Identificación y análisis de genes candidatos relacionados con la resistencia a Phytophthora palmivora en palma de aceite (Elaeis guineensis Jacq.)

La pudrición del cogollo causada (PC) por el oomiceto Phytophthora palmivora es la principal enfermedad que afecta el cultivo de palma de aceite en América. Para el caso colombiano esta enfermedad ha destruido miles de hectáreas en las diferentes regiones palmeras del país sin que hasta el momento s...

Full description

Autores:
Avila-Mendez, Kelly Johanna
Tipo de recurso:
Book
Fecha de publicación:
2019
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/75740
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/75740
Palabra clave:
Agricultura y tecnologías relacionadas
Pudrición del cogollo, Phytophthora palmivora, genes de resistencia, patosistema, secuenciación de alto rendimiento, cultivo in vitro.
Bud rot, Phytophthora palmivora, resistance genes, pathosystem, in vitro culture.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_d39bd1ced09a0ceadafdc84d5066c1f2
oai_identifier_str oai:repositorio.unal.edu.co:unal/75740
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Identificación y análisis de genes candidatos relacionados con la resistencia a Phytophthora palmivora en palma de aceite (Elaeis guineensis Jacq.)
title Identificación y análisis de genes candidatos relacionados con la resistencia a Phytophthora palmivora en palma de aceite (Elaeis guineensis Jacq.)
spellingShingle Identificación y análisis de genes candidatos relacionados con la resistencia a Phytophthora palmivora en palma de aceite (Elaeis guineensis Jacq.)
Agricultura y tecnologías relacionadas
Pudrición del cogollo, Phytophthora palmivora, genes de resistencia, patosistema, secuenciación de alto rendimiento, cultivo in vitro.
Bud rot, Phytophthora palmivora, resistance genes, pathosystem, in vitro culture.
title_short Identificación y análisis de genes candidatos relacionados con la resistencia a Phytophthora palmivora en palma de aceite (Elaeis guineensis Jacq.)
title_full Identificación y análisis de genes candidatos relacionados con la resistencia a Phytophthora palmivora en palma de aceite (Elaeis guineensis Jacq.)
title_fullStr Identificación y análisis de genes candidatos relacionados con la resistencia a Phytophthora palmivora en palma de aceite (Elaeis guineensis Jacq.)
title_full_unstemmed Identificación y análisis de genes candidatos relacionados con la resistencia a Phytophthora palmivora en palma de aceite (Elaeis guineensis Jacq.)
title_sort Identificación y análisis de genes candidatos relacionados con la resistencia a Phytophthora palmivora en palma de aceite (Elaeis guineensis Jacq.)
dc.creator.fl_str_mv Avila-Mendez, Kelly Johanna
dc.contributor.advisor.spa.fl_str_mv Romero-Angulo, Hernan Mauricio
dc.contributor.author.spa.fl_str_mv Avila-Mendez, Kelly Johanna
dc.contributor.researchgroup.spa.fl_str_mv Fisiología y Bioquímica de Especies Perennes
dc.subject.ddc.spa.fl_str_mv Agricultura y tecnologías relacionadas
topic Agricultura y tecnologías relacionadas
Pudrición del cogollo, Phytophthora palmivora, genes de resistencia, patosistema, secuenciación de alto rendimiento, cultivo in vitro.
Bud rot, Phytophthora palmivora, resistance genes, pathosystem, in vitro culture.
dc.subject.proposal.spa.fl_str_mv Pudrición del cogollo, Phytophthora palmivora, genes de resistencia, patosistema, secuenciación de alto rendimiento, cultivo in vitro.
dc.subject.proposal.eng.fl_str_mv Bud rot, Phytophthora palmivora, resistance genes, pathosystem, in vitro culture.
description La pudrición del cogollo causada (PC) por el oomiceto Phytophthora palmivora es la principal enfermedad que afecta el cultivo de palma de aceite en América. Para el caso colombiano esta enfermedad ha destruido miles de hectáreas en las diferentes regiones palmeras del país sin que hasta el momento se tengan soluciones de fondo para combatir el problema. Para lograr encontrar una solución permanente a la PC es necesario estudiar las relaciones planta-patógeno en diferentes genotipos de palma para así conocer los mecanismos de resistencia que permitan acelerar el mejoramiento genético y poder obtener cultivares resistentes. Por esta razón, se planteó esta investigación con el propósito de comprender y describir la interacción palma de aceite – P. palmivora, utilizando clones de palma. El principal objetivo fue la identificación de genes de resistencia en palma a P. palmivora, para lo cual se desarrolló un método de inoculación de clones en condiciones in vitro y se utilizaron métodos macroscópicos (ensayos de tamizaje), microscópicos (discos de foliolos de clones de palma inoculados), pruebas histoquímicas como DAB (3,3,-diaminobenzidina) y bioquímicas como catalasa, peroxidasa, y Fenil amonio liasa que permitieron identificar genotipos con comportamiento contrastante (ortet 34 resistente y ortet 57 susceptible). Posteriormente se realizó un análisis transcriptómico por medio de la tecnología de secuenciación Illumina Hiseq2500 durante la fase biotrófica de la enfermedad 24, 72 y 120 horas post infección). Los datos transcriptómicos permitieron realizar la primera descripción de los mecanismos moleculares de resistencia de la palma de aceite. La expresión de genes relacionados con la resistencia fue validada por qRT-PCR en clones inoculados, dando como resultado que dichos genes pueden ser usados como posibles marcadores moleculares para determinar la respuesta de resistencia a P. palmivora de diferentes materiales genéticos y así reducir los tiempos de selección de cultivares resistentes a la enfermedad.
publishDate 2019
dc.date.issued.spa.fl_str_mv 2019-11-15
dc.date.accessioned.spa.fl_str_mv 2020-02-25T20:01:40Z
dc.date.available.spa.fl_str_mv 2020-02-25T20:01:40Z
dc.type.spa.fl_str_mv Libro
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/book
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2f33
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/LIB
format http://purl.org/coar/resource_type/c_2f33
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/75740
url https://repositorio.unal.edu.co/handle/unal/75740
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Acevedo-Garcia, J., Gruner, K., Reinstädler, A., Kemen, A., Kemen, E., Cao, L., … Panstruga, R. (2017). The powdery mildew-resistant Arabidopsis mlo2 mlo6 mlo12 triple mutant displays altered infection phenotypes with diverse types of phytopathogens. Scientific Reports, 7(1), 1–15. https://doi.org/10.1038/s41598-017-07188-7 Adam, H., Jouannic, S., Escoute, J., Duval, Y., Verdeil, J. L., & Tregear, J. W. (2005). Reproductive developmental complexity in the African oil palm (Elaeis guineensis, Arecaceae). American Journal of Botany, 92(11), 1836–1852. https://doi.org/10.3732/ajb.92.11.1836 Ajengui, A., Bertolini, E., Ligorio, A., Chebil, S., Ippolito, A., & Sanzani, S. M. (2018). Comparative transcriptome analysis of two citrus germplasms with contrasting susceptibility to Phytophthora nicotianae provides new insights into tolerance mechanisms. Plant Cell Reports, 37(3), 483–499. https://doi.org/10.1007/s00299-017-2244-7 Ali, S., Ganai, B. A., Kamili, A. N., Bhat, A. A., Mir, Z. A., Bhat, J. A., … Grover, A. (2018). Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiological Research, 212–213(March), 29–37. https://doi.org/10.1016/j.micres.2018.04.008 Ali, S. S., Shao, J., Lary, D. J., Kronmiller, B. A., Shen, D., Strem, M. D., … Bailey, B. A. (2017). Phytophthora megakarya and Phytophthora palmivora, Closely Related Causal Agents of Cacao Black Pod Rot, Underwent Increases in Genome Sizes and Gene Numbers by Different Mechanisms. Genome Biology and Evolution, 9(3), 536–557. https://doi.org/10.1093/gbe/evx021 Alves, M., Dadalto, S., Gonçalves, A., de Souza, G., Barros, V., & Fietto, L. (2014). Transcription Factor Functional Protein-Protein Interactions in Plant Defense Responses. Proteomes, 2(1), 85–106. https://doi.org/10.3390/proteomes2010085 Amaro, T. M. M. M., Thilliez, G. J. A., Mcleod, R. A., & Huitema, E. (2018). Random mutagenesis screen shows that Phytophthora capsici CRN83_152-mediated cell death is not required for its virulence function(s). Molecular Plant Pathology, 19(5), 1114–1126. https://doi.org/10.1111/mpp.12590 Asai, S., & Shirasu, K. (2015). Plant cells under siege: Plant immune system versus pathogen effectors. Current Opinion in Plant Biology, 28, 1–8. https://doi.org/10.1016/j.pbi.2015.08.008 Baggs, E., Dagdas, G., & Krasileva, K. V. (2017). NLR diversity, helpers and integrated domains: making sense of the NLR IDentity. Current Opinion in Plant Biology, 38(Figure 1), 59–67. https://doi.org/10.1016/j.pbi.2017.04.012 Bahia, R. de C., Aguilar-Vildoso, C. I., Luz, E. D. M. N., Lopes, U. V., Machado, R. C. R., & Corrêa, R. X. (2015). Resistance to Black Pod Disease in a Segregating Cacao Tree Population. Tropical Plant Pathology, 40(1), 13–18. https://doi.org/10.1007/s40858-014-0003-7 Barcelos, E., Rios, S. de A., Cunha, R. N. V., Lopes, R., Motoike, S. Y., Babiychuk, E., … Kushnir, S. (2015). Oil palm natural diversity and the potential for yield improvement. Frontiers in Plant Science, 6(March), 1–16. https://doi.org/10.3389/fpls.2015.00190 Baxter, A., Mittler, R., & Suzuki, N. (2014). ROS as key players in plant stress signalling. Journal of Experimental Botany, 65(5), 1229–1240. https://doi.org/10.1093/jxb/ert375 Bellincampi, D., Cervone, F., & Lionetti, V. (2014). Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. Frontiers in Plant Science, 5(May), 228. https://doi.org/10.3389/fpls.2014.00228 Benítez, É., & García, C. (2015). The history of research on oil palm bud rot (Elaeis guineensis Jacq.) in Colombia. Agronomía Colombiana, 32(3), 390–398. https://doi.org/10.15446/agron.colomb.v32n3.46240 Berens, M. L., Berry, H. M., Mine, A., Argueso, C. T., & Tsuda, K. (2017). Evolution of Hormone Signaling Networks in Plant Defense. Annual Review of Phytopathology, 55(1), annurev-phyto-080516-035544. https://doi.org/10.1146/annurev-phyto-080516-035544 Bevan, M. W., Uauy, C., Wulff, B. B. H., Zhou, J., Krasileva, K., & Clark, M. D. (2017). Genomic innovation for crop improvement. Nature, 543(7645), 346–354. https://doi.org/10.1038/nature22011 Bhadauria, V., Banniza, S., Vandenberg, A., Selvaraj, G., & Wei, Y. (2013). Overexpression of a novel biotrophy-specific Colletotrichum truncatum effector, CtNUDIX, in hemibiotrophic fungal phytopathogens causes incompatibility with their host plants. Eukaryotic Cell, 12(1), 2–11. https://doi.org/10.1128/EC.00192-12 Bigeard, J., Colcombet, J., & Hirt, H. (2015a). Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant, 8(4), 521–539. https://doi.org/10.1016/j.molp.2014.12.022 Bigeard, J., Colcombet, J., & Hirt, H. (2015b). Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant, 8(4), 521–539. https://doi.org/10.1016/j.molp.2014.12.022 Bolger, A. M., Poorter, H., Dumschott, K., Bolger, M. E., Arend, D., Osorio, S., … Usadel, B. (2019). Computational aspects underlying genome to phenome analysis in plants. Plant Journal, 97(1), 182–198. https://doi.org/10.1111/tpj.14179 Bolouri Moghaddam, M. R., Vilcinskas, A., & Rahnamaeian, M. (2016). Cooperative interaction of antimicrobial peptides with the interrelated immune pathways in plants. Molecular Plant Pathology, 17(3), 464–471. https://doi.org/10.1111/mpp.12299 Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3 Breen, S., Williams, S. J., Outram, M., Kobe, B., & Solomon, P. S. (2017). Emerging Insights into the Functions of Pathogenesis-Related Protein 1. Trends in Plant Science, 22(10), 871–879. https://doi.org/10.1016/j.tplants.2017.06.013 Cao, Z., & Deng, Z. (2017). De novo assembly, annotation, and characterization of root transcriptomes of three caladium cultivars with a focus on necrotrophic pathogen resistance/defense-related genes. International Journal of Molecular Sciences, 18(4). https://doi.org/10.3390/ijms18040712 Chan, P. L., Rose, R. J., Abdul Murad, A. M., Zainal, Z., Leslie Low, E. T., Ooi, L. C. L., … Singh, R. (2014). Evaluation of reference genes for quantitative real-time PCR in oil palm elite planting materials propagated by tissue culture. PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0099774 Chang, Y. H., Yan, H. Z., & Liou, R. F. (2015). A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance. Molecular Plant Pathology, 16(2), 123–136. https://doi.org/10.1111/mpp.12166 Chawade, A., van Ham, J., Blomquist, H., Bagge, O., Alexandersson, E., & Ortiz, R. (2019). High-Throughput Field-Phenotyping Tools for Plant Breeding and Precision Agriculture. Agronomy, 9(5), 258. https://doi.org/10.3390/agronomy9050258 Chen, X. R., Huang, S. X., Zhang, Y., Sheng, G. L., Li, Y. P., & Zhu, F. (2018). Identification and functional analysis of the NLP-encoding genes from the phytopathogenic oomycete Phytophthora capsici. Molecular Genetics and Genomics, 0(0), 1–13. https://doi.org/10.1007/s00438-018-1432-7 Cochard, B., Amblard, P., & Durand-Gasselin, T. (2005). Oil palm genetic improvement and sustainable development. Oléagineux, Corps Gras, Lipides, 12(2), 141–147. https://doi.org/10.1051/ocl.2005.0141 Comer, J. R., Zomlefer, W. B., Barrett, C. F., Stevenson, D. W., Heyduk, K., & Leebens-Mack, J. H. (2016). Nuclear phylogenomics of the palm subfamily Arecoideae (Arecaceae). Molecular Phylogenetics and Evolution, 97, 32–42. https://doi.org/10.1016/j.ympev.2015.12.015 Cros, D., Denis, M., Sánchez, L., Cochard, B., Flori, A., Durand‑gasselin, T., … Bouvet, J. (2015). Genomic selection prediction accuracy in a perennial crop: case study of oil palm (Elaeis guineensis Jacq.). Theor Appl Genet, 128, 397–410. https://doi.org/10.1007/s00122-014-2439-z Dalio, R. J. D., Herlihy, J., Oliveira, T. S., McDowell, J. M., & Machado, M. (2017). Effector Biology in Focus: A Primer for Computational Prediction and Functional Characterization. Molecular Plant-Microbe Interactions, 31(1), 22–33. https://doi.org/10.1094/mpmi-07-17-0174-fi Daudi, A., Cheng, Z., O’Brien, J. A., Mammarella, N., Khan, S., Ausubel, F. M., & Bolwell, G. P. (2012). The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. The Plant Cell, 24(1), 275–287. https://doi.org/10.1105/tpc.111.093039 De Assis Costa, O. Y., Tupinambá, D. D., Bergmann, J. C., Barreto, C. C., & Quirino, B. F. (2018). Fungal diversity in oil palm leaves showing symptoms of Fatal Yellowing disease. PLoS ONE, 13(1), 1–17. https://doi.org/10.1371/journal.pone.0191884 Derevnina, L., Petre, B., Kellner, R., Dagdas, Y. F., Sarowar, M. N., Giannakopoulou, A., … Kamoun, S. (2016). Emerging oomycete threats to plants and animals. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1709), 20150459. https://doi.org/10.1098/rstb.2015.0459 Efombagn, M. I. B., Bieysse, D., Nyassé, S., & Eskes, A. B. (2011). Selection for resistance to Phytophthora pod rot of cocoa (Theobroma cacao L.) in Cameroon: Repeatability and reliability of screening tests and field observations. Crop Protection, 30(2), 105–110. https://doi.org/10.1016/j.cropro.2010.10.012 El-Komy, M. H. (2014). Comparative analysis of defense responses in chocolate spot-resistant and-susceptible faba bean (Vicia faba) cultivars following infection by the necrotrophic fungus Botrytis fabae. Plant Pathology Journal, 30(4), 355–366. https://doi.org/10.5423/PPJ.OA.06.2014.0050 Evangelisti, E., Gogleva, A., Hainaux, T., Doumane, M., Tulin, F., Quan, C., … Schornack, S. (2017). Time-resolved dual root-microbe transcriptomics reveals early induced Nicotiana benthamiana genes and conserved infection-promoting Phytophthora palmivora effectors. BioRxiv, 1–24. https://doi.org/10.1186/s12915-017-0379-1 Fang, Y., & Ramasamy, R. P. (2015). Current and prospective methods for plant disease detection. Biosensors, 5(3), 537–561. https://doi.org/10.3390/bios5030537 Fawke, S., Doumane, M., & Schornack, S. (2015a). Oomycete Interactions with Plants: Infection Strategies and Resistance Principles. Microbiology and Molecular Biology Reviews, 79(3), 263–280. https://doi.org/10.1128/mmbr.00010-15 Fawke, S., Doumane, M., & Schornack, S. (2015b). Oomycete Interactions with Plants: Infection Strategies and Resistance Principles. Microbiology and Molecular Biology Reviews, 79(3), 263–280. https://doi.org/10.1128/MMBR.00010-15 Fedepalma. (2016). Guía de bolsillo para el reconocimiento y manejo de las principales enfermedades e insectos plaga en el cultivo de la palma de aceite. Retrieved from http://web.fedepalma.org/sites/default/files/files/Fedepalma/Semanario Palmero/12 - 13 abril/Guía de bolsillo plagas.pdf Fedepalma. (2018). Anuario Estadistico 2018. Figueiró, A. de A., Reese, N., Gonzalez Hernandez, J. L., Pacheco, M. T., Martinelli, J. A., Federizzi, L. C., & Delatorre, C. A. (2015). Reactive Oxygen Species are not Increased in Resistant Oat Genotypes Challenged by Crown Rust Isolates. Journal of Phytopathology, 163(10), 795–806. https://doi.org/10.1111/jph.12377 Fouché, S., Plissonneau, C., & Croll, D. (2018). The birth and death of effectors in rapidly evolving filamentous pathogen genomes. Current Opinion in Microbiology, 46, 34–42. https://doi.org/10.1016/j.mib.2018.01.020 Franceschetti, M., Maqbool, A., Jiménez-Dalmaroni, M. J., Pennington, H. G., Kamoun, S., & Banfield, M. J. (2017). Effectors of Filamentous Plant Pathogens: Commonalities amid Diversity. Microbiology and Molecular Biology Reviews, 81(2), e00066-16. https://doi.org/10.1128/MMBR.00066-16 Galindo-González, L., & Deyholos, M. K. (2016). RNA-seq Transcriptome Response of Flax (Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. sp. lini. Frontiers in Plant Science, 7(November), 1–22. https://doi.org/10.3389/fpls.2016.01766 Gayoso, C., Pomar, F., Novo-Uzal, E., Merino, F., & Martínez de Ilárduya, Ó. (2010). The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression. BMC Plant Biology, 10. https://doi.org/10.1186/1471-2229-10-232 Guo, N., Zhao, J., Yan, Q., Huang, J., Ma, H., Rajput, N. A., … Dou, D. (2018). Resistance to Phytophthora pathogens is dependent on gene silencing pathways in plants. Journal of Phytopathology, (April 2017), 379–385. https://doi.org/10.1111/jph.12695 Gupta, S. M., Arora, S., Mirza, N., Pande, A., Lata, C., Puranik, S., … Kumar, A. (2017). Finger Millet: A “Certain” Crop for an “Uncertain” Future and a Solution to Food Insecurity and Hidden Hunger under Stressful Environments. Frontiers in Plant Science, 8(April), 1–11. https://doi.org/10.3389/fpls.2017.00643 Huang, G., Liu, Z., Gu, B., Zhao, H., Jia, J., Fan, G., … Shan, W. (2019). An RXLR effector secreted by Phytophthora parasitica is a virulence factor and triggers cell death in various plants. Molecular Plant Pathology, 20(3), 356–371. https://doi.org/10.1111/mpp.12760 Huang, S., Van Aken, O., Schwarzländer, M., Belt, K., & Millar, A. H. (2016). The Roles of Mitochondrial Reactive Oxygen Species in Cellular Signaling and Stress Response in Plants. Plant Physiology, 171(3), 1551–1559. https://doi.org/10.1104/pp.16.00166 Imam, J., Singh, P. K., & Shukla, P. (2016). Plant microbe interactions in post genomic era: Perspectives and applications. Frontiers in Microbiology, 7(SEP), 1–15. https://doi.org/10.3389/fmicb.2016.01488 Islam, M. T., Hussain, H. I., Rookes, J. E., & Cahill, D. M. (2018). Transcriptome analysis, using RNA-Seq of Lomandra longifolia roots infected with Phytophthora cinnamomi reveals the complexity of the resistance response. Plant Biology, 20(1), 130–142. https://doi.org/10.1111/plb.12624 Jiang, Z., He, F., & Zhang, Z. (2017). Large-scale transcriptome analysis reveals arabidopsis metabolic pathways are frequently influenced by different pathogens. Plant Molecular Biology, 94(4–5), 453–467. https://doi.org/10.1007/s11103-017-0617-5 Jindřichová, B., Fodor, J., Šindelářová, M., Burketová, L., & Valentová, O. (2011). Role of hydrogen peroxide and antioxidant enzymes in the interaction between a hemibiotrophic fungal pathogen, Leptosphaeria maculans, and oilseed rape. Environmental and Experimental Botany, 72(2), 149–156. https://doi.org/10.1016/j.envexpbot.2011.02.018 Jones, J. D. G., & Dangl, L. (2006). The plant immune system. Nature, 444(November), 323–329. https://doi.org/10.1038/nature05286 Judelson, H. S. (2017). Metabolic Diversity and Novelties in the Oomycetes. Annual Review of Microbiology, 71(1), annurev-micro-090816-093609. https://doi.org/10.1146/annurev-micro-090816-093609 Judelson, H. S., & Ah-Fong, A. M. V. (2019). Exchanges at the Plant-Oomycete Interface That Influence Disease. Plant Physiology, 179(4), 1198–1211. https://doi.org/10.1104/pp.18.00979 Kamoun, S. (2006). A Catalogue of the Effector Secretome of Plant Pathogenic Oomycetes. Annual Review of Phytopathology, 44(1), 41–60. https://doi.org/10.1146/annurev.phyto.44.070505.143436 Kamoun, S., Furzer, O., Jones, J. D. G., Judelson, H. S., Ali, G. S., Dalio, R. J. D., … Govers, F. (2015). The Top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology, 16(4), 413–434. https://doi.org/10.1111/mpp.12190 Kanwar, P., & Jha, G. (2019). Alterations in plant sugar metabolism: signatory of pathogen attack. Planta, 249(2), 305–318. https://doi.org/10.1007/s00425-018-3018-3 Kanyuka, K., & Rudd, J. J. (2019). Cell surface immune receptors: the guardians of the plant’s extracellular spaces. Current Opinion in Plant Biology, 50, 1–8. https://doi.org/10.1016/j.pbi.2019.02.005 Kapoor, D., Singh, S., Kumar, V., Romero, R., Prasad, R., & Singh, J. (2019). Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene, 19(April), 100182. https://doi.org/10.1016/j.plgene.2019.100182 Kebdani, N., Pieuchot, L., Deleury, E., Panabières, F., Le Berre, J. Y., & Gourgues, M. (2010). Cellular and molecular characterization of Phytophthora parasitica appressorium-mediated penetration. New Phytologist, 185(1), 248–257. https://doi.org/10.1111/j.1469-8137.2009.03048.x Khan, M., Seto, D., Subramaniam, R., & Desveaux, D. (2018). Oh, the places they’ll go! A survey of phytopathogen effectors and their host targets. Plant Journal, 93(4), 651–663. https://doi.org/10.1111/tpj.13780 Kissoudis, C., van de Wiel, C., Visser, R. G. F., & van der Linden, G. (2016). Future-proof crops: challenges and strategies for climate resilience improvement. Current Opinion in Plant Biology, 30, 47–56. https://doi.org/10.1016/j.pbi.2016.01.005 Koç, E., & Sülün ÜSTÜN, A. (2012). Infl uence of Phytophthora capsici L. inoculation on disease severity, necrosis length, peroxidase and catalase activity, and phenolic content of resistant and susceptible pepper (Capsicum annuum L.) plants. Turk J Biol, 36, 357–371. https://doi.org/10.3906/biy-1109-12 Krishna, H., Alizadeh, M., Singh, D., Singh, U., Chauhan, N., Eftekhari, M., & Sadh, R. K. (2016). Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech, 6(1), 1–18. https://doi.org/10.1007/s13205-016-0389-7 Latifah, M., Zainal Abidin, M. A., Kamaruzaman, S., & Nusaibah, S. A. (2017). Cross-infectivity of oil palm by Phytophthora spp. isolated from perennial crops in Malaysia. Forest Pathology, 47(6), 1–6. https://doi.org/10.1111/efp.12374 Lee, H. A., & Yeom, S. I. (2015). Plant NB-LRR proteins: Tightly regulated sensors in a complex manner. Briefings in Functional Genomics, 14(4), 233–242. https://doi.org/10.1093/bfgp/elv012 Lehmann, S., Serrano, M., L’Haridon, F., Tjamos, S. E., & Metraux, J. P. (2015). Reactive oxygen species and plant resistance to fungal pathogens. Phytochemistry, 112(1), 54–62. https://doi.org/10.1016/j.phytochem.2014.08.027 Lenzoni, G., Liu, J., & Knight, M. R. (2018). Predicting plant immunity gene expression by identifying the decoding mechanism of calcium signatures. New Phytologist, 217(4), 1598–1609. https://doi.org/10.1111/nph.14924 Li, B., Meng, X., Shan, L., & He, P. (2016). Transcriptional Regulation of Pattern-Triggered Immunity in Plants. Cell Host and Microbe, 19(5), 641–650. https://doi.org/10.1016/j.chom.2016.04.011 Li, Q., Zhang, M., Shen, D., Liu, T., Chen, Y., Zhou, J. M., & Dou, D. (2016). A Phytophthora sojae effector PsCRN63 forms homo-/hetero-dimers to suppress plant immunity via an inverted association manner. Scientific Reports, 6(March), 1–13. https://doi.org/10.1038/srep26951 Liu, Y., & He, C. (2017). A review of redox signaling and the control of MAP kinase pathway in plants. Redox Biology, 11(October 2016), 192–204. https://doi.org/10.1016/j.redox.2016.12.009 Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262 Lo Presti, L., & Kahmann, R. (2017a). How filamentous plant pathogen effectors are translocated to host cells. Current Opinion in Plant Biology, 38, 19–24. https://doi.org/10.1016/j.pbi.2017.04.005 Lo Presti, L., & Kahmann, R. (2017b). How filamentous plant pathogen effectors are translocated to host cells. Current Opinion in Plant Biology, 38, 19–24. https://doi.org/10.1016/j.pbi.2017.04.005 Louise, C. (2016). Resistencia a la Pudrición del cogollo en el material Guineensis. Revista Palmas, 37(Especial), 183–189. Ma, X., Xu, G., He, P., & Shan, L. (2016). SERKing Coreceptors for Receptors. Trends in Plant Science, 21(12), 1017–1033. https://doi.org/10.1016/j.tplants.2016.08.014 Ma, Z., Song, T., Zhu, L., Ye, W., Wang, Y., Shao, Y., … Wang, Y. (2015). A Phytophthora sojae Glycoside Hydrolase 12 Protein Is a Major Virulence Factor during Soybean Infection and Is Recognized as a PAMP. The Plant Cell (Vol. 27). https://doi.org/10.1105/tpc.15.00390 Macho, A. P., & Zipfel, C. (2014). Plant PRRs and the activation of innate immune signaling. Molecular Cell, 54(2), 263–272. https://doi.org/10.1016/j.molcel.2014.03.028 Maliogka, V. I., Minafra, A., Saldarelli, P., Ruiz-García, A. B., Glasa, M., Katis, N., & Olmos, A. (2018). Recent advances on detection and characterization of fruit tree viruses using high-throughput sequencing technologies. Viruses, 10(8), 1–23. https://doi.org/10.3390/v10080436 Martínez, G., Arango, M., Sarria, G., Velez, D., Rodriguez, J., Mestizo, Y., … Guest, D. (2013). Avances en la investigación sobre las dos enfermedades más importantes en la palma de aceite en Colombia la Pudrición del cogollo y la Marchitez letal. Palmas, 34(1), 39–48. Martínez, G., & Sarria, G. (2013). Estado del arte de la investigación y control de la Pudrición del cogollo (PC). Revista Palmas, 34(2), 47–57. Martínez, G., Sarria, G. A., Torres, G. A., & Varón, F. (2010). Phytophthora palmivora es el agente causal de la pudrición del cogollo de la palma de aceite Palabras clAve. Palmas, 31(No. especial Tomo I), 334–344. Martínez, G., Sarria, G., Torres, G., & Varon, F. (2010). Avances en la investigación de Phytophthora palmivora , el agente causal de la pudrición del cogollo de la palma de aceite en Colombia. Palmas, 31(1), 55–63. Martínez, G., Sarria, G., Torres, G., Varón, F., Drenth, A., & Guest, D. (2014a). Nuevos hallazgos sobre la Pudrici{ó}n del cogollo de la palma de aceite en Colombia: biolog{í}a, detecci{ó}n y estrategias de manejo. Palmas, 35(1), 11–17. Martínez, G., Sarria, G., Torres, G., Varón, F., Drenth, A., & Guest, D. (2014b). Nuevos hallazgos sobre la Pudrición del cogollo de la palma de aceite en Colombia: biología, detección y estrategias de manejo. Palmas, 35(1), 11–17. Martínez, G., & Torres, G. A. (2007). Presencia de la pudrición de cogollo de la palma de aceite (PC) en plantas de vivero. Palmas, 28(4), 13–20. Mcgowan, J., & Fitzpatrick, D. A. (2017). Genomic, network and phylogenetic analysis of the oomycete effector arsenal. MSphere, 2(6), 1–22. https://doi.org/https://doi.org/10.1128/mSphere .00408-17. Editor Meijaard, E., Garcia-Ulloa, Sheil, J., Carlson, S. A., Juffe-Bignoli, & Brooks. (2018). Oil palm and biodiversity: A situation analysis by the IUCN Oil Palm Task Force. INTERNATIONAL UNION FOR CONSERVATION OF NATURE. Retrieved from https://www.iucn-optf.org/ Meyer, F. E., Shuey, L. S., Naidoo, S., Mamni, T., Berger, D. K., Myburg, A. A., … Naidoo, S. (2016). Dual RNA-Sequencing of Eucalyptus nitens during Phytophthora cinnamomi Challenge Reveals Pathogen and Host Factors Influencing Compatibility. Frontiers in Plant Science, 7(March), 1–15. https://doi.org/10.3389/fpls.2016.00191 Mhamdi, A., & Van Breusegem, F. (2018). Reactive oxygen species in plant development. Development, 145(15), dev164376. https://doi.org/10.1242/dev.164376 Ml, C. C. (2007). Red ring and other diseases of the oil palm in Central and South America The red ring / little leaf disease, 1–13. Monteiro, F., & Nishimura, M. T. (2018). Structural, Functional, and Genomic Diversity of Plant NLR Proteins: An Evolved Resource for Rational Engineering of Plant Immunity. Annual Review of Phytopathology, 56(1), 243–267. https://doi.org/10.1146/annurev-phyto-080417-045817 Naidoo, S., Visser, E. A., Zwart, L., Toit, Y., Bhadauria, V., & Shuey, L. S. (2014). Dual RNA-seq to Elucidate the Plant – Pathogen Duel. Nejat, N., Rookes, J., Mantri, N. L., & Cahill, D. M. (2017). Plant–pathogen interactions: toward development of next-generation disease-resistant plants. Critical Reviews in Biotechnology, 37(2), 229–237. https://doi.org/10.3109/07388551.2015.1134437 Nobori, T., & Tsuda, K. (2019). The plant immune system in heterogeneous environments. Current Opinion in Plant Biology, 50, 58–66. https://doi.org/10.1016/j.pbi.2019.02.003 Nocker, S. Van, & Gardiner, S. E. (2014). Breeding better cultivars, faster: Applications of new technologies for the rapid deployment of superior horticultural tree crops. Horticulture Research, 1(March), 1–8. https://doi.org/10.1038/hortres.2014.22 Nugroho, Y. A., Sumertajaya, I. M., Wiendi, N. M. A., & Toruan-Mathius, N. (2014). Estimation of genetic parameters for in vitro culture traits and selection best progenies for tenera oil palm tissue culture. Energy Procedia, 47, 316–322. https://doi.org/10.1016/j.egypro.2014.01.231 Nyadanu, D., Assuah, M. K., Adomako, B., & Opoku, I. Y. (2009). EFFICACY OF SCREENING METHODS USED IN BREEDING FOR BLACK POD DISEASE RESISTANCE VARIETIES IN COCOA. African Crop Science Journal, 17(4), 175–186. Ochoa, J. C., Herrera, M., Navia, M., & Romero, H. M. (2019). Visualization of phytophthora palmivora infection in oil palm leaflets with fluorescent proteins and cell viability markers. Plant Pathology Journal, 35(1), 19–31. https://doi.org/10.5423/PPJ.OA.02.2018.0034 Orłowska, E., Llorente, B., & Cvitanich, C. (2013). An important factor in plant-pathogen interactions Plant integrity © 2013 Landes Bioscience . Do not distribute © 2013 Landes Bioscience . Do not distribute. Plant Signaling & Behavior, e225-13–131. https://doi.org/10.4161/psb.22513 Osuna-Cruz, C. M., Paytuvi-Gallart, A., Di Donato, A., Sundesha, V., Andolfo, G., Cigliano, R. A., … Ercolano, M. R. (2018). PRGdb 3.0: A comprehensive platform for prediction and analysis of plant disease resistance genes. Nucleic Acids Research, 46(D1), D1197–D1201. https://doi.org/10.1093/nar/gkx1119 Panstruga, R., & Peter Dodds. (2009). Terrific Protein Traffic : The Mystery. Science, 1575(2008), 2008–2010. https://doi.org/10.1126/science.1171652 Peng, Y., van Wersch, R., & Zhang, Y. (2017). Convergent and Divergent Signaling in PAMP-Triggered Immunity and Effector-Triggered Immunity. Molecular Plant-Microbe Interactions, 31(4), 403–409. https://doi.org/10.1094/mpmi-06-17-0145-cr Petitot, A. S., Dereeper, A., Agbessi, M., Da Silva, C., Guy, J., Ardisson, M., & Fernandez, D. (2016). Dual RNA-seq reveals Meloidogyne graminicola transcriptome and candidate effectors during the interaction with rice plants. Molecular Plant Pathology, 17(6), 860–874. https://doi.org/10.1111/mpp.12334 Phukan, U. J., Jeena, G. S., & Shukla, R. K. (2016). WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants. Frontiers in Plant Science, 7(June), 1–14. https://doi.org/10.3389/fpls.2016.00760 Pilet-Nayel, M.-L., Moury, B., Caffier, V., Montarry, J., Kerlan, M.-C., Fournet, S., … Delourme, R. (2017). Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection. Frontiers in Plant Science, 8(October), 1–9. https://doi.org/10.3389/fpls.2017.01838 Rai, M. K., Kalia, R. K., Singh, R., Gangola, M. P., & Dhawan, A. K. (2011). Developing stress tolerant plants through in vitro selection-An overview of the recent progress. Environmental and Experimental Botany, 71(1), 89–98. https://doi.org/10.1016/j.envexpbot.2010.10.021 Rival, A. (2017). Breeding the oil palm ( Elaeis guineensis Jacq.) for climate change. Ocl, 24(1), D107. https://doi.org/10.1051/ocl/2017001 Rodriguez-Moreno, L., Song, Y., & Thomma, B. P. (2017). Transfer and engineering of immune receptors to improve recognition capacities in crops. Current Opinion in Plant Biology, 38, 42–49. https://doi.org/10.1016/j.pbi.2017.04.010 Saijo, Y., Loo, E. P. iian, & Yasuda, S. (2018). Pattern recognition receptors and signaling in plant–microbe interactions. Plant Journal, 93(4), 592–613. https://doi.org/10.1111/tpj.13808 Sankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture, 72(1), 1–13. https://doi.org/10.1016/j.compag.2010.02.007 Santos, C., Duarte, S., Tedesco, S., Fevereiro, P., & Costa, R. L. (2017). Expression Profiling of Castanea Genes during Resistant and Susceptible Interactions with the Oomycete Pathogen Phytophthora cinnamomi Reveal Possible Mechanisms of Immunity. Frontiers in Plant Science, 8(April), 1–12. https://doi.org/10.3389/fpls.2017.00515 Sarria, G. A., Martinez, G., Varon, F., Drenth, A., & Guest, D. I. (2016). Histopathological studies of the process of Phytophthora palmivora infection in oil palm. European Journal of Plant Pathology, 145(1), 39–51. https://doi.org/10.1007/s10658-015-0810-9 Sarria, G. a, Torres, G. a, Aya, H., Ariza, J., Rodriguez, J., Velez, D., … Martinez, G. (2008a). Phytophthora sp . es el responsable de las lesiones iniciales de la Pudrici{ó}n del cogollo ( PC ) de la Palma de aceite en Colombia. Palmas, 29, 31–41. Sarria, G. a, Torres, G. a, Aya, H., Ariza, J., Rodriguez, J., Velez, D., … Martinez, G. (2008b). Phytophthora sp . es el responsable de las lesiones iniciales de la Pudrición del cogollo ( PC ) de la Palma de aceite en Colombia. Palmas, 29, 31–41. Sarria, G., Martinez, G., Varon, F., Drenth, A., & Guest, D. (2016). Histopathological studies of the process of Phytophthora palmivora infection in oil palm. European Journal of Plant Pathology, 145(1), 39–51. https://doi.org/10.1007/s10658-015-0810-9 Sarria, Greicy Andrea, Mestizo, Y., Betancourt, W., & Garcia, A. (2016). Pudrición del cogollo: avances, retos y oportunidades en el manejo integrado de esta enfermedad. Palmas, 37(4), 91–107. Sarria, Greicy Andrea, Varón, F. H., Martínez, G., Drenth, A., & Guest, D. I. (2013). Nuevas evidencias del cumplimiento de los postulados de Koch en el estudio de las relaciones Phytophthora palmivora y la pudrición del cogollo de la palma de aceite en Colombia. Palmas, 34(4), 41–45. Seedlings, P., Saunders, J. A., & Mcclure, J. W. (1974). The Suitability of a Quantitative Spectrophotometric Assay for Phenylalanine Ammonia-lyase Activity in Barley , 412–413. Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany, 2012, 1–26. https://doi.org/10.1155/2012/217037 Sharpee, W. C., & Dean, R. A. (2016). Form an
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
Acceso abierto
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 119
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.department.spa.fl_str_mv Instituto de Biotecnología
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/75740/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/75740/1/TESIS_KJAM_NOV15_2019.pdf
https://repositorio.unal.edu.co/bitstream/unal/75740/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/75740/4/TESIS_KJAM_NOV15_2019.pdf.jpg
bitstream.checksum.fl_str_mv 6f3f13b02594d02ad110b3ad534cd5df
e942a877ad7c3f11aac83f095e3e80ca
42fd4ad1e89814f5e4a476b409eb708c
6c49a154cb2107529fdff522823940c8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089435945369600
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Romero-Angulo, Hernan Mauricio7bc92619-2bba-4248-97b5-2f2cceb46ee3-1Avila-Mendez, Kelly Johanna9d6dcc2d-bfb3-46c0-85d6-db917b6d55cdFisiología y Bioquímica de Especies Perennes2020-02-25T20:01:40Z2020-02-25T20:01:40Z2019-11-15https://repositorio.unal.edu.co/handle/unal/75740La pudrición del cogollo causada (PC) por el oomiceto Phytophthora palmivora es la principal enfermedad que afecta el cultivo de palma de aceite en América. Para el caso colombiano esta enfermedad ha destruido miles de hectáreas en las diferentes regiones palmeras del país sin que hasta el momento se tengan soluciones de fondo para combatir el problema. Para lograr encontrar una solución permanente a la PC es necesario estudiar las relaciones planta-patógeno en diferentes genotipos de palma para así conocer los mecanismos de resistencia que permitan acelerar el mejoramiento genético y poder obtener cultivares resistentes. Por esta razón, se planteó esta investigación con el propósito de comprender y describir la interacción palma de aceite – P. palmivora, utilizando clones de palma. El principal objetivo fue la identificación de genes de resistencia en palma a P. palmivora, para lo cual se desarrolló un método de inoculación de clones en condiciones in vitro y se utilizaron métodos macroscópicos (ensayos de tamizaje), microscópicos (discos de foliolos de clones de palma inoculados), pruebas histoquímicas como DAB (3,3,-diaminobenzidina) y bioquímicas como catalasa, peroxidasa, y Fenil amonio liasa que permitieron identificar genotipos con comportamiento contrastante (ortet 34 resistente y ortet 57 susceptible). Posteriormente se realizó un análisis transcriptómico por medio de la tecnología de secuenciación Illumina Hiseq2500 durante la fase biotrófica de la enfermedad 24, 72 y 120 horas post infección). Los datos transcriptómicos permitieron realizar la primera descripción de los mecanismos moleculares de resistencia de la palma de aceite. La expresión de genes relacionados con la resistencia fue validada por qRT-PCR en clones inoculados, dando como resultado que dichos genes pueden ser usados como posibles marcadores moleculares para determinar la respuesta de resistencia a P. palmivora de diferentes materiales genéticos y así reducir los tiempos de selección de cultivares resistentes a la enfermedad.The bud rot caused by the oomycete Phytophthora palmivora is the main disease that affects oil palm cultivation in America. In Colombia, the disease has destroyed thousands of hectares in different regions. In order to find a permanent solution to bud rot, it is necessary to study the plant-pathogen interaction in different genotypes. This research was proposed with the purpose of understanding and describing the interaction oil palm - P. palmivora, using oil palm clones. The main objective was the identification of resistance genes in oil palm to P. palmivora. A method for inoculation of oil palm clones was developed under “in vitro” condition. Macroscopic (screening assays), microscopic (clone leaf discs), histochemical (DAB) and biochemical assays such as catalase (CAT), peroxidase (POD) and phenyl amonio liase (PAL) activity assays were performed, and they allowed to identify genotypes with contrasting response (ortet 34, resistant and ortet 57, susceptible). Subsequently, a transcriptomic analysis was carried out using Illumina Hiseq2500 sequencing technology during the biotrophic phase (24, 72 and 120 hours post infection). The transcriptomic data allowed us to make the first description of the molecular mechanisms of oil palm resistance. The expression of genes related to resistance was validated by qRT-PCR in inoculated clones, giving as a result that these genes can be used as possible molecular markers to determine the resistance response to P. palmivora of different genetic materials reducing the selection times of bud rot resistant cultivars.Doctorado119application/pdfspaAgricultura y tecnologías relacionadasPudrición del cogollo, Phytophthora palmivora, genes de resistencia, patosistema, secuenciación de alto rendimiento, cultivo in vitro.Bud rot, Phytophthora palmivora, resistance genes, pathosystem, in vitro culture.Identificación y análisis de genes candidatos relacionados con la resistencia a Phytophthora palmivora en palma de aceite (Elaeis guineensis Jacq.)Libroinfo:eu-repo/semantics/bookinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2f33http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/LIBInstituto de BiotecnologíaUniversidad Nacional de Colombia - Sede BogotáAcevedo-Garcia, J., Gruner, K., Reinstädler, A., Kemen, A., Kemen, E., Cao, L., … Panstruga, R. (2017). The powdery mildew-resistant Arabidopsis mlo2 mlo6 mlo12 triple mutant displays altered infection phenotypes with diverse types of phytopathogens. Scientific Reports, 7(1), 1–15. https://doi.org/10.1038/s41598-017-07188-7 Adam, H., Jouannic, S., Escoute, J., Duval, Y., Verdeil, J. L., & Tregear, J. W. (2005). Reproductive developmental complexity in the African oil palm (Elaeis guineensis, Arecaceae). American Journal of Botany, 92(11), 1836–1852. https://doi.org/10.3732/ajb.92.11.1836 Ajengui, A., Bertolini, E., Ligorio, A., Chebil, S., Ippolito, A., & Sanzani, S. M. (2018). Comparative transcriptome analysis of two citrus germplasms with contrasting susceptibility to Phytophthora nicotianae provides new insights into tolerance mechanisms. Plant Cell Reports, 37(3), 483–499. https://doi.org/10.1007/s00299-017-2244-7 Ali, S., Ganai, B. A., Kamili, A. N., Bhat, A. A., Mir, Z. A., Bhat, J. A., … Grover, A. (2018). Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiological Research, 212–213(March), 29–37. https://doi.org/10.1016/j.micres.2018.04.008 Ali, S. S., Shao, J., Lary, D. J., Kronmiller, B. A., Shen, D., Strem, M. D., … Bailey, B. A. (2017). Phytophthora megakarya and Phytophthora palmivora, Closely Related Causal Agents of Cacao Black Pod Rot, Underwent Increases in Genome Sizes and Gene Numbers by Different Mechanisms. Genome Biology and Evolution, 9(3), 536–557. https://doi.org/10.1093/gbe/evx021 Alves, M., Dadalto, S., Gonçalves, A., de Souza, G., Barros, V., & Fietto, L. (2014). Transcription Factor Functional Protein-Protein Interactions in Plant Defense Responses. Proteomes, 2(1), 85–106. https://doi.org/10.3390/proteomes2010085 Amaro, T. M. M. M., Thilliez, G. J. A., Mcleod, R. A., & Huitema, E. (2018). Random mutagenesis screen shows that Phytophthora capsici CRN83_152-mediated cell death is not required for its virulence function(s). Molecular Plant Pathology, 19(5), 1114–1126. https://doi.org/10.1111/mpp.12590 Asai, S., & Shirasu, K. (2015). Plant cells under siege: Plant immune system versus pathogen effectors. Current Opinion in Plant Biology, 28, 1–8. https://doi.org/10.1016/j.pbi.2015.08.008 Baggs, E., Dagdas, G., & Krasileva, K. V. (2017). NLR diversity, helpers and integrated domains: making sense of the NLR IDentity. Current Opinion in Plant Biology, 38(Figure 1), 59–67. https://doi.org/10.1016/j.pbi.2017.04.012 Bahia, R. de C., Aguilar-Vildoso, C. I., Luz, E. D. M. N., Lopes, U. V., Machado, R. C. R., & Corrêa, R. X. (2015). Resistance to Black Pod Disease in a Segregating Cacao Tree Population. Tropical Plant Pathology, 40(1), 13–18. https://doi.org/10.1007/s40858-014-0003-7 Barcelos, E., Rios, S. de A., Cunha, R. N. V., Lopes, R., Motoike, S. Y., Babiychuk, E., … Kushnir, S. (2015). Oil palm natural diversity and the potential for yield improvement. Frontiers in Plant Science, 6(March), 1–16. https://doi.org/10.3389/fpls.2015.00190 Baxter, A., Mittler, R., & Suzuki, N. (2014). ROS as key players in plant stress signalling. Journal of Experimental Botany, 65(5), 1229–1240. https://doi.org/10.1093/jxb/ert375 Bellincampi, D., Cervone, F., & Lionetti, V. (2014). Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. Frontiers in Plant Science, 5(May), 228. https://doi.org/10.3389/fpls.2014.00228 Benítez, É., & García, C. (2015). The history of research on oil palm bud rot (Elaeis guineensis Jacq.) in Colombia. Agronomía Colombiana, 32(3), 390–398. https://doi.org/10.15446/agron.colomb.v32n3.46240 Berens, M. L., Berry, H. M., Mine, A., Argueso, C. T., & Tsuda, K. (2017). Evolution of Hormone Signaling Networks in Plant Defense. Annual Review of Phytopathology, 55(1), annurev-phyto-080516-035544. https://doi.org/10.1146/annurev-phyto-080516-035544 Bevan, M. W., Uauy, C., Wulff, B. B. H., Zhou, J., Krasileva, K., & Clark, M. D. (2017). Genomic innovation for crop improvement. Nature, 543(7645), 346–354. https://doi.org/10.1038/nature22011 Bhadauria, V., Banniza, S., Vandenberg, A., Selvaraj, G., & Wei, Y. (2013). Overexpression of a novel biotrophy-specific Colletotrichum truncatum effector, CtNUDIX, in hemibiotrophic fungal phytopathogens causes incompatibility with their host plants. Eukaryotic Cell, 12(1), 2–11. https://doi.org/10.1128/EC.00192-12 Bigeard, J., Colcombet, J., & Hirt, H. (2015a). Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant, 8(4), 521–539. https://doi.org/10.1016/j.molp.2014.12.022 Bigeard, J., Colcombet, J., & Hirt, H. (2015b). Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant, 8(4), 521–539. https://doi.org/10.1016/j.molp.2014.12.022 Bolger, A. M., Poorter, H., Dumschott, K., Bolger, M. E., Arend, D., Osorio, S., … Usadel, B. (2019). Computational aspects underlying genome to phenome analysis in plants. Plant Journal, 97(1), 182–198. https://doi.org/10.1111/tpj.14179 Bolouri Moghaddam, M. R., Vilcinskas, A., & Rahnamaeian, M. (2016). Cooperative interaction of antimicrobial peptides with the interrelated immune pathways in plants. Molecular Plant Pathology, 17(3), 464–471. https://doi.org/10.1111/mpp.12299 Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3 Breen, S., Williams, S. J., Outram, M., Kobe, B., & Solomon, P. S. (2017). Emerging Insights into the Functions of Pathogenesis-Related Protein 1. Trends in Plant Science, 22(10), 871–879. https://doi.org/10.1016/j.tplants.2017.06.013 Cao, Z., & Deng, Z. (2017). De novo assembly, annotation, and characterization of root transcriptomes of three caladium cultivars with a focus on necrotrophic pathogen resistance/defense-related genes. International Journal of Molecular Sciences, 18(4). https://doi.org/10.3390/ijms18040712 Chan, P. L., Rose, R. J., Abdul Murad, A. M., Zainal, Z., Leslie Low, E. T., Ooi, L. C. L., … Singh, R. (2014). Evaluation of reference genes for quantitative real-time PCR in oil palm elite planting materials propagated by tissue culture. PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0099774 Chang, Y. H., Yan, H. Z., & Liou, R. F. (2015). A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance. Molecular Plant Pathology, 16(2), 123–136. https://doi.org/10.1111/mpp.12166 Chawade, A., van Ham, J., Blomquist, H., Bagge, O., Alexandersson, E., & Ortiz, R. (2019). High-Throughput Field-Phenotyping Tools for Plant Breeding and Precision Agriculture. Agronomy, 9(5), 258. https://doi.org/10.3390/agronomy9050258 Chen, X. R., Huang, S. X., Zhang, Y., Sheng, G. L., Li, Y. P., & Zhu, F. (2018). Identification and functional analysis of the NLP-encoding genes from the phytopathogenic oomycete Phytophthora capsici. Molecular Genetics and Genomics, 0(0), 1–13. https://doi.org/10.1007/s00438-018-1432-7 Cochard, B., Amblard, P., & Durand-Gasselin, T. (2005). Oil palm genetic improvement and sustainable development. Oléagineux, Corps Gras, Lipides, 12(2), 141–147. https://doi.org/10.1051/ocl.2005.0141 Comer, J. R., Zomlefer, W. B., Barrett, C. F., Stevenson, D. W., Heyduk, K., & Leebens-Mack, J. H. (2016). Nuclear phylogenomics of the palm subfamily Arecoideae (Arecaceae). Molecular Phylogenetics and Evolution, 97, 32–42. https://doi.org/10.1016/j.ympev.2015.12.015 Cros, D., Denis, M., Sánchez, L., Cochard, B., Flori, A., Durand‑gasselin, T., … Bouvet, J. (2015). Genomic selection prediction accuracy in a perennial crop: case study of oil palm (Elaeis guineensis Jacq.). Theor Appl Genet, 128, 397–410. https://doi.org/10.1007/s00122-014-2439-z Dalio, R. J. D., Herlihy, J., Oliveira, T. S., McDowell, J. M., & Machado, M. (2017). Effector Biology in Focus: A Primer for Computational Prediction and Functional Characterization. Molecular Plant-Microbe Interactions, 31(1), 22–33. https://doi.org/10.1094/mpmi-07-17-0174-fi Daudi, A., Cheng, Z., O’Brien, J. A., Mammarella, N., Khan, S., Ausubel, F. M., & Bolwell, G. P. (2012). The apoplastic oxidative burst peroxidase in Arabidopsis is a major component of pattern-triggered immunity. The Plant Cell, 24(1), 275–287. https://doi.org/10.1105/tpc.111.093039 De Assis Costa, O. Y., Tupinambá, D. D., Bergmann, J. C., Barreto, C. C., & Quirino, B. F. (2018). Fungal diversity in oil palm leaves showing symptoms of Fatal Yellowing disease. PLoS ONE, 13(1), 1–17. https://doi.org/10.1371/journal.pone.0191884 Derevnina, L., Petre, B., Kellner, R., Dagdas, Y. F., Sarowar, M. N., Giannakopoulou, A., … Kamoun, S. (2016). Emerging oomycete threats to plants and animals. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1709), 20150459. https://doi.org/10.1098/rstb.2015.0459 Efombagn, M. I. B., Bieysse, D., Nyassé, S., & Eskes, A. B. (2011). Selection for resistance to Phytophthora pod rot of cocoa (Theobroma cacao L.) in Cameroon: Repeatability and reliability of screening tests and field observations. Crop Protection, 30(2), 105–110. https://doi.org/10.1016/j.cropro.2010.10.012 El-Komy, M. H. (2014). Comparative analysis of defense responses in chocolate spot-resistant and-susceptible faba bean (Vicia faba) cultivars following infection by the necrotrophic fungus Botrytis fabae. Plant Pathology Journal, 30(4), 355–366. https://doi.org/10.5423/PPJ.OA.06.2014.0050 Evangelisti, E., Gogleva, A., Hainaux, T., Doumane, M., Tulin, F., Quan, C., … Schornack, S. (2017). Time-resolved dual root-microbe transcriptomics reveals early induced Nicotiana benthamiana genes and conserved infection-promoting Phytophthora palmivora effectors. BioRxiv, 1–24. https://doi.org/10.1186/s12915-017-0379-1 Fang, Y., & Ramasamy, R. P. (2015). Current and prospective methods for plant disease detection. Biosensors, 5(3), 537–561. https://doi.org/10.3390/bios5030537 Fawke, S., Doumane, M., & Schornack, S. (2015a). Oomycete Interactions with Plants: Infection Strategies and Resistance Principles. Microbiology and Molecular Biology Reviews, 79(3), 263–280. https://doi.org/10.1128/mmbr.00010-15 Fawke, S., Doumane, M., & Schornack, S. (2015b). Oomycete Interactions with Plants: Infection Strategies and Resistance Principles. Microbiology and Molecular Biology Reviews, 79(3), 263–280. https://doi.org/10.1128/MMBR.00010-15 Fedepalma. (2016). Guía de bolsillo para el reconocimiento y manejo de las principales enfermedades e insectos plaga en el cultivo de la palma de aceite. Retrieved from http://web.fedepalma.org/sites/default/files/files/Fedepalma/Semanario Palmero/12 - 13 abril/Guía de bolsillo plagas.pdf Fedepalma. (2018). Anuario Estadistico 2018. Figueiró, A. de A., Reese, N., Gonzalez Hernandez, J. L., Pacheco, M. T., Martinelli, J. A., Federizzi, L. C., & Delatorre, C. A. (2015). Reactive Oxygen Species are not Increased in Resistant Oat Genotypes Challenged by Crown Rust Isolates. Journal of Phytopathology, 163(10), 795–806. https://doi.org/10.1111/jph.12377 Fouché, S., Plissonneau, C., & Croll, D. (2018). The birth and death of effectors in rapidly evolving filamentous pathogen genomes. Current Opinion in Microbiology, 46, 34–42. https://doi.org/10.1016/j.mib.2018.01.020 Franceschetti, M., Maqbool, A., Jiménez-Dalmaroni, M. J., Pennington, H. G., Kamoun, S., & Banfield, M. J. (2017). Effectors of Filamentous Plant Pathogens: Commonalities amid Diversity. Microbiology and Molecular Biology Reviews, 81(2), e00066-16. https://doi.org/10.1128/MMBR.00066-16 Galindo-González, L., & Deyholos, M. K. (2016). RNA-seq Transcriptome Response of Flax (Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. sp. lini. Frontiers in Plant Science, 7(November), 1–22. https://doi.org/10.3389/fpls.2016.01766 Gayoso, C., Pomar, F., Novo-Uzal, E., Merino, F., & Martínez de Ilárduya, Ó. (2010). The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression. BMC Plant Biology, 10. https://doi.org/10.1186/1471-2229-10-232 Guo, N., Zhao, J., Yan, Q., Huang, J., Ma, H., Rajput, N. A., … Dou, D. (2018). Resistance to Phytophthora pathogens is dependent on gene silencing pathways in plants. Journal of Phytopathology, (April 2017), 379–385. https://doi.org/10.1111/jph.12695 Gupta, S. M., Arora, S., Mirza, N., Pande, A., Lata, C., Puranik, S., … Kumar, A. (2017). Finger Millet: A “Certain” Crop for an “Uncertain” Future and a Solution to Food Insecurity and Hidden Hunger under Stressful Environments. Frontiers in Plant Science, 8(April), 1–11. https://doi.org/10.3389/fpls.2017.00643 Huang, G., Liu, Z., Gu, B., Zhao, H., Jia, J., Fan, G., … Shan, W. (2019). An RXLR effector secreted by Phytophthora parasitica is a virulence factor and triggers cell death in various plants. Molecular Plant Pathology, 20(3), 356–371. https://doi.org/10.1111/mpp.12760 Huang, S., Van Aken, O., Schwarzländer, M., Belt, K., & Millar, A. H. (2016). The Roles of Mitochondrial Reactive Oxygen Species in Cellular Signaling and Stress Response in Plants. Plant Physiology, 171(3), 1551–1559. https://doi.org/10.1104/pp.16.00166 Imam, J., Singh, P. K., & Shukla, P. (2016). Plant microbe interactions in post genomic era: Perspectives and applications. Frontiers in Microbiology, 7(SEP), 1–15. https://doi.org/10.3389/fmicb.2016.01488 Islam, M. T., Hussain, H. I., Rookes, J. E., & Cahill, D. M. (2018). Transcriptome analysis, using RNA-Seq of Lomandra longifolia roots infected with Phytophthora cinnamomi reveals the complexity of the resistance response. Plant Biology, 20(1), 130–142. https://doi.org/10.1111/plb.12624 Jiang, Z., He, F., & Zhang, Z. (2017). Large-scale transcriptome analysis reveals arabidopsis metabolic pathways are frequently influenced by different pathogens. Plant Molecular Biology, 94(4–5), 453–467. https://doi.org/10.1007/s11103-017-0617-5 Jindřichová, B., Fodor, J., Šindelářová, M., Burketová, L., & Valentová, O. (2011). Role of hydrogen peroxide and antioxidant enzymes in the interaction between a hemibiotrophic fungal pathogen, Leptosphaeria maculans, and oilseed rape. Environmental and Experimental Botany, 72(2), 149–156. https://doi.org/10.1016/j.envexpbot.2011.02.018 Jones, J. D. G., & Dangl, L. (2006). The plant immune system. Nature, 444(November), 323–329. https://doi.org/10.1038/nature05286 Judelson, H. S. (2017). Metabolic Diversity and Novelties in the Oomycetes. Annual Review of Microbiology, 71(1), annurev-micro-090816-093609. https://doi.org/10.1146/annurev-micro-090816-093609 Judelson, H. S., & Ah-Fong, A. M. V. (2019). Exchanges at the Plant-Oomycete Interface That Influence Disease. Plant Physiology, 179(4), 1198–1211. https://doi.org/10.1104/pp.18.00979 Kamoun, S. (2006). A Catalogue of the Effector Secretome of Plant Pathogenic Oomycetes. Annual Review of Phytopathology, 44(1), 41–60. https://doi.org/10.1146/annurev.phyto.44.070505.143436 Kamoun, S., Furzer, O., Jones, J. D. G., Judelson, H. S., Ali, G. S., Dalio, R. J. D., … Govers, F. (2015). The Top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology, 16(4), 413–434. https://doi.org/10.1111/mpp.12190 Kanwar, P., & Jha, G. (2019). Alterations in plant sugar metabolism: signatory of pathogen attack. Planta, 249(2), 305–318. https://doi.org/10.1007/s00425-018-3018-3 Kanyuka, K., & Rudd, J. J. (2019). Cell surface immune receptors: the guardians of the plant’s extracellular spaces. Current Opinion in Plant Biology, 50, 1–8. https://doi.org/10.1016/j.pbi.2019.02.005 Kapoor, D., Singh, S., Kumar, V., Romero, R., Prasad, R., & Singh, J. (2019). Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene, 19(April), 100182. https://doi.org/10.1016/j.plgene.2019.100182 Kebdani, N., Pieuchot, L., Deleury, E., Panabières, F., Le Berre, J. Y., & Gourgues, M. (2010). Cellular and molecular characterization of Phytophthora parasitica appressorium-mediated penetration. New Phytologist, 185(1), 248–257. https://doi.org/10.1111/j.1469-8137.2009.03048.x Khan, M., Seto, D., Subramaniam, R., & Desveaux, D. (2018). Oh, the places they’ll go! A survey of phytopathogen effectors and their host targets. Plant Journal, 93(4), 651–663. https://doi.org/10.1111/tpj.13780 Kissoudis, C., van de Wiel, C., Visser, R. G. F., & van der Linden, G. (2016). Future-proof crops: challenges and strategies for climate resilience improvement. Current Opinion in Plant Biology, 30, 47–56. https://doi.org/10.1016/j.pbi.2016.01.005 Koç, E., & Sülün ÜSTÜN, A. (2012). Infl uence of Phytophthora capsici L. inoculation on disease severity, necrosis length, peroxidase and catalase activity, and phenolic content of resistant and susceptible pepper (Capsicum annuum L.) plants. Turk J Biol, 36, 357–371. https://doi.org/10.3906/biy-1109-12 Krishna, H., Alizadeh, M., Singh, D., Singh, U., Chauhan, N., Eftekhari, M., & Sadh, R. K. (2016). Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech, 6(1), 1–18. https://doi.org/10.1007/s13205-016-0389-7 Latifah, M., Zainal Abidin, M. A., Kamaruzaman, S., & Nusaibah, S. A. (2017). Cross-infectivity of oil palm by Phytophthora spp. isolated from perennial crops in Malaysia. Forest Pathology, 47(6), 1–6. https://doi.org/10.1111/efp.12374 Lee, H. A., & Yeom, S. I. (2015). Plant NB-LRR proteins: Tightly regulated sensors in a complex manner. Briefings in Functional Genomics, 14(4), 233–242. https://doi.org/10.1093/bfgp/elv012 Lehmann, S., Serrano, M., L’Haridon, F., Tjamos, S. E., & Metraux, J. P. (2015). Reactive oxygen species and plant resistance to fungal pathogens. Phytochemistry, 112(1), 54–62. https://doi.org/10.1016/j.phytochem.2014.08.027 Lenzoni, G., Liu, J., & Knight, M. R. (2018). Predicting plant immunity gene expression by identifying the decoding mechanism of calcium signatures. New Phytologist, 217(4), 1598–1609. https://doi.org/10.1111/nph.14924 Li, B., Meng, X., Shan, L., & He, P. (2016). Transcriptional Regulation of Pattern-Triggered Immunity in Plants. Cell Host and Microbe, 19(5), 641–650. https://doi.org/10.1016/j.chom.2016.04.011 Li, Q., Zhang, M., Shen, D., Liu, T., Chen, Y., Zhou, J. M., & Dou, D. (2016). A Phytophthora sojae effector PsCRN63 forms homo-/hetero-dimers to suppress plant immunity via an inverted association manner. Scientific Reports, 6(March), 1–13. https://doi.org/10.1038/srep26951 Liu, Y., & He, C. (2017). A review of redox signaling and the control of MAP kinase pathway in plants. Redox Biology, 11(October 2016), 192–204. https://doi.org/10.1016/j.redox.2016.12.009 Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262 Lo Presti, L., & Kahmann, R. (2017a). How filamentous plant pathogen effectors are translocated to host cells. Current Opinion in Plant Biology, 38, 19–24. https://doi.org/10.1016/j.pbi.2017.04.005 Lo Presti, L., & Kahmann, R. (2017b). How filamentous plant pathogen effectors are translocated to host cells. Current Opinion in Plant Biology, 38, 19–24. https://doi.org/10.1016/j.pbi.2017.04.005 Louise, C. (2016). Resistencia a la Pudrición del cogollo en el material Guineensis. Revista Palmas, 37(Especial), 183–189. Ma, X., Xu, G., He, P., & Shan, L. (2016). SERKing Coreceptors for Receptors. Trends in Plant Science, 21(12), 1017–1033. https://doi.org/10.1016/j.tplants.2016.08.014 Ma, Z., Song, T., Zhu, L., Ye, W., Wang, Y., Shao, Y., … Wang, Y. (2015). A Phytophthora sojae Glycoside Hydrolase 12 Protein Is a Major Virulence Factor during Soybean Infection and Is Recognized as a PAMP. The Plant Cell (Vol. 27). https://doi.org/10.1105/tpc.15.00390 Macho, A. P., & Zipfel, C. (2014). Plant PRRs and the activation of innate immune signaling. Molecular Cell, 54(2), 263–272. https://doi.org/10.1016/j.molcel.2014.03.028 Maliogka, V. I., Minafra, A., Saldarelli, P., Ruiz-García, A. B., Glasa, M., Katis, N., & Olmos, A. (2018). Recent advances on detection and characterization of fruit tree viruses using high-throughput sequencing technologies. Viruses, 10(8), 1–23. https://doi.org/10.3390/v10080436 Martínez, G., Arango, M., Sarria, G., Velez, D., Rodriguez, J., Mestizo, Y., … Guest, D. (2013). Avances en la investigación sobre las dos enfermedades más importantes en la palma de aceite en Colombia la Pudrición del cogollo y la Marchitez letal. Palmas, 34(1), 39–48. Martínez, G., & Sarria, G. (2013). Estado del arte de la investigación y control de la Pudrición del cogollo (PC). Revista Palmas, 34(2), 47–57. Martínez, G., Sarria, G. A., Torres, G. A., & Varón, F. (2010). Phytophthora palmivora es el agente causal de la pudrición del cogollo de la palma de aceite Palabras clAve. Palmas, 31(No. especial Tomo I), 334–344. Martínez, G., Sarria, G., Torres, G., & Varon, F. (2010). Avances en la investigación de Phytophthora palmivora , el agente causal de la pudrición del cogollo de la palma de aceite en Colombia. Palmas, 31(1), 55–63. Martínez, G., Sarria, G., Torres, G., Varón, F., Drenth, A., & Guest, D. (2014a). Nuevos hallazgos sobre la Pudrici{ó}n del cogollo de la palma de aceite en Colombia: biolog{í}a, detecci{ó}n y estrategias de manejo. Palmas, 35(1), 11–17. Martínez, G., Sarria, G., Torres, G., Varón, F., Drenth, A., & Guest, D. (2014b). Nuevos hallazgos sobre la Pudrición del cogollo de la palma de aceite en Colombia: biología, detección y estrategias de manejo. Palmas, 35(1), 11–17. Martínez, G., & Torres, G. A. (2007). Presencia de la pudrición de cogollo de la palma de aceite (PC) en plantas de vivero. Palmas, 28(4), 13–20. Mcgowan, J., & Fitzpatrick, D. A. (2017). Genomic, network and phylogenetic analysis of the oomycete effector arsenal. MSphere, 2(6), 1–22. https://doi.org/https://doi.org/10.1128/mSphere .00408-17. Editor Meijaard, E., Garcia-Ulloa, Sheil, J., Carlson, S. A., Juffe-Bignoli, & Brooks. (2018). Oil palm and biodiversity: A situation analysis by the IUCN Oil Palm Task Force. INTERNATIONAL UNION FOR CONSERVATION OF NATURE. Retrieved from https://www.iucn-optf.org/ Meyer, F. E., Shuey, L. S., Naidoo, S., Mamni, T., Berger, D. K., Myburg, A. A., … Naidoo, S. (2016). Dual RNA-Sequencing of Eucalyptus nitens during Phytophthora cinnamomi Challenge Reveals Pathogen and Host Factors Influencing Compatibility. Frontiers in Plant Science, 7(March), 1–15. https://doi.org/10.3389/fpls.2016.00191 Mhamdi, A., & Van Breusegem, F. (2018). Reactive oxygen species in plant development. Development, 145(15), dev164376. https://doi.org/10.1242/dev.164376 Ml, C. C. (2007). Red ring and other diseases of the oil palm in Central and South America The red ring / little leaf disease, 1–13. Monteiro, F., & Nishimura, M. T. (2018). Structural, Functional, and Genomic Diversity of Plant NLR Proteins: An Evolved Resource for Rational Engineering of Plant Immunity. Annual Review of Phytopathology, 56(1), 243–267. https://doi.org/10.1146/annurev-phyto-080417-045817 Naidoo, S., Visser, E. A., Zwart, L., Toit, Y., Bhadauria, V., & Shuey, L. S. (2014). Dual RNA-seq to Elucidate the Plant – Pathogen Duel. Nejat, N., Rookes, J., Mantri, N. L., & Cahill, D. M. (2017). Plant–pathogen interactions: toward development of next-generation disease-resistant plants. Critical Reviews in Biotechnology, 37(2), 229–237. https://doi.org/10.3109/07388551.2015.1134437 Nobori, T., & Tsuda, K. (2019). The plant immune system in heterogeneous environments. Current Opinion in Plant Biology, 50, 58–66. https://doi.org/10.1016/j.pbi.2019.02.003 Nocker, S. Van, & Gardiner, S. E. (2014). Breeding better cultivars, faster: Applications of new technologies for the rapid deployment of superior horticultural tree crops. Horticulture Research, 1(March), 1–8. https://doi.org/10.1038/hortres.2014.22 Nugroho, Y. A., Sumertajaya, I. M., Wiendi, N. M. A., & Toruan-Mathius, N. (2014). Estimation of genetic parameters for in vitro culture traits and selection best progenies for tenera oil palm tissue culture. Energy Procedia, 47, 316–322. https://doi.org/10.1016/j.egypro.2014.01.231 Nyadanu, D., Assuah, M. K., Adomako, B., & Opoku, I. Y. (2009). EFFICACY OF SCREENING METHODS USED IN BREEDING FOR BLACK POD DISEASE RESISTANCE VARIETIES IN COCOA. African Crop Science Journal, 17(4), 175–186. Ochoa, J. C., Herrera, M., Navia, M., & Romero, H. M. (2019). Visualization of phytophthora palmivora infection in oil palm leaflets with fluorescent proteins and cell viability markers. Plant Pathology Journal, 35(1), 19–31. https://doi.org/10.5423/PPJ.OA.02.2018.0034 Orłowska, E., Llorente, B., & Cvitanich, C. (2013). An important factor in plant-pathogen interactions Plant integrity © 2013 Landes Bioscience . Do not distribute © 2013 Landes Bioscience . Do not distribute. Plant Signaling & Behavior, e225-13–131. https://doi.org/10.4161/psb.22513 Osuna-Cruz, C. M., Paytuvi-Gallart, A., Di Donato, A., Sundesha, V., Andolfo, G., Cigliano, R. A., … Ercolano, M. R. (2018). PRGdb 3.0: A comprehensive platform for prediction and analysis of plant disease resistance genes. Nucleic Acids Research, 46(D1), D1197–D1201. https://doi.org/10.1093/nar/gkx1119 Panstruga, R., & Peter Dodds. (2009). Terrific Protein Traffic : The Mystery. Science, 1575(2008), 2008–2010. https://doi.org/10.1126/science.1171652 Peng, Y., van Wersch, R., & Zhang, Y. (2017). Convergent and Divergent Signaling in PAMP-Triggered Immunity and Effector-Triggered Immunity. Molecular Plant-Microbe Interactions, 31(4), 403–409. https://doi.org/10.1094/mpmi-06-17-0145-cr Petitot, A. S., Dereeper, A., Agbessi, M., Da Silva, C., Guy, J., Ardisson, M., & Fernandez, D. (2016). Dual RNA-seq reveals Meloidogyne graminicola transcriptome and candidate effectors during the interaction with rice plants. Molecular Plant Pathology, 17(6), 860–874. https://doi.org/10.1111/mpp.12334 Phukan, U. J., Jeena, G. S., & Shukla, R. K. (2016). WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants. Frontiers in Plant Science, 7(June), 1–14. https://doi.org/10.3389/fpls.2016.00760 Pilet-Nayel, M.-L., Moury, B., Caffier, V., Montarry, J., Kerlan, M.-C., Fournet, S., … Delourme, R. (2017). Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection. Frontiers in Plant Science, 8(October), 1–9. https://doi.org/10.3389/fpls.2017.01838 Rai, M. K., Kalia, R. K., Singh, R., Gangola, M. P., & Dhawan, A. K. (2011). Developing stress tolerant plants through in vitro selection-An overview of the recent progress. Environmental and Experimental Botany, 71(1), 89–98. https://doi.org/10.1016/j.envexpbot.2010.10.021 Rival, A. (2017). Breeding the oil palm ( Elaeis guineensis Jacq.) for climate change. Ocl, 24(1), D107. https://doi.org/10.1051/ocl/2017001 Rodriguez-Moreno, L., Song, Y., & Thomma, B. P. (2017). Transfer and engineering of immune receptors to improve recognition capacities in crops. Current Opinion in Plant Biology, 38, 42–49. https://doi.org/10.1016/j.pbi.2017.04.010 Saijo, Y., Loo, E. P. iian, & Yasuda, S. (2018). Pattern recognition receptors and signaling in plant–microbe interactions. Plant Journal, 93(4), 592–613. https://doi.org/10.1111/tpj.13808 Sankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture, 72(1), 1–13. https://doi.org/10.1016/j.compag.2010.02.007 Santos, C., Duarte, S., Tedesco, S., Fevereiro, P., & Costa, R. L. (2017). Expression Profiling of Castanea Genes during Resistant and Susceptible Interactions with the Oomycete Pathogen Phytophthora cinnamomi Reveal Possible Mechanisms of Immunity. Frontiers in Plant Science, 8(April), 1–12. https://doi.org/10.3389/fpls.2017.00515 Sarria, G. A., Martinez, G., Varon, F., Drenth, A., & Guest, D. I. (2016). Histopathological studies of the process of Phytophthora palmivora infection in oil palm. European Journal of Plant Pathology, 145(1), 39–51. https://doi.org/10.1007/s10658-015-0810-9 Sarria, G. a, Torres, G. a, Aya, H., Ariza, J., Rodriguez, J., Velez, D., … Martinez, G. (2008a). Phytophthora sp . es el responsable de las lesiones iniciales de la Pudrici{ó}n del cogollo ( PC ) de la Palma de aceite en Colombia. Palmas, 29, 31–41. Sarria, G. a, Torres, G. a, Aya, H., Ariza, J., Rodriguez, J., Velez, D., … Martinez, G. (2008b). Phytophthora sp . es el responsable de las lesiones iniciales de la Pudrición del cogollo ( PC ) de la Palma de aceite en Colombia. Palmas, 29, 31–41. Sarria, G., Martinez, G., Varon, F., Drenth, A., & Guest, D. (2016). Histopathological studies of the process of Phytophthora palmivora infection in oil palm. European Journal of Plant Pathology, 145(1), 39–51. https://doi.org/10.1007/s10658-015-0810-9 Sarria, Greicy Andrea, Mestizo, Y., Betancourt, W., & Garcia, A. (2016). Pudrición del cogollo: avances, retos y oportunidades en el manejo integrado de esta enfermedad. Palmas, 37(4), 91–107. Sarria, Greicy Andrea, Varón, F. H., Martínez, G., Drenth, A., & Guest, D. I. (2013). Nuevas evidencias del cumplimiento de los postulados de Koch en el estudio de las relaciones Phytophthora palmivora y la pudrición del cogollo de la palma de aceite en Colombia. Palmas, 34(4), 41–45. Seedlings, P., Saunders, J. A., & Mcclure, J. W. (1974). The Suitability of a Quantitative Spectrophotometric Assay for Phenylalanine Ammonia-lyase Activity in Barley , 412–413. Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany, 2012, 1–26. https://doi.org/10.1155/2012/217037 Sharpee, W. C., & Dean, R. A. (2016). Form and function of fungal and oomycete effectors. Fungal Biology Reviews, 30(2), 62–73. https://doi.org/10.1016/j.fbr.2016.04.001 Shen, D., Li, Q., Sun, P., Zhang, M., & Dou, D. (2017). Intrinsic disorder is a common structural characteristic of RxLR effectors in oomycete pathogens. Fungal Biology, 121(11), 911–919. https://doi.org/10.1016/j.funbio.2017.07.005 Shine, M. B., Yang, J. W., El-Habbak, M., Nagyabhyru, P., Fu, D. Q., Navarre, D., … Kachroo, A. (2016). Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean. New Phytologist, 212(3), 627–636. https://doi.org/10.1111/nph.14078 Siddique, Z., Akhtar, K. P., Hameed, A., Sarwar, N., Imran-Ul-Haq, & Khan, S. A. (2014). Biochemical alterations in leaves of resistant and susceptible cotton genotypes infected systemically by cotton leaf curl Burewala virus. Journal of Plant Interactions, 9(1), 702–711. https://doi.org/10.1080/17429145.2014.905800 Silva, M. S., Arraes, F. B. M., Campos, M. de A., Grossi-de-Sa, M., Fernandez, D., Cândido, E. de S., … Grossi-de-Sa, M. F. (2018). Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops. Plant Science, 270(February), 72–84. https://doi.org/10.1016/j.plantsci.2018.02.013 Sniezko, R. A., & Koch, J. (2017). Breeding trees resistant to insects and diseases : putting theory into application. Biological Invasions, 19(11), 3377–3400. https://doi.org/10.1007/s10530-017-1482-5 Soh, A. C., Wong, G., Tan, C. C., Chew, P. S., Chong, S., Ho, Y. W., … Ku Mar, K. (2011). Commercial-scale propagation and planting of elite oil palm clones: Research and development towards realization. Journal of Oil Palm Research, 23(APRIL), 935–952. Su, J., Spears, B. J., Kim, S. H., & Gassmann, W. (2018). Constant vigilance: plant functions guarded by resistance proteins. Plant Journal, 93(4), 637–650. https://doi.org/10.1111/tpj.13798 Sundram, S., & Intan-Nur, A. M. A. (2017). South American Bud rot: A biosecurity threat to South East Asian oil palm. Crop Protection, 101, 58–67. https://doi.org/10.1016/j.cropro.2017.07.010 Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011). Revigo summarizes and visualizes long lists of gene ontology terms. PLoS ONE, 6(7). https://doi.org/10.1371/journal.pone.0021800 Tahi, M., Kebe, I., Eskes, A. B., Ouattara, S., Sangare, A., & Mondeil, F. (2000). Rapid screening of cacao genotypes for field resistance to Phytophthora palmivora using leaves, twigs and roots. European Journal of Plant Pathology, 106(1), 87–94. https://doi.org/10.1023/A:1008747800191 Takemoto, D., Shibata, Y., Ojika, M., Mizuno, Y., Imano, S., Ohtsu, M., … Camagna, M. (2018). Resistance to Phytophthora infestans: exploring genes required for disease resistance in Solanaceae plants. Journal of General Plant Pathology, 84(5), 312–320. https://doi.org/10.1007/s10327-018-0801-8 Thatcher, L. F., Williams, A. H., Garg, G., Buck, S. A. G., & Singh, K. B. (2016). Transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. medicaginis during colonisation of resistant and susceptible Medicago truncatula hosts identifies differential pathogenicity profiles and novel candidate effectors. BMC Genomics, 17(1), 1–19. https://doi.org/10.1186/s12864-016-3192-2 Thevenin, J. M., Rossi, V., Ducamp, M., Doare, F., Condina, V., & Lachenaud, P. (2012). Numerous clones resistant to Phytophthora palmivora in the “Guiana” genetic group of Theobroma cacao L. PLoS ONE, 7(7), 1–6. https://doi.org/10.1371/journal.pone.0040915 Thordal-Christensen, H., Zhang, Z., Wei, Y., & Collinge, D. B. (1997). Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant Journal. https://doi.org/10.1046/j.1365-313X.1997.11061187.x Torkamaneh, D., Boyle, B., & Belzile, F. (2018). Efficient genome-wide genotyping strategies and data integration in crop plants. Theoretical and Applied Genetics, 131(3), 499–511. https://doi.org/10.1007/s00122-018-3056-z Torres, G. A., Sarria, G. A., Martinez, G., Varon, F., Drenth, A., & Guest, D. I. (2016a). Bud Rot Caused by Phytophthora palmivora : A Destructive Emerging Disease of Oil Palm. Phytopathology, 106(4), 320–329. https://doi.org/10.1094/PHYTO-09-15-0243-RVW Torres, G. A., Sarria, G. A., Martinez, G., Varon, F., Drenth, A., & Guest, D. I. (2016b). Bud Rot Caused by Phytophthora palmivora: A Destructive Emerging Disease of Oil Palm. Phytopathology, 106(4), 320–329. https://doi.org/10.1094/PHYTO-09-15-0243-RVW Torres, G., Sarria, G., Martinez, G., Varon, F., Drenth, A., & Guest, D. (2016). Bud Rot Caused by Phytophthora palmivora : A Destructive Emerging Disease of Oil Palm. Phytopathology, 106(4), 320–329. https://doi.org/10.1094/PHYTO-09-15-0243-RVW Toruño, T. Y., Stergiopoulos, I., & Coaker, G. (2016). Plant-Pathogen Effectors: Cellular Probes Interfering with Plant Defenses in Spatial and Temporal Manners. Annual Review of Phytopathology, 54(1), 419–441. https://doi.org/10.1146/annurev-phyto-080615-100204 Trapet, P., Kulik, A., Lamotte, O., Jeandroz, S., Bourque, S., Nicolas-Francès, V., … Wendehenne, D. (2015). NO signaling in plant immunity: A tale of messengers. Phytochemistry, 112(1), 72–79. https://doi.org/10.1016/j.phytochem.2014.03.015 Tyler, B. M., Tripathy, S., Zhang, X., Dehal, P., Jiang, R. H. Y., Aerts, A., … Boore, J. L. (2006). Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science. https://doi.org/10.1126/science.1128796 Unamba, C. I. N., Nag, A., & Sharma, R. K. (2015). Next Generation Sequencing Technologies: The Doorway to the Unexplored Genomics of Non-Model Plants. Frontiers in Plant Science, 6(December). https://doi.org/10.3389/fpls.2015.01074 Van de Wouw, A. P., & Idnurm, A. (2019). Biotechnological potential of engineering pathogen effector proteins for use in plant disease management. Biotechnology Advances, (April), 1–10. https://doi.org/10.1016/j.biotechadv.2019.04.009 Vanhove, A.-C., Vermaelen, W., Panis, B., Swennen, R., & Carpentier, S. C. (2012). Screening the banana biodiversity for drought tolerance: can an in vitro growth model and proteomics be used as a tool to discover tolerant varieties and understand homeostasis. Frontiers in Plant Science, 3(August), 176. https://doi.org/10.3389/fpls.2012.00176 Varden, F. A., De la Concepcion, J. C., Maidment, J. H., & Banfield, M. J. (2017). Taking the stage: effectors in the spotlight. Current Opinion in Plant Biology, 38, 25–33. https://doi.org/10.1016/j.pbi.2017.04.013 Velásquez, A. C., Castroverde, C. D. M., & He, S. Y. (2018). Plant–Pathogen Warfare under Changing Climate Conditions. Current Biology, 28(10), R619–R634. https://doi.org/10.1016/j.cub.2018.03.054 Wang, W., & Jiao, F. (2019). Effectors of Phytophthora pathogens are powerful weapons for manipulating host immunity. Planta, 250(2), 413–425. https://doi.org/10.1007/s00425-019-03219-x Windram, O., Penfold, C. A., & Denby, K. J. (2014). Network Modeling to Understand Plant Immunity. Annual Review of Phytopathology, 52(1), 93–111. https://doi.org/10.1146/annurev-phyto-102313-050103 Woittiez, L.S., Wijk, M.T. van, Slingerland, M., Noordwijk, M. van and Giller, K. E. (2017). Yield gaps in oil palm: A quantitative review of contributing factors. European Journal of Agronomy, 83, 57–77. https://doi.org/https://dx.doi.org/10.1016/j.eja.2016.11.002 Wu, S., Shan, L., & He, P. (2014). Microbial signature-triggered plant defense responses and early signaling mechanisms. Plant Science, 228, 118–126. https://doi.org/10.1016/j.plantsci.2014.03.001 Wu, Y. L., Yi, G. J., & Peng, X. X. (2010). Rapid screening of Musa species for resistance to Fusarium wilt in an in vitro bioassay. European Journal of Plant Pathology, 128(3), 409–415. https://doi.org/10.1007/s10658-010-9669-y Yang, J. K., Tong, Z. J., Fang, D. H., Chen, X. J., Zhang, K. Q., & Xiao, B. G. (2017). Transcriptomic profile of tobacco in response to Phytophthora nicotianae infection. Scientific Reports, 7(1), 1–7. https://doi.org/10.1038/s41598-017-00481-5 Zhao, M., Hui-Min, J., Ying, G., Cao, X.-X., Mao, H.-Y., Peng, L., & Shou-Qiang, O. (2018). Integrated RNA-seq and sRNA-seq revelad differences in transcriptome between susceptible and resistant tomato responding to Fusarium oxymporum. BioRxiv, (4). https://doi.org/10.1590/s1809-98232013000400007LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/75740/2/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD52ORIGINALTESIS_KJAM_NOV15_2019.pdfTESIS_KJAM_NOV15_2019.pdfapplication/pdf16020640https://repositorio.unal.edu.co/bitstream/unal/75740/1/TESIS_KJAM_NOV15_2019.pdfe942a877ad7c3f11aac83f095e3e80caMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.unal.edu.co/bitstream/unal/75740/3/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD53THUMBNAILTESIS_KJAM_NOV15_2019.pdf.jpgTESIS_KJAM_NOV15_2019.pdf.jpgGenerated Thumbnailimage/jpeg5068https://repositorio.unal.edu.co/bitstream/unal/75740/4/TESIS_KJAM_NOV15_2019.pdf.jpg6c49a154cb2107529fdff522823940c8MD54unal/75740oai:repositorio.unal.edu.co:unal/757402024-07-10 23:22:02.955Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg==