Resting state networks characterization for individual subjects assessment
Cumulative research in hemodynamic brain activity measured in resting state (RS) using functional magnetic resonance imaging (fMRI) suggests that healthy brain dynamics are distributed on large-scale spatial resting state networks (RSNs). These networks correspond to well-defined functional entities...
- Autores:
-
Guaje Guerra, Javier Ricardo
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/76906
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/76906
http://bdigital.unal.edu.co/73900/
- Palabra clave:
- Functional magnetic resonance imaging
Resting state
Spatial independent component analysis
Resting state networks
Template matching
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_d224522583edd9a96dc7b40741cf6a0b |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/76906 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gómez Jaramillo, Francisco AlbeiroGonzález Osorio, Fabio AugustoGuaje Guerra, Javier Ricardo0eca15ba-0d73-40db-903a-23c71fd7cc4c3002020-03-30T06:32:41Z2020-03-30T06:32:41Z2018-05-30https://repositorio.unal.edu.co/handle/unal/76906http://bdigital.unal.edu.co/73900/Cumulative research in hemodynamic brain activity measured in resting state (RS) using functional magnetic resonance imaging (fMRI) suggests that healthy brain dynamics are distributed on large-scale spatial resting state networks (RSNs). These networks correspond to well-defined functional entities that have been associated to different low and high brain order functions. Characterization of several pathological and pharmacological conditions have been studied by measuring the changes introduced in the RSNs by these affections, resulting on powerful and descriptive biomarkers. Most of these studies have been performed using methods devised for group level analysis. Nevertheless, the use of these biomarkers in diagnostic/prognostic tasks may require single subject level assessment. In addition, some brain conditions are characterized by a high intra-subject variability, which violates the underlying assumptions of most of the group based methods. Recently, a multiple template matching (MTM) approach was proposed to automatically recognize RSNs in individuals subject’s data. This method provides valuable information to assess subjects at individual level. In this work we propose a set of changes to the original MTM that improves the RSNs recognition task and also extends the functionality of the method. The key points of this improvement are: An standardization strategy and a modification of the method’s constraints in order to add flexibility. Additionally, we also present a novel approach to quantify the degree of trustworthiness for each RSN obtained by using template matching. The main idea is to use a double validation process in the following way: First, RSNs are identified in a curated dataset which we’ll call subjects of reference. Second, we propose to use these subjects of reference along with MTM to validate how much the template’s assignations coincide. Finally, we integrate these solutions into an open source framework built on top of one of the most popular tools used by the community. Our results suggest that the method will provide complementary information for characterization of RSNs at individual level.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de SistemasIngeniería de Sistemas62 Ingeniería y operaciones afines / EngineeringGuaje Guerra, Javier Ricardo (2018) Resting state networks characterization for individual subjects assessment. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.Resting state networks characterization for individual subjects assessmentTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMFunctional magnetic resonance imagingResting stateSpatial independent component analysisResting state networksTemplate matchingORIGINALJavierRicardoGuajeGuerra.2019.pdfapplication/pdf2215072https://repositorio.unal.edu.co/bitstream/unal/76906/1/JavierRicardoGuajeGuerra.2019.pdfe1b919cfa58b868b97161dc11b55d393MD51THUMBNAILJavierRicardoGuajeGuerra.2019.pdf.jpgJavierRicardoGuajeGuerra.2019.pdf.jpgGenerated Thumbnailimage/jpeg4162https://repositorio.unal.edu.co/bitstream/unal/76906/2/JavierRicardoGuajeGuerra.2019.pdf.jpgce380e30daa502c570102ed723f951ddMD52unal/76906oai:repositorio.unal.edu.co:unal/769062023-07-16 23:03:50.034Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Resting state networks characterization for individual subjects assessment |
title |
Resting state networks characterization for individual subjects assessment |
spellingShingle |
Resting state networks characterization for individual subjects assessment Functional magnetic resonance imaging Resting state Spatial independent component analysis Resting state networks Template matching |
title_short |
Resting state networks characterization for individual subjects assessment |
title_full |
Resting state networks characterization for individual subjects assessment |
title_fullStr |
Resting state networks characterization for individual subjects assessment |
title_full_unstemmed |
Resting state networks characterization for individual subjects assessment |
title_sort |
Resting state networks characterization for individual subjects assessment |
dc.creator.fl_str_mv |
Guaje Guerra, Javier Ricardo |
dc.contributor.author.spa.fl_str_mv |
Guaje Guerra, Javier Ricardo |
dc.contributor.spa.fl_str_mv |
Gómez Jaramillo, Francisco Albeiro González Osorio, Fabio Augusto |
dc.subject.proposal.spa.fl_str_mv |
Functional magnetic resonance imaging Resting state Spatial independent component analysis Resting state networks Template matching |
topic |
Functional magnetic resonance imaging Resting state Spatial independent component analysis Resting state networks Template matching |
description |
Cumulative research in hemodynamic brain activity measured in resting state (RS) using functional magnetic resonance imaging (fMRI) suggests that healthy brain dynamics are distributed on large-scale spatial resting state networks (RSNs). These networks correspond to well-defined functional entities that have been associated to different low and high brain order functions. Characterization of several pathological and pharmacological conditions have been studied by measuring the changes introduced in the RSNs by these affections, resulting on powerful and descriptive biomarkers. Most of these studies have been performed using methods devised for group level analysis. Nevertheless, the use of these biomarkers in diagnostic/prognostic tasks may require single subject level assessment. In addition, some brain conditions are characterized by a high intra-subject variability, which violates the underlying assumptions of most of the group based methods. Recently, a multiple template matching (MTM) approach was proposed to automatically recognize RSNs in individuals subject’s data. This method provides valuable information to assess subjects at individual level. In this work we propose a set of changes to the original MTM that improves the RSNs recognition task and also extends the functionality of the method. The key points of this improvement are: An standardization strategy and a modification of the method’s constraints in order to add flexibility. Additionally, we also present a novel approach to quantify the degree of trustworthiness for each RSN obtained by using template matching. The main idea is to use a double validation process in the following way: First, RSNs are identified in a curated dataset which we’ll call subjects of reference. Second, we propose to use these subjects of reference along with MTM to validate how much the template’s assignations coincide. Finally, we integrate these solutions into an open source framework built on top of one of the most popular tools used by the community. Our results suggest that the method will provide complementary information for characterization of RSNs at individual level. |
publishDate |
2018 |
dc.date.issued.spa.fl_str_mv |
2018-05-30 |
dc.date.accessioned.spa.fl_str_mv |
2020-03-30T06:32:41Z |
dc.date.available.spa.fl_str_mv |
2020-03-30T06:32:41Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/76906 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/73900/ |
url |
https://repositorio.unal.edu.co/handle/unal/76906 http://bdigital.unal.edu.co/73900/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de Sistemas Ingeniería de Sistemas |
dc.relation.haspart.spa.fl_str_mv |
62 Ingeniería y operaciones afines / Engineering |
dc.relation.references.spa.fl_str_mv |
Guaje Guerra, Javier Ricardo (2018) Resting state networks characterization for individual subjects assessment. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/76906/1/JavierRicardoGuajeGuerra.2019.pdf https://repositorio.unal.edu.co/bitstream/unal/76906/2/JavierRicardoGuajeGuerra.2019.pdf.jpg |
bitstream.checksum.fl_str_mv |
e1b919cfa58b868b97161dc11b55d393 ce380e30daa502c570102ed723f951dd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090146396504064 |