Bastviken, D., Cole, J. J., Pace, M. L., & Van de-Bogert, M. C. (2008). Fates of methane from different lake habitats: Connecting whole-lake budgets and CH4emissions. Journal of Geophysical Research: Biogeosciences, 113(2). https://doi.org/10.1029/2007JG000608 Bastviken, D., Cole, J., Pace, M., & Tranvik, L. (2004a). Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochemical Cycles, 18(4), 1–12. https://doi.org/10.1029/2004GB002238 Bastviken, D., Cole, J., Pace, M., & Tranvik, L. (2004a). Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochemical Cycles, 18(4), 1–12. https://doi.org/10.1029/2004GB002238 Bastviken, D., Sundgren, I., Natchimuthu, S., Reyier, H., & Gålfalk, M. (2015). Technical Note: Cost-efficient approaches to measure carbon dioxide fluxes and concentrations in terrestrial and aquatic environments using mini loggers. Biogeosciences, 12(12), 3849–3859. https://doi.org/10.5194/bg-12-3849-2015 Bastviken, D., Tranvik, L. J., Downing, J., Crill, J. a, M, P., & Enrich-prast, A. (2011). Freshwater Methane Emissions Offset the Continental Carbon Sink. Science, 331, 50. https://doi.org/10.1126/science.1196808 Bastviken, D., Tranvik, L. J., Downing, J., Crill, J. a, M, P., & Enrich-prast, A. (2011). Freshwater Methane Emissions Offset the Continental Carbon Sink. Science, 331, 50. https://doi.org/10.1126/science.1196808 Beyá, J., Peirson, W., & Banner, M. (2011). Rainfall-generated, near-surface turbulence. In S. Komori, W. McGillis, & R. Kurose (Eds.), Gas transfer at water surfaces 2010 (pp. 90–103). Kyoto University Press 2011. Bižić, M., Klintzsch, T., Ionescu, D., Hindiyeh, M. Y., Günthel, M., Muro-Pastor, A. M., Eckert, W., Urich, T., Keppler, F., & Grossart, H. P. (2020). Aquatic and terrestrial cyanobacteria produce methane. Science Advances, 6(3). https://doi.org/10.1126/sciadv.aax5343 Blees, J., Niemann, H., Erne, M., Zopfi, J., Schubert, C. J., & Lehmann, M. F. (2015). Spatial variations in surface water methane super-saturation and emission in Lake Lugano, southern Switzerland. Aquatic Sciences, 77(4), 535–545. https://doi.org/10.1007/s00027-015-0401-z Bluteau, C. E., Jones, N. L., & Ivey, G. N. (2011). Estimating turbulent kinetic energy dissipation using the inertial subrange method in environmental flows. Limnology and Oceanography: Methods, 9(JULY), 302–321. https://doi.org/10.4319/lom.2011.9.302 Boehrer, B., & Schultze, M. (2009). Stratification of lakes. Reviews of Geophysics, 46(2), 583–593. https://doi.org/10.1029/2006RG000210 Bogard, M. J., del Giorgio, P. A., Boutet, L., Chaves, M. C. G., Prairie, Y. T., Merante, A., & Derry, A. M. (2014). Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nature Communications, 5. https://doi.org/10.1038/ncomms6350 Borges, A. V., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Geeraert, N., Omengo, F. O., Guérin, F., Lambert, T., Morana, C., Okuku, E., & Bouillon, S. (2015). Globally significant greenhouse-gas emissions from African inland waters. Nature Geoscience, 8(8), 637–642. https://doi.org/10.1038/ngeo2486 Bouffard, D., & Boegman, L. (2013). Dynamics of Atmospheres and Oceans A diapycnal diffusivity model for stratified environmental flows. Dynamics of Atmospheres and Oceans, 61–62, 14–34. https://doi.org/10.1016/j.dynatmoce.2013.02.002 Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K., & Zhuang, Q. (2013). Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology, 19(5), 1325–1346. https://doi.org/10.1111/gcb.12131 Camargo, J. A., & Alonso, A. (2007). Contaminación por nitrógeno inorgánico en los ecosistemas acuáticos : problemas medioambientales, criterios de calidad del agua e implicaciones del cambio climático. Ecosistemas, 16(2), 98–110. Castro - González, M., & Torres-Valdés, V. (2015). Gases invernadero en aguas con bajo oxígeno en el reservorio eutrófico de Prado (Colombia). Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(152), 399. https://doi.org/10.18257/raccefyn.228 Chapra, S. C. (1997). Surface Water-Quality Modeling (B. J. Clark, D. A. Damstra, & J. W. Bradley, Eds.). McGraw Hill. Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Quéré, C. Le, Myneni, R. B., Piao, S., & Thornton, P. (2013). The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Change, IPCC Climate, 465–570. https://doi.org/10.1017/CBO9781107415324.015 Ciarlini, P., Catombé, C., Lucia, R., Nobre, G., Kosten, S., Martins, E., Carvalho, F. De, Sarmento, H., Angelini, R., Terra, I., Gaudêncio, A., Haig, N., Becker, V., Rodrigues, C., Quesado, L., Silva, L., Caliman, A., & Megali, A. (2019). Effects of seasonality, trophic state and landscape properties on CO2 saturation in low-latitude lakes and reservoirs. Science of the Total Environment, 664, 283–295. https://doi.org/10.1016/j.scitotenv.2019.01.273 Cole, J., & Caraco, N. F. (1998a). Atmospheric Exchange of Carbon Dioxide in a Low-Wind Oligotrophic Lake Measured by the Addition of SF6. Limnology and Oceanography, 43(4), 647–656. https://doi.org/10.4319/lo.1998.43.4.0647 Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg, J. J., & Melack, J. (2007). Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems, 10, 171–184. https://doi.org/10.1007/s 10021-006-9013-8 Czikowsky, M. J., MacIntyre, S., Tedford, E. W., Vidal, J., & Miller, S. D. (2018). Effects of Wind and Buoyancy on Carbon Dioxide Distribution and Air‐Water Flux of a Stratified Temperate Lake. Journal of Geophysical Research: Biogeosciences, 123(8), 2305–2322. https://doi.org/10.1029/2017JG004209 Deemer, B. R., Harrison, J. A., Li, S., Beaulieu, J. J., Delsontro, T., Barros, N., Bezerra-Neto, J. F., Powers, S. M., Santos, M. A. D. O. S., Vonk, J. A., Dos Santos, M. A., & Vonk, J. A. (2016). Greenhouse gas emissions from reservoir water surfaces: A new global synthesis. BioScience, 66(11), 949–964. https://doi.org/10.1093/biosci/biw117 Delmas, R., & Galy-lacaux, C. (2001). Emissions of greenhouse gases from the tropical hydroelectric reservoir of Petit Saut ( French Guiana ) compared with emissions of thermal alternatives. Global Biogeochemical Cycles, 15(4), 993–1003. Delsontro, T., Beaulieu, J. J., & Downing, J. A. (2018). Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change. Limnology and Oceanography Letters, March, 64–75. https://doi.org/10.1002/lol2.10073 Demarty, M., & Bastien, J. (2011). GHG emissions from hydroelectric reservoirs in tropical and equatorial regions: Review of 20 years of CH4 emission measurements. Energy Policy, 39(7), 4197–4206. https://doi.org/10.1016/j.enpol.2011.04.033 D’Errico. (2012). inpaint_nans. MATLAB Central File Exchange. https://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint_nans Deshmukh, C., Guérin, F., Labat, D., Pighini, S., Vongkhamsao, A., Guédant, P., Rode, W., Godon, A., Chanudet, V., Descloux, S., & Serça, D. (2016). Low methane (CH4) emissions downstream of a monomictic subtropical hydroelectric reservoir (Nam Theun 2, Lao PDR). Biogeosciences, 13(6). https://doi.org/10.5194/bg-13-1919-2016 Donis, D., Flury, S., & Spangenberg, J. E. (2017). Full-scale evaluation of methane production under oxic conditions in a mesotrophic lake. Nature Communications, 8(1661), 1–11. https://doi.org/10.1038/s41467-017-01648-4 Doron, P., Bertuccioli, L., Katz, J., & Osborn, T. R. (2001). Turbulence characteristics and dissipation estimates in the coastal ocean bottom boundary layer from PIV data. Journal of Physical Oceanography, 31(8 PART 1), 2108–2134. https://doi.org/10.1175/1520-0485(2001)031<2108:tcadei>2.0.co;2 dos Santos, M. A., Rosa, L. P., Sikar, B., Sikar, E., & dos Santos, E. O. (2006). Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants. Energy Policy, 34(4), 481–488. https://doi.org/10.1016/j.enpol.2004.06.015 Erkkilä, K. M., Ojala, A., Bastviken, D., Biermann, T., Heiskanen, J., Lindroth, A., Peltola, O., Rantakari, M., Vesala, T., & Mammarella, I. (2018). Methane and carbon dioxide fluxes over a lake: Comparison between eddy covariance, floating chambers and boundary layer method. Biogeosciences, 15(2), 429–445. https://doi.org/10.5194/bg-15-429-2018 Esters, L., Landwehr, S., Sutherland, G., Bell, T. G., Christensen, K. H., Saltzman, E. S., Miller, S. D., & Ward, B. (2017). Parameterizing air-sea gas transfer velocity with dissipation. Journal of Geophysical Research: Oceans, 122(4), 3041–3056. https://doi.org/10.1002/2016JC012088 Eugster, W. (2003). CO 2 exchange between air and water in an Arctic Alaskan and midlatitude Swiss lake: Importance of convective mixing. Journal of Geophysical Research, 108(D12), 4362. https://doi.org/10.1029/2002JD002653 Eugster, W., Kling, G., Jonas, T., McFadden, J. P., Wüest, A., MacIntyre, S., & Stuart, F. C. I. (2003). CO2 exchange between air and water in an Arctic Alaskan and midlatitude Swiss lake: Importance of convective mixing. Journal of Geophysical Research, 108(D12), 4362. https://doi.org/10.1029/2002JD002653 Fearnside, P. M. (2015). Emissions from tropical hydropower and the IPCC. Environmental Science and Policy, 50, 225–239. https://doi.org/10.1016/j.envsci.2015.03.002 Fearnside, P. M. (2015). Emissions from tropical hydropower and the IPCC. Environmental Science and Policy, 50, 225–239. https://doi.org/10.1016/j.envsci.2015.03.002 Galy-lacaux, C., Delmas, R., Labroue, L., & Gosse, P. (1997). Gaseous emissions and oxygen consumption in hydroelectric dams: A case study in French Guyana. Global Biogeochem. Cycles, 11(4), 471–483. Goring, D. G., & Nikora, V. I. (2002). Despiking acoustic doppler velocimeter data. Journal of Hydraulic Engineering, 128(1), 117–126. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(117) Guérin, F., & Abril, G. (2007). Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir. Journal of Geophysical Research: Biogeosciences, 112(3), 1–14. https://doi.org/10.1029/2006JG000393 Guérin, F., & Abril, G. (2007). Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir. Journal of Geophysical Research: Biogeosciences, 112(3), 1–14. https://doi.org/10.1029/2006JG000393 Guérin, F., Abril, G., Richard, S., Burban, B., Reynouard, C., Seyler, P., & Delmas, R. (2006). Methane and carbon dioxide emissions from tropical reservoirs: Significance of downstream rivers. Geophysical Research Letters, 33(21), 1–6. https://doi.org/10.1029/2006GL027929 Guérin, F., Abril, G., Serça, D., Delon, C., Richard, S., Delmas, R., Tremblay, A., & Varfalvy, L. (2007a). Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. Journal of Marine Systems, 66(1–4), 161–172. https://doi.org/10.1016/j.jmarsys.2006.03.019 Guérin, F., Abril, G., Serça, D., Delon, C., Richard, S., Delmas, R., Tremblay, A., & Varfalvy, L. (2007a). Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. Journal of Marine Systems, 66(1–4), 161–172. https://doi.org/10.1016/j.jmarsys.2006.03.019 Guérin, F., Abril, G., Serça, D., Delon, C., Richard, S., Delmas, R., Tremblay, A., & Varfalvy, L. (2007b). Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. Journal of Marine Systems, 66(1–4), 161–172. https://doi.org/10.1016/j.jmarsys.2006.03.019 Guseva, S., Aurela, M., Cortés, A., Kivi, R., Lotsari, E., MacIntyre, S., Mammarella, I., Ojala, A., Stepanenko, V., Uotila7, P., Vähä7, A., Vesala, T., Wallin, M. B., & A. Lorke. (2021). Variable Physical Drivers of Near-Surface Turbulence in a Regulated River Water Resources Research. Water Resources Research, 57, 1–27. https://doi.org/10.1029/2020WR027939 Harrison, E. L., & Veron, F. (2017). Near-surface turbulence and buoyancy induced by heavy rainfall. Journal of Fluid Mechanics, 830, 602–630. https://doi.org/10.1017/jfm.2017.602 Harrison, E. L., & Veron, F. (2017). Near-surface turbulence and buoyancy induced by heavy rainfall. Journal of Fluid Mechanics, 830, 602–630. https://doi.org/10.1017/jfm.2017.602 Harrison, E. L., Veron, F., Ho, D. T., Reid, M. C., Orton, P., & McGillis, W. R. (2012). Nonlinear interaction between rain- and wind-induced air-water gas exchange. Journal of Geophysical Research: Oceans, 117(3), 1–16. https://doi.org/10.1029/2011JC007693 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803 Ho, D. T., Asher, W. E., Bliven, L. F., Schlosser, P., & Gordan, E. L. (2000). On mechanisms of rain-induced air-water gas exchange. Journal of Geophysical Research: Oceans, 105(C10), 24045–24057. https://doi.org/10.1029/1999jc000280 Ho, D. T., Engel, V. C., Ferrón, S., Hickman, B., Choi, J., & Harvey, J. W. (2018). On Factors Influencing Air-Water Gas Exchange in Emergent Wetlands. Journal of Geophysical Research: Biogeosciences, 123(1), 178–192. https://doi.org/10.1002/2017JG004299 Ho, D. T., Veron, F., Harrison, E., Bliven, L. F., Scott, N., & McGillis, W. R. (2007). The combined effect of rain and wind on air-water gas exchange: A feasibility study. Journal of Marine Systems, 66(1–4), 150–160. https://doi.org/10.1016/j.jmarsys.2006.02.012 Ho, D. T., Veron, F., Harrison, E., Bliven, L. F., Scott, N., & McGillis, W. R. (2007). The combined effect of rain and wind on air-water gas exchange: A feasibility study. Journal of Marine Systems, 66(1–4), 150–160. https://doi.org/10.1016/j.jmarsys.2006.02.012 Hope, D., Dawson, J. J. C., Cresser, M. S., & Billett, M. F. (1995). A method for measuring free CO2 in upland streamwater using headspace analysis. Journal of Hydrology, 166, 1–14. Hope, D., Dawson, J. J. C., Cresser, M. S., & Billett, M. F. (1995). A method for measuring free CO2 in upland streamwater using headspace analysis. Journal of Hydrology, 166, 1–14. Inc, E. (n.d.). User Manual eosFDCO 2 eosFD Forced Diffusion Chamber and Software, version 2.4 (p. 28). IPCC. (1990). Resumen General del IPCC. 57–70. IPCC. (2019). Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (E. Calvo Buendia, K. Tanabe, A. Kranjc, B. Jamsranjav, M. Fukuda, S. Ngarize, A. Osako, Y. Pyrozhenko, P. Shermanau, & S. Federici, Eds.). IPCC. https://doi.org/10.21513/0207-2564-2019-2-05-13 Jähne, B., Münnich, K. O., Bösinger, R., Dutzi, A., Huber, W., & Libner, P. (1987). On the parameters influencing air-water gas exchange. Journal of Geophysical Research, 92(C2), 1937–1949. https://doi.org/10.1029/JC092iC02p01937 Jones, B. K., Saylor, J. R., & Testik, F. Y. (2010). Raindrop Morphodynamics. Jorgensen, S. E., Loffler, H., RAst, W., & Straskraba, M. (2005). Lake and Reservoir Management (1st Editio). Elsevier Science. Katul, G., & Liu, H. (2017). Multiple mechanisms generate a universal scaling with dissipation for the air-water gas transfer velocity. Geophysical Research Letters, 44, 1–7. https://doi.org/10.1002/2016GL072256 Käufer, T., König, J., & Cierpka, C. (2021). Stereoscopic PIV measurements using low-cost action cameras. Experiments in Fluids, 62(3), 1–16. https://doi.org/10.1007/s00348-020-03110-6 Kemenes, A., Agricultural, B., & Barbara, S. (2016). Downstream emissions of CH4 and CO2 from hydroelectric reservoirs ( Tucuruí , Samuel , and Curuá-Una ) in the ... Inland Waters, 1(1), 1–10. https://doi.org/10.5268/IW-6.3.980 Kemenes, A., Agricultural, B., & Barbara, S. (2016). Downstream emissions of CH4 and CO2 from hydroelectric reservoirs ( Tucuruí , Samuel , and Curuá-Una ) in the ... Inland Waters, 1(1), 1–10. https://doi.org/10.5268/IW-6.3.980 Kocsis, O., Prandke, H., Stips, A., Simon, A., & Wüest, A. (1999). Comparison of dissipation of turbulent kinetic energy determined from shear and temperature microstructure. Journal of Marine Systems, 21(1–4), 67–84. https://doi.org/10.1016/S0924-7963(99)00006-8 Koschorreck, M., Prairie, Y. T., Kim, J., & Marcé, R. (2021). Technical note : CO2 is not like CH4 – limits of and corrections to the headspace method to analyse pCO 2 in fresh water. Biogeosciences, 18, 1619–1627. https://doi.org/10.5194/bg-18-1619-2021 Koschorreck, M., Prairie, Y. T., Kim, J., & Marcé, R. (2021). Technical note : CO2 is not like CH4 – limits of and corrections to the headspace method to analyse pCO 2 in fresh water. Biogeosciences, 18, 1619–1627. https://doi.org/10.5194/bg-18-1619-2021 Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., Korsbakken, J. I., Peters, G. P., Canadell, J. G., Jackson, R. B., Boden, T. A., Tans, P. P., Andrews, O. D., Arora, V. K., Bakker, D. C. E., Van Der Laan-Luijkx, I. T., Van Der Werf, G. R., Van Heuven, S., Viovy, N., … Zhu, D. (2018). 1. Carbon cycle-Global Carbon Budget 2017. Earth Syst. Sci. Data Etsushi Kato Markus Kautz Ralph F. Keeling Kees Klein Goldewijk Nathalie Lefèvre Andrew Lenton Danica Lombardozzi Nicolas Metzl Yukihiro Nojiri Antonio Padin Janet Reimer, 1010333739(10), 405–448. https://doi.org/10.5194/essd-10-405-2018 Lin, L., Lu, X., Liu, S., Liong, S., & Fu, K. (2019). Physically controlled CO2 effluxes from a reservoir surface in the upper Mekong River Basin: a case study in the Gongguoqiao Reservoir. Biogeosciences, 16, 2205–2219. https://doi.org/10.5194/bg-16-2205-2019 Liu, H., Zhang, Q., Katul, G. G., Cole, J. J., Chapin III, F. S., & MacIntyre, S. (2016). Large CO2 effluxes at night and during synoptic weather events significantly contribute to CO2 emissions from a reservoir. Environmental Research Letters, 11(6), 1–8. https://doi.org/10.1088/1748-9326/11/6/064001 Lorke, A., & Peeters, F. (2006). Toward a Unified Scaling Relation for Interfacial Fluxes. Journal of Physical Oceanography, 36(5), 955–961. https://doi.org/10.1175/JPO2903.1 Lueck, R. (2016). RSI Technical Note 028. Calculating the Rate of Dissipation of Turbulent Kinetic Energy. Rockland Scientific Inc. Lueck, R., Scientific, R., Wolk, F., Scientific, R., & Black, K. (2013). Measuring Tidal Channel Turbulence with a Vertical Microstructure Profiler ( VMP ). Rockland Scientific Inc. Ma, X., & Green, S. A. (2004). Photochemical Transformation of Dissolved Organic Carbon in Lake Superior—An In-situ Experiment. Journal of Great Lakes Research, 30, 97–112. https://doi.org/10.1016/S0380-1330(04)70380-9 MacIntyre, S., Jonsson, A., Jansson, M., Aberg, J., Turney, D. E., & Miller, S. D. (2010). Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake. Geophysical Research Letters, 37(24), 2–6. https://doi.org/10.1029/2010GL044164 MacIntyre, S., Romero, J., & Kling, G. W. (2002). Spatial-temporal variability in surface layer deepening and lateral advection in an embayment of Lake Victoria, East Africa. Limnology and Oceanography, 47(3), 656–671. https://doi.org/10.4319/lo.2002.47.3.0656 Melack, J. M., Basso, L. S., Fleischmann, A. S., Botía, S., Guo, M., Zhou, W., Barbosa, P. M., Amaral, J. H. F., & MacIntyre, S. (2022). Challenges Regionalizing Methane Emissions Using Aquatic Environments in the Amazon Basin as Examples. Frontiers in Environmental Science, 10(May), 1–26. https://doi.org/10.3389/fenvs.2022.866082 Melack, J. M., Hess, L. L., Gastil, M., Forsberg, B. R., Hamilton, S. K., Lima, I. B. T., & Novo, E. M. L. M. (2004). Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Global Change Biology, 10(5), 530–544. https://doi.org/10.1111/j.1365-2486.2004.00763.x Melack, J. M., Hess, L. L., Gastil, M., Forsberg, B. R., Hamilton, S. K., Lima, I. B. T., & Novo, E. M. L. M. (2004). Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Global Change Biology, 10(5), 530–544. https://doi.org/10.1111/j.1365-2486.2004.00763.x Oakey, N. S. (1982). Determination of the Rate of Dissipation of Turbulent Energy from Simultaneous Temperature and Velocity Shear Microstructure Measurements. Journal of Physical Oceanography, 12, 256–271. Obernosterer, I., & Benner, R. (2004). Competition between biological and photochemical processes in the mineralization of dissolved organic carbon. Limnology and Oceanography, 49(1), 117–124. https://doi.org/10.4319/lo.2004.49.1.0117 Obernosterer, I., & Benner, R. (2004). Competition between biological and photochemical processes in the mineralization of dissolved organic carbon. Limnology and Oceanography, 49(1), 117–124. https://doi.org/10.4319/lo.2004.49.1.0117 Opperman, J., Hartmann, J., & Justus, R. (2017). The Power of Rivers A Business Case. Osborn, T. R. (1980). Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements. Journal of Physical Oceanography, 10(1), 83–89. https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2 Pacheco, F. S., Roland, F., & Downing, J. A. (2013). Eutrophication reverses whole-lake carbon budgets. Inland Waters, 4(1), 41–48. https://doi.org/10.5268/IW-4.1.614 Pacheco, F. S., Soares, M. C. S., Assireu, A. T., Curtarelli, M. P., Abril, G., Stech, J. L., Alvalá, P. C., & Ometto, J. P. (2015). The effects of river inflow and retention time on the spatial heterogeneity of chlorophyll and water-air CO2 fluxes in a tropical hydropower reservoir. Biogeosciences, 12(1), 147–162. https://doi.org/10.5194/bg-12-147-2015 Panneer Selvam, B., Natchimuthu, S., Arunachalam, L., & Bastviken, D. (2014). Methane and carbon dioxide emissions from inland waters in India - implications for large scale greenhouse gas balances. Global Change Biology, 20(11), 3397–3407. https://doi.org/10.1111/gcb.12575 Paranaíba, J. R., Barros, N., Mendonça, R., Linkhorst, A., Isidorova, A., Roland, F., Almeida, R. M., & Sobek, S. (2018a). Spatially Resolved Measurements of CO2 and CH4 Concentration and Gas-Exchange Velocity Highly Influence Carbon-Emission Estimates of Reservoirs. Environmental Science and Technology, 52(2), 607–615. https://doi.org/10.1021/acs.est.7b05138 Paranaíba, J. R., Barros, N., Mendonça, R., Linkhorst, A., Isidorova, A., Roland, F., Almeida, R. M., & Sobek, S. (2018b). Spatially Resolved Measurements of CO2and CH4Concentration and Gas-Exchange Velocity Highly Influence Carbon-Emission Estimates of Reservoirs. Environmental Science and Technology, 52(2), 607–615. https://doi.org/10.1021/acs.est.7b05138 Peeters, F., & Kipfer, R. (2009). Currents in stratified water bodies 1: Density-driven flows. In Encyclopedia of Inland Waters (pp. 530–538). https://doi.org/DOI: 10.1016/B978-012370626-3.00080-6 Peirson, W. L., Beyá, J. F., Banner, M. L., Peral, J. S., & Azarmsa, S. A. (2013). Rain-induced attenuation of deep-water waves. Journal of Fluid Mechanics, 724, 5–35. https://doi.org/10.1017/jfm.2013.87 Poindexter, C. M., Baldocchi, D. D., Matthes, J. H., Knox, S. H., & Variano, E. A. (2016). The contribution of an overlooked transport process to a wetland’s methane emissions. Geophysical Research Letters, 43(12), 6276–6284. https://doi.org/10.1002/2016GL068782 Rantakari, M., Heiskanen, J., Mammarella, I., Tulonen, T., Linnaluoma, J., Kankaala, P., & Ojala, A. (2015). Different Apparent Gas Exchange Coefficients for CO2 and CH4: Comparing a Brown-Water and a Clear-Water Lake in the Boreal Zone during the Whole Growing Season. Environmental Science and Technology, 49(19), 11388–11394. https://doi.org/10.1021/acs.est.5b01261 Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais, P., & Guth, P. (2013). Global carbon dioxide emissions from inland waters. Nature, 503, 355–359. https://doi.org/10.1038/nature12760 Raymond, P. A., Zappa, C. J., Butman, D., Bott, T. L., Potter, J., Mulholland, P., Laursen, A. E., Mcdowell, W. H., & Newbold, D. (2012). Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnology and Oceanography, 2, 41–53. https://doi.org/10.1215/21573689-1597669 Read, J. S., Hamilton, D. P., Desai, A. R., Rose, K. C., Macintyre, S., Lenters, J. D., Smyth, R. L., Hanson, P. C., Cole, J. J., Staehr, P. A., Rusak, J. A., Pierson, D. C., Brookes, J. D., Laas, A., & Wu, C. H. (2012). Lake-size dependency of wind shear and convection as controls on gas exchange. Geophysical Research Letters, 39, 1–5. https://doi.org/10.1029/2012GL051886 Risk, D., Nickerson, N., Creelman, C., McArthur, G., & Owens, J. (2011). Forced Diffusion soil flux: A new technique for continuous monitoring of soil gas efflux. Agricultural and Forest Meteorology, 151(12), 1622–1631. https://doi.org/10.1016/j.agrformet.2011.06.020 Rocha Lessa, A. C., dos Santos, M. A., Lewis Maddock, J. E., & dos Santos Bezerra, C. (2015). Emissions of greenhouse gases in terrestrial areas pre-existing to hydroelectric plant reservoirs in the Amazon: The case of Belo Monte hydroelectric plant. Renewable and Sustainable Energy Reviews, 51, 1728–1736. https://doi.org/http://dx.doi.org/10.1016/j.rser.2015.07.067 Rodriguez, M., & Casper, P. (2018). Greenhouse gas emissions from a semi-arid tropical reservoir in northeastern Brazil. Regional Environmental Change, 18(7), 1901–1912. https://doi.org/10.1007/s10113-018-1289-7 Rodriguez, M., & Casper, P. (2018). Greenhouse gas emissions from a semi-arid tropical reservoir in northeastern Brazil. Regional Environmental Change, 18(7), 1901–1912. https://doi.org/10.1007/s10113-018-1289-7 Rooney, G. G., van Lipzig, N., & Thiery, W. (2018). Estimating the effect of rainfall on the surface temperature of a tropical lake. Hydrology and Earth System Sciences, 22(12), 6357–6369. https://doi.org/10.5194/hess-22-6357-2018 Rosentreter, J. A., Borges, A. V., Deemer, B. R., Holgerson, M. A., Liu, S., Song, C., Melack, J., Raymond, P. A., Duarte, C. M., Allen, G. H., Olefeldt, D., Poulter, B., Battin, T. I., & Eyre, B. D. (2021). Half of global methane emissions come from highly variable aquatic ecosystem sources. Nature Geoscience, 14(4), 225–230. https://doi.org/10.1038/s41561-021-00715-2 Rudd, J. W. M. (1993). Are hydroelectric reservoirs significant sources of greenhouse gases. Ambio, 22(4), 246–248. Rudd, J. W. M., Furunati, A., Flett, R. J., & Hamilton, R. D. (1976). Factors controlling methane oxidation in shield lakes : The role of nitrogen fixation and oxygen concentration1. Limnology and Oceanography, 21(3), 357–364. Santoso, A. B., Hamilton, D. P., Schipper, L. A., Ostrovsky, I. S., & Hendy, C. H. (2020). High contribution of methane in greenhouse gas emissions from a eutrophic lake : a mass balance synthesis. New Zealand Journal of Marine and Freshwater Research, 1–20. https://doi.org/10.1080/00288330.2020.1798476 Schlesinger, W. H., & Bernhardt, E. S. (2013). Biogeochemistry: An Analysis of Global Change. Academic Press. Serio, M. A., Carollo, F. G., & Ferro, V. (2019). Raindrop size distribution and terminal velocity for rainfall erosivity studies . A review. Journal of Hydrology, 576(February), 210–228. https://doi.org/10.1016/j.jhydrol.2019.06.040 Shao, C., Chen, J., Stepien, C. A., Chu, H., Ouyang, Z., Bridgeman, T. B., Czajkowski, K. P., Becker, R. H., & John, R. (2015). Diurnal to annual changes in latent, sensible heat, and CO2 fluxes over a Laurentian Great Lake: A case study in Western Lake Erie. Journal of Geophysical Research: Biogeosciences, 120, 1587–1604. https://doi.org/10.1002/2015JG003025.Received Siddiqui, M. H. K., & Loewen, M. R. (2007). Characteristics of the wind drift layer and microscale breaking waves. J. Fluid Mech., 573, 417–456. https://doi.org/10.1017/S0022112006003892 Soued, C., & Prairie, Y. T. (2021). Changing sources and processes sustaining surface CO2 and CH4 fluxes along a tropical river to reservoir system. Biogeosciences, 18(4), 1333–1350. https://doi.org/10.5194/bg-18-1333-2021 Soumis, N., Lucotte, M., Caneul, R., Weissenberger, S., Houel, S., Larose, C., & Duchemin, E. (2005). Hydroelectric Reservoirs as Anthropogenic sources of greenhouse gases. In Water Encyclopedia: Surface and Agricultural Water (pp. 203–210). https://doi.org/10.1002/047147844X.sw791 Spafford, L., & Risk, D. (2018). Spatiotemporal Variability in Lake-Atmosphere Net CO2 Exchange in the Littoral Zone of an Oligotrophic Lake. Journal of Geophysical Research: Biogeosciences, 123(4), 1260–1276. https://doi.org/10.1002/2017JG004115 St. Louis, V. L., Kelly, C. A., Duchemin, É., Rudd, J. W. M., & Rosenberg, D. M. (2000). Reservoir Surfaces as Sources of Greenhouse Gases to the Atmosphere: A Global Estimate. BioScience, 50(9), 766. https://doi.org/10.1641/0006-3568(2000)050[0766:RSASOG]2.0.CO;2 Stumm, W., & Morgan, J. J. (1996). Chemical Equilibria and Rates in Natural Waters. In Aquatic chemistry. Takagaki, N., & Komori, S. (2007). Effects of rainfall on mass transfer across the air-water interface. Journal of Geophysical Research: Oceans, 112(6), 1–11. https://doi.org/10.1029/2006JC003752 Takagaki, N., & Komori, S. (2014). Air – water mass transfer mechanism due to the impingement of a single liquid drop on the air – water interface. INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 60, 30–39. https://doi.org/10.1016/j.ijmultiphaseflow.2013.11.006 Takagaki, N., & Komori, S. (2014). Air – water mass transfer mechanism due to the impingement of a single liquid drop on the air – water interface. INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 60, 30–39. https://doi.org/10.1016/j.ijmultiphaseflow.2013.11.006 Tang, K. W., McGinnis, D. F., Frindte, K., Brüchert, V., & Grossart, H. P. (2014). Paradox reconsidered: Methane oversaturation in well-oxygenated lake waters. Limnology and Oceanography, 59(1), 275–284. https://doi.org/10.4319/lo.2014.59.1.0275 Tang, K. W., McGinnis, D. F., Ionescu, D., & Grossart, H. P. (2016). Methane production in oxic lake waters potentially increases aquatic methane flux to air. Environmental Science and Technology Letters, 3(6), 227–233. https://doi.org/10.1021/acs.estlett.6b00150 Tennekes, H., & Lumley, J. L. (1972). A FIRST COURSE IN TURBULENCE. The Massachusetts Institute of Technology. Thielicke, W. (2014). The Flapping Flight of Birds: Analysis and application. https://doi.org/10.1017/s036839310013768x Thielicke, W., & Sonntag, R. (2021). Particle Image Velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab. Journal of Open Research Software, 9(June), 1–14. https://doi.org/10.5334/JORS.334 Thielicke, W., & Stamhuis, E. J. (2014). PIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB. Journal of Open Research Software, 2, 1–10. https://doi.org/10.5334/jors.bl Toledo, A., Talarico, M., Chinez, S., & Agudo, E. (1983). The application of simplified models for eutrophication process evaluation in tropical lakes and reservoirs (pp. 1–34). ABES (Brazilian Association of Sanitary Engineering). Treut, L., Somerville, R., Cubasch, U., Ding, Y., Mauritzen, C., Mokssit, a, Peterson, T., Prather, M., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., & Tignor, M. (2007). Historical Overview of Climate Change Science. Earth, Chapter 1(October), 93–127. https://doi.org/10.1016/j.soilbio.2010.04.001 Turk, D., Zappa, C. J., Meinen, C. S., Christian, J. R., Ho, D. T., Dickson, A. G., & McGillis, W. R. (2010). Rain impacts on CO2 exchange in the western equatorial Pacific Ocean. Geophysical Research Letters, 37(23), 1–6. https://doi.org/10.1029/2010GL045520 UPME. (2016a). Boletín Estadístico: Minas y energía 2012 – 2016. Ministerio de Minas y Energía, 200. UPME. (2016a). Boletín Estadístico: Minas y energía 2012 – 2016. Ministerio de Minas y Energía, 200. Vachon, D., Prairie, Y. T., & Cole, J. J. (2010). The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange. Limnology and Oceanography, 55(4), 1723–1732. https://doi.org/10.4319/lo.2010.55.4.1723 van Boxel, J. (1998). Numerical model for the fall speed of raindrops in a rainfall simulator. I.C.E. Special Report, 1998/1, 77–85. Verburg, P., & Antenucci, J. P. (2010). Persistent unstable atmospheric boundary layer enhances sensible and latent heat loss in a tropical great lake: Lake Tanganyika. Journal of Geophysical Research, 115(D11109), 1–13. https://doi.org/10.1029/2009JD012839 Wallin, M. B., Chmiel, H. E., Kokic, J., Denfeld, B. A., Sobek, S., Koehler, B., Isidorova, A., Bastviken, D., Eve, M.-, Einarsdóttir, K., Wallin, M. B., Koehler, B., Isidorova, A., Bastviken, D., Ferland, M. È., & Sobek, S. (2016). The role of sediments in the carbon budget of a small boreal lake. Limnology and Oceanography, 61(5), 1814–1825. https://doi.org/10.1002/lno.10336 Wanninkhof, R. (1992). Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research, 97(C5), 7373–7382. https://doi.org/10.1029/92JC00188 Wanninkhof, R. (2014). Relationship between wind speed and gas exchange over the ocean revisited. Limnology and Oceanography: Methods, 12, 351–362. https://doi.org/10.4319/lom.2014.12.351 West, W. E., Coloso, J. J., & Jones, S. E. (2012). Effects of algal and terrestrial carbon on methane production rates and methanogen community structure in a temperate lake sediment. Freshwater Biology, 57(5), 949–955. https://doi.org/10.1111/j.1365-2427.2012.02755.x West, W. E., Creamer, K. P., & Jones, S. E. (2016). Productivity and depth regulate lake contributions to atmospheric methane. Limnology and Oceanography, 61, S51–S61. https://doi.org/10.1002/lno.10247 Winter, T. C. (2004). The Hydrology of Lakes. In P. E. O’Sullivan & C. S. Reynolds (Eds.), The Lakes Handbook (pp. 61–78). Wüest, A., & Lorke, A. (2003). Small-Scale Hydrodynamics in Lakes. Annual Reviews of Fluid Mechanics, 35(Section 3), 373–412. https://doi.org/10.1146/annurev.fluid.35.101101.161220 Xu, Y. J., Xu, Z., & Yang, R. (2019). Rapid daily change in surface water pCO2 and CO2 evasion: A case study in a subtropical eutrophic lake in Southern USA. Journal of Hydrology, 570, 486–494. https://doi.org/10.1016/j.jhydrol.2019.01.016 Yang, L., Lu, F., Zhou, X., Wang, X., Duan, X., & Sun, B. (2014). Progress in the studies on the greenhouse gas emissions from reservoirs. Acta Ecologica Sinica, 34(4), 204–212. https://doi.org/10.1016/j.chnaes.2013.05.011 Yang, R., Chen, Y., Du, J., Pei, X., Li, J., Zou, Z., & Song, H. (2022). Daily Variations in pCO2 and fCO2 in a Subtropical Urbanizing Lake. Frontiers in Earth Science, 9(January), 1–16. https://doi.org/10.3389/feart.2021.805276 Yang, Y., Chen, J., Tong, T., Li, B., He, T., Liu, Y., & Xie, S. (2019). Eutrophication influences methanotrophic activity, abundance and community structure in freshwater lakes. Science of the Total Environment, 662, 863–872. https://doi.org/10.1016/j.scitotenv.2019.01.307 Zappa, C. J., Ho, D. T., McGillis, W. R., Banner, M. L., Dacey, J. W. H., Bliven, L. F., Ma, B., & Nystuen, J. (2009). Rain-induced turbulence and air-sea gas transfer. Journal of Geophysical Research: Oceans, 114(7), 1–17. https://doi.org/10.1029/2008JC005008 Zappa, C. J., Mcgillis, W. R., Raymond, P. A., Edson, J. B., Hintsa, E. J., Zemmelink, H. J., Dacey, J. W. H., & Ho, D. T. (2007). Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems. Geophysical Research Letters, 34, 1–6. https://doi.org/10.1029/2006GL028790 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
156 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia Technische Universität Kaiserslautern-Landau |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Doctorado en Ingeniería - Recursos Hidráulicos |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84240/2/1088266565_2022.pdf https://repositorio.unal.edu.co/bitstream/unal/84240/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/84240/5/U.FT.09.006.019%20-%2001_License%20for%20publication%20of%20works%20in%20the%20UNAL%20Institutional%20Repository_AL.pdf https://repositorio.unal.edu.co/bitstream/unal/84240/6/1088266565_2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
4e8a13fe30d0aa4a5e7d8bcc602e5572 eb34b1cf90b7e1103fc9dfd26be24b4a 21b234bf57d54e3d7388809a23203740 0e19d23a6e574044cb56e78037cacb13 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089641422225408 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lorke, Andreas726f328790438de73ed5c6fb0caac591Gómez Giraldo, Andrésa2c21aeb257f485d18ccdbaa503743b0León Hernández, Juan Gabriel1cea61763b1dbfb109b9986fa1a14f47Bohórquez Bedoya, Eliana7bab80a7161999af1bc30b4f8aa2a33bBohórquez Bedoya, Eliana [0000000153189570]Lorke, Andreas [0000-0001-5533-1817]Gómez Giraldo, Andrés [0000-0001-7103-9429]BOHÓRQUEZ BEDOYA, ELIANABohórquez, Eliana [56957160300]https://www.researchgate.net/profile/Eliana-BohorquezBohórquez, Eliana [https://www.researchgate.net/profile/Eliana-Bohorquez]Bohórquez, Eliana [Eliana Bohórquez]2023-07-21T15:23:16Z2023-07-21T15:23:16Z2023-07-13https://repositorio.unal.edu.co/handle/unal/84240Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapasTropical reservoirs are recognized as globally important sources of greenhouse gases (GHG). Tropical mountainous areas of high hydroelectric development have been poorly studied. The objective of this study is to understand GHG dynamics in tropical mountain reservoirs. Data on seasonal and diurnal GHG dynamics were collected during six field campaigns in the Porce III reservoir in the Colombian Andes, where the importance of oxic CH4 production in the variability of dissolved gas at the surface, as well as the variation of water levels as an incident factor in GHG fluxes on a seasonal scale, was evidenced. CO2 flux at the reservoir water-atmosphere interface were monitored with a high-resolution technique over periods of several weeks, where the importance of primary productivity in the diurnal cycling of CO2 flux was inferred, showing alternation as sink-source, and pulses of synoptic-scale CO2 flux were observed as a consequence of the simultaneous occurrence of increases in surface concentrations and high wind speed. In laboratory experiments, a relationship was found between rain rate, turbulent kinetic energy dissipation rate and gas transfer rate, contributing to the modeling of this phenomenon with applicability in inland waters. In general, the results obtained contribute to the understanding of GHG dynamics in eutrophic tropical reservoirs.Los embalses tropicales están reconocidos como fuentes de gases de efecto invernadero (GEI) de importancia mundial. Zonas tropicales montañosas de gran desarrollo hidroeléctrico han sido escasamente estudiadas. El objetivo de este estudio es comprender la dinámica de los GEI en embalses tropicales de montaña. Se recolectaron datos de la dinámica estacional y diurna de GEI durante seis campañas de campo en el embalse Porce III, en los Andes colombianos, donde se evidenció la importancia de la producción óxica de CH4 en la en la variabilidad del gas disuelto en superficie, así como la variación de los niveles de agua como factor incidente en los flujos de GEI a escala estacional. Se monitoreó el flujo de CO2 en la interfaz agua-atmósfera del embalse con una técnica de alta resolución durante periodos de varias semanas, donde se infirió la importancia de la productividad primaria en el ciclo diurno de los flujos de CO2, mostrando alternancia como sumidero-fuente, y se observaron pulsos de flujos de CO2 a escala sinóptica como consecuencia de la ocurrencia simultánea de incrementos en las concentraciones superficiales y alta velocidad del viento. En experimentos de laboratorio, se encontró una relación entre la tasa de lluvia, la tasa de disipación de la energía cinética turbulenta y la velocidad de transferencia de gases, contribuyendo a la modelación de este fenómeno con aplicabilidad en aguas continentales. En general, los resultados obtenidos contribuyen al entendimiento de la dinámica de GEI en embalses tropicales eutrofizados. (Texto tomado de la fuente)Scholarship Program No. 757 - National Doctorates of the Ministry of Science, Technology and Innovation of ColombiaResearch Grants - Short-Term Grants, 2019 (57440917) of the German Academic Exchange Service (DAAD)the German Research Foundation (DFG).Ministerio de Ciencia Tecnología e Innovación de Colombia - MinCienciasRecibió simultáneamente el grado de Doctor en Ciencias Naturales por la Technische Universität Kaiserslautern-Landau de AlemaniaDoctoradoDoctor en IngenieríaÁrea Curricular de Medio Ambiente156 páginasapplication/pdfengUniversidad Nacional de ColombiaTechnische Universität Kaiserslautern-LandauMedellín - Minas - Doctorado en Ingeniería - Recursos HidráulicosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaGases de invernaderoCanales (Ingeniería hidráulica)Greenhouse gasesChannels (hydraulic engineering)Tropical mountain reservoirsGreenhouse gasesGas transfer at the water-atmosphere interfaceSeasonal variabilityDiurnal cycleRainfall rateEmbalses tropicales de montañaGases efecto invernaderoTransferencia de gases en la interfaz agua-atmósferaVariabilidad estacionalCiclo diurnoTasa de lluviaPhysical processes influence on the dynamics of the main greenhouse gases in mountain tropical reservoirsInfluencia de los procesos físicos en la dinámica de los principales gases de efecto invernadero en embalses tropicales de montañaTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDRedColLaReferenciaAbe, D. S., Adams, D. D., Sidagis Galli, C. V., Sikar, E., & Tundisi, J. G. (2005). Sediment greenhouse gases (methane and carbon dioxide) in the Lobo-Broa Reservoir, São Paulo State, Brazil: Concentrations and diffuse emission fluxes for carbon budget considerations. Lakes and Reservoirs: Research and Management, 10(4), 201–209. https://doi.org/10.1111/j.1440-1770.2005.00277.Abril, G., Bouillon, S., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Ochieng Omengo, F., Geeraert, N., Deirmendjian, L., Polsenaere, P., & Borges, A. V. (2015). Technical note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences, 12(1), 67–78. https://doi.org/10.5194/bg-12-67-2015Abril, G., Bouillon, S., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Ochieng Omengo, F., Geeraert, N., Deirmendjian, L., Polsenaere, P., & Borges, A. V. (2015). Technical note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences, 12(1), 67–78. https://doi.org/10.5194/bg-12-67-2015Anthony, K. W., & MacIntyre, S. (2016). Nocturnal escape route for marsh gas. Nature, 535(7612), 363–365. https://doi.org/10.1038/535363aBaker, M. A., & Gibson, C. H. (1987). Sampling turbulence in the stratified ocean: statistical consequences of strong intermittency. In J. Phys. Oceanogr. (Vol. 17, Issues 10, Oct. 1987, pp. 1817–1836). https://doi.org/10.1175/1520-0485(1987)017<1817:stitso>2.0.co;2Banks, R. B., Wickramanayake, B., & Lohani, B. N. (1984). Effect of Wind and Rain on Surface Reaeration. Journal of the Environmental Engineering, 110, 1–14. https://doi.org/10.1061/(ASCE)0733-9372(1984)110:1(1)Barbosa, P. M., Melack, J. M., Amaral, J. H. F., MacIntyre, S., Kasper, D., Cortés, A., Farjalla, V. F., & Forsberg, B. R. (2020). Dissolved methane concentrations and fluxes to the atmosphere from a tropical floodplain lake. Biogeochemistry, 148(2), 129–151. https://doi.org/10.1007/s10533-020-00650-1Barbosa, P. M., Melack, J. M., Amaral, J. H. F., MacIntyre, S., Kasper, D., Cortés, A., Farjalla, V. F., & Forsberg, B. R. (2020). Dissolved methane concentrations and fluxes to the atmosphere from a tropical floodplain lake. Biogeochemistry, 148(2), 129–151. https://doi.org/10.1007/s10533-020-00650-1Barros, N., Cole, J. J., Tranvik, L. J., Prairie, Y. T., Bastviken, D., Huszar, V. L. M., del Giorgio, P., & Roland, F. (2011). Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nature Geoscience, 4(9), 593–596. https://doi.org/10.1038/ngeo1211Barros, N., Cole, J. J., Tranvik, L. J., Prairie, Y. T., Bastviken, D., Huszar, V. L. M., del Giorgio, P., & Roland, F. (2011). Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nature Geoscience, 4(9), 593–596. https://doi.org/10.1038/ngeo1211Bastviken, D., Cole, J. J., Pace, M. L., & Van de-Bogert, M. C. (2008). Fates of methane from different lake habitats: Connecting whole-lake budgets and CH4emissions. Journal of Geophysical Research: Biogeosciences, 113(2). https://doi.org/10.1029/2007JG000608Bastviken, D., Cole, J., Pace, M., & Tranvik, L. (2004a). Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochemical Cycles, 18(4), 1–12. https://doi.org/10.1029/2004GB002238Bastviken, D., Cole, J., Pace, M., & Tranvik, L. (2004a). Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochemical Cycles, 18(4), 1–12. https://doi.org/10.1029/2004GB002238Bastviken, D., Sundgren, I., Natchimuthu, S., Reyier, H., & Gålfalk, M. (2015). Technical Note: Cost-efficient approaches to measure carbon dioxide fluxes and concentrations in terrestrial and aquatic environments using mini loggers. Biogeosciences, 12(12), 3849–3859. https://doi.org/10.5194/bg-12-3849-2015Bastviken, D., Tranvik, L. J., Downing, J., Crill, J. a, M, P., & Enrich-prast, A. (2011). Freshwater Methane Emissions Offset the Continental Carbon Sink. Science, 331, 50. https://doi.org/10.1126/science.1196808Bastviken, D., Tranvik, L. J., Downing, J., Crill, J. a, M, P., & Enrich-prast, A. (2011). Freshwater Methane Emissions Offset the Continental Carbon Sink. Science, 331, 50. https://doi.org/10.1126/science.1196808Beyá, J., Peirson, W., & Banner, M. (2011). Rainfall-generated, near-surface turbulence. In S. Komori, W. McGillis, & R. Kurose (Eds.), Gas transfer at water surfaces 2010 (pp. 90–103). Kyoto University Press 2011.Bižić, M., Klintzsch, T., Ionescu, D., Hindiyeh, M. Y., Günthel, M., Muro-Pastor, A. M., Eckert, W., Urich, T., Keppler, F., & Grossart, H. P. (2020). Aquatic and terrestrial cyanobacteria produce methane. Science Advances, 6(3). https://doi.org/10.1126/sciadv.aax5343Blees, J., Niemann, H., Erne, M., Zopfi, J., Schubert, C. J., & Lehmann, M. F. (2015). Spatial variations in surface water methane super-saturation and emission in Lake Lugano, southern Switzerland. Aquatic Sciences, 77(4), 535–545. https://doi.org/10.1007/s00027-015-0401-zBluteau, C. E., Jones, N. L., & Ivey, G. N. (2011). Estimating turbulent kinetic energy dissipation using the inertial subrange method in environmental flows. Limnology and Oceanography: Methods, 9(JULY), 302–321. https://doi.org/10.4319/lom.2011.9.302Boehrer, B., & Schultze, M. (2009). Stratification of lakes. Reviews of Geophysics, 46(2), 583–593. https://doi.org/10.1029/2006RG000210Bogard, M. J., del Giorgio, P. A., Boutet, L., Chaves, M. C. G., Prairie, Y. T., Merante, A., & Derry, A. M. (2014). Oxic water column methanogenesis as a major component of aquatic CH4 fluxes. Nature Communications, 5. https://doi.org/10.1038/ncomms6350Borges, A. V., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Geeraert, N., Omengo, F. O., Guérin, F., Lambert, T., Morana, C., Okuku, E., & Bouillon, S. (2015). Globally significant greenhouse-gas emissions from African inland waters. Nature Geoscience, 8(8), 637–642. https://doi.org/10.1038/ngeo2486Bouffard, D., & Boegman, L. (2013). Dynamics of Atmospheres and Oceans A diapycnal diffusivity model for stratified environmental flows. Dynamics of Atmospheres and Oceans, 61–62, 14–34. https://doi.org/10.1016/j.dynatmoce.2013.02.002Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K., & Zhuang, Q. (2013). Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology, 19(5), 1325–1346. https://doi.org/10.1111/gcb.12131Camargo, J. A., & Alonso, A. (2007). Contaminación por nitrógeno inorgánico en los ecosistemas acuáticos : problemas medioambientales, criterios de calidad del agua e implicaciones del cambio climático. Ecosistemas, 16(2), 98–110.Castro - González, M., & Torres-Valdés, V. (2015). Gases invernadero en aguas con bajo oxígeno en el reservorio eutrófico de Prado (Colombia). Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(152), 399. https://doi.org/10.18257/raccefyn.228Chapra, S. C. (1997). Surface Water-Quality Modeling (B. J. Clark, D. A. Damstra, & J. W. Bradley, Eds.). McGraw Hill.Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Quéré, C. Le, Myneni, R. B., Piao, S., & Thornton, P. (2013). The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Change, IPCC Climate, 465–570. https://doi.org/10.1017/CBO9781107415324.015Ciarlini, P., Catombé, C., Lucia, R., Nobre, G., Kosten, S., Martins, E., Carvalho, F. De, Sarmento, H., Angelini, R., Terra, I., Gaudêncio, A., Haig, N., Becker, V., Rodrigues, C., Quesado, L., Silva, L., Caliman, A., & Megali, A. (2019). Effects of seasonality, trophic state and landscape properties on CO2 saturation in low-latitude lakes and reservoirs. Science of the Total Environment, 664, 283–295. https://doi.org/10.1016/j.scitotenv.2019.01.273Cole, J., & Caraco, N. F. (1998a). Atmospheric Exchange of Carbon Dioxide in a Low-Wind Oligotrophic Lake Measured by the Addition of SF6. Limnology and Oceanography, 43(4), 647–656. https://doi.org/10.4319/lo.1998.43.4.0647Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., Middelburg, J. J., & Melack, J. (2007). Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems, 10, 171–184. https://doi.org/10.1007/s 10021-006-9013-8Czikowsky, M. J., MacIntyre, S., Tedford, E. W., Vidal, J., & Miller, S. D. (2018). Effects of Wind and Buoyancy on Carbon Dioxide Distribution and Air‐Water Flux of a Stratified Temperate Lake. Journal of Geophysical Research: Biogeosciences, 123(8), 2305–2322. https://doi.org/10.1029/2017JG004209Deemer, B. R., Harrison, J. A., Li, S., Beaulieu, J. J., Delsontro, T., Barros, N., Bezerra-Neto, J. F., Powers, S. M., Santos, M. A. D. O. S., Vonk, J. A., Dos Santos, M. A., & Vonk, J. A. (2016). Greenhouse gas emissions from reservoir water surfaces: A new global synthesis. BioScience, 66(11), 949–964. https://doi.org/10.1093/biosci/biw117Delmas, R., & Galy-lacaux, C. (2001). Emissions of greenhouse gases from the tropical hydroelectric reservoir of Petit Saut ( French Guiana ) compared with emissions of thermal alternatives. Global Biogeochemical Cycles, 15(4), 993–1003.Delsontro, T., Beaulieu, J. J., & Downing, J. A. (2018). Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global change. Limnology and Oceanography Letters, March, 64–75. https://doi.org/10.1002/lol2.10073Demarty, M., & Bastien, J. (2011). GHG emissions from hydroelectric reservoirs in tropical and equatorial regions: Review of 20 years of CH4 emission measurements. Energy Policy, 39(7), 4197–4206. https://doi.org/10.1016/j.enpol.2011.04.033D’Errico. (2012). inpaint_nans. MATLAB Central File Exchange. https://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint_nansDeshmukh, C., Guérin, F., Labat, D., Pighini, S., Vongkhamsao, A., Guédant, P., Rode, W., Godon, A., Chanudet, V., Descloux, S., & Serça, D. (2016). Low methane (CH4) emissions downstream of a monomictic subtropical hydroelectric reservoir (Nam Theun 2, Lao PDR). Biogeosciences, 13(6). https://doi.org/10.5194/bg-13-1919-2016Donis, D., Flury, S., & Spangenberg, J. E. (2017). Full-scale evaluation of methane production under oxic conditions in a mesotrophic lake. Nature Communications, 8(1661), 1–11. https://doi.org/10.1038/s41467-017-01648-4Doron, P., Bertuccioli, L., Katz, J., & Osborn, T. R. (2001). Turbulence characteristics and dissipation estimates in the coastal ocean bottom boundary layer from PIV data. Journal of Physical Oceanography, 31(8 PART 1), 2108–2134. https://doi.org/10.1175/1520-0485(2001)031<2108:tcadei>2.0.co;2dos Santos, M. A., Rosa, L. P., Sikar, B., Sikar, E., & dos Santos, E. O. (2006). Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants. Energy Policy, 34(4), 481–488. https://doi.org/10.1016/j.enpol.2004.06.015Erkkilä, K. M., Ojala, A., Bastviken, D., Biermann, T., Heiskanen, J., Lindroth, A., Peltola, O., Rantakari, M., Vesala, T., & Mammarella, I. (2018). Methane and carbon dioxide fluxes over a lake: Comparison between eddy covariance, floating chambers and boundary layer method. Biogeosciences, 15(2), 429–445. https://doi.org/10.5194/bg-15-429-2018Esters, L., Landwehr, S., Sutherland, G., Bell, T. G., Christensen, K. H., Saltzman, E. S., Miller, S. D., & Ward, B. (2017). Parameterizing air-sea gas transfer velocity with dissipation. Journal of Geophysical Research: Oceans, 122(4), 3041–3056. https://doi.org/10.1002/2016JC012088Eugster, W. (2003). CO 2 exchange between air and water in an Arctic Alaskan and midlatitude Swiss lake: Importance of convective mixing. Journal of Geophysical Research, 108(D12), 4362. https://doi.org/10.1029/2002JD002653Eugster, W., Kling, G., Jonas, T., McFadden, J. P., Wüest, A., MacIntyre, S., & Stuart, F. C. I. (2003). CO2 exchange between air and water in an Arctic Alaskan and midlatitude Swiss lake: Importance of convective mixing. Journal of Geophysical Research, 108(D12), 4362. https://doi.org/10.1029/2002JD002653Fearnside, P. M. (2015). Emissions from tropical hydropower and the IPCC. Environmental Science and Policy, 50, 225–239. https://doi.org/10.1016/j.envsci.2015.03.002Fearnside, P. M. (2015). Emissions from tropical hydropower and the IPCC. Environmental Science and Policy, 50, 225–239. https://doi.org/10.1016/j.envsci.2015.03.002Galy-lacaux, C., Delmas, R., Labroue, L., & Gosse, P. (1997). Gaseous emissions and oxygen consumption in hydroelectric dams: A case study in French Guyana. Global Biogeochem. Cycles, 11(4), 471–483.Goring, D. G., & Nikora, V. I. (2002). Despiking acoustic doppler velocimeter data. Journal of Hydraulic Engineering, 128(1), 117–126. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(117)Guérin, F., & Abril, G. (2007). Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir. Journal of Geophysical Research: Biogeosciences, 112(3), 1–14. https://doi.org/10.1029/2006JG000393Guérin, F., & Abril, G. (2007). Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir. Journal of Geophysical Research: Biogeosciences, 112(3), 1–14. https://doi.org/10.1029/2006JG000393Guérin, F., Abril, G., Richard, S., Burban, B., Reynouard, C., Seyler, P., & Delmas, R. (2006). Methane and carbon dioxide emissions from tropical reservoirs: Significance of downstream rivers. Geophysical Research Letters, 33(21), 1–6. https://doi.org/10.1029/2006GL027929Guérin, F., Abril, G., Serça, D., Delon, C., Richard, S., Delmas, R., Tremblay, A., & Varfalvy, L. (2007a). Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. Journal of Marine Systems, 66(1–4), 161–172. https://doi.org/10.1016/j.jmarsys.2006.03.019Guérin, F., Abril, G., Serça, D., Delon, C., Richard, S., Delmas, R., Tremblay, A., & Varfalvy, L. (2007a). Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. Journal of Marine Systems, 66(1–4), 161–172. https://doi.org/10.1016/j.jmarsys.2006.03.019Guérin, F., Abril, G., Serça, D., Delon, C., Richard, S., Delmas, R., Tremblay, A., & Varfalvy, L. (2007b). Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. Journal of Marine Systems, 66(1–4), 161–172. https://doi.org/10.1016/j.jmarsys.2006.03.019Guseva, S., Aurela, M., Cortés, A., Kivi, R., Lotsari, E., MacIntyre, S., Mammarella, I., Ojala, A., Stepanenko, V., Uotila7, P., Vähä7, A., Vesala, T., Wallin, M. B., & A. Lorke. (2021). Variable Physical Drivers of Near-Surface Turbulence in a Regulated River Water Resources Research. Water Resources Research, 57, 1–27. https://doi.org/10.1029/2020WR027939Harrison, E. L., & Veron, F. (2017). Near-surface turbulence and buoyancy induced by heavy rainfall. Journal of Fluid Mechanics, 830, 602–630. https://doi.org/10.1017/jfm.2017.602Harrison, E. L., & Veron, F. (2017). Near-surface turbulence and buoyancy induced by heavy rainfall. Journal of Fluid Mechanics, 830, 602–630. https://doi.org/10.1017/jfm.2017.602Harrison, E. L., Veron, F., Ho, D. T., Reid, M. C., Orton, P., & McGillis, W. R. (2012). Nonlinear interaction between rain- and wind-induced air-water gas exchange. Journal of Geophysical Research: Oceans, 117(3), 1–16. https://doi.org/10.1029/2011JC007693Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803Ho, D. T., Asher, W. E., Bliven, L. F., Schlosser, P., & Gordan, E. L. (2000). On mechanisms of rain-induced air-water gas exchange. Journal of Geophysical Research: Oceans, 105(C10), 24045–24057. https://doi.org/10.1029/1999jc000280Ho, D. T., Engel, V. C., Ferrón, S., Hickman, B., Choi, J., & Harvey, J. W. (2018). On Factors Influencing Air-Water Gas Exchange in Emergent Wetlands. Journal of Geophysical Research: Biogeosciences, 123(1), 178–192. https://doi.org/10.1002/2017JG004299Ho, D. T., Veron, F., Harrison, E., Bliven, L. F., Scott, N., & McGillis, W. R. (2007). The combined effect of rain and wind on air-water gas exchange: A feasibility study. Journal of Marine Systems, 66(1–4), 150–160. https://doi.org/10.1016/j.jmarsys.2006.02.012Ho, D. T., Veron, F., Harrison, E., Bliven, L. F., Scott, N., & McGillis, W. R. (2007). The combined effect of rain and wind on air-water gas exchange: A feasibility study. Journal of Marine Systems, 66(1–4), 150–160. https://doi.org/10.1016/j.jmarsys.2006.02.012Hope, D., Dawson, J. J. C., Cresser, M. S., & Billett, M. F. (1995). A method for measuring free CO2 in upland streamwater using headspace analysis. Journal of Hydrology, 166, 1–14.Hope, D., Dawson, J. J. C., Cresser, M. S., & Billett, M. F. (1995). A method for measuring free CO2 in upland streamwater using headspace analysis. Journal of Hydrology, 166, 1–14.Inc, E. (n.d.). User Manual eosFDCO 2 eosFD Forced Diffusion Chamber and Software, version 2.4 (p. 28).IPCC. (1990). Resumen General del IPCC. 57–70.IPCC. (2019). Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (E. Calvo Buendia, K. Tanabe, A. Kranjc, B. Jamsranjav, M. Fukuda, S. Ngarize, A. Osako, Y. Pyrozhenko, P. Shermanau, & S. Federici, Eds.). IPCC. https://doi.org/10.21513/0207-2564-2019-2-05-13Jähne, B., Münnich, K. O., Bösinger, R., Dutzi, A., Huber, W., & Libner, P. (1987). On the parameters influencing air-water gas exchange. Journal of Geophysical Research, 92(C2), 1937–1949. https://doi.org/10.1029/JC092iC02p01937Jones, B. K., Saylor, J. R., & Testik, F. Y. (2010). Raindrop Morphodynamics.Jorgensen, S. E., Loffler, H., RAst, W., & Straskraba, M. (2005). Lake and Reservoir Management (1st Editio). Elsevier Science.Katul, G., & Liu, H. (2017). Multiple mechanisms generate a universal scaling with dissipation for the air-water gas transfer velocity. Geophysical Research Letters, 44, 1–7. https://doi.org/10.1002/2016GL072256Käufer, T., König, J., & Cierpka, C. (2021). Stereoscopic PIV measurements using low-cost action cameras. Experiments in Fluids, 62(3), 1–16. https://doi.org/10.1007/s00348-020-03110-6Kemenes, A., Agricultural, B., & Barbara, S. (2016). Downstream emissions of CH4 and CO2 from hydroelectric reservoirs ( Tucuruí , Samuel , and Curuá-Una ) in the ... Inland Waters, 1(1), 1–10. https://doi.org/10.5268/IW-6.3.980Kemenes, A., Agricultural, B., & Barbara, S. (2016). Downstream emissions of CH4 and CO2 from hydroelectric reservoirs ( Tucuruí , Samuel , and Curuá-Una ) in the ... Inland Waters, 1(1), 1–10. https://doi.org/10.5268/IW-6.3.980Kocsis, O., Prandke, H., Stips, A., Simon, A., & Wüest, A. (1999). Comparison of dissipation of turbulent kinetic energy determined from shear and temperature microstructure. Journal of Marine Systems, 21(1–4), 67–84. https://doi.org/10.1016/S0924-7963(99)00006-8Koschorreck, M., Prairie, Y. T., Kim, J., & Marcé, R. (2021). Technical note : CO2 is not like CH4 – limits of and corrections to the headspace method to analyse pCO 2 in fresh water. Biogeosciences, 18, 1619–1627. https://doi.org/10.5194/bg-18-1619-2021Koschorreck, M., Prairie, Y. T., Kim, J., & Marcé, R. (2021). Technical note : CO2 is not like CH4 – limits of and corrections to the headspace method to analyse pCO 2 in fresh water. Biogeosciences, 18, 1619–1627. https://doi.org/10.5194/bg-18-1619-2021Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., Korsbakken, J. I., Peters, G. P., Canadell, J. G., Jackson, R. B., Boden, T. A., Tans, P. P., Andrews, O. D., Arora, V. K., Bakker, D. C. E., Van Der Laan-Luijkx, I. T., Van Der Werf, G. R., Van Heuven, S., Viovy, N., … Zhu, D. (2018). 1. Carbon cycle-Global Carbon Budget 2017. Earth Syst. Sci. Data Etsushi Kato Markus Kautz Ralph F. Keeling Kees Klein Goldewijk Nathalie Lefèvre Andrew Lenton Danica Lombardozzi Nicolas Metzl Yukihiro Nojiri Antonio Padin Janet Reimer, 1010333739(10), 405–448. https://doi.org/10.5194/essd-10-405-2018Lin, L., Lu, X., Liu, S., Liong, S., & Fu, K. (2019). Physically controlled CO2 effluxes from a reservoir surface in the upper Mekong River Basin: a case study in the Gongguoqiao Reservoir. Biogeosciences, 16, 2205–2219. https://doi.org/10.5194/bg-16-2205-2019Liu, H., Zhang, Q., Katul, G. G., Cole, J. J., Chapin III, F. S., & MacIntyre, S. (2016). Large CO2 effluxes at night and during synoptic weather events significantly contribute to CO2 emissions from a reservoir. Environmental Research Letters, 11(6), 1–8. https://doi.org/10.1088/1748-9326/11/6/064001Lorke, A., & Peeters, F. (2006). Toward a Unified Scaling Relation for Interfacial Fluxes. Journal of Physical Oceanography, 36(5), 955–961. https://doi.org/10.1175/JPO2903.1Lueck, R. (2016). RSI Technical Note 028. Calculating the Rate of Dissipation of Turbulent Kinetic Energy. Rockland Scientific Inc.Lueck, R., Scientific, R., Wolk, F., Scientific, R., & Black, K. (2013). Measuring Tidal Channel Turbulence with a Vertical Microstructure Profiler ( VMP ). Rockland Scientific Inc.Ma, X., & Green, S. A. (2004). Photochemical Transformation of Dissolved Organic Carbon in Lake Superior—An In-situ Experiment. Journal of Great Lakes Research, 30, 97–112. https://doi.org/10.1016/S0380-1330(04)70380-9MacIntyre, S., Jonsson, A., Jansson, M., Aberg, J., Turney, D. E., & Miller, S. D. (2010). Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake. Geophysical Research Letters, 37(24), 2–6. https://doi.org/10.1029/2010GL044164MacIntyre, S., Romero, J., & Kling, G. W. (2002). Spatial-temporal variability in surface layer deepening and lateral advection in an embayment of Lake Victoria, East Africa. Limnology and Oceanography, 47(3), 656–671. https://doi.org/10.4319/lo.2002.47.3.0656Melack, J. M., Basso, L. S., Fleischmann, A. S., Botía, S., Guo, M., Zhou, W., Barbosa, P. M., Amaral, J. H. F., & MacIntyre, S. (2022). Challenges Regionalizing Methane Emissions Using Aquatic Environments in the Amazon Basin as Examples. Frontiers in Environmental Science, 10(May), 1–26. https://doi.org/10.3389/fenvs.2022.866082Melack, J. M., Hess, L. L., Gastil, M., Forsberg, B. R., Hamilton, S. K., Lima, I. B. T., & Novo, E. M. L. M. (2004). Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Global Change Biology, 10(5), 530–544. https://doi.org/10.1111/j.1365-2486.2004.00763.xMelack, J. M., Hess, L. L., Gastil, M., Forsberg, B. R., Hamilton, S. K., Lima, I. B. T., & Novo, E. M. L. M. (2004). Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Global Change Biology, 10(5), 530–544. https://doi.org/10.1111/j.1365-2486.2004.00763.xOakey, N. S. (1982). Determination of the Rate of Dissipation of Turbulent Energy from Simultaneous Temperature and Velocity Shear Microstructure Measurements. Journal of Physical Oceanography, 12, 256–271.Obernosterer, I., & Benner, R. (2004). Competition between biological and photochemical processes in the mineralization of dissolved organic carbon. Limnology and Oceanography, 49(1), 117–124. https://doi.org/10.4319/lo.2004.49.1.0117Obernosterer, I., & Benner, R. (2004). Competition between biological and photochemical processes in the mineralization of dissolved organic carbon. Limnology and Oceanography, 49(1), 117–124. https://doi.org/10.4319/lo.2004.49.1.0117Opperman, J., Hartmann, J., & Justus, R. (2017). The Power of Rivers A Business Case.Osborn, T. R. (1980). Estimates of the Local Rate of Vertical Diffusion from Dissipation Measurements. Journal of Physical Oceanography, 10(1), 83–89. https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2Pacheco, F. S., Roland, F., & Downing, J. A. (2013). Eutrophication reverses whole-lake carbon budgets. Inland Waters, 4(1), 41–48. https://doi.org/10.5268/IW-4.1.614Pacheco, F. S., Soares, M. C. S., Assireu, A. T., Curtarelli, M. P., Abril, G., Stech, J. L., Alvalá, P. C., & Ometto, J. P. (2015). The effects of river inflow and retention time on the spatial heterogeneity of chlorophyll and water-air CO2 fluxes in a tropical hydropower reservoir. Biogeosciences, 12(1), 147–162. https://doi.org/10.5194/bg-12-147-2015Panneer Selvam, B., Natchimuthu, S., Arunachalam, L., & Bastviken, D. (2014). Methane and carbon dioxide emissions from inland waters in India - implications for large scale greenhouse gas balances. Global Change Biology, 20(11), 3397–3407. https://doi.org/10.1111/gcb.12575Paranaíba, J. R., Barros, N., Mendonça, R., Linkhorst, A., Isidorova, A., Roland, F., Almeida, R. M., & Sobek, S. (2018a). Spatially Resolved Measurements of CO2 and CH4 Concentration and Gas-Exchange Velocity Highly Influence Carbon-Emission Estimates of Reservoirs. Environmental Science and Technology, 52(2), 607–615. https://doi.org/10.1021/acs.est.7b05138Paranaíba, J. R., Barros, N., Mendonça, R., Linkhorst, A., Isidorova, A., Roland, F., Almeida, R. M., & Sobek, S. (2018b). Spatially Resolved Measurements of CO2and CH4Concentration and Gas-Exchange Velocity Highly Influence Carbon-Emission Estimates of Reservoirs. Environmental Science and Technology, 52(2), 607–615. https://doi.org/10.1021/acs.est.7b05138Peeters, F., & Kipfer, R. (2009). Currents in stratified water bodies 1: Density-driven flows. In Encyclopedia of Inland Waters (pp. 530–538). https://doi.org/DOI: 10.1016/B978-012370626-3.00080-6Peirson, W. L., Beyá, J. F., Banner, M. L., Peral, J. S., & Azarmsa, S. A. (2013). Rain-induced attenuation of deep-water waves. Journal of Fluid Mechanics, 724, 5–35. https://doi.org/10.1017/jfm.2013.87Poindexter, C. M., Baldocchi, D. D., Matthes, J. H., Knox, S. H., & Variano, E. A. (2016). The contribution of an overlooked transport process to a wetland’s methane emissions. Geophysical Research Letters, 43(12), 6276–6284. https://doi.org/10.1002/2016GL068782Rantakari, M., Heiskanen, J., Mammarella, I., Tulonen, T., Linnaluoma, J., Kankaala, P., & Ojala, A. (2015). Different Apparent Gas Exchange Coefficients for CO2 and CH4: Comparing a Brown-Water and a Clear-Water Lake in the Boreal Zone during the Whole Growing Season. Environmental Science and Technology, 49(19), 11388–11394. https://doi.org/10.1021/acs.est.5b01261Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., Butman, D., Striegl, R., Mayorga, E., Humborg, C., Kortelainen, P., Dürr, H., Meybeck, M., Ciais, P., & Guth, P. (2013). Global carbon dioxide emissions from inland waters. Nature, 503, 355–359. https://doi.org/10.1038/nature12760Raymond, P. A., Zappa, C. J., Butman, D., Bott, T. L., Potter, J., Mulholland, P., Laursen, A. E., Mcdowell, W. H., & Newbold, D. (2012). Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnology and Oceanography, 2, 41–53. https://doi.org/10.1215/21573689-1597669Read, J. S., Hamilton, D. P., Desai, A. R., Rose, K. C., Macintyre, S., Lenters, J. D., Smyth, R. L., Hanson, P. C., Cole, J. J., Staehr, P. A., Rusak, J. A., Pierson, D. C., Brookes, J. D., Laas, A., & Wu, C. H. (2012). Lake-size dependency of wind shear and convection as controls on gas exchange. Geophysical Research Letters, 39, 1–5. https://doi.org/10.1029/2012GL051886Risk, D., Nickerson, N., Creelman, C., McArthur, G., & Owens, J. (2011). Forced Diffusion soil flux: A new technique for continuous monitoring of soil gas efflux. Agricultural and Forest Meteorology, 151(12), 1622–1631. https://doi.org/10.1016/j.agrformet.2011.06.020Rocha Lessa, A. C., dos Santos, M. A., Lewis Maddock, J. E., & dos Santos Bezerra, C. (2015). Emissions of greenhouse gases in terrestrial areas pre-existing to hydroelectric plant reservoirs in the Amazon: The case of Belo Monte hydroelectric plant. Renewable and Sustainable Energy Reviews, 51, 1728–1736. https://doi.org/http://dx.doi.org/10.1016/j.rser.2015.07.067Rodriguez, M., & Casper, P. (2018). Greenhouse gas emissions from a semi-arid tropical reservoir in northeastern Brazil. Regional Environmental Change, 18(7), 1901–1912. https://doi.org/10.1007/s10113-018-1289-7Rodriguez, M., & Casper, P. (2018). Greenhouse gas emissions from a semi-arid tropical reservoir in northeastern Brazil. Regional Environmental Change, 18(7), 1901–1912. https://doi.org/10.1007/s10113-018-1289-7Rooney, G. G., van Lipzig, N., & Thiery, W. (2018). Estimating the effect of rainfall on the surface temperature of a tropical lake. Hydrology and Earth System Sciences, 22(12), 6357–6369. https://doi.org/10.5194/hess-22-6357-2018Rosentreter, J. A., Borges, A. V., Deemer, B. R., Holgerson, M. A., Liu, S., Song, C., Melack, J., Raymond, P. A., Duarte, C. M., Allen, G. H., Olefeldt, D., Poulter, B., Battin, T. I., & Eyre, B. D. (2021). Half of global methane emissions come from highly variable aquatic ecosystem sources. Nature Geoscience, 14(4), 225–230. https://doi.org/10.1038/s41561-021-00715-2Rudd, J. W. M. (1993). Are hydroelectric reservoirs significant sources of greenhouse gases. Ambio, 22(4), 246–248.Rudd, J. W. M., Furunati, A., Flett, R. J., & Hamilton, R. D. (1976). Factors controlling methane oxidation in shield lakes : The role of nitrogen fixation and oxygen concentration1. Limnology and Oceanography, 21(3), 357–364.Santoso, A. B., Hamilton, D. P., Schipper, L. A., Ostrovsky, I. S., & Hendy, C. H. (2020). High contribution of methane in greenhouse gas emissions from a eutrophic lake : a mass balance synthesis. New Zealand Journal of Marine and Freshwater Research, 1–20. https://doi.org/10.1080/00288330.2020.1798476Schlesinger, W. H., & Bernhardt, E. S. (2013). Biogeochemistry: An Analysis of Global Change. Academic Press.Serio, M. A., Carollo, F. G., & Ferro, V. (2019). Raindrop size distribution and terminal velocity for rainfall erosivity studies . A review. Journal of Hydrology, 576(February), 210–228. https://doi.org/10.1016/j.jhydrol.2019.06.040Shao, C., Chen, J., Stepien, C. A., Chu, H., Ouyang, Z., Bridgeman, T. B., Czajkowski, K. P., Becker, R. H., & John, R. (2015). Diurnal to annual changes in latent, sensible heat, and CO2 fluxes over a Laurentian Great Lake: A case study in Western Lake Erie. Journal of Geophysical Research: Biogeosciences, 120, 1587–1604. https://doi.org/10.1002/2015JG003025.ReceivedSiddiqui, M. H. K., & Loewen, M. R. (2007). Characteristics of the wind drift layer and microscale breaking waves. J. Fluid Mech., 573, 417–456. https://doi.org/10.1017/S0022112006003892Soued, C., & Prairie, Y. T. (2021). Changing sources and processes sustaining surface CO2 and CH4 fluxes along a tropical river to reservoir system. Biogeosciences, 18(4), 1333–1350. https://doi.org/10.5194/bg-18-1333-2021Soumis, N., Lucotte, M., Caneul, R., Weissenberger, S., Houel, S., Larose, C., & Duchemin, E. (2005). Hydroelectric Reservoirs as Anthropogenic sources of greenhouse gases. In Water Encyclopedia: Surface and Agricultural Water (pp. 203–210). https://doi.org/10.1002/047147844X.sw791Spafford, L., & Risk, D. (2018). Spatiotemporal Variability in Lake-Atmosphere Net CO2 Exchange in the Littoral Zone of an Oligotrophic Lake. Journal of Geophysical Research: Biogeosciences, 123(4), 1260–1276. https://doi.org/10.1002/2017JG004115St. Louis, V. L., Kelly, C. A., Duchemin, É., Rudd, J. W. M., & Rosenberg, D. M. (2000). Reservoir Surfaces as Sources of Greenhouse Gases to the Atmosphere: A Global Estimate. BioScience, 50(9), 766. https://doi.org/10.1641/0006-3568(2000)050[0766:RSASOG]2.0.CO;2Stumm, W., & Morgan, J. J. (1996). Chemical Equilibria and Rates in Natural Waters. In Aquatic chemistry.Takagaki, N., & Komori, S. (2007). Effects of rainfall on mass transfer across the air-water interface. Journal of Geophysical Research: Oceans, 112(6), 1–11. https://doi.org/10.1029/2006JC003752Takagaki, N., & Komori, S. (2014). Air – water mass transfer mechanism due to the impingement of a single liquid drop on the air – water interface. INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 60, 30–39. https://doi.org/10.1016/j.ijmultiphaseflow.2013.11.006Takagaki, N., & Komori, S. (2014). Air – water mass transfer mechanism due to the impingement of a single liquid drop on the air – water interface. INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 60, 30–39. https://doi.org/10.1016/j.ijmultiphaseflow.2013.11.006Tang, K. W., McGinnis, D. F., Frindte, K., Brüchert, V., & Grossart, H. P. (2014). Paradox reconsidered: Methane oversaturation in well-oxygenated lake waters. Limnology and Oceanography, 59(1), 275–284. https://doi.org/10.4319/lo.2014.59.1.0275Tang, K. W., McGinnis, D. F., Ionescu, D., & Grossart, H. P. (2016). Methane production in oxic lake waters potentially increases aquatic methane flux to air. Environmental Science and Technology Letters, 3(6), 227–233. https://doi.org/10.1021/acs.estlett.6b00150Tennekes, H., & Lumley, J. L. (1972). A FIRST COURSE IN TURBULENCE. The Massachusetts Institute of Technology.Thielicke, W. (2014). The Flapping Flight of Birds: Analysis and application. https://doi.org/10.1017/s036839310013768xThielicke, W., & Sonntag, R. (2021). Particle Image Velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab. Journal of Open Research Software, 9(June), 1–14. https://doi.org/10.5334/JORS.334Thielicke, W., & Stamhuis, E. J. (2014). PIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB. Journal of Open Research Software, 2, 1–10. https://doi.org/10.5334/jors.blToledo, A., Talarico, M., Chinez, S., & Agudo, E. (1983). The application of simplified models for eutrophication process evaluation in tropical lakes and reservoirs (pp. 1–34). ABES (Brazilian Association of Sanitary Engineering).Treut, L., Somerville, R., Cubasch, U., Ding, Y., Mauritzen, C., Mokssit, a, Peterson, T., Prather, M., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., & Tignor, M. (2007). Historical Overview of Climate Change Science. Earth, Chapter 1(October), 93–127. https://doi.org/10.1016/j.soilbio.2010.04.001Turk, D., Zappa, C. J., Meinen, C. S., Christian, J. R., Ho, D. T., Dickson, A. G., & McGillis, W. R. (2010). Rain impacts on CO2 exchange in the western equatorial Pacific Ocean. Geophysical Research Letters, 37(23), 1–6. https://doi.org/10.1029/2010GL045520UPME. (2016a). Boletín Estadístico: Minas y energía 2012 – 2016. Ministerio de Minas y Energía, 200.UPME. (2016a). Boletín Estadístico: Minas y energía 2012 – 2016. Ministerio de Minas y Energía, 200.Vachon, D., Prairie, Y. T., & Cole, J. J. (2010). The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange. Limnology and Oceanography, 55(4), 1723–1732. https://doi.org/10.4319/lo.2010.55.4.1723van Boxel, J. (1998). Numerical model for the fall speed of raindrops in a rainfall simulator. I.C.E. Special Report, 1998/1, 77–85.Verburg, P., & Antenucci, J. P. (2010). Persistent unstable atmospheric boundary layer enhances sensible and latent heat loss in a tropical great lake: Lake Tanganyika. Journal of Geophysical Research, 115(D11109), 1–13. https://doi.org/10.1029/2009JD012839Wallin, M. B., Chmiel, H. E., Kokic, J., Denfeld, B. A., Sobek, S., Koehler, B., Isidorova, A., Bastviken, D., Eve, M.-, Einarsdóttir, K., Wallin, M. B., Koehler, B., Isidorova, A., Bastviken, D., Ferland, M. È., & Sobek, S. (2016). The role of sediments in the carbon budget of a small boreal lake. Limnology and Oceanography, 61(5), 1814–1825. https://doi.org/10.1002/lno.10336Wanninkhof, R. (1992). Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research, 97(C5), 7373–7382. https://doi.org/10.1029/92JC00188Wanninkhof, R. (2014). Relationship between wind speed and gas exchange over the ocean revisited. Limnology and Oceanography: Methods, 12, 351–362. https://doi.org/10.4319/lom.2014.12.351West, W. E., Coloso, J. J., & Jones, S. E. (2012). Effects of algal and terrestrial carbon on methane production rates and methanogen community structure in a temperate lake sediment. Freshwater Biology, 57(5), 949–955. https://doi.org/10.1111/j.1365-2427.2012.02755.xWest, W. E., Creamer, K. P., & Jones, S. E. (2016). Productivity and depth regulate lake contributions to atmospheric methane. Limnology and Oceanography, 61, S51–S61. https://doi.org/10.1002/lno.10247Winter, T. C. (2004). The Hydrology of Lakes. In P. E. O’Sullivan & C. S. Reynolds (Eds.), The Lakes Handbook (pp. 61–78).Wüest, A., & Lorke, A. (2003). Small-Scale Hydrodynamics in Lakes. Annual Reviews of Fluid Mechanics, 35(Section 3), 373–412. https://doi.org/10.1146/annurev.fluid.35.101101.161220Xu, Y. J., Xu, Z., & Yang, R. (2019). Rapid daily change in surface water pCO2 and CO2 evasion: A case study in a subtropical eutrophic lake in Southern USA. Journal of Hydrology, 570, 486–494. https://doi.org/10.1016/j.jhydrol.2019.01.016Yang, L., Lu, F., Zhou, X., Wang, X., Duan, X., & Sun, B. (2014). Progress in the studies on the greenhouse gas emissions from reservoirs. Acta Ecologica Sinica, 34(4), 204–212. https://doi.org/10.1016/j.chnaes.2013.05.011Yang, R., Chen, Y., Du, J., Pei, X., Li, J., Zou, Z., & Song, H. (2022). Daily Variations in pCO2 and fCO2 in a Subtropical Urbanizing Lake. Frontiers in Earth Science, 9(January), 1–16. https://doi.org/10.3389/feart.2021.805276Yang, Y., Chen, J., Tong, T., Li, B., He, T., Liu, Y., & Xie, S. (2019). Eutrophication influences methanotrophic activity, abundance and community structure in freshwater lakes. Science of the Total Environment, 662, 863–872. https://doi.org/10.1016/j.scitotenv.2019.01.307Zappa, C. J., Ho, D. T., McGillis, W. R., Banner, M. L., Dacey, J. W. H., Bliven, L. F., Ma, B., & Nystuen, J. (2009). Rain-induced turbulence and air-sea gas transfer. Journal of Geophysical Research: Oceans, 114(7), 1–17. https://doi.org/10.1029/2008JC005008Zappa, C. J., Mcgillis, W. R., Raymond, P. A., Edson, J. B., Hintsa, E. J., Zemmelink, H. J., Dacey, J. W. H., & Ho, D. T. (2007). Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems. Geophysical Research Letters, 34, 1–6. https://doi.org/10.1029/2006GL028790Público generalORIGINAL1088266565_2022.pdf1088266565_2022.pdfTesis de doctorado en Ingeniería - Recursos Hidráulicosapplication/pdf7028797https://repositorio.unal.edu.co/bitstream/unal/84240/2/1088266565_2022.pdf4e8a13fe30d0aa4a5e7d8bcc602e5572MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84240/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53U.FT.09.006.019 - 01_License for publication of works in the UNAL Institutional Repository_AL.pdfU.FT.09.006.019 - 01_License for publication of works in the UNAL Institutional Repository_AL.pdfLicencia de autorización por parte de Technische Universität Kaiserslautern-Landauapplication/pdf300442https://repositorio.unal.edu.co/bitstream/unal/84240/5/U.FT.09.006.019%20-%2001_License%20for%20publication%20of%20works%20in%20the%20UNAL%20Institutional%20Repository_AL.pdf21b234bf57d54e3d7388809a23203740MD55THUMBNAIL1088266565_2022.pdf.jpg1088266565_2022.pdf.jpgGenerated Thumbnailimage/jpeg5156https://repositorio.unal.edu.co/bitstream/unal/84240/6/1088266565_2022.pdf.jpg0e19d23a6e574044cb56e78037cacb13MD56unal/84240oai:repositorio.unal.edu.co:unal/842402024-08-14 23:42:21.54Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |