Análisis de sensibilidad paramétrica sobre un modelo computacional XFEM para la propagación de grietas en una probeta CT de acero de fase dual
The implementation of the extended finite element method (XFEM) has allowed modeling without increasing computational costs and minimizing the use of excessively fine meshes, discontinuities, complex geometric singularities, crack propagation processes, among others. Being a recent method, the effec...
- Autores:
-
Romero Rodríguez, Daniel Steven
- Tipo de recurso:
- Work document
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/77900
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/77900
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
XFEM
parametic sensitivity
crack growth
compact tension
XFEM
sensibilidad paramétrica
crecimiento de grieta
compact tension
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_d187e3c617f093189c10d6808345aff4 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/77900 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Análisis de sensibilidad paramétrica sobre un modelo computacional XFEM para la propagación de grietas en una probeta CT de acero de fase dual |
title |
Análisis de sensibilidad paramétrica sobre un modelo computacional XFEM para la propagación de grietas en una probeta CT de acero de fase dual |
spellingShingle |
Análisis de sensibilidad paramétrica sobre un modelo computacional XFEM para la propagación de grietas en una probeta CT de acero de fase dual 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería XFEM parametic sensitivity crack growth compact tension XFEM sensibilidad paramétrica crecimiento de grieta compact tension |
title_short |
Análisis de sensibilidad paramétrica sobre un modelo computacional XFEM para la propagación de grietas en una probeta CT de acero de fase dual |
title_full |
Análisis de sensibilidad paramétrica sobre un modelo computacional XFEM para la propagación de grietas en una probeta CT de acero de fase dual |
title_fullStr |
Análisis de sensibilidad paramétrica sobre un modelo computacional XFEM para la propagación de grietas en una probeta CT de acero de fase dual |
title_full_unstemmed |
Análisis de sensibilidad paramétrica sobre un modelo computacional XFEM para la propagación de grietas en una probeta CT de acero de fase dual |
title_sort |
Análisis de sensibilidad paramétrica sobre un modelo computacional XFEM para la propagación de grietas en una probeta CT de acero de fase dual |
dc.creator.fl_str_mv |
Romero Rodríguez, Daniel Steven |
dc.contributor.advisor.spa.fl_str_mv |
Rodríguez Baracaldo, Rodolfo Narváez Tovar, Carlos Alberto |
dc.contributor.author.spa.fl_str_mv |
Romero Rodríguez, Daniel Steven |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá |
dc.contributor.researchgroup.spa.fl_str_mv |
Innovación en Procesos de Manufactura e Ingeniería de Materiales (IPMIM) |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería XFEM parametic sensitivity crack growth compact tension XFEM sensibilidad paramétrica crecimiento de grieta compact tension |
dc.subject.proposal.eng.fl_str_mv |
XFEM parametic sensitivity crack growth compact tension |
dc.subject.proposal.spa.fl_str_mv |
XFEM sensibilidad paramétrica crecimiento de grieta compact tension |
description |
The implementation of the extended finite element method (XFEM) has allowed modeling without increasing computational costs and minimizing the use of excessively fine meshes, discontinuities, complex geometric singularities, crack propagation processes, among others. Being a recent method, the effects of the input parameters on the response variables of the model are unknown. For this reason, the sensitivity analysis is relevant to determine the effect of various parameters involved in the modeling of crack propagation. The objective of this work is to carry out a parametric sensitivity analysis for an XFEM computational model of the propagation of cracks in a test piece for fracture toughness of the compact tension (CT) type made of DP600 steel, minimizing the number of nodes to 1000, for which five parameters are selected that vary in two conditions each. The selected parameters are the model dimensions, finite element size, material behavior, evolution, and damage tolerance in the material. As response variables, the Force vs. Displacement diagram and the crack trajectory were used. For statistical analysis, the Pareto graph, main effect graphs, and an analysis of variance were used, to determine the parameter with the most significant effect in the models. To quantify the error of the two model responses for the experimental data, a relative error was used between the strength of the computational model for the experimental results and a mean squared error (RMSE), totaling the error in only one for the Force vs. Displacement, in the case of two-dimensional models the average RMS errors were 46.52 %, while the three-dimensional models were closer to the experimental data with average RMS errors of 2.20 %. In the case of crack growth, RMS errors below 10 % were obtained. Through the statistical analyzes carried out, a high statistical significance was established in the parameter of the model type, being the main one for the decrease in the error calculated for experimental cases. |
publishDate |
2020 |
dc.date.accessioned.spa.fl_str_mv |
2020-08-03T20:23:58Z |
dc.date.available.spa.fl_str_mv |
2020-08-03T20:23:58Z |
dc.date.issued.spa.fl_str_mv |
2020-05-23 |
dc.type.spa.fl_str_mv |
Documento de trabajo |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/workingPaper |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/WP |
format |
http://purl.org/coar/resource_type/c_8042 |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
IEEE |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/77900 |
identifier_str_mv |
IEEE |
url |
https://repositorio.unal.edu.co/handle/unal/77900 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
C. C. Peréz, Evaluación experimental y modelado de propagación de grietas en un acero de fase dual," Master's thesis, Universidad Nacional de Colombia, 2018. N. Mo Es, J. Dolbow, and T. Belytschko, A Finite element method for crack growth without remeshing," tech. rep., 1999. Q. Lai, O. Bouaziz, M. Gouné, L. Brassart, M. Verdier, G. Parry, A. Perlade, Y. Bréchet, and T. Pardoen, Damage and fracture of dual-phase steels: Influence of martensite volume fraction," Materials Science and Engineering A, vol. 646, pp. 322{331, 2015. Y. Granbom, Influence of niobium and coiling temperature on the mechanical properties of a cold rolled dual phase steel, vol. 104. 2007. Area of opportunity for third generation steels," 2011. http://www.worldautosteel.org/. P. Tsipouridis, Mechanical properties of Dual-Phase steels," PhD Thesis, p. 122, 2006. K. W. Andrews, Empirical formulae for the calculation of some transformation temperatures," J. Iron Steel Inst., pp. 721-727, 1965. P. Movahed, S. Kolahgar, S. P. Marashi, M. Pouranvari, and N. Parvin, The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite-martensite dual phase steel sheets," Materials Science and Engineering A, vol. 518, no. 1-2, pp. 1-6, 2009. M. E. M. Amariles, Efecto del tratamiento térmico intercrítico sobre las propiedades mecánicas del acero comercial aisi sae 8615," Master's thesis, Universidad Nacional de Colombia, Medellín, 1997. C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe, An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design," Annual Review of Materials Research, vol. 45, no. 1, pp. 391-431, 2015. A. Monsalve G., A. Artigas A., F. Castro C., R. Colás, and Y. Houbaert, Caracterización de aceros dual-phase obtenidos por laminación en caliente," Revista de Metalurgia, vol. 47, no. 1, pp. 5-14, 2011. K. Radwanski, R. Kuziak, and R. Rozmus, Structure and mechanical properties of dual phase steel following heat treatment simulations reproducing a continuous annealing line," Archives of Civil and Mechanical Engineering, vol. 19, no. 2, pp. 453-468, 2019. J. Zhang, H. Di, Y. Deng, and R. D. Misra, Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite-ferrite dual phase steel," Materials Science and Engineering A, vol. 627, pp. 230-240, 2015. V. L. de la Concepcion, H. N. Lorusso, and H. G. Svoboda, Effect of Carbon Content on Microstructure and Mechanical Properties of Dual Phase Steels," Procedia Materials Science, vol. 8, pp. 1047-1056, 2015. M. K. Manoj, V. Pancholi, and S. K. Nath, Mechanical Properties and Fracture Behavior of Medium Carbon Dual Phase Steels," vol. 2, no. 4, 2014. M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging," Acta Materialia, vol. 59, no. 2, pp. 658-670, 2011. E. A. Torres-López, J. J. Arbeláez-Toro, and D. A. Hincapié-Zuluaga, Aspectos generales acerca de la transformación martensítica," Tecnológicas, no. 31, p. 151, 2011. H. H. Albañil and E. E. Mora, Mecánica de fractura y análisis de falla. Colección Sede, Dpto. de Ingeniería Mecánica, 2002. A. Griffith, The Phenomena of Rupture and Flow in Solids," Philosophical Transactions of the Royal Society of London, vol. 221, pp. 163-198, 1921. E. Orowan, Fracture and strength of solids," Reports on Progress in Physics, vol. 12, pp. 185-232, jan 1949. G. R. Irwin, Analysis of Stresses and strains near the end of a crack traversing a plate," Journal of Applied Mathematics and Mechanics, vol. 24, no. 19, pp. 361-364, 1957. J. N. Timoshenko, S; Goodier, Theory of elasticity. Engineering societies monographs, McGraw-Hill, 1987. H. Jaramillo Suárez, N. A. Sánchez, J. P. Cañizales Asprilla, and A. J. Toro Sánchez, Introducción a la mecánica de la fractura y análisis de fallas. Aug 2008. N. E. Dowling, Mechanical Behavior. Pearson, 4 ed. ed., 2013. T. L. Anderson, Fracture Mechanics: Fundamentals and Applications, Third Edition. Taylor & Francis, 2005. G. J. J. Arana J. L, Mecánica de fractura. 2002. A. Wells, Unstable Crack Propagation in Metals: Cleavage and Fast Fracture," Proceedings of Crack Propagation Symposium, p. 84, 1961. J. R. Rice, A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks," Journal of Applied Mechanics, vol. 35, pp. 379-386, 06 1968. M. Kumar, I. V. Singh, and B. K. Mishra, Fatigue crack growth simulations of plastically graded materials using XFEM and J -integral decomposition approach," Engineering Fracture Mechanics, vol. 216, no. May, p. 106470, 2019. I. G. R. and K. J. A, Critical energy rate analysis of fracture strength," Welding Journal Research Supplement, vol. 33, pp. 193-198, 1954. A. Hirt, Fatigue crack propagation in steels, vol. 18, no. 5, 1983. N. Sakakibara, Finite Element Method in Fracture Mechanics, tech. rep., 2008. D. Swenson, M. James, B. Hardeman, P. Wawrzynek, and L. Martha, CASCA: A Simple 2-D Mesh Generator Version 1.4 User's Guide," tech. rep., 1997. Westergaard and H. M., Bearing pressures and cracks, Trans AIME, J. Appl. Mech., vol. 6, pp. 49-53, 1939. O. C. Zienkiewicz, R. L. Taylor, M. C. Ruiz, and E. O. I. de Navarra, El Método de Los Elementos Finitos: Volumen 1, Formulación Básica y Problemas Lineales. No. v. 1 in El método de los elementos finitos, McGraw-Hill/Interamericana de España, S.A., 1993. R. Shamshiri and W. I. Wan Ismail, Implementation of Galerkin's method and modal analysis for unforced vibration response of a tractor suspension model," Research Journal of Applied Sciences, Engineering and Technology, vol. 7, no. 1, pp. 49-55, 2014. M. W. y. V. L. Andrade A. A, Modelos de crecimiento de grietas por fatiga, Entre Ciencia e Ingeniería, pp. 39-48, 2015. D. M. Tracey, Finite elements for determination of crack tip elastic stress intensity factors, Engineering Fracture Mechanics, vol. 3, no. 3, pp. 255-265, 1971. K. M, Finite Elements in Fracture Mechanics. 2013. F. X. G. Z. d. O. Oliveira, Crack Modelling with the eXtended Finite Element Method, p. 68, 2013. A. M. Cantara, M. Zecevic, A. Eghtesad, C. M. Poulin, and M. Knezevic, Predicting elastic anisotropy of dual-phase steels based on crystal mechanics and microstructure, International Journal of Mechanical Sciences, vol. 151, no. November 2018, pp. 639-649, 2019. A. Orifici, R. S. Thomson, R. Degenhardt, C. Bisagni, and J. Bayandor, Development of a Finite Element Analysis Methodology for the Propagation of Delaminations in Composite Structures, in Mechanics of Composite Materials, vol. 43, Aug 2007. J.-H. Kim and G. H. Paulino, Simulation of Crack Propagation in Functionally Graded Materials Under Mixed-Mode and Non-Proportional Loading," International Journal of Mechanics and Materials in Design, vol. 1, pp. 63-94, Jul 2004. M. Kumar, I. V. Singh, B. K. Mishra, S. Ahmad, A. V. Rao, and V. Kumar, Mixed mode crack growth in elasto-plastic-creeping solids using XFEM, Engineering Fracture Mechanics, vol. 199, no. April, pp. 489-517, 2018. N. Vajragupta, V. Uthaisangsuk, B. Schmaling, S. Munstermann, A. Hartmaier, and W. Bleck, A micromechanical damage simulation of dual phase steels using XFEM, Computational Materials Science, vol. 54, pp. 271-279, mar 2012. M. Anderson and P. Whitcomb, Design of Experiments: Statistical Principles of Research Design and Analysis, vol. 43. 2001. H. Pulido and R. de la Vara Salazar, Análisis y diseño de experimentos. McGraw-Hill, 2003. S. P. Kumar, Parametric Sensitivities of XFEM Based Prognosis for Quasi-static Tensile Crack Growth Parametric Sensitivities of XFEM Based Prognosis for Quasi-static Tensile Crack Growth," Master's thesis, 2017. S. Kumar and G. Bhardwaj, A new enrichment scheme in XFEM to model crack growth behavior in ductile materials, Theoretical and Applied Fracture Mechanics, vol. 96, no. March, pp. 296-307, 2018. P. Sustaric, M. R. Seabra, J. M. Cesar De Sa, and T. Rodic, Sensitivity analysis-based crack propagation criterion for compressible and (near) incompressible hyperelastic materials," Finite Elements in Analysis and Design, vol. 82, pp. 1-15, 2014. A. Ramazani, M. Abbasi, S. Kazemiabnavi, S. Schmauder, R. Larson, and U. Prahl, Development and application of a microstructure-based approach to characterize and model failure initiation in DP steels using XFEM," Materials Science and Engineering A, vol. 660, pp. 181-194, 2016. A. Bergara, J. I. Dorado, A. Martin-Meizoso, and J. M. Martínez-Esnaola, Fatigue crack propagation in complex stress fields: Experiments and numerical simulations using the Extended Finite Element Method (XFEM)," International Journal of Fatigue, vol. 103, pp. 112-121, 2017. T. Nagashima and M. Sawada, Development of a damage propagation analysis system based on level set XFEM using the cohesive zone model, Computers and Structures, vol. 174, pp. 42-53, 2016. N. A. Petrov, L. Gorbatikh, and S. V. Lomov, A parametric study assessing performance of eXtended Finite Element Method in application to the cracking process in cross-ply composite laminates, Composite Structures, vol. 187, no. July 2017, pp. 489-497, 2018. H. Zhang and A. Fatemi, Short fatigue crack growth from a blunt notch in plate specimens," International Journal of Fracture, vol. 170, pp. 1-11, Jul 2011. S. Ashokkumar SHAH, Micro mechanics-based prognosis of progressive dynamic damage in advanced aerospace composite structures, tech. rep., 2010. G. Cherepanov, Crack propagation in continuous media, Journal of Applied Mathematics and Mechanics, vol. 31, pp. 476-488, 1967. A. M. Alshoaibi, M. S. A. Hadi, and A. K. Ariffin, An adaptive finite element procedure for crack propagation analysis, Journal of Zhejiang University-SCIENCE A, vol. 8, pp. 228-236, Feb 2007. B. Trollé, M. C. Baietto, A. Gravouil, S. H. Mai, and T. M. Nguyen-Tajan, XFEM crack propagation under rolling contact fatigue," in Procedia Engineering, vol. 66, pp. 775-782, Elsevier Ltd, 2013. A. Hillerborg, M. Modeer, and P. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, tech. rep., 1976. Damage evolution and element removal for ductile metals, 2017. https://abaqus-docs.mit.edu/2017/English/SIMACAEMATRefMap/simamat-c-damageevolductile.htm. E. Barbero, Finite Element Analysis of Composite Materials. Jan 2008. D. C. Montgomery, Design and Analysis of Experiments, 8th Edition. John Wiley & Sons, Incorporated, 2012. R. Raeside, Teaching experimental design techniques to engineers, International Journal of Quality & Reliability Management, vol. 12, no. 1, pp. 47-52, 1995. Defining plasticity in Abaqus, 2017. https://abaqus-docs.mit.edu/2017/English/SIMACAEGSARefMap/simagsa-c-matdefining.htm. McCabe, R-Curve Determination Using a Crack-Line-Wedge-Loaded in Fracture Toughness Evaluation by R-Curve Methods (D. E. McCabe, ed.), ASTM International, Jan 1973. B. Kawecki and P. Jerzy, Numerical results quality in dependence on abaqus plane stress elements type in big displacements compression test, Applied Computer Science, vol. 13, 12 2017. N. Fanaie, F. Ghalamzan Esfahani, and S. Soroushnia, Analytical study of composite beams with different arrangements of channel shear connectors," Steel and Composite Structures, vol. 19, pp. 485-501, 08 2015. T. Belytschko, J. Ong, K. Wing Kam Liu, and J. Kennedy, Hourglass control in linear and nonlinear problems, Computer Methods in Applied Mechanics and Engineering, vol. 43, pp. 251-276, May 1984. M. Gosz, Finite Element Method: Applications in Solids, Structures, and Heat Transfer. Mechanical Engineering, CRC Press, 2017. N. J. Gómez-Ruiz, M. J. Vergara-Paredes, and J. A. Alvarado-Contreras, Estudio De Convergencia Por Análisis De Elementos Finitos En Tejido óseo Cortical," Revista Iberoamericana de Ingeniería Mecánica, vol. 21, no. 2, pp. 85-103, 2017. A. L. Schubert, D. Hagemann, A. Voss, and K. Bergmann, Evaluating the model fit of diffusion models with the root mean square error of approximation, Journal of Mathematical Psychology, vol. 77, pp. 29-45, 2017. T. Chai and R. R. Draxler, Root mean square error (RMSE) or mean absolute error (MAE) -Arguments against avoiding RMSE in the literature, Geoscientific Model Development, vol. 7, no. 3, pp. 1247-1250, 2014. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.spa.spa.fl_str_mv |
Acceso abierto |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia Acceso abierto http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
109 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/77900/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/77900/1/1026292408.2020.pdf https://repositorio.unal.edu.co/bitstream/unal/77900/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/77900/4/1026292408.2020.pdf.jpg |
bitstream.checksum.fl_str_mv |
6f3f13b02594d02ad110b3ad534cd5df b1207792f412fde94e6c6e8e95ad6e9f 217700a34da79ed616c2feb68d4c5e06 294bbafb8562e997dce8703bd6ca4e55 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089296422895616 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rodríguez Baracaldo, Rodolfo64e8017e-a647-45c9-8a1a-b2250b561279-1Narváez Tovar, Carlos Alberto97a0550c-1673-4fe9-98ff-33f4f1676304-1Romero Rodríguez, Daniel Steven90c0b97f-ec45-43a2-8612-1308a8e6a43eUniversidad Nacional de Colombia Sede BogotáInnovación en Procesos de Manufactura e Ingeniería de Materiales (IPMIM)2020-08-03T20:23:58Z2020-08-03T20:23:58Z2020-05-23IEEEhttps://repositorio.unal.edu.co/handle/unal/77900The implementation of the extended finite element method (XFEM) has allowed modeling without increasing computational costs and minimizing the use of excessively fine meshes, discontinuities, complex geometric singularities, crack propagation processes, among others. Being a recent method, the effects of the input parameters on the response variables of the model are unknown. For this reason, the sensitivity analysis is relevant to determine the effect of various parameters involved in the modeling of crack propagation. The objective of this work is to carry out a parametric sensitivity analysis for an XFEM computational model of the propagation of cracks in a test piece for fracture toughness of the compact tension (CT) type made of DP600 steel, minimizing the number of nodes to 1000, for which five parameters are selected that vary in two conditions each. The selected parameters are the model dimensions, finite element size, material behavior, evolution, and damage tolerance in the material. As response variables, the Force vs. Displacement diagram and the crack trajectory were used. For statistical analysis, the Pareto graph, main effect graphs, and an analysis of variance were used, to determine the parameter with the most significant effect in the models. To quantify the error of the two model responses for the experimental data, a relative error was used between the strength of the computational model for the experimental results and a mean squared error (RMSE), totaling the error in only one for the Force vs. Displacement, in the case of two-dimensional models the average RMS errors were 46.52 %, while the three-dimensional models were closer to the experimental data with average RMS errors of 2.20 %. In the case of crack growth, RMS errors below 10 % were obtained. Through the statistical analyzes carried out, a high statistical significance was established in the parameter of the model type, being the main one for the decrease in the error calculated for experimental cases.La implementación del método de elementos finitos extendidos (XFEM) ha permitido modelar sin aumentar costos computacionales y minimizando el uso de mallas excesivamente finas las discontinuidades, singularidades geométricas complejas, procesos de propagación de grietas, entre otros. Al ser un método reciente, se desconoce los efectos de los parámetros de entrada sobre las variables de respuesta del modelo. Por tal motivo, el análisis de sensibilidad toma relevancia para determinar el efecto de varios parámetros que intervienen en el modelado de la propagación de grietas. El objetivo de este trabajo es realizar un análisis de sensibilidad paramétrica para un modelo computacional por XFEM de la propagación de grietas en una probeta para tenacidad a la fractura del tipo compact tension (CT) fabricada en acero DP600 minimizando la cantidad de nodos a 1000, para el cual se seleccionó cinco parámetros que varían en dos condiciones cada uno. Los parámetros seleccionados son las dimensiones del modelo, tamaño del elemento finito, comportamiento del material, evolución y tolerancia del daño en el material. Como variables de respuesta se usó el diagrama de Fuerza Vs. Desplazamiento y la trayectoria de la grieta. Para análisis estadadistico se utilizó el gráfico de Pareto, gráficas de efectos principales y un análisis de varianza, con el fin de determinar el parámetro con el efecto más significativo en los modelos. Para cuantificar el error de las dos respuestas del modelo, se utilizó un error relativo entre la fuerza del modelo computacional respecto a los resultados experimentales y un error cuadrático medio (RMSE) totalizando el error en uno solo para el diagrama de Fuerza vs. Desplazamiento, en el caso de los modelos de dos dimensiones los errores RMS en promedio fue del 46.52 %, mientras que los modelos en tres dimensiones fue más cercanos a los datos experimentales con errores RMS en promedio de 2.20 %. En el caso del crecimiento de grietas, se obtuvo errores RMS por debajo del 10 %. A través de los análisis estadísticos realizados, se estableció significancia estadadística alta en el parámetro del tipo modelo, siendo principal para la disminución del error calculado respecto a casos experimentales.Maestría en Ingeniería - Materiales y Procesos. Línea de Investigación: Mecánica Computacional de Materiales.Maestría109application/pdfspa620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaXFEMparametic sensitivitycrack growthcompact tensionXFEMsensibilidad paramétricacrecimiento de grietacompact tensionAnálisis de sensibilidad paramétrica sobre un modelo computacional XFEM para la propagación de grietas en una probeta CT de acero de fase dualDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_8042Texthttp://purl.org/redcol/resource_type/WPBogotá - Ingeniería - Maestría en Ingeniería - Materiales y ProcesosUniversidad Nacional de Colombia - Sede BogotáC. C. Peréz, Evaluación experimental y modelado de propagación de grietas en un acero de fase dual," Master's thesis, Universidad Nacional de Colombia, 2018.N. Mo Es, J. Dolbow, and T. Belytschko, A Finite element method for crack growth without remeshing," tech. rep., 1999.Q. Lai, O. Bouaziz, M. Gouné, L. Brassart, M. Verdier, G. Parry, A. Perlade, Y. Bréchet, and T. Pardoen, Damage and fracture of dual-phase steels: Influence of martensite volume fraction," Materials Science and Engineering A, vol. 646, pp. 322{331, 2015.Y. Granbom, Influence of niobium and coiling temperature on the mechanical properties of a cold rolled dual phase steel, vol. 104. 2007.Area of opportunity for third generation steels," 2011. http://www.worldautosteel.org/.P. Tsipouridis, Mechanical properties of Dual-Phase steels," PhD Thesis, p. 122, 2006.K. W. Andrews, Empirical formulae for the calculation of some transformation temperatures," J. Iron Steel Inst., pp. 721-727, 1965.P. Movahed, S. Kolahgar, S. P. Marashi, M. Pouranvari, and N. Parvin, The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite-martensite dual phase steel sheets," Materials Science and Engineering A, vol. 518, no. 1-2, pp. 1-6, 2009.M. E. M. Amariles, Efecto del tratamiento térmico intercrítico sobre las propiedades mecánicas del acero comercial aisi sae 8615," Master's thesis, Universidad Nacional de Colombia, Medellín, 1997.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe, An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design," Annual Review of Materials Research, vol. 45, no. 1, pp. 391-431, 2015.A. Monsalve G., A. Artigas A., F. Castro C., R. Colás, and Y. Houbaert, Caracterización de aceros dual-phase obtenidos por laminación en caliente," Revista de Metalurgia, vol. 47, no. 1, pp. 5-14, 2011.K. Radwanski, R. Kuziak, and R. Rozmus, Structure and mechanical properties of dual phase steel following heat treatment simulations reproducing a continuous annealing line," Archives of Civil and Mechanical Engineering, vol. 19, no. 2, pp. 453-468, 2019.J. Zhang, H. Di, Y. Deng, and R. D. Misra, Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite-ferrite dual phase steel," Materials Science and Engineering A, vol. 627, pp. 230-240, 2015.V. L. de la Concepcion, H. N. Lorusso, and H. G. Svoboda, Effect of Carbon Content on Microstructure and Mechanical Properties of Dual Phase Steels," Procedia Materials Science, vol. 8, pp. 1047-1056, 2015.M. K. Manoj, V. Pancholi, and S. K. Nath, Mechanical Properties and Fracture Behavior of Medium Carbon Dual Phase Steels," vol. 2, no. 4, 2014.M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging," Acta Materialia, vol. 59, no. 2, pp. 658-670, 2011.E. A. Torres-López, J. J. Arbeláez-Toro, and D. A. Hincapié-Zuluaga, Aspectos generales acerca de la transformación martensítica," Tecnológicas, no. 31, p. 151, 2011.H. H. Albañil and E. E. Mora, Mecánica de fractura y análisis de falla. Colección Sede, Dpto. de Ingeniería Mecánica, 2002.A. Griffith, The Phenomena of Rupture and Flow in Solids," Philosophical Transactions of the Royal Society of London, vol. 221, pp. 163-198, 1921.E. Orowan, Fracture and strength of solids," Reports on Progress in Physics, vol. 12, pp. 185-232, jan 1949.G. R. Irwin, Analysis of Stresses and strains near the end of a crack traversing a plate," Journal of Applied Mathematics and Mechanics, vol. 24, no. 19, pp. 361-364, 1957.J. N. Timoshenko, S; Goodier, Theory of elasticity. Engineering societies monographs, McGraw-Hill, 1987.H. Jaramillo Suárez, N. A. Sánchez, J. P. Cañizales Asprilla, and A. J. Toro Sánchez, Introducción a la mecánica de la fractura y análisis de fallas. Aug 2008.N. E. Dowling, Mechanical Behavior. Pearson, 4 ed. ed., 2013.T. L. Anderson, Fracture Mechanics: Fundamentals and Applications, Third Edition. Taylor & Francis, 2005.G. J. J. Arana J. L, Mecánica de fractura. 2002.A. Wells, Unstable Crack Propagation in Metals: Cleavage and Fast Fracture," Proceedings of Crack Propagation Symposium, p. 84, 1961.J. R. Rice, A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks," Journal of Applied Mechanics, vol. 35, pp. 379-386, 06 1968.M. Kumar, I. V. Singh, and B. K. Mishra, Fatigue crack growth simulations of plastically graded materials using XFEM and J -integral decomposition approach," Engineering Fracture Mechanics, vol. 216, no. May, p. 106470, 2019.I. G. R. and K. J. A, Critical energy rate analysis of fracture strength," Welding Journal Research Supplement, vol. 33, pp. 193-198, 1954.A. Hirt, Fatigue crack propagation in steels, vol. 18, no. 5, 1983.N. Sakakibara, Finite Element Method in Fracture Mechanics, tech. rep., 2008.D. Swenson, M. James, B. Hardeman, P. Wawrzynek, and L. Martha, CASCA: A Simple 2-D Mesh Generator Version 1.4 User's Guide," tech. rep., 1997.Westergaard and H. M., Bearing pressures and cracks, Trans AIME, J. Appl. Mech., vol. 6, pp. 49-53, 1939.O. C. Zienkiewicz, R. L. Taylor, M. C. Ruiz, and E. O. I. de Navarra, El Método de Los Elementos Finitos: Volumen 1, Formulación Básica y Problemas Lineales. No. v. 1 in El método de los elementos finitos, McGraw-Hill/Interamericana de España, S.A., 1993.R. Shamshiri and W. I. Wan Ismail, Implementation of Galerkin's method and modal analysis for unforced vibration response of a tractor suspension model," Research Journal of Applied Sciences, Engineering and Technology, vol. 7, no. 1, pp. 49-55, 2014.M. W. y. V. L. Andrade A. A, Modelos de crecimiento de grietas por fatiga, Entre Ciencia e Ingeniería, pp. 39-48, 2015.D. M. Tracey, Finite elements for determination of crack tip elastic stress intensity factors, Engineering Fracture Mechanics, vol. 3, no. 3, pp. 255-265, 1971.K. M, Finite Elements in Fracture Mechanics. 2013.F. X. G. Z. d. O. Oliveira, Crack Modelling with the eXtended Finite Element Method, p. 68, 2013.A. M. Cantara, M. Zecevic, A. Eghtesad, C. M. Poulin, and M. Knezevic, Predicting elastic anisotropy of dual-phase steels based on crystal mechanics and microstructure, International Journal of Mechanical Sciences, vol. 151, no. November 2018, pp. 639-649, 2019.A. Orifici, R. S. Thomson, R. Degenhardt, C. Bisagni, and J. Bayandor, Development of a Finite Element Analysis Methodology for the Propagation of Delaminations in Composite Structures, in Mechanics of Composite Materials, vol. 43, Aug 2007.J.-H. Kim and G. H. Paulino, Simulation of Crack Propagation in Functionally Graded Materials Under Mixed-Mode and Non-Proportional Loading," International Journal of Mechanics and Materials in Design, vol. 1, pp. 63-94, Jul 2004.M. Kumar, I. V. Singh, B. K. Mishra, S. Ahmad, A. V. Rao, and V. Kumar, Mixed mode crack growth in elasto-plastic-creeping solids using XFEM, Engineering Fracture Mechanics, vol. 199, no. April, pp. 489-517, 2018.N. Vajragupta, V. Uthaisangsuk, B. Schmaling, S. Munstermann, A. Hartmaier, and W. Bleck, A micromechanical damage simulation of dual phase steels using XFEM, Computational Materials Science, vol. 54, pp. 271-279, mar 2012.M. Anderson and P. Whitcomb, Design of Experiments: Statistical Principles of Research Design and Analysis, vol. 43. 2001.H. Pulido and R. de la Vara Salazar, Análisis y diseño de experimentos. McGraw-Hill, 2003.S. P. Kumar, Parametric Sensitivities of XFEM Based Prognosis for Quasi-static Tensile Crack Growth Parametric Sensitivities of XFEM Based Prognosis for Quasi-static Tensile Crack Growth," Master's thesis, 2017.S. Kumar and G. Bhardwaj, A new enrichment scheme in XFEM to model crack growth behavior in ductile materials, Theoretical and Applied Fracture Mechanics, vol. 96, no. March, pp. 296-307, 2018.P. Sustaric, M. R. Seabra, J. M. Cesar De Sa, and T. Rodic, Sensitivity analysis-based crack propagation criterion for compressible and (near) incompressible hyperelastic materials," Finite Elements in Analysis and Design, vol. 82, pp. 1-15, 2014.A. Ramazani, M. Abbasi, S. Kazemiabnavi, S. Schmauder, R. Larson, and U. Prahl, Development and application of a microstructure-based approach to characterize and model failure initiation in DP steels using XFEM," Materials Science and Engineering A, vol. 660, pp. 181-194, 2016.A. Bergara, J. I. Dorado, A. Martin-Meizoso, and J. M. Martínez-Esnaola, Fatigue crack propagation in complex stress fields: Experiments and numerical simulations using the Extended Finite Element Method (XFEM)," International Journal of Fatigue, vol. 103, pp. 112-121, 2017.T. Nagashima and M. Sawada, Development of a damage propagation analysis system based on level set XFEM using the cohesive zone model, Computers and Structures, vol. 174, pp. 42-53, 2016.N. A. Petrov, L. Gorbatikh, and S. V. Lomov, A parametric study assessing performance of eXtended Finite Element Method in application to the cracking process in cross-ply composite laminates, Composite Structures, vol. 187, no. July 2017, pp. 489-497, 2018.H. Zhang and A. Fatemi, Short fatigue crack growth from a blunt notch in plate specimens," International Journal of Fracture, vol. 170, pp. 1-11, Jul 2011.S. Ashokkumar SHAH, Micro mechanics-based prognosis of progressive dynamic damage in advanced aerospace composite structures, tech. rep., 2010.G. Cherepanov, Crack propagation in continuous media, Journal of Applied Mathematics and Mechanics, vol. 31, pp. 476-488, 1967.A. M. Alshoaibi, M. S. A. Hadi, and A. K. Ariffin, An adaptive finite element procedure for crack propagation analysis, Journal of Zhejiang University-SCIENCE A, vol. 8, pp. 228-236, Feb 2007.B. Trollé, M. C. Baietto, A. Gravouil, S. H. Mai, and T. M. Nguyen-Tajan, XFEM crack propagation under rolling contact fatigue," in Procedia Engineering, vol. 66, pp. 775-782, Elsevier Ltd, 2013.A. Hillerborg, M. Modeer, and P. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, tech. rep., 1976.Damage evolution and element removal for ductile metals, 2017. https://abaqus-docs.mit.edu/2017/English/SIMACAEMATRefMap/simamat-c-damageevolductile.htm.E. Barbero, Finite Element Analysis of Composite Materials. Jan 2008.D. C. Montgomery, Design and Analysis of Experiments, 8th Edition. John Wiley & Sons, Incorporated, 2012.R. Raeside, Teaching experimental design techniques to engineers, International Journal of Quality & Reliability Management, vol. 12, no. 1, pp. 47-52, 1995.Defining plasticity in Abaqus, 2017. https://abaqus-docs.mit.edu/2017/English/SIMACAEGSARefMap/simagsa-c-matdefining.htm.McCabe, R-Curve Determination Using a Crack-Line-Wedge-Loaded in Fracture Toughness Evaluation by R-Curve Methods (D. E. McCabe, ed.), ASTM International, Jan 1973.B. Kawecki and P. Jerzy, Numerical results quality in dependence on abaqus plane stress elements type in big displacements compression test, Applied Computer Science, vol. 13, 12 2017.N. Fanaie, F. Ghalamzan Esfahani, and S. Soroushnia, Analytical study of composite beams with different arrangements of channel shear connectors," Steel and Composite Structures, vol. 19, pp. 485-501, 08 2015.T. Belytschko, J. Ong, K. Wing Kam Liu, and J. Kennedy, Hourglass control in linear and nonlinear problems, Computer Methods in Applied Mechanics and Engineering, vol. 43, pp. 251-276, May 1984.M. Gosz, Finite Element Method: Applications in Solids, Structures, and Heat Transfer. Mechanical Engineering, CRC Press, 2017.N. J. Gómez-Ruiz, M. J. Vergara-Paredes, and J. A. Alvarado-Contreras, Estudio De Convergencia Por Análisis De Elementos Finitos En Tejido óseo Cortical," Revista Iberoamericana de Ingeniería Mecánica, vol. 21, no. 2, pp. 85-103, 2017.A. L. Schubert, D. Hagemann, A. Voss, and K. Bergmann, Evaluating the model fit of diffusion models with the root mean square error of approximation, Journal of Mathematical Psychology, vol. 77, pp. 29-45, 2017.T. Chai and R. R. Draxler, Root mean square error (RMSE) or mean absolute error (MAE) -Arguments against avoiding RMSE in the literature, Geoscientific Model Development, vol. 7, no. 3, pp. 1247-1250, 2014.LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/77900/2/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD52ORIGINAL1026292408.2020.pdf1026292408.2020.pdfapplication/pdf6182666https://repositorio.unal.edu.co/bitstream/unal/77900/1/1026292408.2020.pdfb1207792f412fde94e6c6e8e95ad6e9fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.unal.edu.co/bitstream/unal/77900/3/license_rdf217700a34da79ed616c2feb68d4c5e06MD53THUMBNAIL1026292408.2020.pdf.jpg1026292408.2020.pdf.jpgGenerated Thumbnailimage/jpeg5173https://repositorio.unal.edu.co/bitstream/unal/77900/4/1026292408.2020.pdf.jpg294bbafb8562e997dce8703bd6ca4e55MD54unal/77900oai:repositorio.unal.edu.co:unal/779002023-07-23 23:03:18.723Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg== |