Evaluación del efecto de la torrefacción y la pirólisis lenta en el desarrollo de porosidad de carbones activados especiales obtenidos a partir de biomasa lignocelulósica
ilustraciones, diagramas
- Autores:
-
Cordoba Ramirez, Marlon Fabian
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/83829
- Palabra clave:
- 660 - Ingeniería química
330 - Economía::333 - Economía de la tierra y de la energía
Carbón activado
Recursos energéticos
Carbon, activated
Power resources
Torrefacción
Pirolisis lenta
Carbon activado
Biochar
Adsorción
Dioxido de carbono
Sulfuro de Hidrogeno
Area Superficial
Biomasa
Cuesco de palma
Torrefaction
Slow Pyrolysis
Activated Carbon
Biochar
Adsorption
Carbon dioxide
Hydrogen sulfur
Surface area
Biomass
Palm kernel shell
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_d209355d41f9d31decaccc9d6b628246 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/83829 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación del efecto de la torrefacción y la pirólisis lenta en el desarrollo de porosidad de carbones activados especiales obtenidos a partir de biomasa lignocelulósica |
dc.title.translated.eng.fl_str_mv |
On the evaluation of the effect of torrefaction and slow pyrolysis on the porosity development of special activated carbons obtained from lignocellulosic biomass |
title |
Evaluación del efecto de la torrefacción y la pirólisis lenta en el desarrollo de porosidad de carbones activados especiales obtenidos a partir de biomasa lignocelulósica |
spellingShingle |
Evaluación del efecto de la torrefacción y la pirólisis lenta en el desarrollo de porosidad de carbones activados especiales obtenidos a partir de biomasa lignocelulósica 660 - Ingeniería química 330 - Economía::333 - Economía de la tierra y de la energía Carbón activado Recursos energéticos Carbon, activated Power resources Torrefacción Pirolisis lenta Carbon activado Biochar Adsorción Dioxido de carbono Sulfuro de Hidrogeno Area Superficial Biomasa Cuesco de palma Torrefaction Slow Pyrolysis Activated Carbon Biochar Adsorption Carbon dioxide Hydrogen sulfur Surface area Biomass Palm kernel shell |
title_short |
Evaluación del efecto de la torrefacción y la pirólisis lenta en el desarrollo de porosidad de carbones activados especiales obtenidos a partir de biomasa lignocelulósica |
title_full |
Evaluación del efecto de la torrefacción y la pirólisis lenta en el desarrollo de porosidad de carbones activados especiales obtenidos a partir de biomasa lignocelulósica |
title_fullStr |
Evaluación del efecto de la torrefacción y la pirólisis lenta en el desarrollo de porosidad de carbones activados especiales obtenidos a partir de biomasa lignocelulósica |
title_full_unstemmed |
Evaluación del efecto de la torrefacción y la pirólisis lenta en el desarrollo de porosidad de carbones activados especiales obtenidos a partir de biomasa lignocelulósica |
title_sort |
Evaluación del efecto de la torrefacción y la pirólisis lenta en el desarrollo de porosidad de carbones activados especiales obtenidos a partir de biomasa lignocelulósica |
dc.creator.fl_str_mv |
Cordoba Ramirez, Marlon Fabian |
dc.contributor.advisor.none.fl_str_mv |
Chejne, Farid ALEAN VALLE, JADER DARIO Gómez Gutiérrez , Carlos Andrés |
dc.contributor.author.none.fl_str_mv |
Cordoba Ramirez, Marlon Fabian |
dc.contributor.researchgroup.spa.fl_str_mv |
Termodinámica Aplicada y Energías Alternativas |
dc.contributor.orcid.spa.fl_str_mv |
Cordoba Ramirez, Marlon [0000-0003-1242-9085] ALEAN VALLE, JADER DARIO [0000-0002-8759-5304] Gómez Gutiérrez, Carlos Andrés [0000-0003-1961-6289] |
dc.contributor.cvlac.spa.fl_str_mv |
CORDOBA RAMIREZ, MARLON FABIAN |
dc.subject.ddc.spa.fl_str_mv |
660 - Ingeniería química 330 - Economía::333 - Economía de la tierra y de la energía |
topic |
660 - Ingeniería química 330 - Economía::333 - Economía de la tierra y de la energía Carbón activado Recursos energéticos Carbon, activated Power resources Torrefacción Pirolisis lenta Carbon activado Biochar Adsorción Dioxido de carbono Sulfuro de Hidrogeno Area Superficial Biomasa Cuesco de palma Torrefaction Slow Pyrolysis Activated Carbon Biochar Adsorption Carbon dioxide Hydrogen sulfur Surface area Biomass Palm kernel shell |
dc.subject.lemb.spa.fl_str_mv |
Carbón activado Recursos energéticos |
dc.subject.lemb.eng.fl_str_mv |
Carbon, activated Power resources |
dc.subject.proposal.spa.fl_str_mv |
Torrefacción Pirolisis lenta Carbon activado Biochar Adsorción Dioxido de carbono Sulfuro de Hidrogeno Area Superficial Biomasa Cuesco de palma |
dc.subject.proposal.eng.fl_str_mv |
Torrefaction Slow Pyrolysis Activated Carbon Biochar Adsorption Carbon dioxide Hydrogen sulfur Surface area Biomass Palm kernel shell |
description |
ilustraciones, diagramas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-05-19T14:20:31Z |
dc.date.available.none.fl_str_mv |
2023-05-19T14:20:31Z |
dc.date.issued.none.fl_str_mv |
2023-05-16 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/83829 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/83829 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Y. A. Vargas Corredor and L. I. Pérez Pérez, “Aprovechamiento De Residuos Agroindustriales En El Mejoramiento De La Calidad Del Ambiente,” Revista facultad de ciencias básicas, vol. 14, no. 1, pp. 59–72, 2018, doi: 10.18359/rfcb.3108. UPME, Atlas de potencial energetico de la biomasa residual en Colombia. 2010. J. A. Ordoñez Loza, “Understanding bio-oil droplets microexplosions in oxyfuel combustion,” PhD Thesis, Universidad Nacional de Colombia, Medellin, 2021. F. Chejne, J. Montoya, C. Gomez, and E. Castillo, Pirólisis rápida de biomasa, 1st ed., no. December. Universidad Nacional de Colombia, Ecopetrol., 2013. [Online]. Available: https://www.researchgate.net/publication/281976634_Pirolisis_rapida_de_biomasa European Biochar Foundation (EBC), “European Biochar Certificate - Guidelines for a sustainable production of biochar,” Arbaz, Switzerland, Jan. 2022. Accessed: Jan. 28, 2023. [Online]. Available: http://european-biochar.org A. Tomczyk, Z. Sokołowska, and P. Boguta, “Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects,” Rev Environ Sci Biotechnol, vol. 19, no. 1, pp. 191–215, 2020, doi: 10.1007/s11157-020-09523-3. J. Tang, W. Zhu, R. Kookana, and A. Katayama, “Characteristics of biochar and its application in remediation of contaminated soil,” J Biosci Bioeng, vol. xx, no. xx, pp. 1–7, 2013, doi: 10.1016/j.jbiosc.2013.05.035. Z. Dai et al., “Potential role of biochars in decreasing soil acidification - A critical review,” Science of the Total Environment, vol. 581–582, pp. 601–611, 2017, doi: 10.1016/j.scitotenv.2016.12.169. S. Sohi, E. Lopez-capel, E. Krull, and R. Bol, “Biochar , climate change and soil : A review to guide future research,” no. February, 2009. H. Muhammad et al., “Study of soil microorganisms modified wheat straw and biochar for reducing cadmium leaching potential and bioavailability,” Chemosphere, vol. 273, p. 129644, 2021, doi: 10.1016/j.chemosphere.2021.129644. M. Kamali, L. Appels, E. E. Kwon, T. M. Aminabhavi, and R. Dewil, “Biochar in water and wastewater treatment - a sustainability assessment,” Chemical Engineering Journal, vol. 420, no. P1, p. 129946, 2021, doi: 10.1016/j.cej.2021.129946. L. Li, M. Yang, Q. Lu, W. Zhu, H. Ma, and L. Dai, “Oxygen-rich biochar from torrefaction: A versatile adsorbent for water pollution control,” Bioresour Technol, vol. 294, no. July, p. 122142, 2019, doi: 10.1016/j.biortech.2019.122142. M. B. Ahmed, J. L. Zhou, H. H. Ngo, W. Guo, and M. Chen, “Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater,” Bioresour Technol, vol. 214, pp. 836–851, 2016, doi: 10.1016/j.biortech.2016.05.057. P. A. da S. Veiga et al., “Production of high-performance biochar using a simple and low-cost method: Optimization of pyrolysis parameters and evaluation for water treatment,” J Anal Appl Pyrolysis, vol. 148, no. February, p. 104823, 2020, doi: 10.1016/j.jaap.2020.104823. Z. Z. Chowdhury, S. M. Zain, and R. A. Khan, “Preparation , characterization and adsorption performance of the KOH-activated carbons derived from kenaf fiber for lead ( II ) removal from waste water,” vol. 6, no. 29, pp. 6185–6196, 2011, doi: 10.5897/SRE11.1436. S. Li, X. Yuan, S. Deng, L. Zhao, and K. B. Lee, “A review on biomass-derived CO2 adsorption capture: Adsorbent, adsorber, adsorption, and advice,” Renewable and Sustainable Energy Reviews, vol. 152, p. 111708, 2021, doi: https://doi.org/10.1016/j.rser.2021.111708. B. R. Patra, A. Mukherjee, S. Nanda, and A. K. Dalai, “Biochar production, activation and adsorptive applications: a review,” Environ Chem Lett, vol. 19, no. 3, pp. 2237–2259, 2021, doi: 10.1007/s10311-020-01165-9. V. Gasquet, B. Kim, L. Sigot, and H. Benbelkacem, “H2S Adsorption from Biogas with Thermal Treatment Residues,” Waste Biomass Valorization, vol. 11, no. 10, pp. 5363–5373, Oct. 2020, doi: 10.1007/s12649-020-00998-3. X. J. Tong, J. Y. Li, J. H. Yuan, and R. K. Xu, “Adsorption of Cu(II) by biochars generated from three crop straws,” Chemical Engineering Journal, vol. 172, no. 2–3, pp. 828–834, 2011, doi: 10.1016/j.cej.2011.06.069. T. N. T. Izhar et al., “Adsorption of hydrogen sulfide (H2s) from municipal solid waste by using biochars,” Biointerface Res Appl Chem, vol. 12, no. 6, pp. 8057–8069, Dec. 2022, doi: 10.33263/BRIAC126.80578069. A. D. Granados Morales, “Studies of the Torrefaction of Sugarcane Bagasse and Poplar Wood Study of the Torrefaction of Sugarcane Bagasse and Poplar Wood,” PhD Dissertation, Universidad Nacional de Colombia, Medellin, 2017. Accessed: Nov. 29, 2021. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/60241 A. Zheng et al., “Effect of torrefaction on structure and fast pyrolysis behavior of corncobs,” Bioresour Technol, vol. 128, pp. 370–377, 2013, doi: 10.1016/j.biortech.2012.10.067. D. Chen et al., “Combined pretreatment with torrefaction and washing using torrefaction liquid products to yield upgraded biomass and pyrolysis products,” Bioresour Technol, vol. 228, pp. 62–68, 2017, doi: 10.1016/j.biortech.2016.12.088. H. Chen, X. Chen, Y. Qin, J. Wei, and H. Liu, “Effect of torrefaction on the properties of rice straw high temperature pyrolysis char: Pore structure, aromaticity and gasification activity,” Bioresour Technol, vol. 228, pp. 241–249, 2017, doi: 10.1016/j.biortech.2016.12.074. J. Park, J. Meng, K. H. Lim, O. J. Rojas, and S. Park, “Transformation of lignocellulosic biomass during torrefaction,” J Anal Appl Pyrolysis, vol. 100, pp. 199–206, 2013, doi: 10.1016/j.jaap.2012.12.024. M. R. Pelaez-Samaniego, V. Yadama, M. Garcia-Perez, E. Lowell, and A. G. McDonald, “Effect of temperature during wood torrefaction on the formation of lignin liquid intermediates,” J Anal Appl Pyrolysis, vol. 109, pp. 222–233, 2014, doi: 10.1016/j.jaap.2014.06.008. N. T. Sibiya et al., “Effect of different pre-treatment methods on gasification properties of grass biomass,” Renew Energy, vol. 170, pp. 875–883, 2021, doi: 10.1016/j.renene.2021.01.147. Q. He, Q. Guo, L. Ding, J. Wei, and G. Yu, “CO2 gasification of char from raw and torrefied biomass: Reactivity, kinetics and mechanism analysis,” Bioresour Technol, vol. 293, no. August, 2019, doi: 10.1016/j.biortech.2019.122087. S. Zhang, B. Hu, L. Zhang, and Y. Xiong, “Effects of torrefaction on yield and quality of pyrolysis char and its application on preparation of activated carbon,” J Anal Appl Pyrolysis, vol. 119, pp. 217–223, 2016, doi: 10.1016/j.jaap.2016.03.002. P. Wang, Y. Su, Y. Xie, S. Zhang, and Y. Xiong, “Influence of torrefaction on properties of activated carbon obtained from physical activation of pyrolysis char,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 00, no. 00, pp. 1–11, 2018, doi: 10.1080/15567036.2018.1555628. H. Yang, B. Huan, Y. Chen, Y. Gao, J. Li, and H. Chen, “Biomass-Based Pyrolytic Polygeneration System for Bamboo Industry Waste: Evolution of the Char Structure and the Pyrolysis Mechanism,” Energy and Fuels, vol. 30, no. 8, pp. 6430–6439, 2016, doi: 10.1021/acs.energyfuels.6b00732. Z. Ma et al., “Evolution of the chemical composition, functional group, pore structure and crystallographic structure of bio-char from palm kernel shell pyrolysis under different temperatures,” J Anal Appl Pyrolysis, vol. 127, pp. 350–359, Sep. 2017, doi: 10.1016/j.jaap.2017.07.015. . Li, K. Yang, J. Peng, L. Zhang, S. Guo, and H. Xia, “Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars,” Ind Crops Prod, vol. 28, no. 2, pp. 190–198, 2008, doi: 10.1016/j.indcrop.2008.02.012. T. Kan, V. Strezov, and T. J. Evans, “Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters,” Renewable and Sustainable Energy Reviews, vol. 57, pp. 126–1140, 2016, doi: 10.1016/j.rser.2015.12.185. S. Aninda Dhar, T. Us Sakib, and L. Naher Hilary, “Effects of pyrolysis temperature on production and physicochemical characterization of biochar derived from coconut fiber biomass through slow pyrolysis process,” Biomass Convers Biorefin, vol. 12, pp. 2631–2647, 2022, doi: 10.1007/s13399-020-01116-y/Published. E. Scapin et al., “Activated carbon from rice husk biochar with high surface area,” Biointerface Res Appl Chem, vol. 11, no. 3, pp. 10265–10277, 2021, doi: 10.33263/BRIAC113.1026510277. M. Gayathiri, T. Pulingam, K. T. Lee, and K. Sudesh, “Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism,” Chemosphere, vol. 294. Elsevier Ltd, May 01, 2022. doi: 10.1016/j.chemosphere.2022.133764. C. Bouchelta, M. S. Medjram, M. Zoubida, F. A. Chekkat, N. Ramdane, and J. P. Bellat, “Effects of pyrolysis conditions on the porous structure development of date pits activated carbon,” J Anal Appl Pyrolysis, vol. 94, pp. 215–222, 2012, doi: 10.1016/j.jaap.2011.12.014 P. González-García, “Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications,” Renewable and Sustainable Energy Reviews, vol. 82, no. August 2017, pp. 1393–1414, 2018, doi: 10.1016/j.rser.2017.04.117. J. Pallarés, A. González-Cencerrado, and I. Arauzo, “Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam,” Biomass Bioenergy, vol. 115, no. April, pp. 64–73, 2018, doi: 10.1016/j.biombioe.2018.04.015. X. Zhu, R. Zhang, S. Rong, L. Zhang, and C. Ma, “A systematic preparation mechanism for directional regulation of pore structure in activated carbon including specific surface area and pore hierarchy,” J Anal Appl Pyrolysis, vol. 158, Sep. 2021, doi: 10.1016/j.jaap.2021.105266. Q. Jia and A. C. Lua, “Effects of pyrolysis conditions on the physical characteristics of oil-palm-shell activated carbons used in aqueous phase phenol adsorption,” J Anal Appl Pyrolysis, vol. 83, no. 2, pp. 175–179, 2008, doi: 10.1016/j.jaap.2008.08.001. S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of Gases in Multimolecular Layers,” J Am Chem Soc, vol. 60, no. 2, pp. 309–319, 1938, doi: 10.1021/ja01269a023. N. Gil-Lalaguna et al., “CO2 adsorption on pyrolysis char from protein-containing livestock waste: How do proteins affect?,” Science of the Total Environment, vol. 846, no. July, 2022, doi: 10.1016/j.scitotenv.2022.157395. Q. Ma, W. Chen, Z. Jin, L. Chen, Q. Zhou, and X. Jiang, “One-step synthesis of microporous nitrogen-doped biochar for efficient removal of CO2 and H2S,” Fuel, vol. 289, Apr. 2021, doi: 10.1016/j.fuel.2020.119932. A. Mukherjee, J. A. Okolie, C. Niu, and A. K. Dalai, “Experimental and Modeling Studies of Torrefaction of Spent Coffee Grounds and Coffee Husk: Effects on Surface Chemistry and Carbon Dioxide Capture Performance,” ACS Omega, vol. 7, no. 1, pp. 638–653, Jan. 2022, doi: 10.1021/acsomega.1c05270. D. Chen, A. Gao, K. Cen, J. Zhang, X. Cao, and Z. Ma, “Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin,” Energy Convers Manag, vol. 169, no. April, pp. 228–237, 2018, doi: 10.1016/j.enconman.2018.05.063. G. Dai, Q. Zou, S. Wang, Y. Zhao, L. Zhu, and Q. Huang, “Effect of Torrefaction on the Structure and Pyrolysis Behavior of Lignin,” Energy and Fuels, vol. 32, no. 4, pp. 4160–4166, Apr. 2018, doi: 10.1021/acs.energyfuels.7b03038. R. Li et al., “Regulation of the elemental distribution in biomass by the torrefaction pretreatment using different atmospheres and its influence on the subsequent pyrolysis behaviors,” Fuel Processing Technology, vol. 222, Nov. 2021, doi: 10.1016/j.fuproc.2021.106983. Z. Ma, D. Chen, J. Gu, B. Bao, and Q. Zhang, “Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods,” Energy Convers Manag, vol. 89, pp. 251–259, 2015, doi: https://doi.org/10.1016/j.enconman.2014.09.074. J. Wannapeera, B. Fungtammasan, and N. Worasuwannarak, “Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass,” J Anal Appl Pyrolysis, vol. 92, no. 1, pp. 99–105, 2011, doi: 10.1016/j.jaap.2011.04.010. L. Cao et al., “Thermogravimetric characteristics and kinetics analysis of oil cake and torrefied biomass blends,” Fuel, vol. 175, pp. 129–136, 2016, doi: 10.1016/j.fuel.2016.01.089. A. Zheng et al., “Comparison of the effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs,” Bioresour Technol, vol. 176, pp. 15–22, 2015, doi: 10.1016/j.biortech.2014.10.157. F. Barontini, E. Biagini, and L. Tognotti, “Influence of Torrefaction on Biomass Devolatilization,” ACS Omega, vol. 6, no. 31, pp. 20264–20278, Aug. 2021, doi: 10.1021/acsomega.1c02141. W. Suliman, J. B. Harsh, N. I. Abu-Lail, A. M. Fortuna, I. Dallmeyer, and M. Garcia-Perez, “Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties,” Biomass Bioenergy, vol. 84, pp. 37–48, 2016, doi: 10.1016/j.biombioe.2015.11.010. L. Li et al., “Uncovering Structure-Reactivity Relationships in Pyrolysis and Gasification of Biomass with Varying Severity of Torrefaction,” ACS Sustain Chem Eng, vol. 6, no. 5, pp. 6008–6017, 2018, doi: 10.1021/acssuschemeng.7b04649. C. Bouchelta, M. S. Medjram, M. Zoubida, F. A. Chekkat, N. Ramdane, and J. P. Bellat, “Effects of pyrolysis conditions on the porous structure development of date pits activated carbon,” J Anal Appl Pyrolysis, vol. 94, pp. 215–222, 2012, doi: 10.1016/j.jaap.2011.12.014. Z. Ma et al., “Evolution of the chemical composition , functional group , pore structure and crystallographic structure of bio-char from palm kernel shell pyrolysis under di ff erent temperatures,” J Anal Appl Pyrolysis, vol. 127, no. 38, pp. 350–359, 2017, doi: 10.1016/j.jaap.2017.07.015. Z. Ma, Q. Sun, J. Ye, Q. Yao, and C. Zhao, “Study on the thermal degradation behaviors and kinetics of alkali lignin for production of phenolic-rich bio-oil using TGA–FTIR and Py–GC/MS,” J Anal Appl Pyrolysis, vol. 117, pp. 116–124, 2016, doi: https://doi.org/10.1016/j.jaap.2015.12.007. S. Kanwal, N. Chaudhry, S. Munir, and H. Sana, “Effect of torrefaction conditions on the physicochemical characterization of agricultural waste (sugarcane bagasse),” Waste Management, vol. 88, pp. 280–290, 2019, doi: 10.1016/j.wasman.2019.03.053. L. Shang et al., “Changes of chemical and mechanical behavior of torrefied wheat straw,” Biomass Bioenergy, vol. 40, pp. 63–70, 2012, doi: 10.1016/j.biombioe.2012.01.049. G. Dai, Q. Zou, S. Wang, Y. Zhao, L. Zhu, and Q. Huang, “Effect of Torrefaction on the Structure and Pyrolysis Behavior of Lignin,” Energy and Fuels, vol. 32, no. 4, pp. 4160–4166, Apr. 2018, doi: 10.1021/acs.energyfuels.7b03038. M. I. Al-Wabel, A. Al-Omran, A. H. El-Naggar, M. Nadeem, and A. R. A. Usman, “Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes,” Bioresour Technol, vol. 131, pp. 374–379, 2013, doi: 10.1016/j.biortech.2012.12.165. M. Thommes et al., “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report),” 2015. doi: 10.1515/pac-2014-1117. F. Chejne, J. C. Maya, R. Macías, and A. G. Carlos, “On the evolution of pore microstructure during coal char activation with steam / CO 2 mixtures,” Carbon N Y, vol. 158, 2020, doi: 10.1016/j.carbon.2019.11.088. E. Arenas and F. Chejne, “The effect of the activating agent and temperature on the porosity development of physically activated coal chars,” Carbon N Y, vol. 42, no. 12–13, pp. 2451–2455, 2004, doi: 10.1016/j.carbon.2004.04.041. K. Yang, J. Peng, C. Srinivasakannan, L. Zhang, H. Xia, and X. Duan, “Preparation of high surface area activated carbon from coconut shells using microwave heating,” Bioresour Technol, vol. 101, no. 15, pp. 6163–6169, 2010, doi: 10.1016/j.biortech.2010.03.001. F. Ahmad, W. M. A. W. Daud, M. A. Ahmad, R. Radzi, and A. A. Azmi, “The effects of CO2 activation, on porosity and surface functional groups of cocoa (Theobroma cacao) - Shell based activated carbon,” J Environ Chem Eng, vol. 1, no. 3, pp. 378–388, Sep. 2013, doi: 10.1016/j.jece.2013.06.004. E. Orrego Restrepo, “Cambios estructurales fisicoquímicos de la biomasa durante la pirólisis lenta,” Universidad Nacional de Colombia, Medellin, 2021. Accessed: Oct. 16, 2022. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/79780 N. Adilla Rashidi, A. Bokhari, and S. Yusup, “Evaluation of kinetics and mechanism properties of CO 2 adsorption onto the palm kernel shell activated carbon,” Environmental Science and Pollution Research, vol. 28, pp. 33967–33979, 2021, doi: 10.1007/s11356-020-08823-z/Published. C. Wang et al., “Adsorption of water on carbon materials: The formation of ‘water bridge’ and its effect on water adsorption,” Colloids Surf A Physicochem Eng Asp, vol. 631, Dec. 2021, doi: 10.1016/j.colsurfa.2021.127719. M. C. Castrillon et al., “CO2 and H2S Removal from CH4-Rich Streams by Adsorption on Activated Carbons Modified with K2CO3, NaOH, or Fe2O3,” Energy and Fuels, vol. 30, no. 11, pp. 9596–9604, Nov. 2016, doi: 10.1021/acs.energyfuels.6b01667. I. Majchrzak-Kucęba and M. Sołtysik, “The potential of biocarbon as CO2 adsorbent in VPSA unit,” J Therm Anal Calorim, vol. 142, no. 1, pp. 267–273, Oct. 2020, doi: 10.1007/s10973-020-09858-7. A. C. Fernandes et al., “Storage and delivery of H2S by microporous and mesoporous materials,” Microporous and Mesoporous Materials, vol. 320, Jun. 2021, doi: 10.1016/j.micromeso.2021.111093. F. Cheng and X. Li, “Preparation and application of biochar-based catalysts for biofuel production,” Catalysts, vol. 8, no. 9, pp. 1–35, 2018, doi: 10.3390/catal8090346. R. Ranguin et al., “Biochar and activated carbons preparation from invasive algae Sargassum spp. For Chlordecone availability reduction in contaminated soils,” J Environ Chem Eng, vol. 9, no. 4, p. 105280, 2021, doi: 10.1016/j.jece.2021.105280. S. Zhang, T. Chen, Y. Xiong, and Q. Dong, “Effects of wet torrefaction on the physicochemical properties and pyrolysis product properties of rice husk,” Energy Convers Manag, vol. 141, pp. 403–409, 2017, doi: 10.1016/j.enconman.2016.10.002. S. Sethupathi et al., “Biochars as potential adsorbers of CH4, CO2 and H2S,” Sustainability (Switzerland), vol. 9, no. 1, 2017, doi: 10.3390/su9010121. A. Sharma, J. Jindal, A. Mittal, K. Kumari, S. Maken, and N. Kumar, “Carbon materials as CO2 adsorbents: a review,” Environ Chem Lett, vol. 19, no. 2, pp. 875–910, 2021, doi: 10.1007/s10311-020-01153-z. J. Y. Lai, L. H. Ngu, S. S. Hashim, J. J. Chew, and J. Sunarso, “Review of oil palm-derived activated carbon for CO2 capture,” Carbon Letters, vol. 31, no. 2. Springer, pp. 201–252, Apr. 01, 2021. doi: 10.1007/s42823-020-00206-1. B. Aghel, S. Behaein, and F. Alobiad, “CO2 capture from biogas by biomass-based adsorbents: A review,” Fuel, vol. 328. Elsevier Ltd, Nov. 15, 2022. doi: 10.1016/j.fuel.2022.125276. K. S. Ro et al., “Pilot-scale h2s and swine odor removal system using commercially available biochar,” Agronomy, vol. 11, no. 8, Aug. 2021, doi: 10.3390/agronomy11081611. N. Gil-Lalaguna et al., “CO2 adsorption on pyrolysis char from protein-containing livestock waste: How do proteins affect?,” Science of the Total Environment, vol. 846, Nov. 2022, doi: 10.1016/j.scitotenv.2022.157395. M. M. Dubinin, “FUNDAMENTALS OF THE THEORY OF ADSORPTION IN MICROPORES OF CARBON ADSORBENTS: CHARACTERISTICS OF THEIR ADSORPTION PROPERTIES AND MICROPOROUS STRUCTURES,” 1989. N. S. Nasri, U. D. Hamza, S. N. Ismail, M. M. Ahmed, and R. Mohsin, “Assessment of porous carbons derived from sustainable palm solid waste for carbon dioxide capture,” in Journal of Cleaner Production, Elsevier Ltd, May 2014, pp. 148–157. doi: 10.1016/j.jclepro.2013.11.053. M. S. Khosrowshahi et al., “The role of surface chemistry on CO2 adsorption in biomass-derived porous carbons by experimental results and molecular dynamics simulations,” Sci Rep, vol. 12, no. 1, pp. 1–19, Dec. 2022, doi: 10.1038/s41598-022-12596-5. C. Goel, S. Mohan, and P. Dinesha, “CO2 capture by adsorption on biomass-derived activated char: A review,” Science of the Total Environment, vol. 798. Elsevier B.V., Dec. 01, 2021. doi: 10.1016/j.scitotenv.2021.149296. J. Chen et al., “Enhanced CO2 Capture Capacity of Nitrogen-Doped Biomass-Derived Porous Carbons,” ACS Sustain Chem Eng, vol. 4, no. 3, pp. 1439–1445, Mar. 2016, doi: 10.1021/acssuschemeng.5b01425. S. Ding and Y. Liu, “Adsorption of CO2 from flue gas by novel seaweed-based KOH-activated porous biochars,” Fuel, vol. 260, Jan. 2020, doi: 10.1016/j.fuel.2019.116382. F. Sun et al., “Nitrogen-rich mesoporous carbons: Highly efficient, regenerable metal-free catalysts for low-temperature oxidation of H2S,” ACS Catal, vol. 3, no. 5, pp. 862–870, May 2013, doi: 10.1021/cs300791j. A. Bagreev and T. J. Bandosz, “On the mechanism of hydrogen sulfide removal from moist air on catalytic carbonaceous adsorbents,” Ind Eng Chem Res, vol. 44, no. 3, pp. 530–538, Feb. 2005, doi: 10.1021/ie049277o. F. Sun, J. Gao, X. Liu, Y. Yang, and S. Wu, “Controllable nitrogen introduction into porous carbon with porosity retaining for investigating nitrogen doping effect on SO2 adsorption,” Chemical Engineering Journal, vol. 290, pp. 116–124, Apr. 2016, doi: 10.1016/j.cej.2015.12.044. N. Marquez Ruiz, “Evaluación del efecto de la aplicación de biochar en suelos agrícolas basado en la migración de nutrientes,” Master Thesis, Universidad Nacional de Colombia, Medellin, 2022. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xviii, 103 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/83829/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/83829/2/1118859846.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/83829/3/1118859846.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 8f7ced422f73081e02fac57b784d13b3 1f50de4188f0adab3c82a09dc9ed3685 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089824442777600 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Chejne, Faride4e077b1965b5e48b729e0a9d8c1cbc0600ALEAN VALLE, JADER DARIO12d0af9b5975a1e4dbe076571d9a5f86600Gómez Gutiérrez , Carlos Andrés22bc2ea35ed934c235ca762e83359923600Cordoba Ramirez, Marlon Fabian465b4b1089265d2d510394ab51275bd2600Termodinámica Aplicada y Energías AlternativasCordoba Ramirez, Marlon [0000-0003-1242-9085]ALEAN VALLE, JADER DARIO [0000-0002-8759-5304]Gómez Gutiérrez, Carlos Andrés [0000-0003-1961-6289]CORDOBA RAMIREZ, MARLON FABIAN2023-05-19T14:20:31Z2023-05-19T14:20:31Z2023-05-16https://repositorio.unal.edu.co/handle/unal/83829Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEn esta tesis se estudió el efecto de la torrefacción y la pirólisis lenta en el desarrollo de porosidad y cambios estructurales orientados a la obtención de carbones activados a partir de un residuo lignocelulósico (cuesco de palma). Para tal fin, se llevó a cabo un análisis del efecto de la torrefacción a diferentes temperaturas como etapa de tratamiento previo, proponiendo una ruta torrefacción – pirólisis lenta – activación. A partir de esto, se encontraron cambios en la dinámica de desvolatilización y recomposición del material, hallando que la torrefacción previa favorece las reacciones de descarbonilación reflejadas en pérdidas de compuestos y grupos funcionales vía CO2, que no son evidentes a partir de la pirólisis directa del material. Adicionalmente, Se llevó a cabo una caracterización detallada del biochar obtenido a diferentes temperaturas de pirólisis (220, 250, 280, 350, 550 y 700°C) para tener una visión completa de cómo evoluciona la estructura porosa a medida que se avanza en el proceso de pirólisis lenta. También se evaluó el efecto de las condiciones de activación, tomando en cuenta distintos tiempos de proceso (2-6 horas) y el uso de diferentes atmósferas, como CO2 y vapor de agua. A partir de este análisis, se pudo determinar que la temperatura de pirólisis tiene un gran impacto en el desarrollo de una matriz porosa previa, que se aclara y se define mejor tras la activación. Finalmente, se analizó cómo estos cambios previamente mencionados afectan el desempeño del biochar y el carbón activado como materiales adsorbentes de CO2 y H2S, encontrando importantes diferencias en su comportamiento con cada uno de estos gases, relacionadas tanto con la estructura porosa como con la química superficial. (Texto tomado de la fuente)In this thesis, the effect of torrefaction and slow pyrolysis on the development of porosity and structural changes aimed at obtaining activated carbons from a lignocellulosic residue (palm kernel shell) was studied. To this end, a detailed analysis of the effect of torrefaction at different temperatures as a pretreatment stage was carried out, proposing a torrefaction - slow pyrolysis - activation route; the biochar and activated carbon obtained from this route were compared with those obtained by direct pyrolysis. From this, changes in the dynamics of devolatilization and recomposition of the material were confirmed, finding as main finding that the previous torrefaction favors more decarbonylation reactions reflected in loss of compounds and functional groups via CO2 liberation, which are not evident from the direct pyrolysis of the material. Additionally, a detailed characterization of the biochar obtained at different temperatures (220, 250, 280, 350, 550 and 700°C) was carried out to have a complete view of how the porous structure evolves as the slow pyrolysis process progresses. The effect of activation conditions was also evaluated, considering different process times (2-6 hours) and the use of different atmospheres, such as CO2 and steam. From this analysis, it could be determined that the pyrolysis temperature has a great impact on the development of a porous pre-matrix, which becomes clearer and better defined after activation. Finally, it was analyzed how these previously mentioned changes affect the performance of biochar and activated carbon as CO2 and H2S adsorbent materials, finding important differences in their behavior with each of these gases, related to both the porous structure and the surface chemistry.Convocatoria 788 de ecosistemas científicos de Colciencias, contrato número FP44842-210-2018 y a la red “Alliance for Biomass and Sustainability Research (ABISURE), Universidad Nacional de Colombia", código Hermes 53024DoctoradoDoctor en IngenieríaSistemas energéticosÁrea curricular de Ingeniería Química e Ingeniería de Petróleosxviii, 103 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - Sistemas EnergéticosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín660 - Ingeniería química330 - Economía::333 - Economía de la tierra y de la energíaCarbón activadoRecursos energéticosCarbon, activatedPower resourcesTorrefacciónPirolisis lentaCarbon activadoBiocharAdsorciónDioxido de carbonoSulfuro de HidrogenoArea SuperficialBiomasaCuesco de palmaTorrefactionSlow PyrolysisActivated CarbonBiocharAdsorptionCarbon dioxideHydrogen sulfurSurface areaBiomassPalm kernel shellEvaluación del efecto de la torrefacción y la pirólisis lenta en el desarrollo de porosidad de carbones activados especiales obtenidos a partir de biomasa lignocelulósicaOn the evaluation of the effect of torrefaction and slow pyrolysis on the porosity development of special activated carbons obtained from lignocellulosic biomassTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDY. A. Vargas Corredor and L. I. Pérez Pérez, “Aprovechamiento De Residuos Agroindustriales En El Mejoramiento De La Calidad Del Ambiente,” Revista facultad de ciencias básicas, vol. 14, no. 1, pp. 59–72, 2018, doi: 10.18359/rfcb.3108.UPME, Atlas de potencial energetico de la biomasa residual en Colombia. 2010.J. A. Ordoñez Loza, “Understanding bio-oil droplets microexplosions in oxyfuel combustion,” PhD Thesis, Universidad Nacional de Colombia, Medellin, 2021.F. Chejne, J. Montoya, C. Gomez, and E. Castillo, Pirólisis rápida de biomasa, 1st ed., no. December. Universidad Nacional de Colombia, Ecopetrol., 2013. [Online]. Available: https://www.researchgate.net/publication/281976634_Pirolisis_rapida_de_biomasaEuropean Biochar Foundation (EBC), “European Biochar Certificate - Guidelines for a sustainable production of biochar,” Arbaz, Switzerland, Jan. 2022. Accessed: Jan. 28, 2023. [Online]. Available: http://european-biochar.orgA. Tomczyk, Z. Sokołowska, and P. Boguta, “Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects,” Rev Environ Sci Biotechnol, vol. 19, no. 1, pp. 191–215, 2020, doi: 10.1007/s11157-020-09523-3.J. Tang, W. Zhu, R. Kookana, and A. Katayama, “Characteristics of biochar and its application in remediation of contaminated soil,” J Biosci Bioeng, vol. xx, no. xx, pp. 1–7, 2013, doi: 10.1016/j.jbiosc.2013.05.035.Z. Dai et al., “Potential role of biochars in decreasing soil acidification - A critical review,” Science of the Total Environment, vol. 581–582, pp. 601–611, 2017, doi: 10.1016/j.scitotenv.2016.12.169.S. Sohi, E. Lopez-capel, E. Krull, and R. Bol, “Biochar , climate change and soil : A review to guide future research,” no. February, 2009.H. Muhammad et al., “Study of soil microorganisms modified wheat straw and biochar for reducing cadmium leaching potential and bioavailability,” Chemosphere, vol. 273, p. 129644, 2021, doi: 10.1016/j.chemosphere.2021.129644.M. Kamali, L. Appels, E. E. Kwon, T. M. Aminabhavi, and R. Dewil, “Biochar in water and wastewater treatment - a sustainability assessment,” Chemical Engineering Journal, vol. 420, no. P1, p. 129946, 2021, doi: 10.1016/j.cej.2021.129946.L. Li, M. Yang, Q. Lu, W. Zhu, H. Ma, and L. Dai, “Oxygen-rich biochar from torrefaction: A versatile adsorbent for water pollution control,” Bioresour Technol, vol. 294, no. July, p. 122142, 2019, doi: 10.1016/j.biortech.2019.122142.M. B. Ahmed, J. L. Zhou, H. H. Ngo, W. Guo, and M. Chen, “Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater,” Bioresour Technol, vol. 214, pp. 836–851, 2016, doi: 10.1016/j.biortech.2016.05.057.P. A. da S. Veiga et al., “Production of high-performance biochar using a simple and low-cost method: Optimization of pyrolysis parameters and evaluation for water treatment,” J Anal Appl Pyrolysis, vol. 148, no. February, p. 104823, 2020, doi: 10.1016/j.jaap.2020.104823.Z. Z. Chowdhury, S. M. Zain, and R. A. Khan, “Preparation , characterization and adsorption performance of the KOH-activated carbons derived from kenaf fiber for lead ( II ) removal from waste water,” vol. 6, no. 29, pp. 6185–6196, 2011, doi: 10.5897/SRE11.1436.S. Li, X. Yuan, S. Deng, L. Zhao, and K. B. Lee, “A review on biomass-derived CO2 adsorption capture: Adsorbent, adsorber, adsorption, and advice,” Renewable and Sustainable Energy Reviews, vol. 152, p. 111708, 2021, doi: https://doi.org/10.1016/j.rser.2021.111708.B. R. Patra, A. Mukherjee, S. Nanda, and A. K. Dalai, “Biochar production, activation and adsorptive applications: a review,” Environ Chem Lett, vol. 19, no. 3, pp. 2237–2259, 2021, doi: 10.1007/s10311-020-01165-9.V. Gasquet, B. Kim, L. Sigot, and H. Benbelkacem, “H2S Adsorption from Biogas with Thermal Treatment Residues,” Waste Biomass Valorization, vol. 11, no. 10, pp. 5363–5373, Oct. 2020, doi: 10.1007/s12649-020-00998-3.X. J. Tong, J. Y. Li, J. H. Yuan, and R. K. Xu, “Adsorption of Cu(II) by biochars generated from three crop straws,” Chemical Engineering Journal, vol. 172, no. 2–3, pp. 828–834, 2011, doi: 10.1016/j.cej.2011.06.069.T. N. T. Izhar et al., “Adsorption of hydrogen sulfide (H2s) from municipal solid waste by using biochars,” Biointerface Res Appl Chem, vol. 12, no. 6, pp. 8057–8069, Dec. 2022, doi: 10.33263/BRIAC126.80578069.A. D. Granados Morales, “Studies of the Torrefaction of Sugarcane Bagasse and Poplar Wood Study of the Torrefaction of Sugarcane Bagasse and Poplar Wood,” PhD Dissertation, Universidad Nacional de Colombia, Medellin, 2017. Accessed: Nov. 29, 2021. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/60241A. Zheng et al., “Effect of torrefaction on structure and fast pyrolysis behavior of corncobs,” Bioresour Technol, vol. 128, pp. 370–377, 2013, doi: 10.1016/j.biortech.2012.10.067.D. Chen et al., “Combined pretreatment with torrefaction and washing using torrefaction liquid products to yield upgraded biomass and pyrolysis products,” Bioresour Technol, vol. 228, pp. 62–68, 2017, doi: 10.1016/j.biortech.2016.12.088.H. Chen, X. Chen, Y. Qin, J. Wei, and H. Liu, “Effect of torrefaction on the properties of rice straw high temperature pyrolysis char: Pore structure, aromaticity and gasification activity,” Bioresour Technol, vol. 228, pp. 241–249, 2017, doi: 10.1016/j.biortech.2016.12.074.J. Park, J. Meng, K. H. Lim, O. J. Rojas, and S. Park, “Transformation of lignocellulosic biomass during torrefaction,” J Anal Appl Pyrolysis, vol. 100, pp. 199–206, 2013, doi: 10.1016/j.jaap.2012.12.024.M. R. Pelaez-Samaniego, V. Yadama, M. Garcia-Perez, E. Lowell, and A. G. McDonald, “Effect of temperature during wood torrefaction on the formation of lignin liquid intermediates,” J Anal Appl Pyrolysis, vol. 109, pp. 222–233, 2014, doi: 10.1016/j.jaap.2014.06.008.N. T. Sibiya et al., “Effect of different pre-treatment methods on gasification properties of grass biomass,” Renew Energy, vol. 170, pp. 875–883, 2021, doi: 10.1016/j.renene.2021.01.147.Q. He, Q. Guo, L. Ding, J. Wei, and G. Yu, “CO2 gasification of char from raw and torrefied biomass: Reactivity, kinetics and mechanism analysis,” Bioresour Technol, vol. 293, no. August, 2019, doi: 10.1016/j.biortech.2019.122087.S. Zhang, B. Hu, L. Zhang, and Y. Xiong, “Effects of torrefaction on yield and quality of pyrolysis char and its application on preparation of activated carbon,” J Anal Appl Pyrolysis, vol. 119, pp. 217–223, 2016, doi: 10.1016/j.jaap.2016.03.002.P. Wang, Y. Su, Y. Xie, S. Zhang, and Y. Xiong, “Influence of torrefaction on properties of activated carbon obtained from physical activation of pyrolysis char,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 00, no. 00, pp. 1–11, 2018, doi: 10.1080/15567036.2018.1555628.H. Yang, B. Huan, Y. Chen, Y. Gao, J. Li, and H. Chen, “Biomass-Based Pyrolytic Polygeneration System for Bamboo Industry Waste: Evolution of the Char Structure and the Pyrolysis Mechanism,” Energy and Fuels, vol. 30, no. 8, pp. 6430–6439, 2016, doi: 10.1021/acs.energyfuels.6b00732.Z. Ma et al., “Evolution of the chemical composition, functional group, pore structure and crystallographic structure of bio-char from palm kernel shell pyrolysis under different temperatures,” J Anal Appl Pyrolysis, vol. 127, pp. 350–359, Sep. 2017, doi: 10.1016/j.jaap.2017.07.015.. Li, K. Yang, J. Peng, L. Zhang, S. Guo, and H. Xia, “Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars,” Ind Crops Prod, vol. 28, no. 2, pp. 190–198, 2008, doi: 10.1016/j.indcrop.2008.02.012.T. Kan, V. Strezov, and T. J. Evans, “Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters,” Renewable and Sustainable Energy Reviews, vol. 57, pp. 126–1140, 2016, doi: 10.1016/j.rser.2015.12.185.S. Aninda Dhar, T. Us Sakib, and L. Naher Hilary, “Effects of pyrolysis temperature on production and physicochemical characterization of biochar derived from coconut fiber biomass through slow pyrolysis process,” Biomass Convers Biorefin, vol. 12, pp. 2631–2647, 2022, doi: 10.1007/s13399-020-01116-y/Published.E. Scapin et al., “Activated carbon from rice husk biochar with high surface area,” Biointerface Res Appl Chem, vol. 11, no. 3, pp. 10265–10277, 2021, doi: 10.33263/BRIAC113.1026510277.M. Gayathiri, T. Pulingam, K. T. Lee, and K. Sudesh, “Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism,” Chemosphere, vol. 294. Elsevier Ltd, May 01, 2022. doi: 10.1016/j.chemosphere.2022.133764.C. Bouchelta, M. S. Medjram, M. Zoubida, F. A. Chekkat, N. Ramdane, and J. P. Bellat, “Effects of pyrolysis conditions on the porous structure development of date pits activated carbon,” J Anal Appl Pyrolysis, vol. 94, pp. 215–222, 2012, doi: 10.1016/j.jaap.2011.12.014P. González-García, “Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications,” Renewable and Sustainable Energy Reviews, vol. 82, no. August 2017, pp. 1393–1414, 2018, doi: 10.1016/j.rser.2017.04.117.J. Pallarés, A. González-Cencerrado, and I. Arauzo, “Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam,” Biomass Bioenergy, vol. 115, no. April, pp. 64–73, 2018, doi: 10.1016/j.biombioe.2018.04.015.X. Zhu, R. Zhang, S. Rong, L. Zhang, and C. Ma, “A systematic preparation mechanism for directional regulation of pore structure in activated carbon including specific surface area and pore hierarchy,” J Anal Appl Pyrolysis, vol. 158, Sep. 2021, doi: 10.1016/j.jaap.2021.105266.Q. Jia and A. C. Lua, “Effects of pyrolysis conditions on the physical characteristics of oil-palm-shell activated carbons used in aqueous phase phenol adsorption,” J Anal Appl Pyrolysis, vol. 83, no. 2, pp. 175–179, 2008, doi: 10.1016/j.jaap.2008.08.001.S. Brunauer, P. H. Emmett, and E. Teller, “Adsorption of Gases in Multimolecular Layers,” J Am Chem Soc, vol. 60, no. 2, pp. 309–319, 1938, doi: 10.1021/ja01269a023.N. Gil-Lalaguna et al., “CO2 adsorption on pyrolysis char from protein-containing livestock waste: How do proteins affect?,” Science of the Total Environment, vol. 846, no. July, 2022, doi: 10.1016/j.scitotenv.2022.157395.Q. Ma, W. Chen, Z. Jin, L. Chen, Q. Zhou, and X. Jiang, “One-step synthesis of microporous nitrogen-doped biochar for efficient removal of CO2 and H2S,” Fuel, vol. 289, Apr. 2021, doi: 10.1016/j.fuel.2020.119932.A. Mukherjee, J. A. Okolie, C. Niu, and A. K. Dalai, “Experimental and Modeling Studies of Torrefaction of Spent Coffee Grounds and Coffee Husk: Effects on Surface Chemistry and Carbon Dioxide Capture Performance,” ACS Omega, vol. 7, no. 1, pp. 638–653, Jan. 2022, doi: 10.1021/acsomega.1c05270.D. Chen, A. Gao, K. Cen, J. Zhang, X. Cao, and Z. Ma, “Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin,” Energy Convers Manag, vol. 169, no. April, pp. 228–237, 2018, doi: 10.1016/j.enconman.2018.05.063.G. Dai, Q. Zou, S. Wang, Y. Zhao, L. Zhu, and Q. Huang, “Effect of Torrefaction on the Structure and Pyrolysis Behavior of Lignin,” Energy and Fuels, vol. 32, no. 4, pp. 4160–4166, Apr. 2018, doi: 10.1021/acs.energyfuels.7b03038.R. Li et al., “Regulation of the elemental distribution in biomass by the torrefaction pretreatment using different atmospheres and its influence on the subsequent pyrolysis behaviors,” Fuel Processing Technology, vol. 222, Nov. 2021, doi: 10.1016/j.fuproc.2021.106983.Z. Ma, D. Chen, J. Gu, B. Bao, and Q. Zhang, “Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods,” Energy Convers Manag, vol. 89, pp. 251–259, 2015, doi: https://doi.org/10.1016/j.enconman.2014.09.074.J. Wannapeera, B. Fungtammasan, and N. Worasuwannarak, “Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass,” J Anal Appl Pyrolysis, vol. 92, no. 1, pp. 99–105, 2011, doi: 10.1016/j.jaap.2011.04.010.L. Cao et al., “Thermogravimetric characteristics and kinetics analysis of oil cake and torrefied biomass blends,” Fuel, vol. 175, pp. 129–136, 2016, doi: 10.1016/j.fuel.2016.01.089.A. Zheng et al., “Comparison of the effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs,” Bioresour Technol, vol. 176, pp. 15–22, 2015, doi: 10.1016/j.biortech.2014.10.157.F. Barontini, E. Biagini, and L. Tognotti, “Influence of Torrefaction on Biomass Devolatilization,” ACS Omega, vol. 6, no. 31, pp. 20264–20278, Aug. 2021, doi: 10.1021/acsomega.1c02141.W. Suliman, J. B. Harsh, N. I. Abu-Lail, A. M. Fortuna, I. Dallmeyer, and M. Garcia-Perez, “Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties,” Biomass Bioenergy, vol. 84, pp. 37–48, 2016, doi: 10.1016/j.biombioe.2015.11.010.L. Li et al., “Uncovering Structure-Reactivity Relationships in Pyrolysis and Gasification of Biomass with Varying Severity of Torrefaction,” ACS Sustain Chem Eng, vol. 6, no. 5, pp. 6008–6017, 2018, doi: 10.1021/acssuschemeng.7b04649.C. Bouchelta, M. S. Medjram, M. Zoubida, F. A. Chekkat, N. Ramdane, and J. P. Bellat, “Effects of pyrolysis conditions on the porous structure development of date pits activated carbon,” J Anal Appl Pyrolysis, vol. 94, pp. 215–222, 2012, doi: 10.1016/j.jaap.2011.12.014.Z. Ma et al., “Evolution of the chemical composition , functional group , pore structure and crystallographic structure of bio-char from palm kernel shell pyrolysis under di ff erent temperatures,” J Anal Appl Pyrolysis, vol. 127, no. 38, pp. 350–359, 2017, doi: 10.1016/j.jaap.2017.07.015.Z. Ma, Q. Sun, J. Ye, Q. Yao, and C. Zhao, “Study on the thermal degradation behaviors and kinetics of alkali lignin for production of phenolic-rich bio-oil using TGA–FTIR and Py–GC/MS,” J Anal Appl Pyrolysis, vol. 117, pp. 116–124, 2016, doi: https://doi.org/10.1016/j.jaap.2015.12.007.S. Kanwal, N. Chaudhry, S. Munir, and H. Sana, “Effect of torrefaction conditions on the physicochemical characterization of agricultural waste (sugarcane bagasse),” Waste Management, vol. 88, pp. 280–290, 2019, doi: 10.1016/j.wasman.2019.03.053.L. Shang et al., “Changes of chemical and mechanical behavior of torrefied wheat straw,” Biomass Bioenergy, vol. 40, pp. 63–70, 2012, doi: 10.1016/j.biombioe.2012.01.049.G. Dai, Q. Zou, S. Wang, Y. Zhao, L. Zhu, and Q. Huang, “Effect of Torrefaction on the Structure and Pyrolysis Behavior of Lignin,” Energy and Fuels, vol. 32, no. 4, pp. 4160–4166, Apr. 2018, doi: 10.1021/acs.energyfuels.7b03038.M. I. Al-Wabel, A. Al-Omran, A. H. El-Naggar, M. Nadeem, and A. R. A. Usman, “Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes,” Bioresour Technol, vol. 131, pp. 374–379, 2013, doi: 10.1016/j.biortech.2012.12.165.M. Thommes et al., “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report),” 2015. doi: 10.1515/pac-2014-1117.F. Chejne, J. C. Maya, R. Macías, and A. G. Carlos, “On the evolution of pore microstructure during coal char activation with steam / CO 2 mixtures,” Carbon N Y, vol. 158, 2020, doi: 10.1016/j.carbon.2019.11.088.E. Arenas and F. Chejne, “The effect of the activating agent and temperature on the porosity development of physically activated coal chars,” Carbon N Y, vol. 42, no. 12–13, pp. 2451–2455, 2004, doi: 10.1016/j.carbon.2004.04.041.K. Yang, J. Peng, C. Srinivasakannan, L. Zhang, H. Xia, and X. Duan, “Preparation of high surface area activated carbon from coconut shells using microwave heating,” Bioresour Technol, vol. 101, no. 15, pp. 6163–6169, 2010, doi: 10.1016/j.biortech.2010.03.001.F. Ahmad, W. M. A. W. Daud, M. A. Ahmad, R. Radzi, and A. A. Azmi, “The effects of CO2 activation, on porosity and surface functional groups of cocoa (Theobroma cacao) - Shell based activated carbon,” J Environ Chem Eng, vol. 1, no. 3, pp. 378–388, Sep. 2013, doi: 10.1016/j.jece.2013.06.004.E. Orrego Restrepo, “Cambios estructurales fisicoquímicos de la biomasa durante la pirólisis lenta,” Universidad Nacional de Colombia, Medellin, 2021. Accessed: Oct. 16, 2022. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/79780N. Adilla Rashidi, A. Bokhari, and S. Yusup, “Evaluation of kinetics and mechanism properties of CO 2 adsorption onto the palm kernel shell activated carbon,” Environmental Science and Pollution Research, vol. 28, pp. 33967–33979, 2021, doi: 10.1007/s11356-020-08823-z/Published.C. Wang et al., “Adsorption of water on carbon materials: The formation of ‘water bridge’ and its effect on water adsorption,” Colloids Surf A Physicochem Eng Asp, vol. 631, Dec. 2021, doi: 10.1016/j.colsurfa.2021.127719.M. C. Castrillon et al., “CO2 and H2S Removal from CH4-Rich Streams by Adsorption on Activated Carbons Modified with K2CO3, NaOH, or Fe2O3,” Energy and Fuels, vol. 30, no. 11, pp. 9596–9604, Nov. 2016, doi: 10.1021/acs.energyfuels.6b01667.I. Majchrzak-Kucęba and M. Sołtysik, “The potential of biocarbon as CO2 adsorbent in VPSA unit,” J Therm Anal Calorim, vol. 142, no. 1, pp. 267–273, Oct. 2020, doi: 10.1007/s10973-020-09858-7.A. C. Fernandes et al., “Storage and delivery of H2S by microporous and mesoporous materials,” Microporous and Mesoporous Materials, vol. 320, Jun. 2021, doi: 10.1016/j.micromeso.2021.111093.F. Cheng and X. Li, “Preparation and application of biochar-based catalysts for biofuel production,” Catalysts, vol. 8, no. 9, pp. 1–35, 2018, doi: 10.3390/catal8090346.R. Ranguin et al., “Biochar and activated carbons preparation from invasive algae Sargassum spp. For Chlordecone availability reduction in contaminated soils,” J Environ Chem Eng, vol. 9, no. 4, p. 105280, 2021, doi: 10.1016/j.jece.2021.105280.S. Zhang, T. Chen, Y. Xiong, and Q. Dong, “Effects of wet torrefaction on the physicochemical properties and pyrolysis product properties of rice husk,” Energy Convers Manag, vol. 141, pp. 403–409, 2017, doi: 10.1016/j.enconman.2016.10.002.S. Sethupathi et al., “Biochars as potential adsorbers of CH4, CO2 and H2S,” Sustainability (Switzerland), vol. 9, no. 1, 2017, doi: 10.3390/su9010121.A. Sharma, J. Jindal, A. Mittal, K. Kumari, S. Maken, and N. Kumar, “Carbon materials as CO2 adsorbents: a review,” Environ Chem Lett, vol. 19, no. 2, pp. 875–910, 2021, doi: 10.1007/s10311-020-01153-z.J. Y. Lai, L. H. Ngu, S. S. Hashim, J. J. Chew, and J. Sunarso, “Review of oil palm-derived activated carbon for CO2 capture,” Carbon Letters, vol. 31, no. 2. Springer, pp. 201–252, Apr. 01, 2021. doi: 10.1007/s42823-020-00206-1.B. Aghel, S. Behaein, and F. Alobiad, “CO2 capture from biogas by biomass-based adsorbents: A review,” Fuel, vol. 328. Elsevier Ltd, Nov. 15, 2022. doi: 10.1016/j.fuel.2022.125276.K. S. Ro et al., “Pilot-scale h2s and swine odor removal system using commercially available biochar,” Agronomy, vol. 11, no. 8, Aug. 2021, doi: 10.3390/agronomy11081611.N. Gil-Lalaguna et al., “CO2 adsorption on pyrolysis char from protein-containing livestock waste: How do proteins affect?,” Science of the Total Environment, vol. 846, Nov. 2022, doi: 10.1016/j.scitotenv.2022.157395.M. M. Dubinin, “FUNDAMENTALS OF THE THEORY OF ADSORPTION IN MICROPORES OF CARBON ADSORBENTS: CHARACTERISTICS OF THEIR ADSORPTION PROPERTIES AND MICROPOROUS STRUCTURES,” 1989.N. S. Nasri, U. D. Hamza, S. N. Ismail, M. M. Ahmed, and R. Mohsin, “Assessment of porous carbons derived from sustainable palm solid waste for carbon dioxide capture,” in Journal of Cleaner Production, Elsevier Ltd, May 2014, pp. 148–157. doi: 10.1016/j.jclepro.2013.11.053.M. S. Khosrowshahi et al., “The role of surface chemistry on CO2 adsorption in biomass-derived porous carbons by experimental results and molecular dynamics simulations,” Sci Rep, vol. 12, no. 1, pp. 1–19, Dec. 2022, doi: 10.1038/s41598-022-12596-5.C. Goel, S. Mohan, and P. Dinesha, “CO2 capture by adsorption on biomass-derived activated char: A review,” Science of the Total Environment, vol. 798. Elsevier B.V., Dec. 01, 2021. doi: 10.1016/j.scitotenv.2021.149296.J. Chen et al., “Enhanced CO2 Capture Capacity of Nitrogen-Doped Biomass-Derived Porous Carbons,” ACS Sustain Chem Eng, vol. 4, no. 3, pp. 1439–1445, Mar. 2016, doi: 10.1021/acssuschemeng.5b01425.S. Ding and Y. Liu, “Adsorption of CO2 from flue gas by novel seaweed-based KOH-activated porous biochars,” Fuel, vol. 260, Jan. 2020, doi: 10.1016/j.fuel.2019.116382.F. Sun et al., “Nitrogen-rich mesoporous carbons: Highly efficient, regenerable metal-free catalysts for low-temperature oxidation of H2S,” ACS Catal, vol. 3, no. 5, pp. 862–870, May 2013, doi: 10.1021/cs300791j.A. Bagreev and T. J. Bandosz, “On the mechanism of hydrogen sulfide removal from moist air on catalytic carbonaceous adsorbents,” Ind Eng Chem Res, vol. 44, no. 3, pp. 530–538, Feb. 2005, doi: 10.1021/ie049277o.F. Sun, J. Gao, X. Liu, Y. Yang, and S. Wu, “Controllable nitrogen introduction into porous carbon with porosity retaining for investigating nitrogen doping effect on SO2 adsorption,” Chemical Engineering Journal, vol. 290, pp. 116–124, Apr. 2016, doi: 10.1016/j.cej.2015.12.044.N. Marquez Ruiz, “Evaluación del efecto de la aplicación de biochar en suelos agrícolas basado en la migración de nutrientes,” Master Thesis, Universidad Nacional de Colombia, Medellin, 2022.Estrategia de Transformación del Sector Energético Colombiano en el Horizonte 2030MincienciasUniversidad Nacional de Colombia - Sede MedellínUniversidad de La GuajiraEstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83829/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1118859846.2023.pdf1118859846.2023.pdfTesis de Doctorado en Ingeniería - Sistemas Energéticosapplication/pdf5632576https://repositorio.unal.edu.co/bitstream/unal/83829/2/1118859846.2023.pdf8f7ced422f73081e02fac57b784d13b3MD52THUMBNAIL1118859846.2023.pdf.jpg1118859846.2023.pdf.jpgGenerated Thumbnailimage/jpeg5788https://repositorio.unal.edu.co/bitstream/unal/83829/3/1118859846.2023.pdf.jpg1f50de4188f0adab3c82a09dc9ed3685MD53unal/83829oai:repositorio.unal.edu.co:unal/838292024-08-05 23:10:53.463Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |