Análisis Lagrangiano de oleaje alrededor de arrecifes de coral
ilustraciones, diagramas
- Autores:
-
Ramírez Monsalve, Juan Pablo
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/83869
- Palabra clave:
- 550 - Ciencias de la tierra
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Ecología de arrecifes madrepóricos
Ecología de arrecifes
Coral reef ecology
Reef ecology
Corales
Vorticidad
Onda solitaria
Estructuras coherentes lagrangianas
Corals
Vorticity
Solitary wave
Lagrangian coherent structures
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_d3600bf0d7801dbc1f98363481111aaa |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/83869 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Análisis Lagrangiano de oleaje alrededor de arrecifes de coral |
dc.title.translated.eng.fl_str_mv |
Lagrangian analysis of wave dynamics around coral reefs |
title |
Análisis Lagrangiano de oleaje alrededor de arrecifes de coral |
spellingShingle |
Análisis Lagrangiano de oleaje alrededor de arrecifes de coral 550 - Ciencias de la tierra 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica Ecología de arrecifes madrepóricos Ecología de arrecifes Coral reef ecology Reef ecology Corales Vorticidad Onda solitaria Estructuras coherentes lagrangianas Corals Vorticity Solitary wave Lagrangian coherent structures |
title_short |
Análisis Lagrangiano de oleaje alrededor de arrecifes de coral |
title_full |
Análisis Lagrangiano de oleaje alrededor de arrecifes de coral |
title_fullStr |
Análisis Lagrangiano de oleaje alrededor de arrecifes de coral |
title_full_unstemmed |
Análisis Lagrangiano de oleaje alrededor de arrecifes de coral |
title_sort |
Análisis Lagrangiano de oleaje alrededor de arrecifes de coral |
dc.creator.fl_str_mv |
Ramírez Monsalve, Juan Pablo |
dc.contributor.advisor.none.fl_str_mv |
Osorio Arias, Andrés Fernando Hernandez-Carrasco, Ismael |
dc.contributor.author.none.fl_str_mv |
Ramírez Monsalve, Juan Pablo |
dc.contributor.researchgroup.spa.fl_str_mv |
Oceanicos Grupo de Oceanografía E Ingeniería Costera de la Universidad Nacional |
dc.contributor.orcid.spa.fl_str_mv |
Hernández Carrasco, Ismael [0000-0002-4574-0198] |
dc.subject.ddc.spa.fl_str_mv |
550 - Ciencias de la tierra 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica |
topic |
550 - Ciencias de la tierra 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica Ecología de arrecifes madrepóricos Ecología de arrecifes Coral reef ecology Reef ecology Corales Vorticidad Onda solitaria Estructuras coherentes lagrangianas Corals Vorticity Solitary wave Lagrangian coherent structures |
dc.subject.lemb.spa.fl_str_mv |
Ecología de arrecifes madrepóricos Ecología de arrecifes |
dc.subject.lemb.eng.fl_str_mv |
Coral reef ecology Reef ecology |
dc.subject.proposal.spa.fl_str_mv |
Corales Vorticidad Onda solitaria Estructuras coherentes lagrangianas |
dc.subject.proposal.eng.fl_str_mv |
Corals Vorticity Solitary wave Lagrangian coherent structures |
description |
ilustraciones, diagramas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-05-25T16:39:58Z |
dc.date.available.none.fl_str_mv |
2023-05-25T16:39:58Z |
dc.date.issued.none.fl_str_mv |
2023-05-24 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/83869 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/83869 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
RedCol LaReferencia |
dc.relation.references.spa.fl_str_mv |
Andersson, A. J. and Gledhill, D. (2013). Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Annual review of marine science, 5:321–348. Andono, P. N., Yuniarno, E. M., Hariadi, M., and Venus, V. (2012). 3d reconstruction of under water coral reef images using low cost multi-view cameras. In 2012 International Conference on Multimedia Computing and Systems, pages 803–808. IEEE. Artale, V., Boffetta, G., Celani, A., Cencini, M., and Vulpiani, A. (1997). Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient. Physics of Fluids, 9(11):3162–3171. Baldock, T., Golshani, A., Callaghan, D., Saunders, M., and Mumby, P. (2014). Impact of sea-level rise and coral mortality on the wave dynamics and wave forces on barrier reefs. Marine pollution bulletin, 83(1):155–164. Basco, D. R. (1985). A qualitative description of wave breaking. Journal of waterway, port, coastal, and ocean engineering, 111(2):171–188. Beall, C., Lawrence, B. J., Ila, V., and Dellaert, F. (2010). 3d reconstruction of underwater structures. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4418–4423. IEEE. Beron-Vera, F. J., Olascoaga, M. J., and Goni, G. (2008). Oceanic mesoscale eddies as revealed by Lagrangian coherent structures. Geophysical Research Letters, 35(12). Bilger, R. and Atkinson, M. (1992). Anomalous mass transfer of phosphate on coral reef flats. Limnology and Oceanography, 37(2):261–272. Brown, B. E. and Cossins, A. R. (2011). The potential for temperature acclimatisation of reef corals in the face of climate change. In Coral reefs: An ecosystem in transition, pages 421–433. Springer. Cáceres-Euse, A., Toro-Botero, F., Orfila, A., Hern´andez-Carrasco, I., Osorio, A., and Wyssmann, M. (2022). Backwards wave breaking by flow separation vortices under solitary waves. Journal of Fluids and Structures, 115:103779 Cáceres-Euse, A., Toro-Botero, F., Orfila, A., and Osorio, A. (2018). Vortex formation in wave-submerged structure interaction. Ocean Engineering, 166:47–63. Chamberlain Jr, J. A. and Graus, R. R. (1975). Water flow and hydromechanical adaptations of branched reef corals. Bulletin of Marine Science, 25(1):112–125. Chindapol, N., Kaandorp, J. A., Cronemberger, C., Mass, T., and Genin, A. (2013). Modelling growth and form of the scleractinian coral pocillopora verrucosa and the influence of hydrodynamics Cinner, J. E., Huchery, C., Darling, E. S., Humphries, A. T., Graham, N. A., Hicks, C. C., Marshall, N., and McClanahan, T. R. (2013). Evaluating social and ecological vulnerability of coral reef fisheries to climate change. Cinner, J. E., McClanahan, T. R., Graham, N. A., Daw, T. M., Maina, J., Stead, S. M., Wamukota, A., Brown, K., and Bodin, O. (2012). Vulnerability of coastal communities to key impacts of climate change on coral reef fisheries. Global Environmental Change, 22(1):12–20. Cooker, M., Peregrine, D., Vidal, C., and Dold, J. (1990). The interaction between a solitary wave and a submerged semicircular cylinder. Journal of Fluid Mechanics, 215:1–22. Cresswell, A. K., Thomson, D. P., Haywood, M. D., and Renton, M. (2020). Frequent hydrodynamic disturbances decrease the morphological diversity and structural complexity of 3d simulated coral communities. Coral Reefs, 39(4):1147–1161. Dabiri, J. O. and Gharib, M. (2004). Fluid entrainment by isolated vortex rings. Journal of fluid mechanics, 511:311–331 Dennison, W. C. and Barnes, D. J. (1988). Effect of water motion on coral photosynthesis and calcification. Journal of Experimental Marine Biology and Ecology, 115(1):67–77. Doropoulos, C., Ward, S., Diaz-Pulido, G., Hoegh-Guldberg, O., and Mumby, P. J. (2012). Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions. Ecology letters, 15(4):338–346. Duvall, M. S., Rosman, J. H., and Hench, J. L. (2020). Estimating geometric properties of coral reef topography using obstacle-and surface-based approaches. Journal of Geophysical Research: Oceans, 125(6). Edmunds, P. J., Carpenter, R. C., and Comeau, S. (2013). Understanding the threats of ocean acidification to coral reefs. Oceanography, 26(3):149–152. Elhma¨ıdi, D., Provenzale, A., and Babiano, A. (1993). Elementary topology of two- dimensional turbulence from a Lagrangian viewpoint and single-particle dispersion. Journal of Fluid Mechanics, 257:533–558. Fabricius, K. E., Genin, A., and Benayahu, Y. (1995). Flow-dependent herbivory and growth in zooxanthellae-free soft corals. Limnology and Oceanography, 40(7):1290–1301. Fukunaga, A. and Burns, J. H. (2020). Metrics of coral reef structural complexity extracted from 3d mesh models and digital elevation models. Remote Sensing, 12(17):2676. Gourlay, M. (1996). Wave set-up on coral reefs. 2. set-up on reefs with various profiles. Coastal Engineering, 28(1-4):17–55. Gracia, A., Rangel-Buitrago, N., Oakley, J. A., and Williams, A. (2018). Use of ecosystems in coastal erosion management. Ocean & coastal management, 156:277–289. Graham, N. and Nash, K. (2013). The importance of structural complexity in coral reef ecosystems. Coral reefs, 32(2):315–326 Grilli, S. T., Losada, M. A., and Martin, F. (1994). Characteristics of solitary wave breaking induced by breakwaters. Journal of Waterway, Port, Coastal, and Ocean Engineering, 120(1):74–92. Hadjighasem, A. and Haller, G. (2016). Geodesic transport barriers in jupiter’s atmosphere: A video-based analysis. Siam Review, 58(1):69–89. Haller, G. (2005). An objective definition of a vortex. Journal of fluid mechanics, 525:1–26. Haller, G. (2015). Lagrangian coherent structures. Annual Review of Fluid Mechanics, 47:137–162 Haller, G., Hadjighasem, A., Farazmand, M., and Huhn, F. (2016). Defining coherent vortices objectively from the vorticity. Journal of Fluid Mechanics, 795:136–173. Haller, G. and Yuan, G. (2000). Lagrangian coherent structures and mixing in two- dimensional turbulence. Physica D: Nonlinear Phenomena, 147(3-4):352–370. Harris, D. L., Rovere, A., Casella, E., Power, H., Canavesio, R., Collin, A., Pomeroy, A., Webster, J. M., and Parravicini, V. (2018). Coral reef structural complexity provides important coastal protection from waves under rising sea levels. Science Advances. Harrison, C. S. and Glatzmaier, G. A. (2012). Lagrangian coherent structures in the california current system–sensitivities and limitations. Geophysical & Astrophysical Fluid Dynamics, 106(1):22–44. Hearn, C. (2001). Introduction to the special issue of coral reefs on coral reef hydrodynamics. Hearn, C. J. (1999). Wave-breaking hydrodynamics within coral reef systems and the effect of changing relative sea level. Journal of Geophysical Research: Oceans, 104(C12):30007–30019. Hearn, C. J. (2011). Perspectives in coral reef hydrodynamics. Coral Reefs, 30(1):1. Hernández-Carrasco, I., López, C., Hernández-García, E., and Turiel, A. (2011). How reliable are finite-size lyapunov exponents for the assessment of ocean dynamics? Ocean Modelling, 36(3-4):208–218. Hernández-Carrasco, I., López, C., Hernández-García, E., and Turiel, A. (2012). Seasonal and regional characterization of horizontal stirring in the global ocean. Journal of Geophysical Research: Oceans, 117(C10). Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world’s coral reefs. Marine and freshwater research, 50(8):839–866. Hossain, M. M. and Staples, A. E. (2020). Mass transport and turbulent statistics within two branching coral colonies. Fluids, 5(3):153. Huang, C.-J. and Dong, C.-M. (2001). On the interaction of a solitary wave and a submerged dike. Coastal Engineering, 43(3-4):265–286. Huang, Z.-C., Lenain, L., Melville, W. K., Middleton, J. H., Reineman, B., Statom, N., and McCabe, R. M. (2012). Dissipation of wave energy and turbulence in a shallow coral reef lagoon. Journal of Geophysical Research: Oceans, 117(C3). Huhn, F., von Kameke, A., P´erez-Mu˜nuzuri, V., Olascoaga, M. J., and Beron-Vera, F. J. (2012). The impact of advective transport by the south indian ocean countercurrent on the madagascar plankton bloom. Geophysical research letters, 39(6). Iafrati, A. (2009). Numerical study of the effects of the breaking intensity on wave breaking flows. Journal of Fluid Mechanics, 622:371–411. Jakobsson, J. (2012). Investigation of Lagrangian coherent structures-to understand and identify turbulence. Chalmers University of Technology, Gothenburg, Sweden. Krieger, M. S., Sinai, S., and Nowak, M. A. (2020). Turbulent coherent structures and early life below the kolmogorov scale. Nature Communications, 11(1):1–14. Krishnan, P., Roy, S. D., George, G., Srivastava, R., Anand, A., Murugesan, S., Kaliya- moorthy, M., Vikas, N., and Soundararajan, R. (2011). Elevated sea surface temperature during may 2010 induces mass bleaching of corals in the Andaman. Current Science, pages 111–117. Lin, M., Zheng, Y., and Xu, M. (2020). Application of Lagrangian coherent structures to coulomb formation on elliptic orbit. Nonlinear Dynamics, 102(4):2649–2668. Lin, M.-Y. and Huang, L.-H. (2010). Vortex shedding from a submerged rectangular obstacle attacked by a solitary wave. Journal of Fluid Mechanics, 651:503–518. Lugo-Fernández, A., Roberts, H., Wiseman Jr, W., and Carter, B. (1998). Water level and currents of tidal and infragravity periods at tague reef, st. croix (usvi). Coral Reefs, 17(4):343–349. Mass, T., Genin, A., Shavit, U., Grinstein, M., and Tchernov, D. (2010). Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water. Proceedings of the National Academy of Sciences, 107(6):2527–2531. Maxworthy, T. (1972). The structure and stability of vortex rings. Journal of Fluid Mechanics, 51(1):15–32 McIntyre, A. (2010). Life in the world’s oceans: Diversity, distribution, and abundance. John Wiley & Sons. Mendoza, C. and Mancho, A. M. (2012). The Lagrangian description of aperiodic flows: a case study of the kuroshio current. Nonlinear Processes in Geophysics, 19(4):449–472 Mezié, I., Loire, S., Fonoberov, V. A., and Hogan, P. (2010). A new mixing diagnostic and gulf oil spill movement. Science, 330(6003):486–489. Michini, M. (2014). Tracking of Manifolds and Coherent Structures in Flows: Simulations and Experiments. PhD thesis, Drexel University. Monismith, S. G. (2007). Hydrodynamics of coral reefs. Annu. Rev. Fluid Mech., 39:37–55. Monismith, S. G., Rogers, J. S., Koweek, D., and Dunbar, R. B. (2015). Frictional wave dissipation on a remarkably rough reef. Geophysical Research Letters, 42(10):4063–4071. Nilsson, G. E., Ostlund-Nilsson, S., and Munday, P. L. (2010). Effects of elevated temperature on coral reef fishes: loss of hypoxia tolerance and inability to acclimate. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 156(4):389–393. Okubo, A. (1970). Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. In Deep sea research and oceanographic abstracts, volume 17, pages 445–454. Elsevier. Osorio-Cano, J. D., Osorio, A., and Peláez-Zapata, D. (2019a). Ecosystem management tools to study natural habitats as wave damping structures and coastal protection mechanisms. Ecological Engineering, 130:282–295. Osorio-Cano, J. D., Osorio, A. F., Alcérreca-Huerta, J. C., and Oumeraci, H. (2019b). Drag and inertia forces on a branched coral colony of acropora palmata. Journal of Fluids and Structures, 88:31–47. Patterson, M. R., Sebens, K. P., and Olson, R. R. (1991). In situ measurements of flow effects on primary production and dark respiration in reef corals. Limnology and Oceanography, 36(5):936–948. Peacock, T. and Haller, G. (2013). Lagrangian coherent structures: The hidden skeleton of fluid flows. PhT, 66(2):41. Peng, J. and Dabiri, J. (2009). Transport of inertial particles by Lagrangian coherent structures: application to predator-prey interaction in jellyfish feeding. Journal of Fluid Mechanics, 623:75–84. Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V., and Graham, N. A. (2011). Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity, 3(3):424–452. Putnam, H. M. and Edmunds, P. J. (2011). The physiological response of reef corals to diel fluctuations in seawater temperature. Journal of Experimental Marine Biology and Ecology, 396(2):216–223. Quataert, E., Storlazzi, C., Van Rooijen, A., Cheriton, O., and Van Dongeren, A. (2015). The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines. Geophysical Research Letters, 42(15):6407–6415. Reidenbach, M. A., Koseff, J. R., Monismith, S. G., Steinbuckc, J. V., and Genin, A. (2006). The effects of waves and morphology on mass transfer within branched reef corals. Limnology and Oceanography, 51(2):1134–1141. Roberts, H. and Murray, S. (1975). Physical processes in a fringing reef system. journal of Marine Research, 32(2):233 Rogers, A., Blanchard, J. L., and Mumby, P. J. (2014). Vulnerability of coral reef fisheries to a loss of structural complexity. Current Biology, 24(9):1000–1005. Samson, J. E., Miller, L. A., Ray, D., Holzman, R., Shavit, U., and Khatri, S. (2019). A novel mechanism of mixing by pulsing corals. Journal of Experimental Biology, 222(15) Sapsis, T., Peng, J., and Haller, G. (2011). Instabilities on prey dynamics in jellyfish feeding. Bulletin of mathematical biology, 73(8):1841–1856. Scales, K. L., Hazen, E. L., Jacox, M. G., Castruccio, F., Maxwell, S. M., Lewison, R. L., and Bograd, S. J. (2018). Fisheries bycatch risk to marine megafauna is intensified in Lagrangian coherent structures. Proceedings of the National Academy of Sciences, 115(28):7362–7367. Schoepf, V., Stat, M., Falter, J. L., and McCulloch, M. T. (2015). Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. Scientific reports, 5(1):1–14. Schott, F. A. and McCreary Jr, J. P. (2001). The monsoon circulation of the indian ocean. Progress in Oceanography, 51(1):1–123. Sebens, K. P., Witting, J., and Helmuth, B. (1997). Effects of water flow and branch spacing on particle capture by the reef coral madracis mirabilis (duchassaing and michelotti). Journal of experimental marine biology and ecology, 211(1):1–28. Shadden, S. C., Dabiri, J. O., and Marsden, J. E. (2006). Lagrangian analysis of fluid transport in empirical vortex ring flows. Physics of fluids, 18(4):047105. Shadden, S. C., Lekien, F., and Marsden, J. E. (2005). Definition and properties of Lagrangian coherent structures from finite-time lyapunov exponents in two-dimensional aperiodic flows. Physica D: Nonlinear Phenomena, 212(3-4):271–304. Shaked, Y., Lazar, B., Marco, S., Stein, M., Tchernov, D., and Agnon, A. (2005). Evolution of fringing reefs: space and time constraints from the gulf of aqaba. Coral Reefs, 24:165–172. Sheppard, C., Dixon, D. J., Gourlay, M., Sheppard, A., and Payet, R. (2005). Coral mortality increases wave energy reaching shores protected by reef flats: examples from the seychelles. Estuarine, Coastal and Shelf Science, 64(2-3):223–234. Stocking, J. B., Laforsch, C., Sigl, R., and Reidenbach, M. A. (2018). The role of turbulent hydrodynamics and surface morphology on heat and mass transfer in corals. Journal of the Royal Society Interface, 15(149):20180448. Vogel, J. and Eaton, J. (1985). Combined heat transfer and fluid dynamic measurements downstream of a backward-facing step. Journal of Heat Transfer, 107(4):922–929. Wallcraft, A., Metzger, E., and Carroll, S. (2009). Software design description for the hybrid coordinate ocean model (hycom), version 2.2. Technical report, Naval Research Lab Stennis Space Center Ms Oceanography Div. Wang, J., He, G., You, R., and Liu, P. (2018). Numerical study on interaction of a solitary wave with the submerged obstacle. Ocean engineering, 158:1–14. Weiss, J. (1991). The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D: Nonlinear Phenomena, 48(2-3):273–294. Wild, C., Hoegh-Guldberg, O., Naumann, M. S., Colombo-Pallotta, M. F., Ateweberhan, M., Fitt, W. K., Iglesias-Prieto, R., Palmer, C., Bythell, J. C., Ortiz, J.-C., et al. (2011). Climate change impedes scleractinian corals as primary reef ecosystem engineers. Marine and Freshwater research, 62(2):205–215. Wilson, S., Fisher, R., Pratchett, M. S., Graham, N., Dulvy, N., Turner, R., Cakacaka, A., and Polunin, N. V. (2010). Habitat degradation and fishing effects on the size structure of coral reef fish communities. Ecological Applications, 20(2):442–451. Wolanski, E. (1994). Physical oceanographic processes of the great barrier reef. CRC Press. Wu, Y.-T. and Hsiao, S.-C. (2013). Propagation of solitary waves over a submerged permeable breakwater. Coastal Engineering, 81:1–18. Young, G., Dey, S., Rogers, A., and Exton, D. (2017). Cost and time-effective method for multi-scale measures of rugosity, fractal dimension, and vector dispersion from coral reef 3d models. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xiii, 69 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/83869/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/83869/4/1036670881.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/83869/5/1036670881.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a f467d22abcfbcb5430bdedc3c18c2de5 d6658f80e12960134cd98b50270e11d3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090131917766656 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Osorio Arias, Andrés Fernando7f3dd14c4e66765c34f0d73a9c0b17faHernandez-Carrasco, Ismaelf792412fa801f7c43b967519b17bcbb1600Ramírez Monsalve, Juan Pablo572885255b36aa4868b193d117cb064aOceanicos Grupo de Oceanografía E Ingeniería Costera de la Universidad NacionalHernández Carrasco, Ismael [0000-0002-4574-0198]2023-05-25T16:39:58Z2023-05-25T16:39:58Z2023-05-24https://repositorio.unal.edu.co/handle/unal/83869Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasDebido a su inherente naturaleza turbulenta, la dinámica de los océanos es muy compleja. Podemos modelar los principales patrones de transporte de la circulación oceánica en meso- y submeso-escalas, O (0,1-100 km, horas-meses) utilizando enfoques de sistemas dinámicos, pero la riqueza extrema en microescalas O (0,001-10 m, segundos) y sus patrones de circulación, hace que la evaluación de los fenómenos de transporte oceánico sea una tarea extraordinariamente complicada. En la microescala podemos encontrar ecosistemas de arrecifes coralinos, que en los últimos años han cobrado notoria importancia por los efectos que pueden generar sobre la hidrodinámica del flujo incidente, en áreas que van desde la biología hasta la ingeniería debido a su papel como estructuras de protección costera. A pesar de los estudios realizados para comprender la hidrodinámica en torno a estos ecosistemas, aún no existe una idea clara de cómo los diferentes tipos de geometría de las colonias de coral condicionan los patrones de transporte que se desarrollan en el flujo. Uno de los tipos de técnicas que más contribuye a la comprensión de los patrones de transporte y a la descripción de la topología del flujo es la conocida con el nombre de Estructuras Coherentes Lagrangianas (LCS por sus siglas en inglés), que es una generalización de las variedades inestables y estables de puntos hiperbólicos en sistemas dependientes del tiempo. En esta tesis evaluamos la viabilidad de utilizar el concepto LCS para describir las propiedades de transporte y mezcla en flujos altamente fluctuantes a microescala alrededor de geometrías de coral. En particular, estudiamos los patrones de transporte inducidos por la interacción entre una ola solitaria y objetos sumergidos de diferente geometría, que se aproximan a la geometría presente en los corales. Usamos datos de velocidad de las salidas del modelo RANS-VOF. Los escenarios analizados consisten en la variación del número de Reynolds, la relación entre la altura de la ola, H, y la profundidad del agua, h, con la altura del coral, L (H/L y h/L , respectivamente) y la forma de éste. Los patrones de transporte se estudian mediante el cálculo de estructuras coherentes lagrangianas con la implementación del método del exponente de Lyapunov de tiempo finito (FTLE por sus siglas en inglés), y se comparan con el campo de vorticidad y el campo de criterio Q (Okubo-Weiss). Encontramos que el campo de vorticidad tiene una mejor correlación con el campo FTLE (geometría LCS) que con el campo Q, lo que sugiere que la topología de flujo está más controlada por el proceso de vorticidad obtenido por un flujo cortante que por los mismos vórtices(regiones de rotación pura). Para los corales representados por geometrías rectangulares, las LCS tienen forma de espiral, se forman sobre y en la parte posterior del coral. Ambas LCS permanecen adheridas al objeto sumergido una vez que h/L y H/L comienzan a disminuir. Para los corales con geometrías triangulares, la geometría de las LCS se caracteriza por una doble espiral que permanece unida a la cresta del coral. La doble espiral es generada por un anillo vorticial(vortex ring) que aparece cuando la ola pasa sobre el coral. Cuando la altura del coral comienza a ser comparable con la profundidad del agua, los patrones LCS descritos anteriormente comienzan a deformarse debido a la falta de profundidad del agua para evolucionar, por lo tanto, para las geometrías triangulares y rectangulares, tenemos un proceso de ruptura de olas, donde parece que el LCS actúa como un "falso fondo'' generando inestabilidades en la ola incidente que inducen la ruptura de la misma. Las LCS más cercanas a la superficie libre también parecen controlar la curvatura de la misma después de que se produzcan las roturas. Las LCS para el coral triangular presentan valores mayores del campo FTLE que el rectangular, lo que sugiere que los corales que tienen una forma aproximadamente triangular aumentan la mezcla del flujo con un gran impacto en la dispersión del material transportado (es decir, nutrientes, oxígeno, etc.), respecto a las geometrías rectangulares. (Texto tomado de la fuente)Owing to its inherent turbulent nature, ocean dynamics is highly complex. We can model the main transport patterns of the ocean circulation at meso- and submeso-scales, O(0.1-100 km, hours-months) using dynamical systems approaches, but the extreme richness at microscales O(0.001-10m, seconds) circulation patterns, makes the assessment of water pathways and the study of oceanic transport phenomena an extraordinarily complicated task. At microscales we can find coral reef ecosystems, which in recent years have gained notorious importance regarding the effects they can generate on the hydrodynamics of the incident flow, in areas from biology to engineering due to their role as structures of coastal protection. Despite the studies carried out to understand the hydrodynamics around these ecosystems, there is still not a clear idea of how the different types of geometry of the coral colonies condition the transport patterns that develop in the flow. One type of techniques contributing most to the understanding of transport patterns and the description of flow’s topology is the one known under the name of Lagrangian Coherent Structures, which is a generalization of the unstable and stable manifolds of hyperbolic points in time independent systems to finite-time and time-dependent systems. In this thesis we evaluate the feasibility of using the LCS concept to describe the transport and mixing properties in highly fluctuating flows at microscales around coral geometries. In particular, we study the transport patterns induced by the interaction between a solitary wave with submerged objects of different geometry, that approximate the geometry present in corals. We use velocity data from RANS-VOF model outputs. The analized scenarios consist in variation of Reynolds number, the ratio between the wave height, H, and the water depth, h, with the coral heigth, L (H/L and h/L, respectively) and shape. The transport patterns are studied through the computation of Lagrangian coherent structures with the implementation of the finite-time Lyapunov exponent (FTLE) method, and compared with the vorticity field and the Q criterion field. We found that vorticity field has a better correlation with the FTLE field (LCS geometry) than the Q field, suggesting that the flow topology is controled more for vorticity process obtained by a shear flow than for vortices itself (pure rotation regions). For corals represented by rectangular geometries, the LCS have an spiral form, and are formed above and at the lee side of the coral. Both LCS remain attached to the submerged object once h/L and H/L starts to decrease. For the corals with triangular geometries, the LCS geometry is characterized by a double spiral that remains attached to coral’s crest. The double spiral is generated by a vortex ring that appears when the wave pass over the coral. When coral’s height starts to be comparable to the water depth, the LCS patterns described above, start to be deformed due to the lack of water depth to evolve, so for both triangular and rectangular geometries, we have a wave breaking process, where it seems that the LCS acts like a “fake bottom” generating instabilities in the incident wave that induce the break of it. The closest LCS ridges to the free surface also appears to control the curvature of it after the breaks takes place. The LCS for the triangular coral presents larger values of the FTLE field than the rectangular one, suggesting that corals that have an approximately triangular shape increase the flow mixing processes with a large impact on the spreading of the transported material (i.e nutrients, oxygen, etc), with respect to the rectangular ones.MaestríaMagíster en Ingeniería - Recursos HidráulicosSe usa la metodología de los FTLE para obtener los campos de las estructuras coherentes lagrangianas (LCS) para el estudio de patrones de mezcla,transporte y rotura del oleaje al interacturar con un obstáculo sumergido (coral)Interacción flujo estructura en ecosistemas marinosÁrea Curricular de Medio Ambientexiii, 69 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Recursos HidráulicosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín550 - Ciencias de la tierra620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaEcología de arrecifes madrepóricosEcología de arrecifesCoral reef ecologyReef ecologyCoralesVorticidadOnda solitariaEstructuras coherentes lagrangianasCoralsVorticitySolitary waveLagrangian coherent structuresAnálisis Lagrangiano de oleaje alrededor de arrecifes de coralLagrangian analysis of wave dynamics around coral reefsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaAndersson, A. J. and Gledhill, D. (2013). Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Annual review of marine science, 5:321–348.Andono, P. N., Yuniarno, E. M., Hariadi, M., and Venus, V. (2012). 3d reconstruction of under water coral reef images using low cost multi-view cameras. In 2012 International Conference on Multimedia Computing and Systems, pages 803–808. IEEE.Artale, V., Boffetta, G., Celani, A., Cencini, M., and Vulpiani, A. (1997). Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient. Physics of Fluids, 9(11):3162–3171.Baldock, T., Golshani, A., Callaghan, D., Saunders, M., and Mumby, P. (2014). Impact of sea-level rise and coral mortality on the wave dynamics and wave forces on barrier reefs. Marine pollution bulletin, 83(1):155–164.Basco, D. R. (1985). A qualitative description of wave breaking. Journal of waterway, port, coastal, and ocean engineering, 111(2):171–188.Beall, C., Lawrence, B. J., Ila, V., and Dellaert, F. (2010). 3d reconstruction of underwater structures. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4418–4423. IEEE.Beron-Vera, F. J., Olascoaga, M. J., and Goni, G. (2008). Oceanic mesoscale eddies as revealed by Lagrangian coherent structures. Geophysical Research Letters, 35(12).Bilger, R. and Atkinson, M. (1992). Anomalous mass transfer of phosphate on coral reef flats. Limnology and Oceanography, 37(2):261–272.Brown, B. E. and Cossins, A. R. (2011). The potential for temperature acclimatisation of reef corals in the face of climate change. In Coral reefs: An ecosystem in transition, pages 421–433. Springer.Cáceres-Euse, A., Toro-Botero, F., Orfila, A., Hern´andez-Carrasco, I., Osorio, A., and Wyssmann, M. (2022). Backwards wave breaking by flow separation vortices under solitary waves. Journal of Fluids and Structures, 115:103779Cáceres-Euse, A., Toro-Botero, F., Orfila, A., and Osorio, A. (2018). Vortex formation in wave-submerged structure interaction. Ocean Engineering, 166:47–63.Chamberlain Jr, J. A. and Graus, R. R. (1975). Water flow and hydromechanical adaptations of branched reef corals. Bulletin of Marine Science, 25(1):112–125.Chindapol, N., Kaandorp, J. A., Cronemberger, C., Mass, T., and Genin, A. (2013). Modelling growth and form of the scleractinian coral pocillopora verrucosa and the influence of hydrodynamicsCinner, J. E., Huchery, C., Darling, E. S., Humphries, A. T., Graham, N. A., Hicks, C. C., Marshall, N., and McClanahan, T. R. (2013). Evaluating social and ecological vulnerability of coral reef fisheries to climate change.Cinner, J. E., McClanahan, T. R., Graham, N. A., Daw, T. M., Maina, J., Stead, S. M., Wamukota, A., Brown, K., and Bodin, O. (2012). Vulnerability of coastal communities to key impacts of climate change on coral reef fisheries. Global Environmental Change, 22(1):12–20.Cooker, M., Peregrine, D., Vidal, C., and Dold, J. (1990). The interaction between a solitary wave and a submerged semicircular cylinder. Journal of Fluid Mechanics, 215:1–22.Cresswell, A. K., Thomson, D. P., Haywood, M. D., and Renton, M. (2020). Frequent hydrodynamic disturbances decrease the morphological diversity and structural complexity of 3d simulated coral communities. Coral Reefs, 39(4):1147–1161.Dabiri, J. O. and Gharib, M. (2004). Fluid entrainment by isolated vortex rings. Journal of fluid mechanics, 511:311–331Dennison, W. C. and Barnes, D. J. (1988). Effect of water motion on coral photosynthesis and calcification. Journal of Experimental Marine Biology and Ecology, 115(1):67–77.Doropoulos, C., Ward, S., Diaz-Pulido, G., Hoegh-Guldberg, O., and Mumby, P. J. (2012). Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions. Ecology letters, 15(4):338–346.Duvall, M. S., Rosman, J. H., and Hench, J. L. (2020). Estimating geometric properties of coral reef topography using obstacle-and surface-based approaches. Journal of Geophysical Research: Oceans, 125(6).Edmunds, P. J., Carpenter, R. C., and Comeau, S. (2013). Understanding the threats of ocean acidification to coral reefs. Oceanography, 26(3):149–152.Elhma¨ıdi, D., Provenzale, A., and Babiano, A. (1993). Elementary topology of two- dimensional turbulence from a Lagrangian viewpoint and single-particle dispersion. Journal of Fluid Mechanics, 257:533–558.Fabricius, K. E., Genin, A., and Benayahu, Y. (1995). Flow-dependent herbivory and growth in zooxanthellae-free soft corals. Limnology and Oceanography, 40(7):1290–1301.Fukunaga, A. and Burns, J. H. (2020). Metrics of coral reef structural complexity extracted from 3d mesh models and digital elevation models. Remote Sensing, 12(17):2676.Gourlay, M. (1996). Wave set-up on coral reefs. 2. set-up on reefs with various profiles. Coastal Engineering, 28(1-4):17–55.Gracia, A., Rangel-Buitrago, N., Oakley, J. A., and Williams, A. (2018). Use of ecosystems in coastal erosion management. Ocean & coastal management, 156:277–289.Graham, N. and Nash, K. (2013). The importance of structural complexity in coral reef ecosystems. Coral reefs, 32(2):315–326Grilli, S. T., Losada, M. A., and Martin, F. (1994). Characteristics of solitary wave breaking induced by breakwaters. Journal of Waterway, Port, Coastal, and Ocean Engineering, 120(1):74–92.Hadjighasem, A. and Haller, G. (2016). Geodesic transport barriers in jupiter’s atmosphere: A video-based analysis. Siam Review, 58(1):69–89.Haller, G. (2005). An objective definition of a vortex. Journal of fluid mechanics, 525:1–26.Haller, G. (2015). Lagrangian coherent structures. Annual Review of Fluid Mechanics, 47:137–162Haller, G., Hadjighasem, A., Farazmand, M., and Huhn, F. (2016). Defining coherent vortices objectively from the vorticity. Journal of Fluid Mechanics, 795:136–173.Haller, G. and Yuan, G. (2000). Lagrangian coherent structures and mixing in two- dimensional turbulence. Physica D: Nonlinear Phenomena, 147(3-4):352–370.Harris, D. L., Rovere, A., Casella, E., Power, H., Canavesio, R., Collin, A., Pomeroy, A., Webster, J. M., and Parravicini, V. (2018). Coral reef structural complexity provides important coastal protection from waves under rising sea levels. Science Advances.Harrison, C. S. and Glatzmaier, G. A. (2012). Lagrangian coherent structures in the california current system–sensitivities and limitations. Geophysical & Astrophysical Fluid Dynamics, 106(1):22–44.Hearn, C. (2001). Introduction to the special issue of coral reefs on coral reef hydrodynamics.Hearn, C. J. (1999). Wave-breaking hydrodynamics within coral reef systems and the effect of changing relative sea level. Journal of Geophysical Research: Oceans, 104(C12):30007–30019.Hearn, C. J. (2011). Perspectives in coral reef hydrodynamics. Coral Reefs, 30(1):1.Hernández-Carrasco, I., López, C., Hernández-García, E., and Turiel, A. (2011). How reliable are finite-size lyapunov exponents for the assessment of ocean dynamics? Ocean Modelling, 36(3-4):208–218.Hernández-Carrasco, I., López, C., Hernández-García, E., and Turiel, A. (2012). Seasonal and regional characterization of horizontal stirring in the global ocean. Journal of Geophysical Research: Oceans, 117(C10).Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world’s coral reefs. Marine and freshwater research, 50(8):839–866.Hossain, M. M. and Staples, A. E. (2020). Mass transport and turbulent statistics within two branching coral colonies. Fluids, 5(3):153.Huang, C.-J. and Dong, C.-M. (2001). On the interaction of a solitary wave and a submerged dike. Coastal Engineering, 43(3-4):265–286.Huang, Z.-C., Lenain, L., Melville, W. K., Middleton, J. H., Reineman, B., Statom, N., and McCabe, R. M. (2012). Dissipation of wave energy and turbulence in a shallow coral reef lagoon. Journal of Geophysical Research: Oceans, 117(C3).Huhn, F., von Kameke, A., P´erez-Mu˜nuzuri, V., Olascoaga, M. J., and Beron-Vera, F. J. (2012). The impact of advective transport by the south indian ocean countercurrent on the madagascar plankton bloom. Geophysical research letters, 39(6).Iafrati, A. (2009). Numerical study of the effects of the breaking intensity on wave breaking flows. Journal of Fluid Mechanics, 622:371–411.Jakobsson, J. (2012). Investigation of Lagrangian coherent structures-to understand and identify turbulence. Chalmers University of Technology, Gothenburg, Sweden.Krieger, M. S., Sinai, S., and Nowak, M. A. (2020). Turbulent coherent structures and early life below the kolmogorov scale. Nature Communications, 11(1):1–14.Krishnan, P., Roy, S. D., George, G., Srivastava, R., Anand, A., Murugesan, S., Kaliya- moorthy, M., Vikas, N., and Soundararajan, R. (2011). Elevated sea surface temperature during may 2010 induces mass bleaching of corals in the Andaman. Current Science, pages 111–117.Lin, M., Zheng, Y., and Xu, M. (2020). Application of Lagrangian coherent structures to coulomb formation on elliptic orbit. Nonlinear Dynamics, 102(4):2649–2668.Lin, M.-Y. and Huang, L.-H. (2010). Vortex shedding from a submerged rectangular obstacle attacked by a solitary wave. Journal of Fluid Mechanics, 651:503–518.Lugo-Fernández, A., Roberts, H., Wiseman Jr, W., and Carter, B. (1998). Water level and currents of tidal and infragravity periods at tague reef, st. croix (usvi). Coral Reefs, 17(4):343–349.Mass, T., Genin, A., Shavit, U., Grinstein, M., and Tchernov, D. (2010). Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water. Proceedings of the National Academy of Sciences, 107(6):2527–2531.Maxworthy, T. (1972). The structure and stability of vortex rings. Journal of Fluid Mechanics, 51(1):15–32McIntyre, A. (2010). Life in the world’s oceans: Diversity, distribution, and abundance. John Wiley & Sons.Mendoza, C. and Mancho, A. M. (2012). The Lagrangian description of aperiodic flows: a case study of the kuroshio current. Nonlinear Processes in Geophysics, 19(4):449–472Mezié, I., Loire, S., Fonoberov, V. A., and Hogan, P. (2010). A new mixing diagnostic and gulf oil spill movement. Science, 330(6003):486–489.Michini, M. (2014). Tracking of Manifolds and Coherent Structures in Flows: Simulations and Experiments. PhD thesis, Drexel University.Monismith, S. G. (2007). Hydrodynamics of coral reefs. Annu. Rev. Fluid Mech., 39:37–55.Monismith, S. G., Rogers, J. S., Koweek, D., and Dunbar, R. B. (2015). Frictional wave dissipation on a remarkably rough reef. Geophysical Research Letters, 42(10):4063–4071.Nilsson, G. E., Ostlund-Nilsson, S., and Munday, P. L. (2010). Effects of elevated temperature on coral reef fishes: loss of hypoxia tolerance and inability to acclimate. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 156(4):389–393.Okubo, A. (1970). Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. In Deep sea research and oceanographic abstracts, volume 17, pages 445–454. Elsevier.Osorio-Cano, J. D., Osorio, A., and Peláez-Zapata, D. (2019a). Ecosystem management tools to study natural habitats as wave damping structures and coastal protection mechanisms. Ecological Engineering, 130:282–295.Osorio-Cano, J. D., Osorio, A. F., Alcérreca-Huerta, J. C., and Oumeraci, H. (2019b). Drag and inertia forces on a branched coral colony of acropora palmata. Journal of Fluids and Structures, 88:31–47.Patterson, M. R., Sebens, K. P., and Olson, R. R. (1991). In situ measurements of flow effects on primary production and dark respiration in reef corals. Limnology and Oceanography, 36(5):936–948.Peacock, T. and Haller, G. (2013). Lagrangian coherent structures: The hidden skeleton of fluid flows. PhT, 66(2):41.Peng, J. and Dabiri, J. (2009). Transport of inertial particles by Lagrangian coherent structures: application to predator-prey interaction in jellyfish feeding. Journal of Fluid Mechanics, 623:75–84.Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V., and Graham, N. A. (2011). Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity, 3(3):424–452.Putnam, H. M. and Edmunds, P. J. (2011). The physiological response of reef corals to diel fluctuations in seawater temperature. Journal of Experimental Marine Biology and Ecology, 396(2):216–223.Quataert, E., Storlazzi, C., Van Rooijen, A., Cheriton, O., and Van Dongeren, A. (2015). The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines. Geophysical Research Letters, 42(15):6407–6415.Reidenbach, M. A., Koseff, J. R., Monismith, S. G., Steinbuckc, J. V., and Genin, A. (2006). The effects of waves and morphology on mass transfer within branched reef corals. Limnology and Oceanography, 51(2):1134–1141.Roberts, H. and Murray, S. (1975). Physical processes in a fringing reef system. journal of Marine Research, 32(2):233Rogers, A., Blanchard, J. L., and Mumby, P. J. (2014). Vulnerability of coral reef fisheries to a loss of structural complexity. Current Biology, 24(9):1000–1005.Samson, J. E., Miller, L. A., Ray, D., Holzman, R., Shavit, U., and Khatri, S. (2019). A novel mechanism of mixing by pulsing corals. Journal of Experimental Biology, 222(15)Sapsis, T., Peng, J., and Haller, G. (2011). Instabilities on prey dynamics in jellyfish feeding. Bulletin of mathematical biology, 73(8):1841–1856.Scales, K. L., Hazen, E. L., Jacox, M. G., Castruccio, F., Maxwell, S. M., Lewison, R. L., and Bograd, S. J. (2018). Fisheries bycatch risk to marine megafauna is intensified in Lagrangian coherent structures. Proceedings of the National Academy of Sciences, 115(28):7362–7367.Schoepf, V., Stat, M., Falter, J. L., and McCulloch, M. T. (2015). Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. Scientific reports, 5(1):1–14.Schott, F. A. and McCreary Jr, J. P. (2001). The monsoon circulation of the indian ocean. Progress in Oceanography, 51(1):1–123.Sebens, K. P., Witting, J., and Helmuth, B. (1997). Effects of water flow and branch spacing on particle capture by the reef coral madracis mirabilis (duchassaing and michelotti). Journal of experimental marine biology and ecology, 211(1):1–28.Shadden, S. C., Dabiri, J. O., and Marsden, J. E. (2006). Lagrangian analysis of fluid transport in empirical vortex ring flows. Physics of fluids, 18(4):047105.Shadden, S. C., Lekien, F., and Marsden, J. E. (2005). Definition and properties of Lagrangian coherent structures from finite-time lyapunov exponents in two-dimensional aperiodic flows. Physica D: Nonlinear Phenomena, 212(3-4):271–304.Shaked, Y., Lazar, B., Marco, S., Stein, M., Tchernov, D., and Agnon, A. (2005). Evolution of fringing reefs: space and time constraints from the gulf of aqaba. Coral Reefs, 24:165–172.Sheppard, C., Dixon, D. J., Gourlay, M., Sheppard, A., and Payet, R. (2005). Coral mortality increases wave energy reaching shores protected by reef flats: examples from the seychelles. Estuarine, Coastal and Shelf Science, 64(2-3):223–234.Stocking, J. B., Laforsch, C., Sigl, R., and Reidenbach, M. A. (2018). The role of turbulent hydrodynamics and surface morphology on heat and mass transfer in corals. Journal of the Royal Society Interface, 15(149):20180448.Vogel, J. and Eaton, J. (1985). Combined heat transfer and fluid dynamic measurements downstream of a backward-facing step. Journal of Heat Transfer, 107(4):922–929.Wallcraft, A., Metzger, E., and Carroll, S. (2009). Software design description for the hybrid coordinate ocean model (hycom), version 2.2. Technical report, Naval Research Lab Stennis Space Center Ms Oceanography Div.Wang, J., He, G., You, R., and Liu, P. (2018). Numerical study on interaction of a solitary wave with the submerged obstacle. Ocean engineering, 158:1–14.Weiss, J. (1991). The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D: Nonlinear Phenomena, 48(2-3):273–294.Wild, C., Hoegh-Guldberg, O., Naumann, M. S., Colombo-Pallotta, M. F., Ateweberhan, M., Fitt, W. K., Iglesias-Prieto, R., Palmer, C., Bythell, J. C., Ortiz, J.-C., et al. (2011). Climate change impedes scleractinian corals as primary reef ecosystem engineers. Marine and Freshwater research, 62(2):205–215.Wilson, S., Fisher, R., Pratchett, M. S., Graham, N., Dulvy, N., Turner, R., Cakacaka, A., and Polunin, N. V. (2010). Habitat degradation and fishing effects on the size structure of coral reef fish communities. Ecological Applications, 20(2):442–451.Wolanski, E. (1994). Physical oceanographic processes of the great barrier reef. CRC Press.Wu, Y.-T. and Hsiao, S.-C. (2013). Propagation of solitary waves over a submerged permeable breakwater. Coastal Engineering, 81:1–18.Young, G., Dey, S., Rogers, A., and Exton, D. (2017). Cost and time-effective method for multi-scale measures of rugosity, fractal dimension, and vector dispersion from coral reef 3d models.EstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83869/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1036670881.2023.pdf1036670881.2023.pdfTesis de Maestría en Ingeniería - Recursos Hidráulicosapplication/pdf13046552https://repositorio.unal.edu.co/bitstream/unal/83869/4/1036670881.2023.pdff467d22abcfbcb5430bdedc3c18c2de5MD54THUMBNAIL1036670881.2023.pdf.jpg1036670881.2023.pdf.jpgGenerated Thumbnailimage/jpeg4192https://repositorio.unal.edu.co/bitstream/unal/83869/5/1036670881.2023.pdf.jpgd6658f80e12960134cd98b50270e11d3MD55unal/83869oai:repositorio.unal.edu.co:unal/838692023-08-06 23:03:46.908Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |