Modelo de epistasis basado en aprendizaje automático para pacientes con discapacidad intelectual y retraso del neurodesarrollo
ilustraciones, diagramas
- Autores:
-
Murcia Triviño, Jossie Esteban
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86100
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
610 - Medicina y salud::616 - Enfermedades
Epistasis Genética
Personas con Discapacidades Mentales
Epistasis, Genetic
Persons with Mental Disabilities
Epistasis
Aprendizaje de máquinas
Polimorfismo de un solo nucleótido
Trastornos del neurodesarrollo
Discapacidad intelectual
Epistasis
Machine learning
Single nucleotide polymorphism
Neurodevelopmental disorders
Intellectual disability
aprendizaje automático
machine learning
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_d2b8bd439a4c55ded5022b2c30fd4fc8 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86100 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Modelo de epistasis basado en aprendizaje automático para pacientes con discapacidad intelectual y retraso del neurodesarrollo |
dc.title.translated.eng.fl_str_mv |
Machine learning-based epistasis model for intellectual disability and neurodevelopmental delay |
title |
Modelo de epistasis basado en aprendizaje automático para pacientes con discapacidad intelectual y retraso del neurodesarrollo |
spellingShingle |
Modelo de epistasis basado en aprendizaje automático para pacientes con discapacidad intelectual y retraso del neurodesarrollo 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores 610 - Medicina y salud::616 - Enfermedades Epistasis Genética Personas con Discapacidades Mentales Epistasis, Genetic Persons with Mental Disabilities Epistasis Aprendizaje de máquinas Polimorfismo de un solo nucleótido Trastornos del neurodesarrollo Discapacidad intelectual Epistasis Machine learning Single nucleotide polymorphism Neurodevelopmental disorders Intellectual disability aprendizaje automático machine learning |
title_short |
Modelo de epistasis basado en aprendizaje automático para pacientes con discapacidad intelectual y retraso del neurodesarrollo |
title_full |
Modelo de epistasis basado en aprendizaje automático para pacientes con discapacidad intelectual y retraso del neurodesarrollo |
title_fullStr |
Modelo de epistasis basado en aprendizaje automático para pacientes con discapacidad intelectual y retraso del neurodesarrollo |
title_full_unstemmed |
Modelo de epistasis basado en aprendizaje automático para pacientes con discapacidad intelectual y retraso del neurodesarrollo |
title_sort |
Modelo de epistasis basado en aprendizaje automático para pacientes con discapacidad intelectual y retraso del neurodesarrollo |
dc.creator.fl_str_mv |
Murcia Triviño, Jossie Esteban |
dc.contributor.advisor.spa.fl_str_mv |
Niño Vásquez, Luis Fernando López Rivera, Juan Javier |
dc.contributor.author.spa.fl_str_mv |
Murcia Triviño, Jossie Esteban |
dc.contributor.researchgroup.spa.fl_str_mv |
laboratorio de Investigación en Sistemas Inteligentes Lisi |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores 610 - Medicina y salud::616 - Enfermedades |
topic |
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores 610 - Medicina y salud::616 - Enfermedades Epistasis Genética Personas con Discapacidades Mentales Epistasis, Genetic Persons with Mental Disabilities Epistasis Aprendizaje de máquinas Polimorfismo de un solo nucleótido Trastornos del neurodesarrollo Discapacidad intelectual Epistasis Machine learning Single nucleotide polymorphism Neurodevelopmental disorders Intellectual disability aprendizaje automático machine learning |
dc.subject.decs.spa.fl_str_mv |
Epistasis Genética Personas con Discapacidades Mentales |
dc.subject.decs.eng.fl_str_mv |
Epistasis, Genetic Persons with Mental Disabilities |
dc.subject.proposal.spa.fl_str_mv |
Epistasis Aprendizaje de máquinas Polimorfismo de un solo nucleótido Trastornos del neurodesarrollo Discapacidad intelectual |
dc.subject.proposal.eng.fl_str_mv |
Epistasis Machine learning Single nucleotide polymorphism Neurodevelopmental disorders Intellectual disability |
dc.subject.wikidata.none.fl_str_mv |
aprendizaje automático machine learning |
description |
ilustraciones, diagramas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-05-16T19:38:59Z |
dc.date.available.none.fl_str_mv |
2024-05-16T19:38:59Z |
dc.date.issued.none.fl_str_mv |
2024-04-29 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86100 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86100 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
Bireme |
dc.relation.references.spa.fl_str_mv |
Abay-Nørgaard, S., Attianese, B., Boreggio, L., & Salcini, A. E. (2020). Regulators of H3K4 methylation mutated in neurodevelopmental disorders control axon guidance in Caenorhabditis elegans. Development (Cambridge, England), 147(15). https://doi.org/10.1242/dev.190637 Adams, D. R., & Eng, C. M. (2018). Next-Generation Sequencing to Diagnose Suspected Genetic Disorders. New England Journal of Medicine, 379(14), 1353–1362. https://doi.org/10.1056/nejmra1711801 Alazami, A. M., Patel, N., Shamseldin, H. E., Anazi, S., Al-Dosari, M. S., Alzahrani, F., Hijazi, H., Alshammari, M., Aldahmesh, M. A., Salih, M. A., Faqeih, E., Alhashem, A., Bashiri, F. A., Al-Owain, M., Kentab, A. Y., Sogaty, S., Al Tala, S., Temsah, M.-H., Tulbah, M., … Alkuraya, F. S. (2015). Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families. Cell Reports, 10(2), 148–161. https://doi.org/10.1016/j.celrep.2014.12.015 American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). https://doi.org/10.1176/appi.books.9780890425596 Ansarifar, J., Wang, L., & Hancock, J. (2019). New algorithms for detecting multi-effect and multi-way epistatic interactions. Bioinformatics, 35(24), 5078–5085. https://doi.org/10.1093/bioinformatics/btz463 Ballif, B. C., Hornor, S. A., Jenkins, E., Madan-Khetarpal, S., Surti, U., Jackson, K. E., Asamoah, A., Brock, P. L., Gowans, G. C., Conway, R. L., Graham, J. M. J., Medne, L., Zackai, E. H., Shaikh, T. H., Geoghegan, J., Selzer, R. R., Eis, P. S., Bejjani, B. A., & Shaffer, L. G. (2007). Discovery of a previously unrecognized microdeletion syndrome of 16p11.2-p12.2. Nature Genetics, 39(9), 1071–1073. https://doi.org/10.1038/ng2107 Baruch, Y., Horn-Saban, S., Plotsky, Y., Bercovich, D., & Gershoni-Baruch, R. (2021). A case of Ververi-Brady syndrome due to QRICH1 loss of function and the literature review. In American journal of medical genetics. Part A (Vol. 185, Issue 6, pp. 1913–1917). https://doi.org/10.1002/ajmg.a.62184 Bateson, W., & Mendel, G. (2013). Mendel’s principles of heredity. Courier Corporation. Bausela-Herreras, E., Tirapu-Ustárroz, J., & Cordero-Andrés, P. (2019). Deficits and neurodevelopmental disorders in childhood and adolescence. Revista de Neurologia, 69(11), 461–469. https://doi.org/10.33588/RN.6911.2019133 Biancotti, J.-C., & Benvenisty, N. (2011). Aneuploid human embryonic stem cells: origins and potential for modeling chromosomal disorders. Regenerative Medicine, 6(4), 493–503. https://doi.org/10.2217/rme.11.27 Bitta, M., Kariuki, S. M., Abubakar, A., & Newton, C. R. J. C. (2018). Burden of neurodevelopmental disorders in low and middle-income countries: A systematic review and meta-analysis [version 3; referees: 1 approved, 2 approved with reservations]. Wellcome Open Research, 2. https://doi.org/10.12688/wellcomeopenres.13540.3 Brandenburg, J.-T., Clark, L., Botha, G., Panji, S., Baichoo, S., Fields, C., & Hazelhurst, S. (2022). H3AGWAS : A portable workflow for Genome Wide Association Studies. BioRxiv, 2022.05.02.490206. https://doi.org/10.1101/2022.05.02.490206 Brownstein, C. A., Beggs, A. H., Homer, N., Merriman, B., Yu, T. W., Flannery, K. C., DeChene, E. T., Towne, M. C., Savage, S. K., Price, E. N., Holm, I. A., Luquette, L. J., Lyon, E., Majzoub, J., Neupert, P., McCallie, D. J., Szolovits, P., Willard, H. F., Mendelsohn, N. J., … Margulies, D. M. (2014). An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge. Genome Biology, 15(3), R53. https://doi.org/10.1186/gb-2014-15-3-r53 Carayol, J., Schellenberg, G. D., Dombroski, B., Amiet, C., Génin, B., Fontaine, K., Rousseau, F., Vazart, C., Cohen, D., Frazier, T. W., Hardan, A. Y., Dawson, G., & Frio, T. R. (2014). A scoring strategy combining statistics and functional genomics supports a possible role for common polygenic variation in autism. Frontiers in Genetics, 5(FEB). https://doi.org/10.3389/fgene.2014.00033 Cardoso, A. R., Lopes-Marques, M., Silva, R. M., Serrano, C., Amorim, A., Prata, M. J., & Azevedo, L. (2019). Essential genetic findings in neurodevelopmental disorders. Human Genomics, 13(1), 31. https://doi.org/10.1186/s40246-019-0216-4 Cattaert, T., Urrea, V., Naj, A. C., De Lobel, L., De Wit, V., Fu, M., Mahachie John, J. M., Shen, H., Calle, M. L., Ritchie, M. D., Edwards, T. L., & Van Steen, K. (2010). FAM-MDR: a flexible family-based multifactor dimensionality reduction technique to detect epistasis using related individuals. PloS One, 5(4), e10304. https://doi.org/10.1371/journal.pone.0010304 Cattaert, T., Urrea, V., Naj, A. C., De Lobel, L., De Wit, V., Fu, M., Mahachie John, J. M., Shen, H., Calle, M. L., Ritchie, M. D., Edwards, T. L., & Van Steen, K. (2010). FAM-MDR: a flexible family-based multifactor dimensionality reduction technique to detect epistasis using related individuals. PloS One, 5(4), e10304. https://doi.org/10.1371/journal.pone.0010304 Chang, Y. C., Wu, J. T., Hong, M. Y., Tung, Y. A., Hsieh, P. H., Yee, S. W., Giacomini, K. M., Oyang, Y. J., & Chen, C. Y. (2020). GenEpi: Gene-based epistasis discovery using machine learning. BMC Bioinformatics, 21(1). https://doi.org/10.1186/s12859-020-3368-2 Chapman, P. (2000). CRISP-DM 1.0: Step-by-step data mining guide. https://api.semanticscholar.org/CorpusID:59777418 Chen, X., Li, H., Chen, C., Zhou, L., Xu, X., Xiang, Y., & Tang, S. (2018). Genome-Wide Array Analysis Reveals Novel Genomic Regions and Candidate Gene for Intellectual Disability. Molecular Diagnosis & Therapy, 22(6), 749–757. https://doi.org/10.1007/s40291-018-0358-4 Clinical utility of genetic and genomic services: a position statement of the American College of Medical Genetics and Genomics. (2015). Genetics in Medicine : Official Journal of the American College of Medical Genetics, 17(6), 505–507. https://doi.org/10.1038/gim.2015.41 Cole, B. S., Hall, M. A., Urbanowicz, R. J., Gilbert-Diamond, D., & Moore, J. H. (2017). Analysis of Gene-Gene Interactions. Current Protocols in Human Genetics, 95(1), 1.14.1-1.14.10. https://doi.org/10.1002/cphg.45 Cordell, H. (2002). Epistasis: What it means, what it doesn’t mean, and statistical methods to detect it in humans. Human Molecular Genetics, 11, 2463–2468. https://doi.org/10.1093/hmg/11.20.2463 Cordell, H. (2009). Detecting gene-gene interactions that underlie human diseases. Nature Reviews. Genetics, 10, 392–404. https://doi.org/10.1038/nrg2579 Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., Durbin, R., & Group, 1000 Genomes Project Analysis. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156–2158. https://doi.org/10.1093/bioinformatics/btr330 Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., & Li, H. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 10(2), giab008. https://doi.org/10.1093/gigascience/giab008 de Ligt, J., Willemsen, M. H., van Bon, B. W. M., Kleefstra, T., Yntema, H. G., Kroes, T., Vulto-van Silfhout, A. T., Koolen, D. A., de Vries, P., Gilissen, C., del Rosario, M., Hoischen, A., Scheffer, H., de Vries, B. B. A., Brunner, H. G., Veltman, J. A., & Vissers, L. E. L. M. (2012). Diagnostic exome sequencing in persons with severe intellectual disability. The New England Journal of Medicine, 367(20), 1921–1929. https://doi.org/10.1056/NEJMoa1206524 Dias, R., & Torkamani, A. (2019). Artificial intelligence in clinical and genomic diagnostics. Genome Medicine, 11(1), 70. https://doi.org/10.1186/s13073-019-0689-8 Dillon, O. J., Lunke, S., Stark, Z., Yeung, A., Thorne, N., Gaff, C., White, S. M., & Tan, T. Y. (2018). Exome sequencing has higher diagnostic yield compared to simulated disease-specific panels in children with suspected monogenic disorders. European Journal of Human Genetics, 26(5), 644–651. https://doi.org/10.1038/s41431-018-0099-1 Edwards, T. L., Wang, X., Chen, Q., Wormly, B., Riley, B., O’Neill, F. A., Walsh, D., Ritchie, M. D., Kendler, K. S., & Chen, X. (2008). Interaction between interleukin 3 and dystrobrevin-binding protein 1 in schizophrenia. Schizophrenia Research, 106(2), 208–217. https://doi.org/https://doi.org/10.1016/j.schres.2008.07.022 Emily, M. (2016). AGGrEGATOr: A Gene-based GEne-Gene interActTiOn test for case-control association studies. Statistical Applications in Genetics and Molecular Biology, 15(2), 151–171. https://doi.org/10.1515/sagmb-2015-0074 Fisher, R. A. (1919). XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. Transactions of the Royal Society of Edinburgh, 52(2), 399–433. https://doi.org/10.1017/S0080456800012163 Froukh, T. J. (2017). Next Generation Sequencing and Genome-Wide Genotyping Identify the Genetic Causes of Intellectual Disability in Ten Consanguineous Families from Jordan. The Tohoku Journal of Experimental Medicine, 243(4), 297–309. https://doi.org/10.1620/tjem.243.297 Gall, K., Izzo, E., Seppälä, E. H., Alakurtti, K., Koskinen, L., Saarinen, I., Singh, A., Myllykangas, S., Koskenvuo, J., & Alastalo, T.-P. (2021). Next-generation sequencing in childhood-onset epilepsies: Diagnostic yield and impact on neuronal ceroid lipofuscinosis type 2 (CLN2) disease diagnosis. PloS One, 16(9), e0255933. https://doi.org/10.1371/journal.pone.0255933 Ghanem, S. I., Ghanem, N. M., & Ismail, M. A. (2019). Noisy Epistasis Using Deep Learning. 165–168. https://doi.org/10.1109/JEC-ECC.2018.8679568 González Alvaredo, S., Sanz Rojo, R., García Santiago, J., Gaztañaga Expósito, R., Bengoa, A., & Pérez-Yarza, E. G. (2008). [Genetic diagnostic criteria in cases of mental retardation and development of idiopathic origin]. Anales de pediatria (Barcelona, Spain : 2003), 69(5), 446–453. https://doi.org/10.1157/13128001 Goodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: Ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17(6), 333–351. https://doi.org/10.1038/nrg.2016.49 Griffin, D. K. (1996). The incidence, origin, and etiology of aneuploidy. International Review of Cytology, 167, 263–296. https://doi.org/10.1016/s0074-7696(08)61349-2 Gusareva, E. S., & Van Steen, K. (2014). Practical aspects of genome-wide association interaction analysis. Human Genetics, 133(11), 1343–1358. https://doi.org/10.1007/s00439-014-1480-y Hamdan, F. F., Gauthier, J., Araki, Y., Lin, D.-T., Yoshizawa, Y., Higashi, K., Park, A.-R., Spiegelman, D., Dobrzeniecka, S., Piton, A., Tomitori, H., Daoud, H., Massicotte, C., Henrion, E., Diallo, O., Shekarabi, M., Marineau, C., Shevell, M., Maranda, B., … Michaud, J. L. (2011). Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability. American Journal of Human Genetics, 88(3), 306–316. https://doi.org/10.1016/j.ajhg.2011.02.001 Hieter, P., & Boguski, M. (1997). Functional genomics: it’s all how you read it. Science (New York, N.Y.), 278(5338), 601–602. https://doi.org/10.1126/science.278.5338.601 Hu, T., Chen, Y., Kiralis, J. W., & Moore, J. H. (2013). ViSEN: methodology and software for visualization of statistical epistasis networks. Genetic Epidemiology, 37(3), 283–285. https://doi.org/10.1002/gepi.21718 Hu, T., Sinnott-Armstrong, N. A., Kiralis, J. W., Andrew, A. S., Karagas, M. R., & Moore, J. H. (2011). Characterizing genetic interactions in human disease association studies using statistical epistasis networks. BMC Bioinformatics, 12, 364. https://doi.org/10.1186/1471-2105-12-364 Iossifov, I., O’Roak, B. J., Sanders, S. J., Ronemus, M., Krumm, N., Levy, D., Stessman, H. A., Witherspoon, K. T., Vives, L., Patterson, K. E., Smith, J. D., Paeper, B., Nickerson, D. A., Dea, J., Dong, S., Gonzalez, L. E., Mandell, J. D., Mane, S. M., Murtha, M. T., … Wigler, M. (2014). The contribution of de novo coding mutations to autism spectrum disorder. Nature, 515(7526), 216–221. https://doi.org/10.1038/nature13908 Kafaie, S., Chen, Y., & Hu, T. (2019). A network approach to prioritizing susceptibility genes for genome-wide association studies. Genetic Epidemiology, 43(5), 477–491. https://doi.org/10.1002/gepi.22198 Kessi, M., Chen, B., Pang, N., Yang, L., Peng, J., He, F., & Yin, F. (2023). The genotype-phenotype correlations of the CACNA1A-related neurodevelopmental disorders: a small case series and literature reviews. Frontiers in Molecular Neuroscience, 16, 1222321. https://doi.org/10.3389/fnmol.2023.1222321 Khoury, M. J., Gwinn, M. L., Glasgow, R. E., & Kramer, B. S. (2012). A population approach to precision medicine. American Journal of Preventive Medicine, 42(6), 639–645. https://doi.org/10.1016/j.amepre.2012.02.012 Kim, N. C., Andrews, P. C., Asselbergs, F. W., Frost, H. R., Williams, S. M., Harris, B. T., Read, C., Askland, K. D., & Moore, J. H. (2012). Gene ontology analysis of pairwise genetic associations in two genome-wide studies of sporadic ALS. BioData Mining, 5(1), 9. https://doi.org/10.1186/1756-0381-5-9 Koolen, D. A., Vissers, L. E. L. M., Pfundt, R., de Leeuw, N., Knight, S. J. L., Regan, R., Kooy, R. F., Reyniers, E., Romano, C., Fichera, M., Schinzel, A., Baumer, A., Anderlid, B.-M., Schoumans, J., Knoers, N. V, van Kessel, A. G., Sistermans, E. A., Veltman, J. A., Brunner, H. G., & de Vries, B. B. A. (2006). A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism. Nature Genetics, 38(9), 999–1001. https://doi.org/10.1038/ng1853 Kumble, S., Levy, A. M., Punetha, J., Gao, H., Ah Mew, N., Anyane-Yeboa, K., Benke, P. J., Berger, S. M., Bjerglund, L., Campos-Xavier, B., Ciliberto, M., Cohen, J. S., Comi, A. M., Curry, C., Damaj, L., Denommé-Pichon, A.-S., Emrick, L., Faivre, L., Fasano, M. B., … Tümer, Z. (2022). The clinical and molecular spectrum of QRICH1 associated neurodevelopmental disorder. Human Mutation, 43(2), 266–282. https://doi.org/10.1002/humu.24308 Large-scale discovery of novel genetic causes of developmental disorders. (2015). Nature, 519(7542), 223–228. https://doi.org/10.1038/nature14135 Larranaga, P. (2006). Machine learning in bioinformatics. Briefings in Bioinformatics, 7, 86–112. https://doi.org/10.1093/bib/bbk007 Leem, S., & Park, T. (2017). An empirical fuzzy multifactor dimensionality reduction method for detecting gene-gene interactions. BMC Genomics, 18. https://doi.org/10.1186/s12864-017-3496-x Leonard, H., & Wen, X. (2002). The epidemiology of mental retardation: Challenges and opportunities in the new millennium. Mental Retardation and Developmental Disabilities Research Reviews, 8(3), 117–134. https://doi.org/https://doi.org/10.1002/mrdd.10031 Li, J., Malley, J. D., Andrew, A. S., Karagas, M. R., & Moore, J. H. (2016). Detecting gene-gene interactions using a permutation-based random forest method. BioData Mining, 9(1). https://doi.org/10.1186/s13040-016-0093-5 Li, Q., Fallin, M. D., Louis, T. A., Lasseter, V. K., McGrath, J. A., Avramopoulos, D., Wolyniec, P. S., Valle, D., Liang, K.-Y., Pulver, A. E., & Ruczinski, I. (2010). Detection of SNP-SNP interactions in trios of parents with schizophrenic children. Genetic Epidemiology, 34(5), 396–406. https://doi.org/10.1002/gepi.20488 Lipkin, P. H., & Macias, M. M. (2020). Promoting Optimal Development: Identifying Infants and Young Children With Developmental Disorders Through Developmental Surveillance and Screening. Pediatrics, 145(1). https://doi.org/10.1542/peds.2019-3449 Liu, D., Wang, M., Yuan, Y., Schwender, H., Wang, H., Wang, P., Zhou, Z., Li, J., Wu, T., Zhu, H., & Beaty, T. H. (2019). Gene-gene interaction among cell adhesion genes and risk of nonsyndromic cleft lip with or without cleft palate in Chinese case-parent trios. Molecular Genetics & Genomic Medicine, 7(10), e00872. https://doi.org/10.1002/mgg3.872 Lord, C., Elsabbagh, M., Baird, G., & Veenstra-Vanderweele, J. (2018). Autism spectrum disorder. The Lancet, 392(10146), 508–520. https://doi.org/10.1016/S0140-6736(18)31129-2 Lou, X.-Y., Chen, G.-B., Yan, L., Ma, J. Z., Mangold, J. E., Zhu, J., Elston, R. C., & Li, M. D. (2008). A combinatorial approach to detecting gene-gene and gene-environment interactions in family studies. American Journal of Human Genetics, 83(4), 457–467. https://doi.org/10.1016/j.ajhg.2008.09.001 Manavalan, R., & Priya, S. (2020). Epistasis effects of complex diseases from simulated models through computational approaches: A review. International Journal of Scientific and Technology Research, 9(3), 5444–5462. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082683196&partnerID=40&md5=5bf6555bd63be58e53cb6939d425e8fb Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., Cho, J. H., Guttmacher, A. E., Kong, A., Kruglyak, L., Mardis, E., Rotimi, C. N., Slatkin, M., Valle, D., Whittemore, A. S., … Visscher, P. M. (2009). Finding the missing heritability of complex diseases. Nature, 461(7265), 747–753. https://doi.org/10.1038/nature08494 Manzoni, C., Kia, D. A., Vandrovcova, J., Hardy, J., Wood, N. W., Lewis, P. A., & Ferrari, R. (2018). Genome, transcriptome and proteome: The rise of omics data and their integration in biomedical sciences. Briefings in Bioinformatics, 19(2), 286–302. https://doi.org/10.1093/BIB/BBW114 Marees, A. T., de Kluiver, H., Stringer, S., Vorspan, F., Curis, E., Marie-Claire, C., & Derks, E. M. (2018). A tutorial on conducting genome-wide association studies: Quality control and statistical analysis. International Journal of Methods in Psychiatric Research, 27(2), e1608. https://doi.org/10.1002/mpr.1608 Martin, E. R., Bass, M. P., Gilbert, J. R., Pericak-Vance, M. A., & Hauser, E. R. (2003). Genotype-based association test for general pedigrees: the genotype-PDT. Genetic Epidemiology, 25(3), 203–213. https://doi.org/10.1002/gepi.10258 Martin, E. R., Ritchie, M. D., Hahn, L., Kang, S., & Moore, J. H. (2006). A novel method to identify gene-gene effects in nuclear families: the MDR-PDT. Genetic Epidemiology, 30(2), 111–123. https://doi.org/10.1002/gepi.20128 Mascheretti, S., Bureau, A., Trezzi, V., Giorda, R., & Marino, C. (2015). An assessment of gene-by-gene interactions as a tool to unfold missing heritability in dyslexia. Human Genetics, 134(7), 749–760. https://doi.org/10.1007/s00439-015-1555-4 Mason, H., & Wiggins, C. (2010). A taxonomy of data science. Http://Www.Dataists.Com/2010/09/a-Taxonomy-of-Data-Science/. Mathé, C., Sagot, M., Schiex, T., & Rouzé, P. (2002). Current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Research, 30(19), 4103–4117. https://doi.org/10.1093/nar/gkf543 Moeschler, J. B., & Shevell, M. (2014). Comprehensive evaluation of the child with intellectual disability or global developmental delays. Pediatrics, 134(3), e903-18. https://doi.org/10.1542/peds.2014-1839 Montojo, J., Zuberi, K., Rodriguez, H., Kazi, F., Wright, G., Donaldson, S. L., Morris, Q., & Bader, G. D. (2010). GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics (Oxford, England), 26(22), 2927–2928. https://doi.org/10.1093/bioinformatics/btq562 Moore, J. H. (2003). The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Human Heredity, 56(1–3), 73–82. https://doi.org/10.1159/000073735 Moore, J. H., Hahn, L. W., Ritchie, M. D., Thornton, T. A., & White, B. C. (2004). Routine discovery of complex genetic models using genetic algorithms. Applied Soft Computing Journal, 4(1), 79–86. https://doi.org/10.1016/j.asoc.2003.08.003 Morgan, A., Gandin, I., Belcaro, C., Palumbo, P., Palumbo, O., Biamino, E., Dal Col, V., Laurini, E., Pricl, S., Bosco, P., Carella, M., Ferrero, G. B., Romano, C., d’Adamo, A. P., Faletra, F., & Vozzi, D. (2015). Target sequencing approach intended to discover new mutations in non-syndromic intellectual disability. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 781, 32–36. https://doi.org/https://doi.org/10.1016/j.mrfmmm.2015.09.002 Morris-Rosendahl, D. J., & Crocq, M. A. (2020). Neurodevelopmental disorders-the history and future of a diagnostic concept. Dialogues in Clinical Neuroscience, 22(1), 65–72. https://doi.org/10.31887/DCNS.2020.22.1/macrocq Newman, J. R. B., Concannon, P., & Ge, Y. (2023). UBASH3A Interacts with PTPN22 to Regulate IL2 Expression and Risk for Type 1 Diabetes. International Journal of Molecular Sciences, 24(10). https://doi.org/10.3390/ijms24108671 Nodzenski, M., Shi, M., Krahn, J. M., Wise, A. S., Li, Y., Li, L., Umbach, D. M., & Weinberg, C. R. (2022). GADGETS: a genetic algorithm for detecting epistasis using nuclear families. Bioinformatics (Oxford, England), 38(4), 1052–1058. https://doi.org/10.1093/bioinformatics/btab766 Ohi, K., Hashimoto, R., Yasuda, Y., Fukumoto, M., Yamamori, H., Umeda-Yano, S., Fujimoto, M., Iwase, M., Kazui, H., & Takeda, M. (2013). Influence of the NRGN gene on intellectual ability in schizophrenia. Journal of Human Genetics, 58(10), 700–705. https://doi.org/10.1038/jhg.2013.82 Orfao, A., Benítez, J., Corrales, F., Martín-Subero, I., Ordovás, J. M., Carracedo, Á., & Lapunzina, P. (2019). Ciencias ónicas. 32. www.institutoroche.es Palsson, B. (2002). In silico biology through “omics.” Nature Biotechnology, 20(7), 649–650. https://doi.org/10.1038/nbt0702-649 Park, C., Kim, J., Kim, J., & Park, S. (2018). Machine learning-based identification of genetic interactions from heterogeneous gene expression profiles. PLoS ONE, 13(7). https://doi.org/10.1371/journal.pone.0201056 Park, M., Lee, J. W., Park, T., & Lee, S. (2020). Gene-Gene Interaction Analysis for the Survival Phenotype Based on the Kaplan-Meier Median Estimate. BioMed Research International, 2020. https://doi.org/10.1155/2020/5282345 Paschou, P., Yu, D., Gerber, G., Evans, P., Tsetsos, F., Davis, L. K., Karagiannidis, I., Chaponis, J., Gamazon, E., Mueller-Vahl, K., Stuhrmann, M., Schloegelhofer, M., Stamenkovic, M., Hebebrand, J., Noethen, M., Nagy, P., Barta, C., Tarnok, Z., Rizzo, R., … Scharf, J. M. (2014). Genetic association signal near NTN4 in Tourette syndrome. Annals of Neurology, 76(2), 310–315. https://doi.org/10.1002/ana.24215 Pattin, K. A., White, B. C., Barney, N., Gui, J., Nelson, H. H., Kelsey, K. T., Andrew, A. S., Karagas, M. R., & Moore, J. H. (2009). A computationally efficient hypothesis testing method for epistasis analysis using multifactor dimensionality reduction. Genetic Epidemiology, 33(1), 87–94. https://doi.org/10.1002/gepi.20360 Perakakis, N., Yazdani, A., Karniadakis, G. E., & Mantzoros, C. (2018). Omics, big data and machine learning as tools to propel understanding of biological mechanisms and to discover novel diagnostics and therapeutics. In Metabolism: clinical and experimental (Vol. 87, pp. A1--A9). https://doi.org/10.1016/j.metabol.2018.08.002 Pineda-Cirera, L., Shivalikanjli, A., Cabana-Domínguez, J., Demontis, D., Rajagopal, V. M., Børglum, A. D., Faraone, S. V, Cormand, B., & Fernàndez-Castillo, N. (2019). Exploring genetic variation that influences brain methylation in attention-deficit/hyperactivity disorder. Translational Psychiatry, 9(1). https://doi.org/10.1038/s41398-019-0574-7 Piriyapongsa, J., Ngamphiw, C., Intarapanich, A., Kulawonganunchai, S., Assawamakin, A., Bootchai, C., Shaw, P. J., & Tongsima, S. (2012). iLOCi: a SNP interaction prioritization technique for detecting epistasis in genome-wide association studies. BMC Genomics, 13 Suppl 7. https://doi.org/10.1186/1471-2164-13-s7-s2 Posar, A., & Visconti, P. (2017). Neurodevelopmental Disorders between Past and Future. Journal of Pediatric Neurosciences, 12(3), 301–302. https://doi.org/10.4103/jpn.JPN_95_17 Price, K. M., Wigg, K. G., Feng, Y., Blokland, K., Wilkinson, M., He, G., Kerr, E. N., Carter, T.-C., Guger, S. L., Lovett, M. W., Strug, L. J., & Barr, C. L. (2020). Genome-wide association study of word reading: Overlap with risk genes for neurodevelopmental disorders. Genes, Brain and Behavior, 19(6). https://doi.org/10.1111/gbb.12648 Qin, D. (2019). Next-generation sequencing and its clinical application. Cancer Biology and Medicine, 16(1), 4–10. https://doi.org/10.20892/j.issn.2095-3941.2018.0055 Rauch, A., Hoyer, J., Guth, S., Zweier, C., Kraus, C., Becker, C., Zenker, M., Hüffmeier, U., Thiel, C., Rüschendorf, F., Nürnberg, P., Reis, A., & Trautmann, U. (2006). Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. American Journal of Medical Genetics. Part A, 140(19), 2063–2074. https://doi.org/10.1002/ajmg.a.31416 Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., Fiegler, H., Shapero, M. H., Carson, A. R., Chen, W., Cho, E. K., Dallaire, S., Freeman, J. L., González, J. R., Gratacòs, M., Huang, J., Kalaitzopoulos, D., Komura, D., MacDonald, J. R., … Hurles, M. E. (2006). Global variation in copy number in the human genome. Nature, 444(7118), 444–454. https://doi.org/10.1038/nature05329 Ritchie, M D, Hahn, L. W., Roodi, N., Bailey, L. R., Dupont, W. D., Parl, F. F., & Moore, J. H. (2001). Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. American Journal of Human Genetics, 69(1), 138–147. https://doi.org/10.1086/321276 Ritchie, Marylyn D., & Van Steen, K. (2018). The search for gene-gene interactions in genome-wide association studies: challenges in abundance of methods, practical considerations, and biological interpretation. Annals of Translational Medicine, 6(8), 157–157. https://doi.org/10.21037/atm.2018.04.05 Roston, A., Evans, D., Gill, H., McKinnon, M., Isidor, B., Cogné, B., Mwenifumbo, J., van Karnebeek, C., An, J., Jones, S. J. M., Farrer, M., Demos, M., Connolly, M., & Gibson, W. T. (2021). SETD1B-associated neurodevelopmental disorder. Journal of Medical Genetics, 58(3), 196–204. https://doi.org/10.1136/jmedgenet-2019-106756 Saldarriaga, W., Forero-Forero, J. V., González-Teshima, L. Y., Fandiño-Losada, A., Isaza, C., Tovar-Cuevas, J. R., Silva, M., Choudhary, N. S., Tang, H.-T., Aguilar-Gaxiola, S., Hagerman, R. J., & Tassone, F. (2018). Genetic cluster of fragile X syndrome in a Colombian district. Journal of Human Genetics, 63(4), 509–516. https://doi.org/10.1038/s10038-017-0407-6 Saldarriaga, W., Tassone, F., González-Teshima, L. Y., Forero-Forero, J. V., Ayala-Zapata, S., & Hagerman, R. (2014). Fragile X syndrome. Colombia Medica (Cali, Colombia), 45(4), 190–198. Savatt, J. M., & Myers, S. M. (2021). Genetic Testing in Neurodevelopmental Disorders. Frontiers in Pediatrics, 9, 526779. https://doi.org/10.3389/fped.2021.526779 Shaffer, L. G., Bejjani, B. A., Torchia, B., Kirkpatrick, S., Coppinger, J., & Ballif, B. C. (2007). The identification of microdeletion syndromes and other chromosome abnormalities: cytogenetic methods of the past, new technologies for the future. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 145C(4), 335–345. https://doi.org/10.1002/ajmg.c.30152 Sharp, A. J., Mefford, H. C., Li, K., Baker, C., Skinner, C., Stevenson, R. E., Schroer, R. J., Novara, F., De Gregori, M., Ciccone, R., Broomer, A., Casuga, I., Wang, Y., Xiao, C., Barbacioru, C., Gimelli, G., Bernardina, B. D., Torniero, C., Giorda, R., … Eichler, E. E. (2008). A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures. Nature Genetics, 40(3), 322–328. https://doi.org/10.1038/ng.93 Shaw-Smith, C., Pittman, A. M., Willatt, L., Martin, H., Rickman, L., Gribble, S., Curley, R., Cumming, S., Dunn, C., Kalaitzopoulos, D., Porter, K., Prigmore, E., Krepischi-Santos, A. C. V, Varela, M. C., Koiffmann, C. P., Lees, A. J., Rosenberg, C., Firth, H. V, de Silva, R., & Carter, N. P. (2006). Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability. Nature Genetics, 38(9), 1032–1037. https://doi.org/10.1038/ng1858 Sinoquet, C., & Niel, C. (2019). Ant colony optimization for markov blanket-based feature selection. Application for precision medicine: Vol. 11331 LNCS (pp. 217–230). https://doi.org/10.1007/978-3-030-13709-0_18 Slavotinek, A. M. (2008). Novel microdeletion syndromes detected by chromosome microarrays. Human Genetics, 124(1), 1–17. https://doi.org/10.1007/s00439-008-0513-9 Slim Lotfi AND Chatelain, C. A. N. D. A. C.-A. A. N. D. V. J.-P. (2020). Novel methods for epistasis detection in genome-wide association studies. PLOS ONE, 15(11), 1–18. https://doi.org/10.1371/journal.pone.0242927 Spielman, R. S., McGinnis, R. E., & Ewens, W. J. (1993). Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). American Journal of Human Genetics, 52(3), 506–516. Srivastava, S., Love-Nichols, J. A., Dies, K. A., Ledbetter, D. H., Martin, C. L., Chung, W. K., Firth, H. V, Frazier, T., Hansen, R. L., Prock, L., Brunner, H., Hoang, N., Scherer, S. W., Sahin, M., & Miller, D. T. (2019). Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genetics in Medicine : Official Journal of the American College of Medical Genetics, 21(11), 2413–2421. https://doi.org/10.1038/s41436-019-0554-6 Stessman, H. A. F., Willemsen, M. H., Fenckova, M., Penn, O., Hoischen, A., Xiong, B., Wang, T., Hoekzema, K., Vives, L., Vogel, I., Brunner, H. G., van der Burgt, I., Ockeloen, C. W., Schuurs-Hoeijmakers, J. H., Klein Wassink-Ruiter, J. S., Stumpel, C., Stevens, S. J. C., Vles, H. S., Marcelis, C. M., … Kleefstra, T. (2016). Disruption of POGZ Is Associated with Intellectual Disability and Autism Spectrum Disorders. The American Journal of Human Genetics, 98(3), 541–552. https://doi.org/https://doi.org/10.1016/j.ajhg.2016.02.004 Sun, Y., Wang, X., Shang, J., Liu, J., Zheng, C., & Lei, X. (2018). Introducing Heuristic Information into Ant Colony Optimization Algorithm for Identifying Epistasis. In IEEE/ACM Transactions on Computational Biology and Bioinformatics. https://doi.org/10.1109/TCBB.2018.2879673 Sung, P.-Y., Wang, Y.-T., Yu, Y.-W., & Chung, R.-H. (2016). An efficient gene-gene interaction test for genome-wide association studies in trio families. Bioinformatics, 32(12), 1848–1855. https://doi.org/10.1093/bioinformatics/btw077 Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., Gable, A. L., Fang, T., Doncheva, N. T., Pyysalo, S., Bork, P., Jensen, L. J., & von Mering, C. (2023). The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research, 51(D1), D638–D646. https://doi.org/10.1093/nar/gkac1000 Tărlungeanu, D. C., & Novarino, G. (2018). Genomics in neurodevelopmental disorders: an avenue to personalized medicine. Experimental and Molecular Medicine, 50(8), 100. https://doi.org/10.1038/s12276-018-0129-7 Thapar, A., Cooper, M., & Rutter, M. (2017). Neurodevelopmental disorders. The Lancet Psychiatry, 4(4), 339–346. https://doi.org/10.1016/S2215-0366(16)30376-5 Thornton-Wells, T. A., Moore, J. H., Martin, E. R., Pericak-Vance, M. A., & Haines, J. L. (2008). Confronting complexity in late-onset Alzheimer disease: application of two-stage analysis approach addressing heterogeneity and epistasis. Genetic Epidemiology, 32(3), 187–203. https://doi.org/https://doi.org/10.1002/gepi.20294 Turner, S. D., Dudek, S. M., & Ritchie, M. D. (2010). ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci. BioData Mining, 3(1). https://doi.org/10.1186/1756-0381-3-5 Van steen, K. (2012). Travelling the world of gene-gene interactions. Briefings in Bioinformatics, 13(1), 1–19. https://doi.org/10.1093/bib/bbr012 Vanderweele, T. J. (2010). Epistatic interactions. Statistical Applications in Genetics and Molecular Biology, 9(1). https://doi.org/10.2202/1544-6115.1517 Vantaggiato, C., Clementi, E., & Bassi, M. T. (2014). ZFYVE26/SPASTIZIN: a close link between complicated hereditary spastic paraparesis and autophagy. Autophagy, 10(2), 374–375. https://doi.org/10.4161/auto.27173 Vissers, L. E. L. M., Gilissen, C., & Veltman, J. A. (2016). Genetic studies in intellectual disability and related disorders. Nature Reviews. Genetics, 17(1), 9–18. https://doi.org/10.1038/nrg3999 Vissers, L. E. L. M., & Stankiewicz, P. (2012). Microdeletion and microduplication syndromes. Methods in Molecular Biology (Clifton, N.J.), 838, 29–75. https://doi.org/10.1007/978-1-61779-507-7_2 Wang, K., Li, M., & Hakonarson, H. (2010). ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 38(16), e164. https://doi.org/10.1093/nar/gkq603 Webber, C. (2017). Epistasis in Neuropsychiatric Disorders. Trends in Genetics : TIG, 33(4), 256–265. https://doi.org/10.1016/j.tig.2017.01.009 Winston, P. H. (1992). Artificial Intelligence (3rd Ed.). Addison-Wesley Longman Publishing Co., Inc. Wong, A. K., Park, C. Y., Greene, C. S., Bongo, L. A., Guan, Y., & Troyanskaya, O. G. (2012). IMP: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks. Nucleic Acids Research, 40(Web Server issue), W484-90. https://doi.org/10.1093/nar/gks458 World Health Organization. (2021). Autism spectrum disorders. https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders Wright, C. F., FitzPatrick, D. R., & Firth, H. V. (2018). Paediatric genomics: Diagnosing rare disease in children. Nature Reviews Genetics, 19(5), 253–268. https://doi.org/10.1038/nrg.2017.116 Xiang, X., Wang, S., Liu, T., Wang, M., Li, J., Jiang, J., Wu, T., & Hu, Y. (2020). Exploring gene–gene interaction in family-based data with an unsupervised machine learning method: EPISFA. Genetic Epidemiology. https://doi.org/10.1002/gepi.22342 Xuan, J., Yu, Y., Qing, T., Guo, L., & Shi, L. (2013). Next-generation sequencing in the clinic: Promises and challenges. Cancer Letters, 340(2), 284–295. https://doi.org/10.1016/j.canlet.2012.11.025 Yang, C.-H., Chuang, L.-Y., & Lin, Y.-D. (2017). Multiobjective differential evolution-based multifactor dimensionality reduction for detecting gene-gene interactions. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-12773-x Zhang, X., Huang, S., Zou, F., & Wang, W. (2010). TEAM: Efficient two-locus epistasis tests in human genome-wide association study. Bioinformatics, 26(12), i217–i227. https://doi.org/10.1093/bioinformatics/btq186 Zhang, Y., Chen, Y., & Hu, T. (2020). PANDA: Prioritization of autism-genes using network-based deep-learning approach. Genetic Epidemiology, 44(4), 382–394. https://doi.org/10.1002/gepi.22282 Zhao, J., Zhu, Y., & Xiong, M. (2016). Genome-wide gene-gene interaction analysis for next-generation sequencing. European Journal of Human Genetics, 24(3), 421–428. https://doi.org/10.1038/ejhg.2015.147 Zhou, Z. H., Liu, G. X., Su, L. T., Han, L., & Yan, L. (2014). Detecting epistasis by LASSO-penalized-model search algorithm in human Genome-Wide Association Studies (Vols. 989–994, pp. 2426–2430). https://doi.org/10.4028/www.scientific.net/AMR.989-994.2426 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xv, 103 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Bioinformática |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86100/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/86100/4/1075680777.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86100/5/1075680777.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a c8b50d644a327d0b99af7b19e2968dba 281cb4b1697f46d323972b2f69b7d5c6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089505497415680 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Niño Vásquez, Luis Fernandoefd9c4dcbf3d130ac1cd2d85e3072b2f600López Rivera, Juan Javier3d5c5646297ac533d82f13d1bca8415f600Murcia Triviño, Jossie Esteban915340edbb9886409664b5c8ec030c3a600laboratorio de Investigación en Sistemas Inteligentes Lisi2024-05-16T19:38:59Z2024-05-16T19:38:59Z2024-04-29https://repositorio.unal.edu.co/handle/unal/86100Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLos estudios de asociación como epistasis representan un factor importante en la comprensión de la expresión de enfermedades complejas, como lo son los trastornos del neurodesarrollo (TND), que presentan un desafío en el entendimiento de su etiología. Aunque varios estudios han revelado diferentes hallazgos de mutaciones, los efectos de asociación entre polimorfismos de un solo nucleótido (SNP) siguen siendo desconocidos. La reducción de dimensionalidad multifactorial (MDR) es un método de minería de datos por inducción constructiva empleado para detectar interacciones complejas. Este estudio comprendió una cohorte retrospectiva de pacientes pediátricos con prueba de exoma trio por sospecha de alteraciones genéticas para TND. Después de los controles de calidad sobre genotipos, se desarrolló el método MDR bajo la Prueba de desequilibrio de pedigrí (MDR-PDT). Además, se identificaron variantes asociadas individualmente con la enfermad a partir de la prueba de desequilibrio de transmisión (TDT). Se encontró que la variante rs6843524 (SEC24D) significativa por TDT (valor-P=0.003135) evidenció asociaciones con SNP; rs6843524-rs895952 (MDR-PDT valor-P=0.0084) y rs6843524-rs1168666 (MDR-PDT valor-P=0.0079). Aunque las variantes rs1168666 (SETD1B) y rs4974081 (QRICH1) no fueron significativas en MDR, si se identificaron en varios modelos y sus genes destacaron en el análisis de enriquecimiento (FDR 1.11e-05 y 6.55e-05). A pesar de la baja significancia de los modelos MDR-PDT, se lograron validar asociaciones importantes por medio de las otras pruebas y la interpretación biológica. Estos modelos pueden ser muy útiles en el descubrimiento de nuevas variantes, especialmente cuando son desarrollados sobre poblaciones grandes y con un análisis completo desde la secuenciación. (Texto tomado de la fuente).Association studies such as epistasis studies represent an important factor in understanding the expression of complex diseases, such as neurodevelopmental disorders (NDD). These disorders exhibit a challenge around their etiology. Even though certain studies have revealed several mutation findings, the association effects between Single Nucleotide Polymorphisms (SNPs) remain unknown. Multifactor dimensionality reduction (MDR) is a constructive induction data mining approach that can be used to identify those effects. In this work, a retrospective cohort study based on pediatric patients with trio exome analysis due to suspected genetic alterations for NDD was carried out. After developing genotype quality controls, MDR method was performed under Pedigree Imbalance Test (MDR-PDT). In addition, variants individually associated to disease were identified with Transmission Disequilibrium Test (TDT). We found that variant rs6843524 (SEC24D) is TDT significant (P-value=0.003135) and evidenced SNP interactions; rs6843524-rs895952 (MDR-PDT P-value=0.0084) and rs6843524-rs1168666 (MDR-PDT P-value=0.0079). Although variants rs1168666 (SETD1B) and rs4974081 (QRICH1) were not significant by MDR they were identified by several models and their genes were outstanding in enrichment analysis (FDR 1.11e-05 y 6.55e-05). Despite the low significance of MDR-PDT models, important associations were validated through other tests and biological interpretation. These models can be very useful in discovering new variants, especially when they are developed on larger populations and performing a complete analysis beginning from sequencing.MaestríaMagíster en BioinformáticaBioinformática funcional y estructuralxv, 103 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en BioinformáticaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores610 - Medicina y salud::616 - EnfermedadesEpistasis GenéticaPersonas con Discapacidades MentalesEpistasis, GeneticPersons with Mental DisabilitiesEpistasisAprendizaje de máquinasPolimorfismo de un solo nucleótidoTrastornos del neurodesarrolloDiscapacidad intelectualEpistasisMachine learningSingle nucleotide polymorphismNeurodevelopmental disordersIntellectual disabilityaprendizaje automáticomachine learningModelo de epistasis basado en aprendizaje automático para pacientes con discapacidad intelectual y retraso del neurodesarrolloMachine learning-based epistasis model for intellectual disability and neurodevelopmental delayTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBiremeAbay-Nørgaard, S., Attianese, B., Boreggio, L., & Salcini, A. E. (2020). Regulators of H3K4 methylation mutated in neurodevelopmental disorders control axon guidance in Caenorhabditis elegans. Development (Cambridge, England), 147(15). https://doi.org/10.1242/dev.190637Adams, D. R., & Eng, C. M. (2018). Next-Generation Sequencing to Diagnose Suspected Genetic Disorders. New England Journal of Medicine, 379(14), 1353–1362. https://doi.org/10.1056/nejmra1711801Alazami, A. M., Patel, N., Shamseldin, H. E., Anazi, S., Al-Dosari, M. S., Alzahrani, F., Hijazi, H., Alshammari, M., Aldahmesh, M. A., Salih, M. A., Faqeih, E., Alhashem, A., Bashiri, F. A., Al-Owain, M., Kentab, A. Y., Sogaty, S., Al Tala, S., Temsah, M.-H., Tulbah, M., … Alkuraya, F. S. (2015). Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families. Cell Reports, 10(2), 148–161. https://doi.org/10.1016/j.celrep.2014.12.015American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). https://doi.org/10.1176/appi.books.9780890425596Ansarifar, J., Wang, L., & Hancock, J. (2019). New algorithms for detecting multi-effect and multi-way epistatic interactions. Bioinformatics, 35(24), 5078–5085. https://doi.org/10.1093/bioinformatics/btz463Ballif, B. C., Hornor, S. A., Jenkins, E., Madan-Khetarpal, S., Surti, U., Jackson, K. E., Asamoah, A., Brock, P. L., Gowans, G. C., Conway, R. L., Graham, J. M. J., Medne, L., Zackai, E. H., Shaikh, T. H., Geoghegan, J., Selzer, R. R., Eis, P. S., Bejjani, B. A., & Shaffer, L. G. (2007). Discovery of a previously unrecognized microdeletion syndrome of 16p11.2-p12.2. Nature Genetics, 39(9), 1071–1073. https://doi.org/10.1038/ng2107Baruch, Y., Horn-Saban, S., Plotsky, Y., Bercovich, D., & Gershoni-Baruch, R. (2021). A case of Ververi-Brady syndrome due to QRICH1 loss of function and the literature review. In American journal of medical genetics. Part A (Vol. 185, Issue 6, pp. 1913–1917). https://doi.org/10.1002/ajmg.a.62184Bateson, W., & Mendel, G. (2013). Mendel’s principles of heredity. Courier Corporation.Bausela-Herreras, E., Tirapu-Ustárroz, J., & Cordero-Andrés, P. (2019). Deficits and neurodevelopmental disorders in childhood and adolescence. Revista de Neurologia, 69(11), 461–469. https://doi.org/10.33588/RN.6911.2019133Biancotti, J.-C., & Benvenisty, N. (2011). Aneuploid human embryonic stem cells: origins and potential for modeling chromosomal disorders. Regenerative Medicine, 6(4), 493–503. https://doi.org/10.2217/rme.11.27Bitta, M., Kariuki, S. M., Abubakar, A., & Newton, C. R. J. C. (2018). Burden of neurodevelopmental disorders in low and middle-income countries: A systematic review and meta-analysis [version 3; referees: 1 approved, 2 approved with reservations]. Wellcome Open Research, 2. https://doi.org/10.12688/wellcomeopenres.13540.3Brandenburg, J.-T., Clark, L., Botha, G., Panji, S., Baichoo, S., Fields, C., & Hazelhurst, S. (2022). H3AGWAS : A portable workflow for Genome Wide Association Studies. BioRxiv, 2022.05.02.490206. https://doi.org/10.1101/2022.05.02.490206Brownstein, C. A., Beggs, A. H., Homer, N., Merriman, B., Yu, T. W., Flannery, K. C., DeChene, E. T., Towne, M. C., Savage, S. K., Price, E. N., Holm, I. A., Luquette, L. J., Lyon, E., Majzoub, J., Neupert, P., McCallie, D. J., Szolovits, P., Willard, H. F., Mendelsohn, N. J., … Margulies, D. M. (2014). An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge. Genome Biology, 15(3), R53. https://doi.org/10.1186/gb-2014-15-3-r53Carayol, J., Schellenberg, G. D., Dombroski, B., Amiet, C., Génin, B., Fontaine, K., Rousseau, F., Vazart, C., Cohen, D., Frazier, T. W., Hardan, A. Y., Dawson, G., & Frio, T. R. (2014). A scoring strategy combining statistics and functional genomics supports a possible role for common polygenic variation in autism. Frontiers in Genetics, 5(FEB). https://doi.org/10.3389/fgene.2014.00033Cardoso, A. R., Lopes-Marques, M., Silva, R. M., Serrano, C., Amorim, A., Prata, M. J., & Azevedo, L. (2019). Essential genetic findings in neurodevelopmental disorders. Human Genomics, 13(1), 31. https://doi.org/10.1186/s40246-019-0216-4Cattaert, T., Urrea, V., Naj, A. C., De Lobel, L., De Wit, V., Fu, M., Mahachie John, J. M., Shen, H., Calle, M. L., Ritchie, M. D., Edwards, T. L., & Van Steen, K. (2010). FAM-MDR: a flexible family-based multifactor dimensionality reduction technique to detect epistasis using related individuals. PloS One, 5(4), e10304. https://doi.org/10.1371/journal.pone.0010304Cattaert, T., Urrea, V., Naj, A. C., De Lobel, L., De Wit, V., Fu, M., Mahachie John, J. M., Shen, H., Calle, M. L., Ritchie, M. D., Edwards, T. L., & Van Steen, K. (2010). FAM-MDR: a flexible family-based multifactor dimensionality reduction technique to detect epistasis using related individuals. PloS One, 5(4), e10304. https://doi.org/10.1371/journal.pone.0010304Chang, Y. C., Wu, J. T., Hong, M. Y., Tung, Y. A., Hsieh, P. H., Yee, S. W., Giacomini, K. M., Oyang, Y. J., & Chen, C. Y. (2020). GenEpi: Gene-based epistasis discovery using machine learning. BMC Bioinformatics, 21(1). https://doi.org/10.1186/s12859-020-3368-2Chapman, P. (2000). CRISP-DM 1.0: Step-by-step data mining guide. https://api.semanticscholar.org/CorpusID:59777418Chen, X., Li, H., Chen, C., Zhou, L., Xu, X., Xiang, Y., & Tang, S. (2018). Genome-Wide Array Analysis Reveals Novel Genomic Regions and Candidate Gene for Intellectual Disability. Molecular Diagnosis & Therapy, 22(6), 749–757. https://doi.org/10.1007/s40291-018-0358-4Clinical utility of genetic and genomic services: a position statement of the American College of Medical Genetics and Genomics. (2015). Genetics in Medicine : Official Journal of the American College of Medical Genetics, 17(6), 505–507. https://doi.org/10.1038/gim.2015.41Cole, B. S., Hall, M. A., Urbanowicz, R. J., Gilbert-Diamond, D., & Moore, J. H. (2017). Analysis of Gene-Gene Interactions. Current Protocols in Human Genetics, 95(1), 1.14.1-1.14.10. https://doi.org/10.1002/cphg.45Cordell, H. (2002). Epistasis: What it means, what it doesn’t mean, and statistical methods to detect it in humans. Human Molecular Genetics, 11, 2463–2468. https://doi.org/10.1093/hmg/11.20.2463Cordell, H. (2009). Detecting gene-gene interactions that underlie human diseases. Nature Reviews. Genetics, 10, 392–404. https://doi.org/10.1038/nrg2579Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., Durbin, R., & Group, 1000 Genomes Project Analysis. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156–2158. https://doi.org/10.1093/bioinformatics/btr330Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., Davies, R. M., & Li, H. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 10(2), giab008. https://doi.org/10.1093/gigascience/giab008de Ligt, J., Willemsen, M. H., van Bon, B. W. M., Kleefstra, T., Yntema, H. G., Kroes, T., Vulto-van Silfhout, A. T., Koolen, D. A., de Vries, P., Gilissen, C., del Rosario, M., Hoischen, A., Scheffer, H., de Vries, B. B. A., Brunner, H. G., Veltman, J. A., & Vissers, L. E. L. M. (2012). Diagnostic exome sequencing in persons with severe intellectual disability. The New England Journal of Medicine, 367(20), 1921–1929. https://doi.org/10.1056/NEJMoa1206524Dias, R., & Torkamani, A. (2019). Artificial intelligence in clinical and genomic diagnostics. Genome Medicine, 11(1), 70. https://doi.org/10.1186/s13073-019-0689-8Dillon, O. J., Lunke, S., Stark, Z., Yeung, A., Thorne, N., Gaff, C., White, S. M., & Tan, T. Y. (2018). Exome sequencing has higher diagnostic yield compared to simulated disease-specific panels in children with suspected monogenic disorders. European Journal of Human Genetics, 26(5), 644–651. https://doi.org/10.1038/s41431-018-0099-1Edwards, T. L., Wang, X., Chen, Q., Wormly, B., Riley, B., O’Neill, F. A., Walsh, D., Ritchie, M. D., Kendler, K. S., & Chen, X. (2008). Interaction between interleukin 3 and dystrobrevin-binding protein 1 in schizophrenia. Schizophrenia Research, 106(2), 208–217. https://doi.org/https://doi.org/10.1016/j.schres.2008.07.022Emily, M. (2016). AGGrEGATOr: A Gene-based GEne-Gene interActTiOn test for case-control association studies. Statistical Applications in Genetics and Molecular Biology, 15(2), 151–171. https://doi.org/10.1515/sagmb-2015-0074Fisher, R. A. (1919). XV.—The Correlation between Relatives on the Supposition of Mendelian Inheritance. Transactions of the Royal Society of Edinburgh, 52(2), 399–433. https://doi.org/10.1017/S0080456800012163Froukh, T. J. (2017). Next Generation Sequencing and Genome-Wide Genotyping Identify the Genetic Causes of Intellectual Disability in Ten Consanguineous Families from Jordan. The Tohoku Journal of Experimental Medicine, 243(4), 297–309. https://doi.org/10.1620/tjem.243.297Gall, K., Izzo, E., Seppälä, E. H., Alakurtti, K., Koskinen, L., Saarinen, I., Singh, A., Myllykangas, S., Koskenvuo, J., & Alastalo, T.-P. (2021). Next-generation sequencing in childhood-onset epilepsies: Diagnostic yield and impact on neuronal ceroid lipofuscinosis type 2 (CLN2) disease diagnosis. PloS One, 16(9), e0255933. https://doi.org/10.1371/journal.pone.0255933Ghanem, S. I., Ghanem, N. M., & Ismail, M. A. (2019). Noisy Epistasis Using Deep Learning. 165–168. https://doi.org/10.1109/JEC-ECC.2018.8679568González Alvaredo, S., Sanz Rojo, R., García Santiago, J., Gaztañaga Expósito, R., Bengoa, A., & Pérez-Yarza, E. G. (2008). [Genetic diagnostic criteria in cases of mental retardation and development of idiopathic origin]. Anales de pediatria (Barcelona, Spain : 2003), 69(5), 446–453. https://doi.org/10.1157/13128001Goodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: Ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17(6), 333–351. https://doi.org/10.1038/nrg.2016.49Griffin, D. K. (1996). The incidence, origin, and etiology of aneuploidy. International Review of Cytology, 167, 263–296. https://doi.org/10.1016/s0074-7696(08)61349-2Gusareva, E. S., & Van Steen, K. (2014). Practical aspects of genome-wide association interaction analysis. Human Genetics, 133(11), 1343–1358. https://doi.org/10.1007/s00439-014-1480-yHamdan, F. F., Gauthier, J., Araki, Y., Lin, D.-T., Yoshizawa, Y., Higashi, K., Park, A.-R., Spiegelman, D., Dobrzeniecka, S., Piton, A., Tomitori, H., Daoud, H., Massicotte, C., Henrion, E., Diallo, O., Shekarabi, M., Marineau, C., Shevell, M., Maranda, B., … Michaud, J. L. (2011). Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability. American Journal of Human Genetics, 88(3), 306–316. https://doi.org/10.1016/j.ajhg.2011.02.001Hieter, P., & Boguski, M. (1997). Functional genomics: it’s all how you read it. Science (New York, N.Y.), 278(5338), 601–602. https://doi.org/10.1126/science.278.5338.601Hu, T., Chen, Y., Kiralis, J. W., & Moore, J. H. (2013). ViSEN: methodology and software for visualization of statistical epistasis networks. Genetic Epidemiology, 37(3), 283–285. https://doi.org/10.1002/gepi.21718Hu, T., Sinnott-Armstrong, N. A., Kiralis, J. W., Andrew, A. S., Karagas, M. R., & Moore, J. H. (2011). Characterizing genetic interactions in human disease association studies using statistical epistasis networks. BMC Bioinformatics, 12, 364. https://doi.org/10.1186/1471-2105-12-364Iossifov, I., O’Roak, B. J., Sanders, S. J., Ronemus, M., Krumm, N., Levy, D., Stessman, H. A., Witherspoon, K. T., Vives, L., Patterson, K. E., Smith, J. D., Paeper, B., Nickerson, D. A., Dea, J., Dong, S., Gonzalez, L. E., Mandell, J. D., Mane, S. M., Murtha, M. T., … Wigler, M. (2014). The contribution of de novo coding mutations to autism spectrum disorder. Nature, 515(7526), 216–221. https://doi.org/10.1038/nature13908Kafaie, S., Chen, Y., & Hu, T. (2019). A network approach to prioritizing susceptibility genes for genome-wide association studies. Genetic Epidemiology, 43(5), 477–491. https://doi.org/10.1002/gepi.22198Kessi, M., Chen, B., Pang, N., Yang, L., Peng, J., He, F., & Yin, F. (2023). The genotype-phenotype correlations of the CACNA1A-related neurodevelopmental disorders: a small case series and literature reviews. Frontiers in Molecular Neuroscience, 16, 1222321. https://doi.org/10.3389/fnmol.2023.1222321Khoury, M. J., Gwinn, M. L., Glasgow, R. E., & Kramer, B. S. (2012). A population approach to precision medicine. American Journal of Preventive Medicine, 42(6), 639–645. https://doi.org/10.1016/j.amepre.2012.02.012Kim, N. C., Andrews, P. C., Asselbergs, F. W., Frost, H. R., Williams, S. M., Harris, B. T., Read, C., Askland, K. D., & Moore, J. H. (2012). Gene ontology analysis of pairwise genetic associations in two genome-wide studies of sporadic ALS. BioData Mining, 5(1), 9. https://doi.org/10.1186/1756-0381-5-9Koolen, D. A., Vissers, L. E. L. M., Pfundt, R., de Leeuw, N., Knight, S. J. L., Regan, R., Kooy, R. F., Reyniers, E., Romano, C., Fichera, M., Schinzel, A., Baumer, A., Anderlid, B.-M., Schoumans, J., Knoers, N. V, van Kessel, A. G., Sistermans, E. A., Veltman, J. A., Brunner, H. G., & de Vries, B. B. A. (2006). A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism. Nature Genetics, 38(9), 999–1001. https://doi.org/10.1038/ng1853Kumble, S., Levy, A. M., Punetha, J., Gao, H., Ah Mew, N., Anyane-Yeboa, K., Benke, P. J., Berger, S. M., Bjerglund, L., Campos-Xavier, B., Ciliberto, M., Cohen, J. S., Comi, A. M., Curry, C., Damaj, L., Denommé-Pichon, A.-S., Emrick, L., Faivre, L., Fasano, M. B., … Tümer, Z. (2022). The clinical and molecular spectrum of QRICH1 associated neurodevelopmental disorder. Human Mutation, 43(2), 266–282. https://doi.org/10.1002/humu.24308Large-scale discovery of novel genetic causes of developmental disorders. (2015). Nature, 519(7542), 223–228. https://doi.org/10.1038/nature14135Larranaga, P. (2006). Machine learning in bioinformatics. Briefings in Bioinformatics, 7, 86–112. https://doi.org/10.1093/bib/bbk007Leem, S., & Park, T. (2017). An empirical fuzzy multifactor dimensionality reduction method for detecting gene-gene interactions. BMC Genomics, 18. https://doi.org/10.1186/s12864-017-3496-xLeonard, H., & Wen, X. (2002). The epidemiology of mental retardation: Challenges and opportunities in the new millennium. Mental Retardation and Developmental Disabilities Research Reviews, 8(3), 117–134. https://doi.org/https://doi.org/10.1002/mrdd.10031Li, J., Malley, J. D., Andrew, A. S., Karagas, M. R., & Moore, J. H. (2016). Detecting gene-gene interactions using a permutation-based random forest method. BioData Mining, 9(1). https://doi.org/10.1186/s13040-016-0093-5Li, Q., Fallin, M. D., Louis, T. A., Lasseter, V. K., McGrath, J. A., Avramopoulos, D., Wolyniec, P. S., Valle, D., Liang, K.-Y., Pulver, A. E., & Ruczinski, I. (2010). Detection of SNP-SNP interactions in trios of parents with schizophrenic children. Genetic Epidemiology, 34(5), 396–406. https://doi.org/10.1002/gepi.20488Lipkin, P. H., & Macias, M. M. (2020). Promoting Optimal Development: Identifying Infants and Young Children With Developmental Disorders Through Developmental Surveillance and Screening. Pediatrics, 145(1). https://doi.org/10.1542/peds.2019-3449Liu, D., Wang, M., Yuan, Y., Schwender, H., Wang, H., Wang, P., Zhou, Z., Li, J., Wu, T., Zhu, H., & Beaty, T. H. (2019). Gene-gene interaction among cell adhesion genes and risk of nonsyndromic cleft lip with or without cleft palate in Chinese case-parent trios. Molecular Genetics & Genomic Medicine, 7(10), e00872. https://doi.org/10.1002/mgg3.872Lord, C., Elsabbagh, M., Baird, G., & Veenstra-Vanderweele, J. (2018). Autism spectrum disorder. The Lancet, 392(10146), 508–520. https://doi.org/10.1016/S0140-6736(18)31129-2Lou, X.-Y., Chen, G.-B., Yan, L., Ma, J. Z., Mangold, J. E., Zhu, J., Elston, R. C., & Li, M. D. (2008). A combinatorial approach to detecting gene-gene and gene-environment interactions in family studies. American Journal of Human Genetics, 83(4), 457–467. https://doi.org/10.1016/j.ajhg.2008.09.001Manavalan, R., & Priya, S. (2020). Epistasis effects of complex diseases from simulated models through computational approaches: A review. International Journal of Scientific and Technology Research, 9(3), 5444–5462. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082683196&partnerID=40&md5=5bf6555bd63be58e53cb6939d425e8fbManolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., Cho, J. H., Guttmacher, A. E., Kong, A., Kruglyak, L., Mardis, E., Rotimi, C. N., Slatkin, M., Valle, D., Whittemore, A. S., … Visscher, P. M. (2009). Finding the missing heritability of complex diseases. Nature, 461(7265), 747–753. https://doi.org/10.1038/nature08494Manzoni, C., Kia, D. A., Vandrovcova, J., Hardy, J., Wood, N. W., Lewis, P. A., & Ferrari, R. (2018). Genome, transcriptome and proteome: The rise of omics data and their integration in biomedical sciences. Briefings in Bioinformatics, 19(2), 286–302. https://doi.org/10.1093/BIB/BBW114Marees, A. T., de Kluiver, H., Stringer, S., Vorspan, F., Curis, E., Marie-Claire, C., & Derks, E. M. (2018). A tutorial on conducting genome-wide association studies: Quality control and statistical analysis. International Journal of Methods in Psychiatric Research, 27(2), e1608. https://doi.org/10.1002/mpr.1608Martin, E. R., Bass, M. P., Gilbert, J. R., Pericak-Vance, M. A., & Hauser, E. R. (2003). Genotype-based association test for general pedigrees: the genotype-PDT. Genetic Epidemiology, 25(3), 203–213. https://doi.org/10.1002/gepi.10258Martin, E. R., Ritchie, M. D., Hahn, L., Kang, S., & Moore, J. H. (2006). A novel method to identify gene-gene effects in nuclear families: the MDR-PDT. Genetic Epidemiology, 30(2), 111–123. https://doi.org/10.1002/gepi.20128Mascheretti, S., Bureau, A., Trezzi, V., Giorda, R., & Marino, C. (2015). An assessment of gene-by-gene interactions as a tool to unfold missing heritability in dyslexia. Human Genetics, 134(7), 749–760. https://doi.org/10.1007/s00439-015-1555-4Mason, H., & Wiggins, C. (2010). A taxonomy of data science. Http://Www.Dataists.Com/2010/09/a-Taxonomy-of-Data-Science/.Mathé, C., Sagot, M., Schiex, T., & Rouzé, P. (2002). Current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Research, 30(19), 4103–4117. https://doi.org/10.1093/nar/gkf543Moeschler, J. B., & Shevell, M. (2014). Comprehensive evaluation of the child with intellectual disability or global developmental delays. Pediatrics, 134(3), e903-18. https://doi.org/10.1542/peds.2014-1839Montojo, J., Zuberi, K., Rodriguez, H., Kazi, F., Wright, G., Donaldson, S. L., Morris, Q., & Bader, G. D. (2010). GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics (Oxford, England), 26(22), 2927–2928. https://doi.org/10.1093/bioinformatics/btq562Moore, J. H. (2003). The ubiquitous nature of epistasis in determining susceptibility to common human diseases. Human Heredity, 56(1–3), 73–82. https://doi.org/10.1159/000073735Moore, J. H., Hahn, L. W., Ritchie, M. D., Thornton, T. A., & White, B. C. (2004). Routine discovery of complex genetic models using genetic algorithms. Applied Soft Computing Journal, 4(1), 79–86. https://doi.org/10.1016/j.asoc.2003.08.003Morgan, A., Gandin, I., Belcaro, C., Palumbo, P., Palumbo, O., Biamino, E., Dal Col, V., Laurini, E., Pricl, S., Bosco, P., Carella, M., Ferrero, G. B., Romano, C., d’Adamo, A. P., Faletra, F., & Vozzi, D. (2015). Target sequencing approach intended to discover new mutations in non-syndromic intellectual disability. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 781, 32–36. https://doi.org/https://doi.org/10.1016/j.mrfmmm.2015.09.002Morris-Rosendahl, D. J., & Crocq, M. A. (2020). Neurodevelopmental disorders-the history and future of a diagnostic concept. Dialogues in Clinical Neuroscience, 22(1), 65–72. https://doi.org/10.31887/DCNS.2020.22.1/macrocqNewman, J. R. B., Concannon, P., & Ge, Y. (2023). UBASH3A Interacts with PTPN22 to Regulate IL2 Expression and Risk for Type 1 Diabetes. International Journal of Molecular Sciences, 24(10). https://doi.org/10.3390/ijms24108671Nodzenski, M., Shi, M., Krahn, J. M., Wise, A. S., Li, Y., Li, L., Umbach, D. M., & Weinberg, C. R. (2022). GADGETS: a genetic algorithm for detecting epistasis using nuclear families. Bioinformatics (Oxford, England), 38(4), 1052–1058. https://doi.org/10.1093/bioinformatics/btab766Ohi, K., Hashimoto, R., Yasuda, Y., Fukumoto, M., Yamamori, H., Umeda-Yano, S., Fujimoto, M., Iwase, M., Kazui, H., & Takeda, M. (2013). Influence of the NRGN gene on intellectual ability in schizophrenia. Journal of Human Genetics, 58(10), 700–705. https://doi.org/10.1038/jhg.2013.82Orfao, A., Benítez, J., Corrales, F., Martín-Subero, I., Ordovás, J. M., Carracedo, Á., & Lapunzina, P. (2019). Ciencias ónicas. 32. www.institutoroche.esPalsson, B. (2002). In silico biology through “omics.” Nature Biotechnology, 20(7), 649–650. https://doi.org/10.1038/nbt0702-649Park, C., Kim, J., Kim, J., & Park, S. (2018). Machine learning-based identification of genetic interactions from heterogeneous gene expression profiles. PLoS ONE, 13(7). https://doi.org/10.1371/journal.pone.0201056Park, M., Lee, J. W., Park, T., & Lee, S. (2020). Gene-Gene Interaction Analysis for the Survival Phenotype Based on the Kaplan-Meier Median Estimate. BioMed Research International, 2020. https://doi.org/10.1155/2020/5282345Paschou, P., Yu, D., Gerber, G., Evans, P., Tsetsos, F., Davis, L. K., Karagiannidis, I., Chaponis, J., Gamazon, E., Mueller-Vahl, K., Stuhrmann, M., Schloegelhofer, M., Stamenkovic, M., Hebebrand, J., Noethen, M., Nagy, P., Barta, C., Tarnok, Z., Rizzo, R., … Scharf, J. M. (2014). Genetic association signal near NTN4 in Tourette syndrome. Annals of Neurology, 76(2), 310–315. https://doi.org/10.1002/ana.24215Pattin, K. A., White, B. C., Barney, N., Gui, J., Nelson, H. H., Kelsey, K. T., Andrew, A. S., Karagas, M. R., & Moore, J. H. (2009). A computationally efficient hypothesis testing method for epistasis analysis using multifactor dimensionality reduction. Genetic Epidemiology, 33(1), 87–94. https://doi.org/10.1002/gepi.20360Perakakis, N., Yazdani, A., Karniadakis, G. E., & Mantzoros, C. (2018). Omics, big data and machine learning as tools to propel understanding of biological mechanisms and to discover novel diagnostics and therapeutics. In Metabolism: clinical and experimental (Vol. 87, pp. A1--A9). https://doi.org/10.1016/j.metabol.2018.08.002Pineda-Cirera, L., Shivalikanjli, A., Cabana-Domínguez, J., Demontis, D., Rajagopal, V. M., Børglum, A. D., Faraone, S. V, Cormand, B., & Fernàndez-Castillo, N. (2019). Exploring genetic variation that influences brain methylation in attention-deficit/hyperactivity disorder. Translational Psychiatry, 9(1). https://doi.org/10.1038/s41398-019-0574-7Piriyapongsa, J., Ngamphiw, C., Intarapanich, A., Kulawonganunchai, S., Assawamakin, A., Bootchai, C., Shaw, P. J., & Tongsima, S. (2012). iLOCi: a SNP interaction prioritization technique for detecting epistasis in genome-wide association studies. BMC Genomics, 13 Suppl 7. https://doi.org/10.1186/1471-2164-13-s7-s2Posar, A., & Visconti, P. (2017). Neurodevelopmental Disorders between Past and Future. Journal of Pediatric Neurosciences, 12(3), 301–302. https://doi.org/10.4103/jpn.JPN_95_17Price, K. M., Wigg, K. G., Feng, Y., Blokland, K., Wilkinson, M., He, G., Kerr, E. N., Carter, T.-C., Guger, S. L., Lovett, M. W., Strug, L. J., & Barr, C. L. (2020). Genome-wide association study of word reading: Overlap with risk genes for neurodevelopmental disorders. Genes, Brain and Behavior, 19(6). https://doi.org/10.1111/gbb.12648Qin, D. (2019). Next-generation sequencing and its clinical application. Cancer Biology and Medicine, 16(1), 4–10. https://doi.org/10.20892/j.issn.2095-3941.2018.0055Rauch, A., Hoyer, J., Guth, S., Zweier, C., Kraus, C., Becker, C., Zenker, M., Hüffmeier, U., Thiel, C., Rüschendorf, F., Nürnberg, P., Reis, A., & Trautmann, U. (2006). Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. American Journal of Medical Genetics. Part A, 140(19), 2063–2074. https://doi.org/10.1002/ajmg.a.31416Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., Fiegler, H., Shapero, M. H., Carson, A. R., Chen, W., Cho, E. K., Dallaire, S., Freeman, J. L., González, J. R., Gratacòs, M., Huang, J., Kalaitzopoulos, D., Komura, D., MacDonald, J. R., … Hurles, M. E. (2006). Global variation in copy number in the human genome. Nature, 444(7118), 444–454. https://doi.org/10.1038/nature05329Ritchie, M D, Hahn, L. W., Roodi, N., Bailey, L. R., Dupont, W. D., Parl, F. F., & Moore, J. H. (2001). Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. American Journal of Human Genetics, 69(1), 138–147. https://doi.org/10.1086/321276Ritchie, Marylyn D., & Van Steen, K. (2018). The search for gene-gene interactions in genome-wide association studies: challenges in abundance of methods, practical considerations, and biological interpretation. Annals of Translational Medicine, 6(8), 157–157. https://doi.org/10.21037/atm.2018.04.05Roston, A., Evans, D., Gill, H., McKinnon, M., Isidor, B., Cogné, B., Mwenifumbo, J., van Karnebeek, C., An, J., Jones, S. J. M., Farrer, M., Demos, M., Connolly, M., & Gibson, W. T. (2021). SETD1B-associated neurodevelopmental disorder. Journal of Medical Genetics, 58(3), 196–204. https://doi.org/10.1136/jmedgenet-2019-106756Saldarriaga, W., Forero-Forero, J. V., González-Teshima, L. Y., Fandiño-Losada, A., Isaza, C., Tovar-Cuevas, J. R., Silva, M., Choudhary, N. S., Tang, H.-T., Aguilar-Gaxiola, S., Hagerman, R. J., & Tassone, F. (2018). Genetic cluster of fragile X syndrome in a Colombian district. Journal of Human Genetics, 63(4), 509–516. https://doi.org/10.1038/s10038-017-0407-6Saldarriaga, W., Tassone, F., González-Teshima, L. Y., Forero-Forero, J. V., Ayala-Zapata, S., & Hagerman, R. (2014). Fragile X syndrome. Colombia Medica (Cali, Colombia), 45(4), 190–198.Savatt, J. M., & Myers, S. M. (2021). Genetic Testing in Neurodevelopmental Disorders. Frontiers in Pediatrics, 9, 526779. https://doi.org/10.3389/fped.2021.526779Shaffer, L. G., Bejjani, B. A., Torchia, B., Kirkpatrick, S., Coppinger, J., & Ballif, B. C. (2007). The identification of microdeletion syndromes and other chromosome abnormalities: cytogenetic methods of the past, new technologies for the future. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 145C(4), 335–345. https://doi.org/10.1002/ajmg.c.30152Sharp, A. J., Mefford, H. C., Li, K., Baker, C., Skinner, C., Stevenson, R. E., Schroer, R. J., Novara, F., De Gregori, M., Ciccone, R., Broomer, A., Casuga, I., Wang, Y., Xiao, C., Barbacioru, C., Gimelli, G., Bernardina, B. D., Torniero, C., Giorda, R., … Eichler, E. E. (2008). A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures. Nature Genetics, 40(3), 322–328. https://doi.org/10.1038/ng.93Shaw-Smith, C., Pittman, A. M., Willatt, L., Martin, H., Rickman, L., Gribble, S., Curley, R., Cumming, S., Dunn, C., Kalaitzopoulos, D., Porter, K., Prigmore, E., Krepischi-Santos, A. C. V, Varela, M. C., Koiffmann, C. P., Lees, A. J., Rosenberg, C., Firth, H. V, de Silva, R., & Carter, N. P. (2006). Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability. Nature Genetics, 38(9), 1032–1037. https://doi.org/10.1038/ng1858Sinoquet, C., & Niel, C. (2019). Ant colony optimization for markov blanket-based feature selection. Application for precision medicine: Vol. 11331 LNCS (pp. 217–230). https://doi.org/10.1007/978-3-030-13709-0_18Slavotinek, A. M. (2008). Novel microdeletion syndromes detected by chromosome microarrays. Human Genetics, 124(1), 1–17. https://doi.org/10.1007/s00439-008-0513-9Slim Lotfi AND Chatelain, C. A. N. D. A. C.-A. A. N. D. V. J.-P. (2020). Novel methods for epistasis detection in genome-wide association studies. PLOS ONE, 15(11), 1–18. https://doi.org/10.1371/journal.pone.0242927Spielman, R. S., McGinnis, R. E., & Ewens, W. J. (1993). Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). American Journal of Human Genetics, 52(3), 506–516.Srivastava, S., Love-Nichols, J. A., Dies, K. A., Ledbetter, D. H., Martin, C. L., Chung, W. K., Firth, H. V, Frazier, T., Hansen, R. L., Prock, L., Brunner, H., Hoang, N., Scherer, S. W., Sahin, M., & Miller, D. T. (2019). Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genetics in Medicine : Official Journal of the American College of Medical Genetics, 21(11), 2413–2421. https://doi.org/10.1038/s41436-019-0554-6Stessman, H. A. F., Willemsen, M. H., Fenckova, M., Penn, O., Hoischen, A., Xiong, B., Wang, T., Hoekzema, K., Vives, L., Vogel, I., Brunner, H. G., van der Burgt, I., Ockeloen, C. W., Schuurs-Hoeijmakers, J. H., Klein Wassink-Ruiter, J. S., Stumpel, C., Stevens, S. J. C., Vles, H. S., Marcelis, C. M., … Kleefstra, T. (2016). Disruption of POGZ Is Associated with Intellectual Disability and Autism Spectrum Disorders. The American Journal of Human Genetics, 98(3), 541–552. https://doi.org/https://doi.org/10.1016/j.ajhg.2016.02.004Sun, Y., Wang, X., Shang, J., Liu, J., Zheng, C., & Lei, X. (2018). Introducing Heuristic Information into Ant Colony Optimization Algorithm for Identifying Epistasis. In IEEE/ACM Transactions on Computational Biology and Bioinformatics. https://doi.org/10.1109/TCBB.2018.2879673Sung, P.-Y., Wang, Y.-T., Yu, Y.-W., & Chung, R.-H. (2016). An efficient gene-gene interaction test for genome-wide association studies in trio families. Bioinformatics, 32(12), 1848–1855. https://doi.org/10.1093/bioinformatics/btw077Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., Gable, A. L., Fang, T., Doncheva, N. T., Pyysalo, S., Bork, P., Jensen, L. J., & von Mering, C. (2023). The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research, 51(D1), D638–D646. https://doi.org/10.1093/nar/gkac1000Tărlungeanu, D. C., & Novarino, G. (2018). Genomics in neurodevelopmental disorders: an avenue to personalized medicine. Experimental and Molecular Medicine, 50(8), 100. https://doi.org/10.1038/s12276-018-0129-7Thapar, A., Cooper, M., & Rutter, M. (2017). Neurodevelopmental disorders. The Lancet Psychiatry, 4(4), 339–346. https://doi.org/10.1016/S2215-0366(16)30376-5Thornton-Wells, T. A., Moore, J. H., Martin, E. R., Pericak-Vance, M. A., & Haines, J. L. (2008). Confronting complexity in late-onset Alzheimer disease: application of two-stage analysis approach addressing heterogeneity and epistasis. Genetic Epidemiology, 32(3), 187–203. https://doi.org/https://doi.org/10.1002/gepi.20294Turner, S. D., Dudek, S. M., & Ritchie, M. D. (2010). ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci. BioData Mining, 3(1). https://doi.org/10.1186/1756-0381-3-5Van steen, K. (2012). Travelling the world of gene-gene interactions. Briefings in Bioinformatics, 13(1), 1–19. https://doi.org/10.1093/bib/bbr012Vanderweele, T. J. (2010). Epistatic interactions. Statistical Applications in Genetics and Molecular Biology, 9(1). https://doi.org/10.2202/1544-6115.1517Vantaggiato, C., Clementi, E., & Bassi, M. T. (2014). ZFYVE26/SPASTIZIN: a close link between complicated hereditary spastic paraparesis and autophagy. Autophagy, 10(2), 374–375. https://doi.org/10.4161/auto.27173Vissers, L. E. L. M., Gilissen, C., & Veltman, J. A. (2016). Genetic studies in intellectual disability and related disorders. Nature Reviews. Genetics, 17(1), 9–18. https://doi.org/10.1038/nrg3999Vissers, L. E. L. M., & Stankiewicz, P. (2012). Microdeletion and microduplication syndromes. Methods in Molecular Biology (Clifton, N.J.), 838, 29–75. https://doi.org/10.1007/978-1-61779-507-7_2Wang, K., Li, M., & Hakonarson, H. (2010). ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 38(16), e164. https://doi.org/10.1093/nar/gkq603Webber, C. (2017). Epistasis in Neuropsychiatric Disorders. Trends in Genetics : TIG, 33(4), 256–265. https://doi.org/10.1016/j.tig.2017.01.009Winston, P. H. (1992). Artificial Intelligence (3rd Ed.). Addison-Wesley Longman Publishing Co., Inc.Wong, A. K., Park, C. Y., Greene, C. S., Bongo, L. A., Guan, Y., & Troyanskaya, O. G. (2012). IMP: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks. Nucleic Acids Research, 40(Web Server issue), W484-90. https://doi.org/10.1093/nar/gks458World Health Organization. (2021). Autism spectrum disorders. https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disordersWright, C. F., FitzPatrick, D. R., & Firth, H. V. (2018). Paediatric genomics: Diagnosing rare disease in children. Nature Reviews Genetics, 19(5), 253–268. https://doi.org/10.1038/nrg.2017.116Xiang, X., Wang, S., Liu, T., Wang, M., Li, J., Jiang, J., Wu, T., & Hu, Y. (2020). Exploring gene–gene interaction in family-based data with an unsupervised machine learning method: EPISFA. Genetic Epidemiology. https://doi.org/10.1002/gepi.22342Xuan, J., Yu, Y., Qing, T., Guo, L., & Shi, L. (2013). Next-generation sequencing in the clinic: Promises and challenges. Cancer Letters, 340(2), 284–295. https://doi.org/10.1016/j.canlet.2012.11.025Yang, C.-H., Chuang, L.-Y., & Lin, Y.-D. (2017). Multiobjective differential evolution-based multifactor dimensionality reduction for detecting gene-gene interactions. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-12773-xZhang, X., Huang, S., Zou, F., & Wang, W. (2010). TEAM: Efficient two-locus epistasis tests in human genome-wide association study. Bioinformatics, 26(12), i217–i227. https://doi.org/10.1093/bioinformatics/btq186Zhang, Y., Chen, Y., & Hu, T. (2020). PANDA: Prioritization of autism-genes using network-based deep-learning approach. Genetic Epidemiology, 44(4), 382–394. https://doi.org/10.1002/gepi.22282Zhao, J., Zhu, Y., & Xiong, M. (2016). Genome-wide gene-gene interaction analysis for next-generation sequencing. European Journal of Human Genetics, 24(3), 421–428. https://doi.org/10.1038/ejhg.2015.147Zhou, Z. H., Liu, G. X., Su, L. T., Han, L., & Yan, L. (2014). Detecting epistasis by LASSO-penalized-model search algorithm in human Genome-Wide Association Studies (Vols. 989–994, pp. 2426–2430). https://doi.org/10.4028/www.scientific.net/AMR.989-994.2426EstudiantesInvestigadoresMedios de comunicaciónPadres y familiasPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86100/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1075680777.2024.pdf1075680777.2024.pdfTesis de Maestría en Bioinformáticaapplication/pdf14828365https://repositorio.unal.edu.co/bitstream/unal/86100/4/1075680777.2024.pdfc8b50d644a327d0b99af7b19e2968dbaMD54THUMBNAIL1075680777.2024.pdf.jpg1075680777.2024.pdf.jpgGenerated Thumbnailimage/jpeg4872https://repositorio.unal.edu.co/bitstream/unal/86100/5/1075680777.2024.pdf.jpg281cb4b1697f46d323972b2f69b7d5c6MD55unal/86100oai:repositorio.unal.edu.co:unal/861002024-08-24 23:13:06.535Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |