Influencia de la dirección de impresión, espesor y tiempo de recocido en las propiedades mecánicas del Nylon 12 usado en manufactura aditiva SLS

ilustraciones, diagramas

Autores:
García Rodríguez, Alejandro
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86286
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86286
https://repositorio.unal.edu.co/
Palabra clave:
670 - Manufactura::679 -Otros productos de materiales específicos
Sinterizado de Laser Selectivo
PA 12
Espesor de pared
Dirección de impresión
Selective Laser Sintering
PA 12
Printing direction
Wall thickness
Annealed
Polímero
Sinterizado selectivo por láser
Método de impresión
Polymers
selective laser sintering
Printing methods
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_d37cbbbbcd3d467868a166b89d9006c6
oai_identifier_str oai:repositorio.unal.edu.co:unal/86286
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Influencia de la dirección de impresión, espesor y tiempo de recocido en las propiedades mecánicas del Nylon 12 usado en manufactura aditiva SLS
dc.title.translated.eng.fl_str_mv Influence of build direction, thickness and annealing time on the mechanical properties of Nylon 12 used in SLS additive manufacturing
title Influencia de la dirección de impresión, espesor y tiempo de recocido en las propiedades mecánicas del Nylon 12 usado en manufactura aditiva SLS
spellingShingle Influencia de la dirección de impresión, espesor y tiempo de recocido en las propiedades mecánicas del Nylon 12 usado en manufactura aditiva SLS
670 - Manufactura::679 -Otros productos de materiales específicos
Sinterizado de Laser Selectivo
PA 12
Espesor de pared
Dirección de impresión
Selective Laser Sintering
PA 12
Printing direction
Wall thickness
Annealed
Polímero
Sinterizado selectivo por láser
Método de impresión
Polymers
selective laser sintering
Printing methods
title_short Influencia de la dirección de impresión, espesor y tiempo de recocido en las propiedades mecánicas del Nylon 12 usado en manufactura aditiva SLS
title_full Influencia de la dirección de impresión, espesor y tiempo de recocido en las propiedades mecánicas del Nylon 12 usado en manufactura aditiva SLS
title_fullStr Influencia de la dirección de impresión, espesor y tiempo de recocido en las propiedades mecánicas del Nylon 12 usado en manufactura aditiva SLS
title_full_unstemmed Influencia de la dirección de impresión, espesor y tiempo de recocido en las propiedades mecánicas del Nylon 12 usado en manufactura aditiva SLS
title_sort Influencia de la dirección de impresión, espesor y tiempo de recocido en las propiedades mecánicas del Nylon 12 usado en manufactura aditiva SLS
dc.creator.fl_str_mv García Rodríguez, Alejandro
dc.contributor.advisor.spa.fl_str_mv Narvaéz Tovar, Carlos Alberto
Velasco Peña, Marco Antonio
dc.contributor.author.spa.fl_str_mv García Rodríguez, Alejandro
dc.contributor.researchgroup.spa.fl_str_mv Innovación en Procesos de Manufactura E Ingeniería de Materiales (Ipmim)
dc.contributor.orcid.spa.fl_str_mv García, Alejandro [0000-0002-2518-1093]
dc.subject.ddc.spa.fl_str_mv 670 - Manufactura::679 -Otros productos de materiales específicos
topic 670 - Manufactura::679 -Otros productos de materiales específicos
Sinterizado de Laser Selectivo
PA 12
Espesor de pared
Dirección de impresión
Selective Laser Sintering
PA 12
Printing direction
Wall thickness
Annealed
Polímero
Sinterizado selectivo por láser
Método de impresión
Polymers
selective laser sintering
Printing methods
dc.subject.proposal.spa.fl_str_mv Sinterizado de Laser Selectivo
PA 12
Espesor de pared
dc.subject.proposal.eng.fl_str_mv Dirección de impresión
Selective Laser Sintering
PA 12
Printing direction
Wall thickness
Annealed
dc.subject.unesco.spa.fl_str_mv Polímero
Sinterizado selectivo por láser
Método de impresión
dc.subject.unesco.eng.fl_str_mv Polymers
selective laser sintering
Printing methods
description ilustraciones, diagramas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-06-20T21:49:36Z
dc.date.available.none.fl_str_mv 2024-06-20T21:49:36Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86286
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86286
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv N. A. Charoo et al., “Selective laser sintering 3D printing–an overview of the technology and pharmaceutical applications,” Drug Dev Ind Pharm, vol. 46, no. 6, pp. 869–877, 2020, doi: 10.1080/03639045.2020.1764027.
A. Paolini, S. Kollmannsberger, and E. Rank, “Additive manufacturing in construction: A review on processes, applications, and digital planning methods,” Addit Manuf, vol. 30, 2019, doi: 10.1016/j.addma.2019.100894.
G. Gong et al., “Research status of laser additive manufacturing for metal: a review,” Journal of Materials Research and Technology, vol. 15, pp. 855–884, 2021, doi: 10.1016/j.jmrt.2021.08.050.
R. Govender, E. O. Kissi, A. Larsson, and I. Tho, “Polymers in pharmaceutical additive manufacturing: A balancing act between printability and product performance,” Adv Drug Deliv Rev, vol. 177, no. 0316, p. 113923, 2021, doi: 10.1016/j.addr.2021.113923.
Mordor inteligent, “3D PRINTING MARKET - GROWTH, TRENDS, COVID-19 IMPACT, AND FORECASTS (2022 - 2027).” [Online]. Available: https://www.mordorintelligence.com/industry-reports/3d-printing-market
B. A. Clegg, D. R. Shrestha, and N. Emami, “Biotribology Tribo-Mechanical Properties and Bioactivity of Additively Manufactured PAEK Materials for Load Bearing Medical Applications : A Systematic Review,” Biotribology, vol. 35–36, no. August, p. 100263, 2023, doi: 10.1016/j.biotri.2023.100263.
H. Mobarak et al., “Applied Surface Science Advances Recent advances of additive manufacturing in implant fabrication – A review,” Applied Surface Science Advances, vol. 18, no. August, p. 100462, 2023, doi: 10.1016/j.apsadv.2023.100462.
T. Cephas, D. Johan, and D. Beer, “Heliyon Additive manufacturing of NiTi shape memory alloy and its industrial applications,” Heliyon, vol. 10, no. 1, p. e23369, 2024, doi: 10.1016/j.heliyon.2023.e23369.
C. Neto, “Heliyon Artificial teeth obtained by additive manufacturing : Wear resistance aspects . A systematic review of in vitro studies,” vol. 10, 2024, doi: 10.1016/j.heliyon.2023.e23279.
R. D. Crapnell et al., “Additive manufacturing electrochemistry : An overview of producing bespoke conductive additive manufacturing fi laments,” Materials Today, vol. 71, no. December, pp. 73–90, 2023, doi: 10.1016/j.mattod.2023.11.002.
C. Yan, S. Yusheng, L. Zhaoqing, W. Shifeng, and W. Qingsong, Selective Laser Sintering Additive Manufacturing Technology. 2021. doi: 10.1016/c2018-0-01960-x.
Y. Kutlu, Y. L. Wencke, G. A. Luinstra, C. Esen, and A. Ostendorf, “Directed Energy Deposition of PA12 carbon nanotube composite powder using a fiber laser,” Procedia CIRP, vol. 94, pp. 128–133, 2020, doi: 10.1016/j.procir.2020.09.025.
I. Gibson and D. Shi, “Material properties and fabrication parameters in selective laser sintering process,” Rapid Prototyp J, vol. 3, no. 4, pp. 129–136, 1997, doi: 10.1108/13552549710191836.
Hubs, “Additive manufacturing trend report 2021,” 2021.
Z. Major, M. Lackner, A. Hössinger-Kalteis, and T. Lück, “Characterization of the Fatigue Behavior of SLS Thermoplastics,” Procedia Structural Integrity, vol. 34, no. 2019, pp. 191–198, 2021, doi: 10.1016/j.prostr.2021.12.028.
S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mülhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing,” Chem Rev, vol. 117, no. 15, pp. 10212–10290, 2017, doi: 10.1021/acs.chemrev.7b00074.
B. O. Sivadas, I. Ashcroft, A. N. Khobystov, and R. D. Goodridge, “Laser sintering of polymer nanocomposites,” Advanced Industrial and Engineering Polymer Research, vol. 4, 2021.
M. K.- Schuk, Lase Sintering with Plastics. HANSER, 2018.
ANDI and iNNpulsa, “Cierre de brechas de innovación y tecnología,” Online, p. 853, 2018.
Universidad Industrial de Santander, “SERVICIOS DE EXTENSIÓN: IMPRESIÓN 3D.” [Online]. Available: https://www.uis.edu.co/webUIS/es/rss/noticia.jsp?id=17&canal=6520.xml&facultad=fmecanicas
IMOCOM, “SLS: la tecnología de impresión 3D más costo-eficiente del mercado.,” 2020.
P. Kruth, X. Wang, and T. Laoui, “Lasers and materials in selective laser sintering,” vol. 23, no. 4, pp. 357–371, 2006.
3D Systems, “Rapid Manufacturgin: SLS Design Guide-Plastics.” 2020.
Materialise, “DESIGN GUIDELINES: PA 12 (SLS).” [Online]. Available: https://www.materialise.com/en/academy/industrial/design-am/pa12-sls
Proto3000, “Selective Lase Sintering (SLS) 3D Printing Design Guidelines.” [Online]. Available: https://proto3000.com/service/3d-printing-services/materials/overview/design-guidelines/sls-design-guidelines/
A. Kamil, “Post Processing for Nylon 12 Laser Sintered Components,” no. November, 2016.
M. E. Imanian and F. R. Biglari, “Modeling and prediction of surface roughness and dimensional accuracy in SLS 3D printing of PVA/CB composite using the central composite design,” J Manuf Process, vol. 75, no. January, pp. 154–169, 2022, doi: 10.1016/j.jmapro.2021.12.065.
O. D. Jucan, R. V. Gădălean, H. F. Chicinaş, M. Hering, N. Bâlc, and C. O. Popa, “Study on the indirect selective laser sintering (SLS) of WC-Co/PA12 powders for the manufacturing of cemented carbide parts,” Int J Refract Metals Hard Mater, vol. 96, no. January, pp. 2–10, 2021, doi: 10.1016/j.ijrmhm.2021.105498.
H. Gu, Z. Bashir, and L. Yang, “The re-usability of heat-exposed poly ( ethylene terephthalate ) powder for laser sintering,” vol. 28, no. December 2018, pp. 194–204, 2019.
S. I. A. Qadri, “A critical study and analysis of process parameters of selective laser sintering Rapid prototyping,” Mater Today Proc, vol. 49, pp. 1980–1988, 2022, doi: 10.1016/j.matpr.2021.08.153.
J. C. Nelson, Selective Laser Sintering: A Definition of the Process and an Empirical Sintering Model. 1993.
K. Deshmukh, A. Muzaffar, T. Kovářík, T. Křenek, M. B. Ahamed, and S. K. K. Pasha, “Fundamentals and applications of 3D and 4D printing of polymers: Challenges in polymer processing and prospects of future research,” K. K. Sadasivuni, K. Deshmukh, and M. A. B. T.-3D and 4D P. of P. N. M. Almaadeed, Eds., Elsevier, 2020, pp. 527–560. doi: https://doi.org/10.1016/B978-0-12-816805-9.00017-X.
Q. Tong, K. Xue, T. Wang, and S. Yao, “Laser sintering and invalidating composite scan for improving tensile strength and accuracy of SLS parts,” J Manuf Process, vol. 56, no. April, pp. 1–11, 2020, doi: 10.1016/j.jmapro.2020.04.056.
P. Venuvinod and W. yin Ma, Rapid prototyping Laser-Based and Other Technologies, vol. 132, no. 1. 2004.
C. Yan, Y. Shi, and L. Hao, “Investigation into the differences in the selective laser sintering between amorphous and semi-crystalline polymers,” International Polymer Processing, vol. 26, no. 4, pp. 416–423, 2011, doi: 10.3139/217.2452.
H. J. O’ Connor and D. P. Dowling, “Comparison between the properties of polyamide 12 and glass bead filled polyamide 12 using the multi jet fusion printing process,” Addit Manuf, vol. 31, no. October 2019, 2020, doi: 10.1016/j.addma.2019.100961.
F. Mehdipour, U. Gebhardt, and M. Kästner, “Anisotropic and rate-dependent mechanical properties of 3D printed polyamide 12 - A comparison between selective laser sintering and multi jet fusion,” Results in Materials, vol. 11, p. 100213, 2021, doi: 10.1016/j.rinma.2021.100213.
S. Greiner et al., “Development of material-adapted processing strategies for laser sintering of polyamide 12,” 2021.
W. Yusoff, D. T. Pham, and K. Dotchev, “Effect of Employing Different Grades of Recycled Polyamide 12 on the Surface Texture of Laser Sintered (Ls) Parts,” 2009.
W. Ahmad and Y. Wan, “An investigation of the ‘ Orange Peel ’ Phenomenon,” no. April, 2007.
Y. W.A and T. A.J, “The Effect of Employing an Effective Laser Sintering Scanning Strategy and Energy Density Value on Eliminating “ Orange Peel" on a Selective Laser Sintered Part,” vol. 12, 2008.
U. Ajoku, N. Saleh, N. Hopkinson, R. Hague, and P. Erasenthiran, “Investigating mechanical anisotropy and end-of-vector effect in laser-sintered nylon parts,” Proc Inst Mech Eng B J Eng Manuf, vol. 220, no. 7, pp. 1077–1086, 2006, doi: 10.1243/09544054JEM537.
N. Rosenzweig and M. Narkis, “Dimensional variations of two spherical polymeric particles during sintering,” Polym Eng Sci, vol. 21, no. 10, pp. 582–585, 1981, doi: 10.1002/pen.760211003.
Y. Shi, Z. Li, H. Sun, S. Huang, and F. Zeng, “Effect of the properties of the polymer materials on the quality of selective laser sintering parts,” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 218, no. 3, pp. 247–252, 2004, doi: 10.1243/1464420041579454.
D. Damjanovi, “A Study of the Flexural Properties of PA12 / Clay Nanocomposites,” 2022.
A. Touris et al., “Results in Materials Effect of molecular weight and hydration on the tensile properties of polyamide 12,” Results in Materials, vol. 8, no. October, p. 100149, 2020, doi: 10.1016/j.rinma.2020.100149.
M. Launhardt et al., “Detecting surface roughness on SLS parts with various measuring techniques,” Polym Test, vol. 53, pp. 217–226, 2016, doi: 10.1016/j.polymertesting.2016.05.022.
G. S. Martynková et al., “Polyamide 12 materials study of morpho-structural changes during laser sintering of 3d printing,” Polymers (Basel), vol. 13, no. 5, 2021, doi: 10.3390/polym13050810.
G. Wypych, Handbook of Polymers. 2016.
M. R. Omar, M. Ilman, and H. Chua, “Effect of Polyamide-12 Material Compositions on Mechanical Properties and Surface Morphology of SLS 3D Printed Part,” vol. 19, no. 1, pp. 57–70, 2022.
R. Baserinia, K. Brockbank, and R. Dattani, “Correlating polyamide powder flowability to mechanical properties of parts fabricated by additive manufacturing,” Powder Technol, vol. 398, 2022, doi: 10.1016/j.powtec.2022.117147.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxv, 196 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86286/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86286/3/1016057987.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86286/4/1016057987.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
56c705027d60c9692c6b75af355538d3
8ee9239cf0d78041b24b208ce0b32acd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089432711561216
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Narvaéz Tovar, Carlos Albertoe36afde9bf60d7c3797eddf54bcf56e7Velasco Peña, Marco Antoniobb4cd0c04e320d75286a75bbe3f48188600García Rodríguez, Alejandroff1e199771732a5bef6480f52e19cbffInnovación en Procesos de Manufactura E Ingeniería de Materiales (Ipmim)García, Alejandro [0000-0002-2518-1093]2024-06-20T21:49:36Z2024-06-20T21:49:36Z2024https://repositorio.unal.edu.co/handle/unal/86286Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLa manufactura aditiva es uno de los campos de investigación que actualmente llaman el interés de la industria y de la comunidad científica. Existen diferentes tecnologías, sin embargo, una de las de mayor interés es la tecnología de Sinterizado Laser Selectivo (SLS), ya que esta permite construir piezas no paramétricas, en tiempos relativamente cortos con material reciclado. Actualmente esta tecnología se sigue investigando porque presenta muchas variables de diseño, máquina, postproceso con influencia significativa en las propiedades térmicas, químicas, mecánicas, entre otras. Las investigaciones más recientes se han centrado en parámetros ajenos a los parámetros del láser y máquina, con el fin de brindar herramientas y alimentar las guías de diseño para que los usuarios que deseen mejorar la calidad de sus productos, sin necesidad de invertir en la modificación de parámetros de la máquina. Por esta razón en la presente investigación se estudió la influencia de la dirección de impresión, espesor de pared y tiempo de recocido en las propiedades químicas, térmicas, mecánicas de PA 12 evaluando si los cambios presentados entre variables son estadísticamente significativos. Además, se caracterizó la materia en prima en polvo a una tasa de 70 % polvo reciclado y 30 % polvo virgen para evaluar si existen diferencias notables cuando son sometidos a ciclos de sinterizado. Se identificó que polvo reciclado presentó cambios notables después del primer y segundo ciclo de sinterizado, mostrando un aumento del 30 % en el porcentaje de cristalinidad en comparación con el polvo mezclado. La temperatura de cristalización presentó un aumento a medida que se aumentaban los ciclos de reciclado el polvo, mientras que la temperatura de fusión disminuyó. Sin embargo, no se presentaron cambios significativos en la composición química y las fases presentes en el material asociados al uso del polvo en diferentes ciclos. En cuanto al tamaño de partícula, el diámetro del polvo mezclado es estadísticamente menor a las otras condiciones de sinterizado. Además, se caracterizó la morfología del polvo y se relacionó con la morfología del cristal de partícula, mostrando cambios asociados a la afectación térmica producto de los ciclos de sinterizado. Por otra parte, las variables de espesor de pared, tiempo de recocido y dirección de impresión presentaron cambios significativos en las propiedades térmicas, morfológicas, y mecánicas de los especímenes manufacturados en PA 12. Las condiciones que presentaron mayores diferencias fueron la dirección vertical y el espesor de 2.0 mm, mostrando menores valores de área transversal, resistencia ultima a la tracción (UTS), elongación a la rotura (Eab), dureza y porcentaje dúctil de fractura estadísticamente menores en comparación con las otras direcciones. Se identifico que el porcentaje de cristalinidad es afectada tanto por el espesor y por la dirección de impresión. Este parámetro mostró un aumento considerable en el rango de valores en la condición de 3 horas de estancia de recocido, repercutiendo en un aumento de la resistencia mecánica, una caída en la elongación a la rotura. El módulo de elasticidad solo fue afectado por la dirección de impresión, puesto que en esta dirección se presentaron los valores de defectología de mayor medida. No se identificaron cambios químicos y estructurales en función de las tres variables de entrada. Por último, se contrastaron las diferencias significativas de manera puntual y funcional. En las condiciones químicas se presentaron diferencias significativas en la prueba funcional, posiblemente asociadas a la preparación de la muestra. Por otra parte, la caracterización térmica mostró diferencias en función de la dirección de impresión. Por último, la dirección de impresión y el tratamiento térmico afectaron funcionalmente los valores de esfuerzo, mientras que la elongación a la rotura fue afectada únicamente por la dirección de impresión. (Texto tomado de la fuente).Additive manufacturing is one of the research fields currently attracting the interest of the industry and the scientific community. There are different technologies, however, one of the most interesting is the Selective Laser Sintering (SLS) technology, since it allows the construction of non-parametric parts in relatively short times with recycled material. Currently, this technology is still being researched because it presents many design, machine and post-processing variables with significant influence on thermal, chemical and mechanical properties, among others. The most recent research has focused on parameters outside the parameters of the laser and machine, to provide tools and feed the design guides for users who wish to improve the quality of their products, without investing in the modification of machine parameters. For this reason, in the present research the influence of printing direction, wall thickness and annealing time on the chemical, thermal, mechanical properties of PA 12 was studied evaluating if the changes presented between variables are statistically significant. In addition, the raw material was characterized in powder form at a rate of 70% recycled powder and 30% virgin powder to evaluate if there are noticeable differences when subjected to sintering cycles. It was identified that recycled powder presented remarkable changes after the first and second sintering cycle, showing a 30 % increase in the percentage of crystallinity compared to the mixed powder. The crystallization temperature presented an increase as the powder cycles increased. Contrary to this behavior, as the sintering cycles increased, the melting temperature decreased. As for the particle size, the diameter of the mixed powder is statistically smaller than the other sintering conditions. As for the chemical composition and phases present in the material, there were no significant changes associated with the use of the powder in different cycles. In addition, the morphology of the powder was characterized and related to the morphology of the particle crystal, showing changes associated to the thermal affectation product of the sintering cycles. On the other hand, the variables of wall thickness, annealing time and printing direction presented significant changes in the thermal, morphological, and mechanical properties of the specimens manufactured in PA 12. The condition that presented the greatest differences were the vertical direction and the 2.0 mm thickness, showing lower values of cross-sectional area, ultimate tensile strength (UTS), elongation at break (Eab), hardness and ductile fracture percentage statistically lower compared to the other directions. It was identified that the percentage of crystallinity is affected by both the thickness and the printing direction. This parameter showed a considerable increase in the range of values in the condition of 3 hours of annealing stay, resulting in an increase in mechanical strength, a drop in elongation at break. The modulus of elasticity was only affected by the printing direction, since the highest defect values were found in this direction. No chemical and structural changes were identified as a function of the three input variables. Finally, significant differences were contrasted in a pointwise and functional manner. In the chemical conditions, there were significant differences in the functional test, possibly associated with the sample preparation. On the other hand, the thermal characterization showed differences as a function of the printing direction. Finally, the printing direction and heat treatment functionally affected the stress mechanical properties. The printing direction only affected the elongation at break.DoctoradoDoctor en IngenieríaManufactura aditivaxxv, 196 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y MecatrónicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá670 - Manufactura::679 -Otros productos de materiales específicosSinterizado de Laser SelectivoPA 12Espesor de paredDirección de impresiónSelective Laser SinteringPA 12Printing directionWall thicknessAnnealedPolímeroSinterizado selectivo por láserMétodo de impresiónPolymersselective laser sinteringPrinting methodsInfluencia de la dirección de impresión, espesor y tiempo de recocido en las propiedades mecánicas del Nylon 12 usado en manufactura aditiva SLSInfluence of build direction, thickness and annealing time on the mechanical properties of Nylon 12 used in SLS additive manufacturingTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDN. A. Charoo et al., “Selective laser sintering 3D printing–an overview of the technology and pharmaceutical applications,” Drug Dev Ind Pharm, vol. 46, no. 6, pp. 869–877, 2020, doi: 10.1080/03639045.2020.1764027.A. Paolini, S. Kollmannsberger, and E. Rank, “Additive manufacturing in construction: A review on processes, applications, and digital planning methods,” Addit Manuf, vol. 30, 2019, doi: 10.1016/j.addma.2019.100894.G. Gong et al., “Research status of laser additive manufacturing for metal: a review,” Journal of Materials Research and Technology, vol. 15, pp. 855–884, 2021, doi: 10.1016/j.jmrt.2021.08.050.R. Govender, E. O. Kissi, A. Larsson, and I. Tho, “Polymers in pharmaceutical additive manufacturing: A balancing act between printability and product performance,” Adv Drug Deliv Rev, vol. 177, no. 0316, p. 113923, 2021, doi: 10.1016/j.addr.2021.113923.Mordor inteligent, “3D PRINTING MARKET - GROWTH, TRENDS, COVID-19 IMPACT, AND FORECASTS (2022 - 2027).” [Online]. Available: https://www.mordorintelligence.com/industry-reports/3d-printing-marketB. A. Clegg, D. R. Shrestha, and N. Emami, “Biotribology Tribo-Mechanical Properties and Bioactivity of Additively Manufactured PAEK Materials for Load Bearing Medical Applications : A Systematic Review,” Biotribology, vol. 35–36, no. August, p. 100263, 2023, doi: 10.1016/j.biotri.2023.100263.H. Mobarak et al., “Applied Surface Science Advances Recent advances of additive manufacturing in implant fabrication – A review,” Applied Surface Science Advances, vol. 18, no. August, p. 100462, 2023, doi: 10.1016/j.apsadv.2023.100462.T. Cephas, D. Johan, and D. Beer, “Heliyon Additive manufacturing of NiTi shape memory alloy and its industrial applications,” Heliyon, vol. 10, no. 1, p. e23369, 2024, doi: 10.1016/j.heliyon.2023.e23369.C. Neto, “Heliyon Artificial teeth obtained by additive manufacturing : Wear resistance aspects . A systematic review of in vitro studies,” vol. 10, 2024, doi: 10.1016/j.heliyon.2023.e23279.R. D. Crapnell et al., “Additive manufacturing electrochemistry : An overview of producing bespoke conductive additive manufacturing fi laments,” Materials Today, vol. 71, no. December, pp. 73–90, 2023, doi: 10.1016/j.mattod.2023.11.002.C. Yan, S. Yusheng, L. Zhaoqing, W. Shifeng, and W. Qingsong, Selective Laser Sintering Additive Manufacturing Technology. 2021. doi: 10.1016/c2018-0-01960-x.Y. Kutlu, Y. L. Wencke, G. A. Luinstra, C. Esen, and A. Ostendorf, “Directed Energy Deposition of PA12 carbon nanotube composite powder using a fiber laser,” Procedia CIRP, vol. 94, pp. 128–133, 2020, doi: 10.1016/j.procir.2020.09.025.I. Gibson and D. Shi, “Material properties and fabrication parameters in selective laser sintering process,” Rapid Prototyp J, vol. 3, no. 4, pp. 129–136, 1997, doi: 10.1108/13552549710191836.Hubs, “Additive manufacturing trend report 2021,” 2021.Z. Major, M. Lackner, A. Hössinger-Kalteis, and T. Lück, “Characterization of the Fatigue Behavior of SLS Thermoplastics,” Procedia Structural Integrity, vol. 34, no. 2019, pp. 191–198, 2021, doi: 10.1016/j.prostr.2021.12.028.S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mülhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing,” Chem Rev, vol. 117, no. 15, pp. 10212–10290, 2017, doi: 10.1021/acs.chemrev.7b00074.B. O. Sivadas, I. Ashcroft, A. N. Khobystov, and R. D. Goodridge, “Laser sintering of polymer nanocomposites,” Advanced Industrial and Engineering Polymer Research, vol. 4, 2021.M. K.- Schuk, Lase Sintering with Plastics. HANSER, 2018.ANDI and iNNpulsa, “Cierre de brechas de innovación y tecnología,” Online, p. 853, 2018.Universidad Industrial de Santander, “SERVICIOS DE EXTENSIÓN: IMPRESIÓN 3D.” [Online]. Available: https://www.uis.edu.co/webUIS/es/rss/noticia.jsp?id=17&canal=6520.xml&facultad=fmecanicasIMOCOM, “SLS: la tecnología de impresión 3D más costo-eficiente del mercado.,” 2020.P. Kruth, X. Wang, and T. Laoui, “Lasers and materials in selective laser sintering,” vol. 23, no. 4, pp. 357–371, 2006.3D Systems, “Rapid Manufacturgin: SLS Design Guide-Plastics.” 2020.Materialise, “DESIGN GUIDELINES: PA 12 (SLS).” [Online]. Available: https://www.materialise.com/en/academy/industrial/design-am/pa12-slsProto3000, “Selective Lase Sintering (SLS) 3D Printing Design Guidelines.” [Online]. Available: https://proto3000.com/service/3d-printing-services/materials/overview/design-guidelines/sls-design-guidelines/A. Kamil, “Post Processing for Nylon 12 Laser Sintered Components,” no. November, 2016.M. E. Imanian and F. R. Biglari, “Modeling and prediction of surface roughness and dimensional accuracy in SLS 3D printing of PVA/CB composite using the central composite design,” J Manuf Process, vol. 75, no. January, pp. 154–169, 2022, doi: 10.1016/j.jmapro.2021.12.065.O. D. Jucan, R. V. Gădălean, H. F. Chicinaş, M. Hering, N. Bâlc, and C. O. Popa, “Study on the indirect selective laser sintering (SLS) of WC-Co/PA12 powders for the manufacturing of cemented carbide parts,” Int J Refract Metals Hard Mater, vol. 96, no. January, pp. 2–10, 2021, doi: 10.1016/j.ijrmhm.2021.105498.H. Gu, Z. Bashir, and L. Yang, “The re-usability of heat-exposed poly ( ethylene terephthalate ) powder for laser sintering,” vol. 28, no. December 2018, pp. 194–204, 2019.S. I. A. Qadri, “A critical study and analysis of process parameters of selective laser sintering Rapid prototyping,” Mater Today Proc, vol. 49, pp. 1980–1988, 2022, doi: 10.1016/j.matpr.2021.08.153.J. C. Nelson, Selective Laser Sintering: A Definition of the Process and an Empirical Sintering Model. 1993.K. Deshmukh, A. Muzaffar, T. Kovářík, T. Křenek, M. B. Ahamed, and S. K. K. Pasha, “Fundamentals and applications of 3D and 4D printing of polymers: Challenges in polymer processing and prospects of future research,” K. K. Sadasivuni, K. Deshmukh, and M. A. B. T.-3D and 4D P. of P. N. M. Almaadeed, Eds., Elsevier, 2020, pp. 527–560. doi: https://doi.org/10.1016/B978-0-12-816805-9.00017-X.Q. Tong, K. Xue, T. Wang, and S. Yao, “Laser sintering and invalidating composite scan for improving tensile strength and accuracy of SLS parts,” J Manuf Process, vol. 56, no. April, pp. 1–11, 2020, doi: 10.1016/j.jmapro.2020.04.056.P. Venuvinod and W. yin Ma, Rapid prototyping Laser-Based and Other Technologies, vol. 132, no. 1. 2004.C. Yan, Y. Shi, and L. Hao, “Investigation into the differences in the selective laser sintering between amorphous and semi-crystalline polymers,” International Polymer Processing, vol. 26, no. 4, pp. 416–423, 2011, doi: 10.3139/217.2452.H. J. O’ Connor and D. P. Dowling, “Comparison between the properties of polyamide 12 and glass bead filled polyamide 12 using the multi jet fusion printing process,” Addit Manuf, vol. 31, no. October 2019, 2020, doi: 10.1016/j.addma.2019.100961.F. Mehdipour, U. Gebhardt, and M. Kästner, “Anisotropic and rate-dependent mechanical properties of 3D printed polyamide 12 - A comparison between selective laser sintering and multi jet fusion,” Results in Materials, vol. 11, p. 100213, 2021, doi: 10.1016/j.rinma.2021.100213.S. Greiner et al., “Development of material-adapted processing strategies for laser sintering of polyamide 12,” 2021.W. Yusoff, D. T. Pham, and K. Dotchev, “Effect of Employing Different Grades of Recycled Polyamide 12 on the Surface Texture of Laser Sintered (Ls) Parts,” 2009.W. Ahmad and Y. Wan, “An investigation of the ‘ Orange Peel ’ Phenomenon,” no. April, 2007.Y. W.A and T. A.J, “The Effect of Employing an Effective Laser Sintering Scanning Strategy and Energy Density Value on Eliminating “ Orange Peel" on a Selective Laser Sintered Part,” vol. 12, 2008.U. Ajoku, N. Saleh, N. Hopkinson, R. Hague, and P. Erasenthiran, “Investigating mechanical anisotropy and end-of-vector effect in laser-sintered nylon parts,” Proc Inst Mech Eng B J Eng Manuf, vol. 220, no. 7, pp. 1077–1086, 2006, doi: 10.1243/09544054JEM537.N. Rosenzweig and M. Narkis, “Dimensional variations of two spherical polymeric particles during sintering,” Polym Eng Sci, vol. 21, no. 10, pp. 582–585, 1981, doi: 10.1002/pen.760211003.Y. Shi, Z. Li, H. Sun, S. Huang, and F. Zeng, “Effect of the properties of the polymer materials on the quality of selective laser sintering parts,” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 218, no. 3, pp. 247–252, 2004, doi: 10.1243/1464420041579454.D. Damjanovi, “A Study of the Flexural Properties of PA12 / Clay Nanocomposites,” 2022.A. Touris et al., “Results in Materials Effect of molecular weight and hydration on the tensile properties of polyamide 12,” Results in Materials, vol. 8, no. October, p. 100149, 2020, doi: 10.1016/j.rinma.2020.100149.M. Launhardt et al., “Detecting surface roughness on SLS parts with various measuring techniques,” Polym Test, vol. 53, pp. 217–226, 2016, doi: 10.1016/j.polymertesting.2016.05.022.G. S. Martynková et al., “Polyamide 12 materials study of morpho-structural changes during laser sintering of 3d printing,” Polymers (Basel), vol. 13, no. 5, 2021, doi: 10.3390/polym13050810.G. Wypych, Handbook of Polymers. 2016.M. R. Omar, M. Ilman, and H. Chua, “Effect of Polyamide-12 Material Compositions on Mechanical Properties and Surface Morphology of SLS 3D Printed Part,” vol. 19, no. 1, pp. 57–70, 2022.R. Baserinia, K. Brockbank, and R. Dattani, “Correlating polyamide powder flowability to mechanical properties of parts fabricated by additive manufacturing,” Powder Technol, vol. 398, 2022, doi: 10.1016/j.powtec.2022.117147.EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86286/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1016057987.2024.pdf1016057987.2024.pdfTesis de Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónicaapplication/pdf34873015https://repositorio.unal.edu.co/bitstream/unal/86286/3/1016057987.2024.pdf56c705027d60c9692c6b75af355538d3MD53THUMBNAIL1016057987.2024.pdf.jpg1016057987.2024.pdf.jpgGenerated Thumbnailimage/jpeg4813https://repositorio.unal.edu.co/bitstream/unal/86286/4/1016057987.2024.pdf.jpg8ee9239cf0d78041b24b208ce0b32acdMD54unal/86286oai:repositorio.unal.edu.co:unal/862862024-06-20 23:15:18.06Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=