Development of a Colombian starch based Starbon® type material for its use as catalyst in fatty acid esterification

ilustraciones, diagramas, fotografías, tablas

Autores:
Zabala Vásquez, Milena Alexandra
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86374
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86374
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::541 - Química física
660 - Ingeniería química::664 - Tecnología de alimentos
Mesoporous materials
Catalysts
Starch
Tubers
Materiales mesoporosos
Catalizadores
Almidón
Tubérculos
Carbon
Catalyst
Cassava starch
Esterification
Mesoporous
Porosity
Starbon
Carbón
Catalizador
Almidón de yuca
Esterificación
Mesoporoso
Porosidad
Starbon
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_d17293071e66c4146e2b5d6df4044b08
oai_identifier_str oai:repositorio.unal.edu.co:unal/86374
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Development of a Colombian starch based Starbon® type material for its use as catalyst in fatty acid esterification
dc.title.translated.spa.fl_str_mv Desarrollo de un material tipo Starbon® a partir de almidón de origen colombiano para su uso como catalizador en esterificación de ácidos grasos
title Development of a Colombian starch based Starbon® type material for its use as catalyst in fatty acid esterification
spellingShingle Development of a Colombian starch based Starbon® type material for its use as catalyst in fatty acid esterification
540 - Química y ciencias afines::541 - Química física
660 - Ingeniería química::664 - Tecnología de alimentos
Mesoporous materials
Catalysts
Starch
Tubers
Materiales mesoporosos
Catalizadores
Almidón
Tubérculos
Carbon
Catalyst
Cassava starch
Esterification
Mesoporous
Porosity
Starbon
Carbón
Catalizador
Almidón de yuca
Esterificación
Mesoporoso
Porosidad
Starbon
title_short Development of a Colombian starch based Starbon® type material for its use as catalyst in fatty acid esterification
title_full Development of a Colombian starch based Starbon® type material for its use as catalyst in fatty acid esterification
title_fullStr Development of a Colombian starch based Starbon® type material for its use as catalyst in fatty acid esterification
title_full_unstemmed Development of a Colombian starch based Starbon® type material for its use as catalyst in fatty acid esterification
title_sort Development of a Colombian starch based Starbon® type material for its use as catalyst in fatty acid esterification
dc.creator.fl_str_mv Zabala Vásquez, Milena Alexandra
dc.contributor.advisor.none.fl_str_mv Orjuela Londoño, Alvaro
dc.contributor.author.none.fl_str_mv Zabala Vásquez, Milena Alexandra
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Procesos Químicos y Bioquímicos
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::541 - Química física
660 - Ingeniería química::664 - Tecnología de alimentos
topic 540 - Química y ciencias afines::541 - Química física
660 - Ingeniería química::664 - Tecnología de alimentos
Mesoporous materials
Catalysts
Starch
Tubers
Materiales mesoporosos
Catalizadores
Almidón
Tubérculos
Carbon
Catalyst
Cassava starch
Esterification
Mesoporous
Porosity
Starbon
Carbón
Catalizador
Almidón de yuca
Esterificación
Mesoporoso
Porosidad
Starbon
dc.subject.lcc.eng.fl_str_mv Mesoporous materials
Catalysts
Starch
Tubers
dc.subject.lcc.spa.fl_str_mv Materiales mesoporosos
Catalizadores
Almidón
Tubérculos
dc.subject.proposal.eng.fl_str_mv Carbon
Catalyst
Cassava starch
Esterification
Mesoporous
Porosity
Starbon
dc.subject.proposal.spa.fl_str_mv Carbón
Catalizador
Almidón de yuca
Esterificación
Mesoporoso
Porosidad
Starbon
description ilustraciones, diagramas, fotografías, tablas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-03T15:57:56Z
dc.date.available.none.fl_str_mv 2024-07-03T15:57:56Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86374
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86374
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Aldana, A., Lartundo, L., Gómez, R., & Niño, M. (2012). Sulfonic groups anchored on mesoporous carbon Starbons-300 and its use for the esterification of oleic acid. Fuel, 100, 128–138. https://doi.org/10.1016/j.fuel.2012.02.025
Auer, E., Freund, A., Pietsch, J., & Tacke, T. (1998). Carbons as supports for industrial precious metal catalysts. Applied Catalysis A: General, 173(2), 259–271. https://doi.org/10.1016/S0926-860X(98)00184-7
Bazuła, P., Lu, A. H., Nitz, J., & Schüth, F. (2008). Surface and pore structure modification of ordered mesoporous carbons via a chemical oxidation approach. Microporous and Mesoporous Materials, 108(1–3), 266–275. https://doi.org/10.1016/j.micromeso.2007.04.008
Bekyarova, E., & Kaneko, K. (2000). Structure and physical properties of tailor-made Ce,Zr-doped carbon aerogels. Advanced Materials, 12(21), 1625–1628. https://doi.org/10.1002/1521-4095(200011)12:21<1625::AID-ADMA1625>3.0.CO;2-9
Biliaderis, C., Page, C., Slade, L., & Sirett, R. (1985). Thermal Behavior of Amylose-Lipid Complexes. Carbohydrate Polymers, 55, 367–389
Bokhari, A., Chuah, L., Michelle, L., Asif, S., Shahbaz, M., Akbar, M., Inayat, A., Jami, F., Naqvi, S., & Yusup, S. (2019). Microwave enhanced catalytic conversion of canola based methyl ester: Optimization and parametric study. In Advanced Biofuels: Applications, Technologies and Environmental Sustainability. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102791-2.00006-4
Borges, M. E., & Díaz, L. (2012). Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renewable and Sustainable Energy Reviews, 16(5), 2839–2849. https://doi.org/10.1016/j.rser.2012.01.071
Borisova, A., De Bruyn, M., Budarin, V., Shuttleworth, P., Dodson, J., Segatto, M., & Clark, J. (2015). A Sustainable freeze-drying route to porous polysaccharides with tailored hierarchical meso- and macroporosity. Macromolecular Rapid Communications, 36(8), 774–779. https://doi.org/10.1002/marc.201400680
Bosley, J. (1997). Turning upases into industrial biocatalysts. Biochemical Society Transactions, 25(1), 174–178. https://doi.org/10.1042/bst0250174
Brouwer, T. (2017). Determining the influence of the starch amylose content on the mesoporosity of starbons (Issue September 2016) [Wageningen University]. https://edepot.wur.nl/409082
Budarin, V., Clark, J., Hardy, J., Luque, R., Milkowski, K., Tavener, S., & Wilson, A. (2006). Starbons: New starch-derived mesoporous carbonaceous materials with tunable properties. Angewandte Chemie - International Edition, 45(23), 3782–3786. https://doi.org/10.1002/anie.200600460
Budarin, V., Clark, J., Luque, R., & Macquarrie, D. (2007). Versatile mesoporous carbonaceous materials for acid catalysis. Chemical Communications, 6, 634–636. https://doi.org/10.1039/b614537j
Budarin, V., Clark, J., Luque, R., Macquarrie, D., Koutinas, A., & Webb, C. (2007). Tunable mesoporous materials optimised for aqueous phase esterifications. Green Chemistry, 9(9), 992–999. https://doi.org/10.1039/b704055e
Budarin, V., Clark, J., Luque, R., Macquarrie, D., Milkowski, K., & White, R. (2007). Carbonaceous materials (Patent No. WO 2007/104798 A2).
Budarin, V., Luque, R., Macquarrie, D., & Clark, J. (2007). Towards a bio-based industry: Benign catalytic esterifications of succinic acid in the presence of water. Chemistry - A European Journal, 13(24), 6914–6919. https://doi.org/10.1002/chem.200700037
Canales, N., & Trujillo, M. (2021). The value chain of cassava and its potential in the bioeconomy of Colombia [in Spanish]. In Stockholm Environment Institute. https://cdn.sei.org/wp-content/uploads/2021/05/workingpaperyucabioeconomia canalestrujillo-mayo21.pdf
Chandane, V., Rathod, A., Wasewar, K., & Sonawane, S. (2017). Response Surface Optimization and Kinetics of Isopropyl Palmitate Synthesis using Homogeneous Acid Catalyst. International Journal of Chemical Reactor Engineering, 15(3), 1–10. https://doi.org/10.1515/ijcre-2016-0111
Chen, G., & Fang, B. (2011). Preparation of solid acid catalyst from glucose-starch mixture for biodiesel production. Bioresource Technology, 102(3), 2635–2640. https://doi.org/10.1016/j.biortech.2010.10.099
Cheng, Y., McPherson, A., Radosavljevic, M., Lee, V., Wong, K., & Jane, J. (1998). Effects of starch chemical structures on gelatinization and pasting properties. 4(17), 63–71.
Choi, S., Drese, J., & Jones, C. (2009). Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem, 2(9), 796–854. https://doi.org/10.1002/cssc.200900036
Clark, J. (2002). Solid acids for green chemistry. Accounts of Chemical Research, 35(9), 791–797. https://doi.org/10.1021/ar010072a
Clark, J., Budarin, V., Dugmore, T., Luque, R., Macquarrie, D., & Strelko, V. (2008). Catalytic performance of carbonaceous materials in the esterification of succinic acid. Catalysis Communications, 9(8), 1709–1714. https://doi.org/10.1016/j.catcom.2008.01.037
Clohessy, J., & Kwapinski, W. (2020). Carbon-based catalysts for biodiesel production-A review. Applied Sciences (Switzerland), 10(3), 1–17. https://doi.org/10.3390/app10030918
Cruz, J., Silverio, J., Eliasson, A., & Larsson, K. (1996). A comparative study of gelatinization of cassava and potato starch in an aqueous lipid phase (L2) compared to water. Food Hydrocolloids, 10(3), 317–322. https://doi.org/10.1016/S0268- 005X(96)80007-5
Członka, S., Bertino, M., Kośny, J., & Shukla, N. (2018). Freeze-drying method as a new approach to the synthesis of polyurea aerogels from isocyanate and water. Journal of Sol-Gel Science and Technology, 87(3), 685–695. https://doi.org/10.1007/s10971- 018-4769-9
de Jong, M., Feijt, R., Zondervan, E., Nijhuis, T., & de Haan, A. (2009). Reaction kinetics of the esterification of myristic acid with isopropanol and n-propanol using p-toluene sulphonic acid as catalyst. Applied Catalysis A: General, 365(1), 141–147. https://doi.org/10.1016/j.apcata.2009.06.009
De, S., Balu, A., van der Waal, J., & Luque, R. (2015). Biomass-derived porous carbon materials: Synthesis and catalytic applications. ChemCatChem, 7(11), 1608–1629. https://doi.org/10.1002/cctc.201500081
Díaz, I., Márquez, C., Mohino, F., Pérez, J., & Sastre, E. (2000). Combined Alkyl and Sulfonic Acid Functionalization of MCM-41-Type Silica. Journal of Catalysis, 193(2), 295–302. https://doi.org/10.1006/jcat.2000.2899
Dimian, A., & Rothenberg, G. (2016). An effective modular process for biodiesel manufacturing using heterogeneous catalysis. Catalysis Science & Technology, 6(15), 6097–6108. https://doi.org/10.1039/C6CY00426A
Dome, K., Podgorbunskikh, E., Bychkov, A., & Lomovsky, O. (2020). Changes in the crystallinity degree of starch having different types of crystal structure after mechanical pretreatment. Polymers, 12(3), 1–12. https://doi.org/10.3390/polym12030641
Dow Chemical Company. (2020). Amberlyst 15WET Product Data Sheet. 177.03087- 0313, 2. https://www.lenntech.com/Data-sheets/Dow-Amberlyst-15-wet-L.pdf
DPN. (2016). Lost and waste of food in Colombia [in Spanish] (Vol. 39)
DuPont de Nemours, I. (2019). AMBERLYSTTM 15DRY Polymeric Catalyst. 45, 1–2
Elkhatat, A., & Al, S. (2011). Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Advanced Materials, 23(26), 2887–2903. https://doi.org/10.1002/adma.201100283
Fallahi, P., Muthukumarappan, K., & Rosentrater, K. (2016). Functional and structural properties of corn, potato, and cassava starches as affected by a single-screw extruder. International Journal of Food Properties, 19(4), 768–788. https://doi.org/10.1080/10942912.2015.1042112
Folgueras, M., Rodríguez, S., Maza, N., & Oliva, M. (2012). Harvest, processing, and preservation of cassava (Manihot esculenta Crantz). II: Preservation methods, packaging and transportation, and root harvesting systems [in Spanish]. Revista Científica UDO Agrícola, 12(4), 749–758.
Fu, Z., Wan, H., Hu, X., Cui, Q., & Guan, G. (2012). Preparation and catalytic performance of a carbon-based solid acid catalyst with high specific surface area. Reaction Kinetics, Mechanisms and Catalysis, 107(1), 203–213. https://doi.org/10.1007/s11144-012-0466-9
García, M., Cardona, A., & García, C. (2020). Diagnosis of cassava bran management in the department of Sucre [in Spanish]. Innovación En La Región Caribe de Colombia: Aportes Teóricos y Buenas Prácticas. https://doi.org/10.21892/9789585547858.9
Geng, L., Wang, Y., Yu, G., & Zhu, Y. (2011). Efficient carbon-based solid acid catalysts for the esterification of oleic acid. Catalysis Communications, 13(1), 26–30. https://doi.org/10.1016/j.catcom.2011.06.014
Grand View Research. (2020). Fatty Acid Ester Market Size, Share & Trends Analysis Report 2020 - 2027. https://www.grandviewresearch.com/industry-analysis/fatty-acid esters-market
Gregg, S., & Sing, K. (1982). Adsorption, Surface Area and Porosity (Second edi).
Guan, J., & Hanna, M. (2004). Extruding foams from corn starch acetate and native corn starch. Biomacromolecules, 5(6), 2329–2339. https://doi.org/10.1021/bm049512m
Hanzawa, Y., Kaneko, K., Pekala, R., & Dresselhaus, M. (1996). Activated carbon aerogels. Langmuir, 12(26), 6167–6169. https://doi.org/10.1021/la960481t
Hara, M., Yoshida, T., Takagaki, A., Takata, T., Kondo, J., Hayashi, S., & Domen, K. (2004). A carbon material as a strong protonic acid. Angewandte Chemie - International Edition, 43(22), 2955–2958. https://doi.org/10.1002/anie.200453947
Hernández, M., Torruco, J., Chel, L., & Betancur, D. (2008). Physicochemical Characterization of Starches from Tubers Cultivated in Yucatán, Mexico [in Spanish]. Ciência e Tecnologia de Alimentos, 28(3), 718–726. https://doi.org/10.1590/s0101- 20612008000300031
Hu, B., Yu, S.-H., Wang, K., Liu, L., & Xu, X. (2008). Functional carbonaceous materials from hydrothermal carbonization of biomass: an effective chemical process. Dalton Transactions, 9226(40), 5414–5423. https://doi.org/10.1039/b804644c
Huang, J., Jian, Y., Li, H., & Fang, Z. (2022). Lignin-derived layered 3D biochar with controllable acidity for enhanced catalytic upgrading of Jatropha oil to biodiesel. Catalysis Today, 404(August 2021), 35–48. https://doi.org/10.1016/j.cattod.2022.04.016
Inagaki, M. (2013). Advanced Carbon Materials. In Handbook of Advanced Ceramics: Materials, Applications, Processing, and Properties (Second Edt, pp. 25–60). Elsevier Inc. https://doi.org/10.1016/B978-0-12-385469-8.00002-2
Inagaki, M., & Kang, F. (2016). Materials Science and Engineering of Carbon: Characterization. Tsinghua University Press Limited. https://doi.org/10.1016/B978-0- 12-805256-3.00001-5
International Organization for Standatization. (2009). ISO 660 (E). Animal and Vegetable Fats and Oils. Determination of Acid Value and Acidity. (p. 14).
Intriago, M., & Muñoz, G. (2014). Feasibility Study for the Establishment of a Company Producing Cassava Starch as a Raw Material for the Guayaquil Market [in Spanish] [Universidad Católica de Santiago de Guayaquil]. http://repositorio.ucsg.edu.ec/handle/3317/2257
Ji, J., Zhang, G., Chen, H., Wang, S., Zhang, G., Zhang, F., & Fan, X. (2011). Sulfonated graphene as water-tolerant solid acid catalyst. Chemical Science, 2(3), 484–487. https://doi.org/10.1039/c0sc00484g
Jia, R., Ren, J., Liu, X., Lu, G., & Wang, Y. (2014). Design and synthesis of sulfonated carbons with amphiphilic properties. Journal of Materials Chemistry A, 2(29), 11195– 11201. https://doi.org/10.1039/c4ta01836b
Joo, S., Choi, S., Oh, I., Kwak, J., Liu, Z., Terasaki, O., & Ryoo, R. (2001). Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature, 412(6843), 169–172. https://doi.org/10.1038/35084046
Jun, S., Joo, S., Ryoo, R., Kruk, M., Jaroniec, M., Liu, Z., Ohsuna, T., & Terasaki, O. (2000). Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. Journal of the American Chemical Society, 122(43), 10712–10713. https://doi.org/10.1021/ja002261e
Juszczak, L., Fortuna, T., & Wodnicka, K. (2002). Characteristics of cereal starch granules surface using nitrogen adsorption. Journal of Food Engineering, 54(2), 103–110. https://doi.org/10.1016/S0260-8774(01)00190-X
Kastratovic, V., & Bigovic, M. (2018). Esterification of stearic acid with lower monohydroxylic alcohols. Chemical Industry and Chemical Engineering Quarterly, 24(3), 283–291. https://doi.org/10.2298/CICEQ170327040K
Kistler, S. (1932). Coherent expanded aerogels. Journal of Physical Chemistry, 36(1), 52– 64. https://doi.org/10.1021/j150331a003
Kitano, M., Arai, K., Kodama, A., Kousaka, T., Nakajima, K., Hayashi, S., & Hara, M. (2009). Preparation of a sulfonated porous carbon catalyst with high specific surface area. Catalysis Letters, 131(1–2), 242–249. https://doi.org/10.1007/s10562-009- 0062-4
Knorr, D., Heinz, V., & Buckow, R. (2006). High pressure application for food biopolymers. Biochimica et Biophysica Acta - Proteins and Proteomics, 1764(3), 619–631. https://doi.org/10.1016/j.bbapap.2006.01.017
Konwar, L., Mäki, P., & Mikkola, J. (2019). SO3H-Containing Functional Carbon Materials: Synthesis, Structure, and Acid Catalysis. Chemical Reviews, 119(22), 11576–11630. https://doi.org/10.1021/acs.chemrev.9b00199
Kosonen, H., Valkama, S., Nykänen, A., Toivanen, M., Brinke, G., Ruokolainen, J., & Ikkala, O. (2006). Functional porous structures based on the pyrolysis of cured templates of block copolymer and phenolic resin. Advanced Materials, 18(2), 201– 205. https://doi.org/10.1002/adma.200401110
Kruk, M., Jaroniec, M., Ryoo, R., & Joo, S. (2000). Characterization of ordered mesoporous carbons synthesized using MCM-48 silicas as templates. Journal of Physical Chemistry B, 104(33), 7960–7968. https://doi.org/10.1021/jp000861u
Kunin, R., Meitzner, E. A., Oline, J. A., Fisher, S. A., & Frisch, N. (1962). Characterization of Amberlyst 15. Macroreticular Sulfonic Acid Cation Exchange Resin. I&EC Product Research and Development, 1(2), 140–144. https://doi.org/10.1021/i360002a016
Labelle, M., Ispas, P., Tajer, S., Xiao, Y., Barbeau, B., & Mateescu, M. (2023). Anionic and Ampholytic High-Amylose Starch Derivatives as Excipients for Pharmaceutical and Biopharmaceutical Applications: Structure-Properties Correlations. Pharmaceutics, 15(3). https://doi.org/10.3390/pharmaceutics15030834
Lanxess Energizing Chemistry. (2011). Product Information Lewatit® K 2629. 3. https://www.lenntech.com/Data-sheets/Lewatit-K-2629-L.pdf
Leofanti, G., Padovan, M., Tozzola, G., & Venturelli, B. (1998). Surface area and pore texture of catalysts. Catalysis Today, 41(1–3), 207–219. https://doi.org/10.1016/S0920-5861(98)00050-9
Li, W., Yue, Q., Deng, Y., & Zhao, D. (2013). Ordered mesoporous materials based on interfacial assembly and engineering. Advanced Materials, 25(37), 5129–5152. https://doi.org/10.1002/adma.201302184
Liang, C., Hong, K., Guiochon, G., Mays, J., & Dai, S. (2004). Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angewandte Chemie - International Edition, 43(43), 5785–5789. https://doi.org/10.1002/anie.200461051
Liu, F., Li, B., Liu, C., Kong, W., Yi, X., Zheng, A., & Qi, C. (2016). Template-free synthesis of porous carbonaceous solid acids with controllable acid sites and their excellent activity for catalyzing the synthesis of biofuels and fine chemicals. Catalysis Science and Technology, 6(9), 2995–3007. https://doi.org/10.1039/c5cy01226k
Liu, X., Huang, M., Ma, H., Zhang, Z., Gao, J., Zhu, Y., Han, X., & Guo, X. (2010). Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process. Molecules, 15(10), 7188–7196. https://doi.org/10.3390/molecules15107188
Lowell, S., Shields, J., Martin, T., & Thommes, M. (2004). Surface Area Analysis from the Langmuir and BET Theories. In Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density.
Lu, A. H., Li, W. C., Schmidt, W., & Schüth, F. (2005). Template synthesis of large pore ordered mesoporous carbon. Microporous and Mesoporous Materials, 80(1–3), 117– 128. https://doi.org/10.1016/j.micromeso.2004.12.007
Luque, R. (2010). Catalizadores de diseño para la producción de compuestos químicos de alto valor añadido y biocombustibles a partir de biomasa. Anales de La Real Sociedad Española de Química, 106(4), 296–303. http://dialnet.unirioja.es/servlet/articulo?codigo=3347192
Luque, R., Budarin, V., Shuttleworthb, P., & Clark, J. (2012). A new Starch is born: Starbons as biomass-derived mesoporous carbonaceous materials. Bol. Grupe Espanol Carbón, June 2014, 1–5.
Luque, R., & Clark, J. (2010). Water-tolerant Ru-Starbon® materials for the hydrogenation of organic acids in aqueous ethanol. Catalysis Communications, 11(10), 928–931. https://doi.org/10.1016/j.catcom.2010.03.015
Luque, R., & Clark, J. (2011). Biodiesel-Like biofuels from simultaneous transesterification/esterification of waste oils with a biomass-derived solid acid catalyst. ChemCatChem, 3(3), 594–597. https://doi.org/10.1002/cctc.201000280
Luque, R., Clark, J., Yoshida, K., & Gai, P. (2009). Efficient aqueous hydrogenation of biomass platform molecules using supported metal nanoparticles on Starbons®. Chemical Communications, 35, 5305–5307. https://doi.org/10.1039/b911877b
Mahajan, A., & Gupta, P. (2020). Carbon-based solid acids: a review. Environmental Chemistry Letters, 18(2), 299–314. https://doi.org/10.1007/s10311-019-00940-7
Manrique, N. (2006). Production of pregelatinized starches from blends of starches from unconventional sources using a twin-screw extruder [in Spanish]. Instituto Politécnico Nacional.
Markley, K. (1983). Fatty acids: their chemistry properties production and uses (Second edi). Krieger Publishing.
Marziano, N., Tortato, C., Ronchin, L., & Bianchi, C. (1998). On the acidity of liquid and solid acid catalysts: Part 1. A thermodynamic point of view. Catalysis Letters, 56(2), 159–164. https://doi.org/10.1023/a:1019096726458
Maziarka, P., Wurzer, C., Arauzo, P. J., Dieguez-Alonso, A., Mašek, O., & Ronsse, F. (2021). Do you BET on routine? The reliability of N2 physisorption for the quantitative assessment of biochar’s surface area. Chemical Engineering Journal, 418(March). https://doi.org/10.1016/j.cej.2021.129234
Megazyme. (2018). Amylose/Amylopectin: Assay Procedure K-AMYL 06/18. Megazyme Data Booklet, 6, 11. https://www.megazyme.com/amylose-amylopectin-assay kit?sSearch=amylose
Mena, C. (2014). Synthesis and characterisation of sulfonated Starbons®, biobased catalysts (Issue August). University of York Chemistry
Mena, C., & Macquarrie, D. (2014). Esterification of lauric acid with methanol using sulfonated Starbons. Research Journal of Chemistry and Environment, 18(8), 1–6.
Milescu, R., Dennis, M., McElroy, R., Macquarrie, D., Matharu, A., Smith, M., Clark, J., & Budarin, V. (2020). The role of surface functionality of sustainable mesoporous materials Starbon® on the adsorption of toxic ammonia and sulphur gasses. Sustainable Chemistry and Pharmacy, 15(February). https://doi.org/10.1016/j.scp.2020.100230
Mohan, D., & Pittman, C. (2006). Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. Journal of Hazardous Materials, 137(2), 762–811. https://doi.org/10.1016/j.jhazmat.2006.06.060
Morishita, T., Ishihara, K., Kato, M., & Inagaki, M. (2007). Preparation of a carbon with a 2 nm pore size and of a carbon with a bi-modal pore size distribution. Carbon, 45(1), 209–211. https://doi.org/10.1016/j.carbon.2006.09.032
Morishita, T., Ishihara, K., Kato, M., Tsumura, T., & Inagaki, M. (2007). Mesoporous carbons prepared from mixtures of magnesium citrate with poly (vinyl alcohol). Tanso, 2007(226), 19–24. https://doi.org/10.7209/tanso.2007.19
Morishita, T., Tsumura, T., Toyoda, M., Przepiórski, J., Morawski, A., Konno, H., & Inagaki, M. (2010). A review of the control of pore structure in MgO-templated nanoporous carbons. Carbon, 48(10), 2690–2707. https://doi.org/10.1016/j.carbon.2010.03.064
Niu, S., Ning, Y., Lu, C., Han, K., Yu, H., & Zhou, Y. (2018). Esterification of oleic acid to produce biodiesel catalyzed by sulfonated activated carbon from bamboo. Energy Conversion and Management, 163(17923), 59–65. https://doi.org/10.1016/j.enconman.2018.02.055
Okamoto, Y., & Yashima, E. (1998). Polysaccharide Derivatives for Chromatographic Separation of Enantiomers. Angewandte Chemie International Edition, 37(8), 1020– 1043
Okamura, M., Takagaki, A., Toda, M., Kondo, J., Domen, K., Tatsumi, T., Hara, M., & Hayashi, S. (2006). Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon. Chemistry of Materials, 18(13), 3039–3045. https://doi.org/10.1021/cm0605623
Ouyang, S., Kuang, X., Xu, Q., & Yin, D. (2014). Preparation of a Carbon-Based Solid Acid with High Acid Density via a Novel Method. Journal of Materials Science and Chemical Engineering, 02(06), 4–8. https://doi.org/10.4236/msce.2014.26002
Pandolfo, A., & Hollenkamp, A. (2006). Carbon properties and their role in supercapacitors. Journal of Power Sources, 157(1), 11–27. https://doi.org/10.1016/j.jpowsour.2006.02.065
Pang, Q., Wang, L., Yang, H., Jia, L., Pan, X., & Qiu, C. (2014). Cellulose-derived carbon bearing -Cl and -SO3H groups as a highly selective catalyst for the hydrolysis of cellulose to glucose. RSC Advances, 40(78), 41212–41218. https://doi.org/10.1039/c4ra05520a
Parker, H. (2013). Recovery from Waste Streams: Working Towards a Sustainable Future. April. http://etheses.whiterose.ac.uk/4176/1/Helen_Parker_PhD_Thesis.pdf
Parker, H., Budarin, V., Clark, J., & Hunt, A. (2013). Use of starbon for the adsorption and desorption of phenols. ACS Sustainable Chemistry and Engineering, 1(10), 1311– 1318. https://doi.org/10.1021/sc4001675
Parker, H., Hunt, A., Budarin, V., Shuttleworth, P., Miller, K., & Clark, J. (2012). The importance of being porous: Polysaccharide-derived mesoporous materials for use in dye adsorption. RSC Advances, 2(24), 8992–8997. https://doi.org/10.1039/c2ra21367b
Paterson, G., Issariyakul, T., Baroi, C., Bassi, A., & Dalai, A. (2013). Ion-exchange resins as catalysts in transesterification of triolein. Catalysis Today, 212, 157–163. https://doi.org/10.1016/j.cattod.2012.10.013
Pekala, R. (1989). Organic aerogels from the polycondensation of resorcinol with formaldehyde. Journal of Materials Science, 24(9), 3221–3227. https://doi.org/10.1007/BF01139044
Pekala, R., Alviso, C., Kong, F., & Hulsey, S. (1991). Aerogels Derived from Multifunctional Organic Monomers. Third International SymPosium on Aerogels, 21.
Peng, L., Philippaerts, A., Ke, X., Van Noyen, J., De Clippel, F., Van Tendeloo, G., Jacobs, P., & Sels, B. (2010). Preparation of sulfonated ordered mesoporous carbon and its use for the esterification of fatty acids. Catalysis Today, 150(1–2), 140–146. https://doi.org/10.1016/j.cattod.2009.07.066
Rodriguez, F. (1998). The role of carbon materials in heterogeneous catalysis. Carbon, 36(3), 159–175. https://doi.org/https://doi.org/10.1016/S0008-6223(97)00173-5
Rohm & Haas. (2005). AmberlystTM 70 Product Data Sheet. Rohm & Haas: Philadelphia, PA, USA, 1–2.
Rohm and Haas. (2006). AmberlystTM 35WET Product Data Sheet
Saha, D., Payzant, A., Kumbhar, A., & Naskar, A. (2013). Sustainable mesoporous carbons as storage and controlled-delivery media for functional molecules. ACS Applied Materials and Interfaces, 5(12), 5868–5874. https://doi.org/10.1021/am401661f
Sandhu, K., & Singh, N. (2007). Some properties of corn starches II: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chemistry, 101(4), 1499–1507. https://doi.org/10.1016/j.foodchem.2006.01.060
Shi, Y., & Seib, P. (1992). The structure of four waxy starches related to gelatinization and retrogradation. Carbohydrate Research, 227(C), 131–145. https://doi.org/10.1016/0008-6215(92)85066-9
Shuttleworth, P., Budarin, V., White, R., Gun’Ko, V., Luque, R., & Clark, J. (2013). Molecular-level understanding of the carbonisation of polysaccharides. Chemistry - A European Journal, 19(28), 9351–9357. https://doi.org/10.1002/chem.201300825
Silverstein, R. M., & Webster, F. X. (1996). Spectrometric Identification Of Organic Compounds 6th Edition. In John Wiley & Sons Ltd (Vol. 6, pp. 1–482).
Sing, K., Everett, D., Haul, R., Moscou, L., Pierotti, R., Rouquérol, J., & Siemieniewska, T. (1985). Reporting phisisorption data for gas/solid systems. Pure and Applied Chemistry, 57(4), 603–619
Sreedhar, I., Aniruddha, R., & Malik, S. (2019). Carbon capture using amine modified porous carbons derived from starch (Starbons®). SN Applied Sciences, 1(5), 1–11. https://doi.org/10.1007/s42452-019-0482-8
Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., & Hara, M. (2008). Hydrolysis of Cellulose by Amorphous Carbon Bearing SO3H, COOH, and OH Groups. Journal of the American Chemical Society, 130(38), 12787–12793. https://doi.org/10.1021/la8040506
Takagaki, A., Toda, M., Okamura, M., Kondo, J., Hayashi, S., Domen, K., & Hara, M. (2006). Esterification of higher fatty acids by a novel strong solid acid. Catalysis Today, 116(2 SPEC. ISS.), 157–161. https://doi.org/10.1016/j.cattod.2006.01.037
Tamon, H., Ishizaka, H., Yamamoto, T., & Suzuki, T. (1999). Preparation of mesoporous carbon by freeze drying. Carbon, 37(12), 2049–2055. https://doi.org/10.1016/S0008- 6223(99)00089-5
Tanaka, S., Nishiyama, N., Egashira, Y., & Ueyama, K. (2005). Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite. Chemical Communications, 16, 2125–2127. https://doi.org/10.1039/b501259g
Tang, M., & Copeland, L. (2007). Investigation of starch retrogradation using atomic force microscopy. Carbohydrate Polymers, 70(1), 1–7. https://doi.org/10.1016/j.carbpol.2007.02.025
Tian, Y., Li, Y., Xu, X., & Jin, Z. (2011). Starch retrogradation studied by thermogravimetric analysis (TGA). Carbohydrate Polymers, 84(3), 1165–1168. https://doi.org/10.1016/j.carbpol.2011.01.006
Titirici, M., White, R., Brun, N., Budarin, V., Su, D., Del Monte, F., Clark, J., & MacLachlan, M. (2015). Sustainable carbon materials. Chemical Society Reviews, 44(1), 250–290. https://doi.org/10.1039/c4cs00232
Toda, M., Takagaki, A., Okamura, M., Kondo, J., Hayashi, S., Domen, K., & Hara, M. (2005). Biodiesel made with sugar catalyst. Nature Communications, 438, 178. https://doi.org/10.1038/438178
Torres, P., Rodríguez, J., & Rojas, O. (2005). Extracción de almidón de yuca. Manejo integral y control de la contaminación hídrica. Livestock Research for Rural Development, 17(7), 2005.
Uriburu-Gray, M., Pinar-Serrano, A., Cavus, G., Knipping, E., Aucher, C., Conesa Cabeza, A., Satti, A., Amantia, D., & Martínez-Crespiera, S. (2020). Mesoporous carbons from polysaccharides and their use in li-o2 batteries. Nanomaterials, 10(10), 1–18. https://doi.org/10.3390/nano10102036
van Soest, J., de Wit, D., Tournois, H., & Vliegenthart, J. (1994). The influence of glycerol on structural changes in waxy maize starch as studied by Fourier transform infra-red spectroscopy. Polymer, 35(22), 4722–4727. https://doi.org/10.1016/0032- 3861(94)90724-2
Wang, L., Dong, X., Jiang, H., Li, G., & Zhang, M. (2014). Phosphorylated ordered mesoporous carbon as a novel solid acid catalyst for the esterification of oleic acid. Catalysis Communications, 56, 164–167. https://doi.org/10.1016/j.catcom.2014.07.008
Wang, S., & Copeland, L. (2013). Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: A review. Food and Function, 4(11), 1564–1580. https://doi.org/10.1039/c3fo60258c
Wang, S., Li, C., Copeland, L., Niu, Q., & Wang, S. (2015). Starch Retrogradation: A Comprehensive Review. Comprehensive Reviews in Food Science and Food Safety, 14(5), 568–585. https://doi.org/10.1111/1541-4337.12143
Wenchao, W., Fashe, L., & Ying, L. (2019). Kinetics and the fluidity of the stearic acid esters with different carbon backbones. Green Process Synth, 8, 776–785. https://doi.org/https://doi.org/10.1515/gps-2019-0046
White, R., Brun, N., Budarin, V., Clark, J., & Titirici, M. (2014). Always look on the “light” side of life: Sustainable carbon aerogels. ChemSusChem, 7(3), 670–689. https://doi.org/10.1002/cssc.201300961
White, R., Budarin, V., & Clark, J. (2008). Tuneable mesoporous materials from alpha-D polysaccharides. ChemSusChem, 1(5), 408–411. https://doi.org/10.1002/cssc.200800012
White, R., Budarin, V., Luque, R., Clark, J., & Macquarrie, D. (2009). Tuneable porous carbonaceous materials from renewable resources. Chemical Society Reviews, 38(12), 3401–3418. https://doi.org/10.1039/b822668g
White, R., & Clark, J. (2015). Porous carbon materials from sustainable precursors. In RSC Green Chemistry No. 32 (Vol. 32).
White, R., Shuttleworth, P., Budarin, V., De Bruyn, M., Fischer, A., & Clark, J. (2016). An Interesting Class of Porous Polymer - Revisiting the Structure of Mesoporous α- D - Polysaccharide Gels. ChemSusChem, 9(3), 280–288. https://doi.org/10.1002/cssc.201501354
Yalçinyuva, T., Deligöz, H., Boz, İ., & Ali, M. (2008). Kinetics and mechanism of myristic acid and isopropyl alcohol esterification reaction with homogeneous and heterogeneous catalysts. International Journal of Chemical Kinetics, 40(3), 136–144. https://doi.org/10.1002/kin.20293
Yamamoto, T., Nishimura, T., Suzuki, T., & Tamon, H. (2001). Control of mesoporosity of carbon gels prepared by sol-gel polycondensation and freeze drying. Journal of Non-Crystalline Solids, 288(1–3), 46–55. https://doi.org/10.1016/S0022-3093(01)00619-6
Yameen, M., AlMohamadi, H., Naqvi, S., Noor, T., Chen, W., & Amin, N. (2023). Advances in production & activation of marine macroalgae-derived biochar catalyst for sustainable biodiesel production. Fuel, 337(December 2022), 127215. https://doi.org/10.1016/j.fuel.2022.127215
Yang, N., Sheng, X., Ti, L., Jia, H., Ping, Q., & Li, N. (2023). Ball-milling as effective and economical process for biodiesel production under Kraft lignin activated carbon stabilized potassium carbonate. Bioresource Technology, 369(November 2022), 128379. https://doi.org/10.1016/j.biortech.2022.128379
Zhan, S., Tao, X., Cai, L., Liu, X., & Liu, T. (2014). The carbon material functionalized with NH2+ and SO3H groups catalyzed esterification with high activity and selectivity. Green Chemistry, 16(11), 4649–4653. https://doi.org/10.1039/c4gc01395f
Zhang, B., Ren, J., Liu, X., Guo, Y., Guo, Y., Lu, G., & Wang, Y. (2010). Novel sulfonated carbonaceous materials from p-toluenesulfonic acid/glucose as a high-performance solid-acid catalyst. Catalysis Communications, 11(7), 629–632. https://doi.org/10.1016/j.catcom.2010.01.010
Zhang, F., Meng, Y., Gu, D., Yan, Y., Yu, C., Tu, B., & Zhao, D. (2005). A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure. Journal of the American Chemical Society, 127(39), 13508–13509. https://doi.org/10.1021/ja0545721
Zobel, H. (1988). Molecules to Granules: A Comprehensive Starch Review. Starch ‐ Stärke, 40(2), 44–50. https://doi.org/10.1002/star.19880400203
Zong, M., Duan, Z., Lou, W., Smith, T., & Wu, H. (2007). Preparation of a sugar catalyst and its use for highly efficient production of biodiesel. Green Chemistry, 9(5), 434– 443. https://doi.org/10.1039/b615447f
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxi, 116 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86374/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86374/2/1032494539.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86374/3/1032494539.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
624a82f4c75610ecd8d2aff3de9268b6
bb2662f521eef3bd606d9b202a041c74
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089363879886848
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Orjuela Londoño, Alvaroa583c5015d0fe88a7d62aa2891228b13Zabala Vásquez, Milena Alexandrafff3a4f2474376c18a4fcea92e4d5ab3Grupo de Investigación en Procesos Químicos y Bioquímicos2024-07-03T15:57:56Z2024-07-03T15:57:56Z2024https://repositorio.unal.edu.co/handle/unal/86374Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografías, tablasMesoporous materials are attractive supporting structures for heterogeneous catalysis as they facilitate access and mobility of large molecules, thus improving yields in a variety of chemical reactions. Among different materials, Starbon® materials are mesoporous carbons which can be advantageously synthesized from biobased sources, be further acid-activated to be used as catalysts in esterification reactions. Conventionally, Starbons® are produced using a high-amylose-content starch, which guarantees a high mesopore volume due to the arrangement of amylose molecules during the synthesis process. Looking for the valorisation of waste streams and low-cost raw materials, the use of starch derived from common roots and tubers needs to be studied. According to Colombian National Planning Department, nearly 5 Mton of roots and tubers are produced in the country, nevertheless, nearly 30% are discarded during production stages as they do not meet quality standards. In this regard, this work focused on understanding and optimizing the surface properties of Starbon® materials derived from cassava starch for its subsequent use as catalyst in long-chain esterification reactions. The synthesis of Starbon materials involves gelatinization, retrogradation, solvent exchange and carbonization steps, which conditions were assessed, firstly by an exploratory analysis, and subsequently by a Factorial 32 and Box-Behnken experimental designs, taking surface area, pore volume and pore size as response variables. A method for the synthesis of cassava-derived Starbon was proposed. The obtained cassava-Starbon exhibited a surface area of 263 m2/g, with a mean pore diameter of 3.7 nm and a pore volume of 0.2cm3/g. Subsequently, the material was sulfonated and tested in the batch esterification of stearic acid with isopropyl alcohol, considering the growing market in fatty acid esters industry. Cassava-Starbon catalyst enabled slightly higher conversion and higher turn-over number (0.15 mol/s H+Eq) compared to widely used ion exchange resins.En la catálisis heterogénea, materiales mesoporosos son soportes atractivos al facilitan el acceso y la movilidad de moléculas de gran tamaño, mejorando así los rendimientos en diversas reacciones. Entre diferentes materiales, los materiales Starbon® son carbones mesoporosos que pueden sintetizarse ventajosamente a partir de fuentes biobasadas, y luego activarse con ácido para utilizarse como catalizadores en reacciones de esterificación. Convencionalmente, los Starbons® se producen utilizando almidón con alto contenido de amilosa, lo que garantiza un alto volumen de mesoporos debido a la disposición de las moléculas de amilosa durante el proceso de síntesis. En busca de la valorización de corrientes de residuales, es de interés estudiar el uso de almidón derivado de raíces y tubérculos comunes en la síntesis de estos materiales. Según el Departamento Nacional de Planeación de Colombia, se producen casi 5 millones de toneladas de raíces y tubérculos en el país, sin embargo, cerca del 30% se descartan durante las etapas de producción por no cumplir con los estándares de calidad. En este sentido, este trabajo se centró en comprender y optimizar las propiedades superficiales de los materiales Starbon® derivados del almidón de yuca para su uso posterior como catalizador en reacciones de esterificación de cadenas largas. La síntesis de los materiales Starbon implica gelatinización, retrogradación, intercambio de solventes y carbonización de los almidones. Estas condiciones fueron evaluadas para la síntesis empleando almidón de yuca, primero mediante un análisis exploratorio y luego mediante un diseño Factorial 32 y Box-Behnken, tomando la superficie, el volumen de poros y el tamaño de poros como variables de respuesta. De esta manera, fue posible proponer un método para la síntesis de Starbon derivado de yuca. El Starbon de yuca obtenido mostró una superficie de 263 m2/g, con un diámetro de poro promedio de 3.7 nm y un volumen de poro de 0.2cm3 /g. Este material fue sulfonado y probado en la esterificación batch de ácido esteárico con alcohol isopropílico, considerando el creciente mercado en la industria de ésteres de ácidos grasos. El catalizador Starbon de yuca permitió una conversión ligeramente superior y un TOF más Resumen and abstract XI alto (0.15 mol/s H+Eq) en comparación con las resinas de intercambio iónico ampliamente utilizadas (Texto tomado de la fuente).MaestríaMagíster en Ingeniería - Ingeniería QuímicaProcesos catalíticos y petroquímicosxxi, 116 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería QuímicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::541 - Química física660 - Ingeniería química::664 - Tecnología de alimentosMesoporous materialsCatalystsStarchTubersMateriales mesoporososCatalizadoresAlmidónTubérculosCarbonCatalystCassava starchEsterificationMesoporousPorosityStarbonCarbónCatalizadorAlmidón de yucaEsterificaciónMesoporosoPorosidadStarbonDevelopment of a Colombian starch based Starbon® type material for its use as catalyst in fatty acid esterificationDesarrollo de un material tipo Starbon® a partir de almidón de origen colombiano para su uso como catalizador en esterificación de ácidos grasosTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiaAldana, A., Lartundo, L., Gómez, R., & Niño, M. (2012). Sulfonic groups anchored on mesoporous carbon Starbons-300 and its use for the esterification of oleic acid. Fuel, 100, 128–138. https://doi.org/10.1016/j.fuel.2012.02.025Auer, E., Freund, A., Pietsch, J., & Tacke, T. (1998). Carbons as supports for industrial precious metal catalysts. Applied Catalysis A: General, 173(2), 259–271. https://doi.org/10.1016/S0926-860X(98)00184-7Bazuła, P., Lu, A. H., Nitz, J., & Schüth, F. (2008). Surface and pore structure modification of ordered mesoporous carbons via a chemical oxidation approach. Microporous and Mesoporous Materials, 108(1–3), 266–275. https://doi.org/10.1016/j.micromeso.2007.04.008Bekyarova, E., & Kaneko, K. (2000). Structure and physical properties of tailor-made Ce,Zr-doped carbon aerogels. Advanced Materials, 12(21), 1625–1628. https://doi.org/10.1002/1521-4095(200011)12:21<1625::AID-ADMA1625>3.0.CO;2-9Biliaderis, C., Page, C., Slade, L., & Sirett, R. (1985). Thermal Behavior of Amylose-Lipid Complexes. Carbohydrate Polymers, 55, 367–389Bokhari, A., Chuah, L., Michelle, L., Asif, S., Shahbaz, M., Akbar, M., Inayat, A., Jami, F., Naqvi, S., & Yusup, S. (2019). Microwave enhanced catalytic conversion of canola based methyl ester: Optimization and parametric study. In Advanced Biofuels: Applications, Technologies and Environmental Sustainability. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102791-2.00006-4Borges, M. E., & Díaz, L. (2012). Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renewable and Sustainable Energy Reviews, 16(5), 2839–2849. https://doi.org/10.1016/j.rser.2012.01.071Borisova, A., De Bruyn, M., Budarin, V., Shuttleworth, P., Dodson, J., Segatto, M., & Clark, J. (2015). A Sustainable freeze-drying route to porous polysaccharides with tailored hierarchical meso- and macroporosity. Macromolecular Rapid Communications, 36(8), 774–779. https://doi.org/10.1002/marc.201400680Bosley, J. (1997). Turning upases into industrial biocatalysts. Biochemical Society Transactions, 25(1), 174–178. https://doi.org/10.1042/bst0250174Brouwer, T. (2017). Determining the influence of the starch amylose content on the mesoporosity of starbons (Issue September 2016) [Wageningen University]. https://edepot.wur.nl/409082Budarin, V., Clark, J., Hardy, J., Luque, R., Milkowski, K., Tavener, S., & Wilson, A. (2006). Starbons: New starch-derived mesoporous carbonaceous materials with tunable properties. Angewandte Chemie - International Edition, 45(23), 3782–3786. https://doi.org/10.1002/anie.200600460Budarin, V., Clark, J., Luque, R., & Macquarrie, D. (2007). Versatile mesoporous carbonaceous materials for acid catalysis. Chemical Communications, 6, 634–636. https://doi.org/10.1039/b614537jBudarin, V., Clark, J., Luque, R., Macquarrie, D., Koutinas, A., & Webb, C. (2007). Tunable mesoporous materials optimised for aqueous phase esterifications. Green Chemistry, 9(9), 992–999. https://doi.org/10.1039/b704055eBudarin, V., Clark, J., Luque, R., Macquarrie, D., Milkowski, K., & White, R. (2007). Carbonaceous materials (Patent No. WO 2007/104798 A2).Budarin, V., Luque, R., Macquarrie, D., & Clark, J. (2007). Towards a bio-based industry: Benign catalytic esterifications of succinic acid in the presence of water. Chemistry - A European Journal, 13(24), 6914–6919. https://doi.org/10.1002/chem.200700037Canales, N., & Trujillo, M. (2021). The value chain of cassava and its potential in the bioeconomy of Colombia [in Spanish]. In Stockholm Environment Institute. https://cdn.sei.org/wp-content/uploads/2021/05/workingpaperyucabioeconomia canalestrujillo-mayo21.pdfChandane, V., Rathod, A., Wasewar, K., & Sonawane, S. (2017). Response Surface Optimization and Kinetics of Isopropyl Palmitate Synthesis using Homogeneous Acid Catalyst. International Journal of Chemical Reactor Engineering, 15(3), 1–10. https://doi.org/10.1515/ijcre-2016-0111Chen, G., & Fang, B. (2011). Preparation of solid acid catalyst from glucose-starch mixture for biodiesel production. Bioresource Technology, 102(3), 2635–2640. https://doi.org/10.1016/j.biortech.2010.10.099Cheng, Y., McPherson, A., Radosavljevic, M., Lee, V., Wong, K., & Jane, J. (1998). Effects of starch chemical structures on gelatinization and pasting properties. 4(17), 63–71.Choi, S., Drese, J., & Jones, C. (2009). Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem, 2(9), 796–854. https://doi.org/10.1002/cssc.200900036Clark, J. (2002). Solid acids for green chemistry. Accounts of Chemical Research, 35(9), 791–797. https://doi.org/10.1021/ar010072aClark, J., Budarin, V., Dugmore, T., Luque, R., Macquarrie, D., & Strelko, V. (2008). Catalytic performance of carbonaceous materials in the esterification of succinic acid. Catalysis Communications, 9(8), 1709–1714. https://doi.org/10.1016/j.catcom.2008.01.037Clohessy, J., & Kwapinski, W. (2020). Carbon-based catalysts for biodiesel production-A review. Applied Sciences (Switzerland), 10(3), 1–17. https://doi.org/10.3390/app10030918Cruz, J., Silverio, J., Eliasson, A., & Larsson, K. (1996). A comparative study of gelatinization of cassava and potato starch in an aqueous lipid phase (L2) compared to water. Food Hydrocolloids, 10(3), 317–322. https://doi.org/10.1016/S0268- 005X(96)80007-5Członka, S., Bertino, M., Kośny, J., & Shukla, N. (2018). Freeze-drying method as a new approach to the synthesis of polyurea aerogels from isocyanate and water. Journal of Sol-Gel Science and Technology, 87(3), 685–695. https://doi.org/10.1007/s10971- 018-4769-9de Jong, M., Feijt, R., Zondervan, E., Nijhuis, T., & de Haan, A. (2009). Reaction kinetics of the esterification of myristic acid with isopropanol and n-propanol using p-toluene sulphonic acid as catalyst. Applied Catalysis A: General, 365(1), 141–147. https://doi.org/10.1016/j.apcata.2009.06.009De, S., Balu, A., van der Waal, J., & Luque, R. (2015). Biomass-derived porous carbon materials: Synthesis and catalytic applications. ChemCatChem, 7(11), 1608–1629. https://doi.org/10.1002/cctc.201500081Díaz, I., Márquez, C., Mohino, F., Pérez, J., & Sastre, E. (2000). Combined Alkyl and Sulfonic Acid Functionalization of MCM-41-Type Silica. Journal of Catalysis, 193(2), 295–302. https://doi.org/10.1006/jcat.2000.2899Dimian, A., & Rothenberg, G. (2016). An effective modular process for biodiesel manufacturing using heterogeneous catalysis. Catalysis Science & Technology, 6(15), 6097–6108. https://doi.org/10.1039/C6CY00426ADome, K., Podgorbunskikh, E., Bychkov, A., & Lomovsky, O. (2020). Changes in the crystallinity degree of starch having different types of crystal structure after mechanical pretreatment. Polymers, 12(3), 1–12. https://doi.org/10.3390/polym12030641Dow Chemical Company. (2020). Amberlyst 15WET Product Data Sheet. 177.03087- 0313, 2. https://www.lenntech.com/Data-sheets/Dow-Amberlyst-15-wet-L.pdfDPN. (2016). Lost and waste of food in Colombia [in Spanish] (Vol. 39)DuPont de Nemours, I. (2019). AMBERLYSTTM 15DRY Polymeric Catalyst. 45, 1–2Elkhatat, A., & Al, S. (2011). Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Advanced Materials, 23(26), 2887–2903. https://doi.org/10.1002/adma.201100283Fallahi, P., Muthukumarappan, K., & Rosentrater, K. (2016). Functional and structural properties of corn, potato, and cassava starches as affected by a single-screw extruder. International Journal of Food Properties, 19(4), 768–788. https://doi.org/10.1080/10942912.2015.1042112Folgueras, M., Rodríguez, S., Maza, N., & Oliva, M. (2012). Harvest, processing, and preservation of cassava (Manihot esculenta Crantz). II: Preservation methods, packaging and transportation, and root harvesting systems [in Spanish]. Revista Científica UDO Agrícola, 12(4), 749–758.Fu, Z., Wan, H., Hu, X., Cui, Q., & Guan, G. (2012). Preparation and catalytic performance of a carbon-based solid acid catalyst with high specific surface area. Reaction Kinetics, Mechanisms and Catalysis, 107(1), 203–213. https://doi.org/10.1007/s11144-012-0466-9García, M., Cardona, A., & García, C. (2020). Diagnosis of cassava bran management in the department of Sucre [in Spanish]. Innovación En La Región Caribe de Colombia: Aportes Teóricos y Buenas Prácticas. https://doi.org/10.21892/9789585547858.9Geng, L., Wang, Y., Yu, G., & Zhu, Y. (2011). Efficient carbon-based solid acid catalysts for the esterification of oleic acid. Catalysis Communications, 13(1), 26–30. https://doi.org/10.1016/j.catcom.2011.06.014Grand View Research. (2020). Fatty Acid Ester Market Size, Share & Trends Analysis Report 2020 - 2027. https://www.grandviewresearch.com/industry-analysis/fatty-acid esters-marketGregg, S., & Sing, K. (1982). Adsorption, Surface Area and Porosity (Second edi).Guan, J., & Hanna, M. (2004). Extruding foams from corn starch acetate and native corn starch. Biomacromolecules, 5(6), 2329–2339. https://doi.org/10.1021/bm049512mHanzawa, Y., Kaneko, K., Pekala, R., & Dresselhaus, M. (1996). Activated carbon aerogels. Langmuir, 12(26), 6167–6169. https://doi.org/10.1021/la960481tHara, M., Yoshida, T., Takagaki, A., Takata, T., Kondo, J., Hayashi, S., & Domen, K. (2004). A carbon material as a strong protonic acid. Angewandte Chemie - International Edition, 43(22), 2955–2958. https://doi.org/10.1002/anie.200453947Hernández, M., Torruco, J., Chel, L., & Betancur, D. (2008). Physicochemical Characterization of Starches from Tubers Cultivated in Yucatán, Mexico [in Spanish]. Ciência e Tecnologia de Alimentos, 28(3), 718–726. https://doi.org/10.1590/s0101- 20612008000300031Hu, B., Yu, S.-H., Wang, K., Liu, L., & Xu, X. (2008). Functional carbonaceous materials from hydrothermal carbonization of biomass: an effective chemical process. Dalton Transactions, 9226(40), 5414–5423. https://doi.org/10.1039/b804644cHuang, J., Jian, Y., Li, H., & Fang, Z. (2022). Lignin-derived layered 3D biochar with controllable acidity for enhanced catalytic upgrading of Jatropha oil to biodiesel. Catalysis Today, 404(August 2021), 35–48. https://doi.org/10.1016/j.cattod.2022.04.016Inagaki, M. (2013). Advanced Carbon Materials. In Handbook of Advanced Ceramics: Materials, Applications, Processing, and Properties (Second Edt, pp. 25–60). Elsevier Inc. https://doi.org/10.1016/B978-0-12-385469-8.00002-2Inagaki, M., & Kang, F. (2016). Materials Science and Engineering of Carbon: Characterization. Tsinghua University Press Limited. https://doi.org/10.1016/B978-0- 12-805256-3.00001-5International Organization for Standatization. (2009). ISO 660 (E). Animal and Vegetable Fats and Oils. Determination of Acid Value and Acidity. (p. 14).Intriago, M., & Muñoz, G. (2014). Feasibility Study for the Establishment of a Company Producing Cassava Starch as a Raw Material for the Guayaquil Market [in Spanish] [Universidad Católica de Santiago de Guayaquil]. http://repositorio.ucsg.edu.ec/handle/3317/2257Ji, J., Zhang, G., Chen, H., Wang, S., Zhang, G., Zhang, F., & Fan, X. (2011). Sulfonated graphene as water-tolerant solid acid catalyst. Chemical Science, 2(3), 484–487. https://doi.org/10.1039/c0sc00484gJia, R., Ren, J., Liu, X., Lu, G., & Wang, Y. (2014). Design and synthesis of sulfonated carbons with amphiphilic properties. Journal of Materials Chemistry A, 2(29), 11195– 11201. https://doi.org/10.1039/c4ta01836bJoo, S., Choi, S., Oh, I., Kwak, J., Liu, Z., Terasaki, O., & Ryoo, R. (2001). Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature, 412(6843), 169–172. https://doi.org/10.1038/35084046Jun, S., Joo, S., Ryoo, R., Kruk, M., Jaroniec, M., Liu, Z., Ohsuna, T., & Terasaki, O. (2000). Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. Journal of the American Chemical Society, 122(43), 10712–10713. https://doi.org/10.1021/ja002261eJuszczak, L., Fortuna, T., & Wodnicka, K. (2002). Characteristics of cereal starch granules surface using nitrogen adsorption. Journal of Food Engineering, 54(2), 103–110. https://doi.org/10.1016/S0260-8774(01)00190-XKastratovic, V., & Bigovic, M. (2018). Esterification of stearic acid with lower monohydroxylic alcohols. Chemical Industry and Chemical Engineering Quarterly, 24(3), 283–291. https://doi.org/10.2298/CICEQ170327040KKistler, S. (1932). Coherent expanded aerogels. Journal of Physical Chemistry, 36(1), 52– 64. https://doi.org/10.1021/j150331a003Kitano, M., Arai, K., Kodama, A., Kousaka, T., Nakajima, K., Hayashi, S., & Hara, M. (2009). Preparation of a sulfonated porous carbon catalyst with high specific surface area. Catalysis Letters, 131(1–2), 242–249. https://doi.org/10.1007/s10562-009- 0062-4Knorr, D., Heinz, V., & Buckow, R. (2006). High pressure application for food biopolymers. Biochimica et Biophysica Acta - Proteins and Proteomics, 1764(3), 619–631. https://doi.org/10.1016/j.bbapap.2006.01.017Konwar, L., Mäki, P., & Mikkola, J. (2019). SO3H-Containing Functional Carbon Materials: Synthesis, Structure, and Acid Catalysis. Chemical Reviews, 119(22), 11576–11630. https://doi.org/10.1021/acs.chemrev.9b00199Kosonen, H., Valkama, S., Nykänen, A., Toivanen, M., Brinke, G., Ruokolainen, J., & Ikkala, O. (2006). Functional porous structures based on the pyrolysis of cured templates of block copolymer and phenolic resin. Advanced Materials, 18(2), 201– 205. https://doi.org/10.1002/adma.200401110Kruk, M., Jaroniec, M., Ryoo, R., & Joo, S. (2000). Characterization of ordered mesoporous carbons synthesized using MCM-48 silicas as templates. Journal of Physical Chemistry B, 104(33), 7960–7968. https://doi.org/10.1021/jp000861uKunin, R., Meitzner, E. A., Oline, J. A., Fisher, S. A., & Frisch, N. (1962). Characterization of Amberlyst 15. Macroreticular Sulfonic Acid Cation Exchange Resin. I&EC Product Research and Development, 1(2), 140–144. https://doi.org/10.1021/i360002a016Labelle, M., Ispas, P., Tajer, S., Xiao, Y., Barbeau, B., & Mateescu, M. (2023). Anionic and Ampholytic High-Amylose Starch Derivatives as Excipients for Pharmaceutical and Biopharmaceutical Applications: Structure-Properties Correlations. Pharmaceutics, 15(3). https://doi.org/10.3390/pharmaceutics15030834Lanxess Energizing Chemistry. (2011). Product Information Lewatit® K 2629. 3. https://www.lenntech.com/Data-sheets/Lewatit-K-2629-L.pdfLeofanti, G., Padovan, M., Tozzola, G., & Venturelli, B. (1998). Surface area and pore texture of catalysts. Catalysis Today, 41(1–3), 207–219. https://doi.org/10.1016/S0920-5861(98)00050-9Li, W., Yue, Q., Deng, Y., & Zhao, D. (2013). Ordered mesoporous materials based on interfacial assembly and engineering. Advanced Materials, 25(37), 5129–5152. https://doi.org/10.1002/adma.201302184Liang, C., Hong, K., Guiochon, G., Mays, J., & Dai, S. (2004). Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers. Angewandte Chemie - International Edition, 43(43), 5785–5789. https://doi.org/10.1002/anie.200461051Liu, F., Li, B., Liu, C., Kong, W., Yi, X., Zheng, A., & Qi, C. (2016). Template-free synthesis of porous carbonaceous solid acids with controllable acid sites and their excellent activity for catalyzing the synthesis of biofuels and fine chemicals. Catalysis Science and Technology, 6(9), 2995–3007. https://doi.org/10.1039/c5cy01226kLiu, X., Huang, M., Ma, H., Zhang, Z., Gao, J., Zhu, Y., Han, X., & Guo, X. (2010). Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process. Molecules, 15(10), 7188–7196. https://doi.org/10.3390/molecules15107188Lowell, S., Shields, J., Martin, T., & Thommes, M. (2004). Surface Area Analysis from the Langmuir and BET Theories. In Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density.Lu, A. H., Li, W. C., Schmidt, W., & Schüth, F. (2005). Template synthesis of large pore ordered mesoporous carbon. Microporous and Mesoporous Materials, 80(1–3), 117– 128. https://doi.org/10.1016/j.micromeso.2004.12.007Luque, R. (2010). Catalizadores de diseño para la producción de compuestos químicos de alto valor añadido y biocombustibles a partir de biomasa. Anales de La Real Sociedad Española de Química, 106(4), 296–303. http://dialnet.unirioja.es/servlet/articulo?codigo=3347192Luque, R., Budarin, V., Shuttleworthb, P., & Clark, J. (2012). A new Starch is born: Starbons as biomass-derived mesoporous carbonaceous materials. Bol. Grupe Espanol Carbón, June 2014, 1–5.Luque, R., & Clark, J. (2010). Water-tolerant Ru-Starbon® materials for the hydrogenation of organic acids in aqueous ethanol. Catalysis Communications, 11(10), 928–931. https://doi.org/10.1016/j.catcom.2010.03.015Luque, R., & Clark, J. (2011). Biodiesel-Like biofuels from simultaneous transesterification/esterification of waste oils with a biomass-derived solid acid catalyst. ChemCatChem, 3(3), 594–597. https://doi.org/10.1002/cctc.201000280Luque, R., Clark, J., Yoshida, K., & Gai, P. (2009). Efficient aqueous hydrogenation of biomass platform molecules using supported metal nanoparticles on Starbons®. Chemical Communications, 35, 5305–5307. https://doi.org/10.1039/b911877bMahajan, A., & Gupta, P. (2020). Carbon-based solid acids: a review. Environmental Chemistry Letters, 18(2), 299–314. https://doi.org/10.1007/s10311-019-00940-7Manrique, N. (2006). Production of pregelatinized starches from blends of starches from unconventional sources using a twin-screw extruder [in Spanish]. Instituto Politécnico Nacional.Markley, K. (1983). Fatty acids: their chemistry properties production and uses (Second edi). Krieger Publishing.Marziano, N., Tortato, C., Ronchin, L., & Bianchi, C. (1998). On the acidity of liquid and solid acid catalysts: Part 1. A thermodynamic point of view. Catalysis Letters, 56(2), 159–164. https://doi.org/10.1023/a:1019096726458Maziarka, P., Wurzer, C., Arauzo, P. J., Dieguez-Alonso, A., Mašek, O., & Ronsse, F. (2021). Do you BET on routine? The reliability of N2 physisorption for the quantitative assessment of biochar’s surface area. Chemical Engineering Journal, 418(March). https://doi.org/10.1016/j.cej.2021.129234Megazyme. (2018). Amylose/Amylopectin: Assay Procedure K-AMYL 06/18. Megazyme Data Booklet, 6, 11. https://www.megazyme.com/amylose-amylopectin-assay kit?sSearch=amyloseMena, C. (2014). Synthesis and characterisation of sulfonated Starbons®, biobased catalysts (Issue August). University of York ChemistryMena, C., & Macquarrie, D. (2014). Esterification of lauric acid with methanol using sulfonated Starbons. Research Journal of Chemistry and Environment, 18(8), 1–6.Milescu, R., Dennis, M., McElroy, R., Macquarrie, D., Matharu, A., Smith, M., Clark, J., & Budarin, V. (2020). The role of surface functionality of sustainable mesoporous materials Starbon® on the adsorption of toxic ammonia and sulphur gasses. Sustainable Chemistry and Pharmacy, 15(February). https://doi.org/10.1016/j.scp.2020.100230Mohan, D., & Pittman, C. (2006). Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. Journal of Hazardous Materials, 137(2), 762–811. https://doi.org/10.1016/j.jhazmat.2006.06.060Morishita, T., Ishihara, K., Kato, M., & Inagaki, M. (2007). Preparation of a carbon with a 2 nm pore size and of a carbon with a bi-modal pore size distribution. Carbon, 45(1), 209–211. https://doi.org/10.1016/j.carbon.2006.09.032Morishita, T., Ishihara, K., Kato, M., Tsumura, T., & Inagaki, M. (2007). Mesoporous carbons prepared from mixtures of magnesium citrate with poly (vinyl alcohol). Tanso, 2007(226), 19–24. https://doi.org/10.7209/tanso.2007.19Morishita, T., Tsumura, T., Toyoda, M., Przepiórski, J., Morawski, A., Konno, H., & Inagaki, M. (2010). A review of the control of pore structure in MgO-templated nanoporous carbons. Carbon, 48(10), 2690–2707. https://doi.org/10.1016/j.carbon.2010.03.064Niu, S., Ning, Y., Lu, C., Han, K., Yu, H., & Zhou, Y. (2018). Esterification of oleic acid to produce biodiesel catalyzed by sulfonated activated carbon from bamboo. Energy Conversion and Management, 163(17923), 59–65. https://doi.org/10.1016/j.enconman.2018.02.055Okamoto, Y., & Yashima, E. (1998). Polysaccharide Derivatives for Chromatographic Separation of Enantiomers. Angewandte Chemie International Edition, 37(8), 1020– 1043Okamura, M., Takagaki, A., Toda, M., Kondo, J., Domen, K., Tatsumi, T., Hara, M., & Hayashi, S. (2006). Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon. Chemistry of Materials, 18(13), 3039–3045. https://doi.org/10.1021/cm0605623Ouyang, S., Kuang, X., Xu, Q., & Yin, D. (2014). Preparation of a Carbon-Based Solid Acid with High Acid Density via a Novel Method. Journal of Materials Science and Chemical Engineering, 02(06), 4–8. https://doi.org/10.4236/msce.2014.26002Pandolfo, A., & Hollenkamp, A. (2006). Carbon properties and their role in supercapacitors. Journal of Power Sources, 157(1), 11–27. https://doi.org/10.1016/j.jpowsour.2006.02.065Pang, Q., Wang, L., Yang, H., Jia, L., Pan, X., & Qiu, C. (2014). Cellulose-derived carbon bearing -Cl and -SO3H groups as a highly selective catalyst for the hydrolysis of cellulose to glucose. RSC Advances, 40(78), 41212–41218. https://doi.org/10.1039/c4ra05520aParker, H. (2013). Recovery from Waste Streams: Working Towards a Sustainable Future. April. http://etheses.whiterose.ac.uk/4176/1/Helen_Parker_PhD_Thesis.pdfParker, H., Budarin, V., Clark, J., & Hunt, A. (2013). Use of starbon for the adsorption and desorption of phenols. ACS Sustainable Chemistry and Engineering, 1(10), 1311– 1318. https://doi.org/10.1021/sc4001675Parker, H., Hunt, A., Budarin, V., Shuttleworth, P., Miller, K., & Clark, J. (2012). The importance of being porous: Polysaccharide-derived mesoporous materials for use in dye adsorption. RSC Advances, 2(24), 8992–8997. https://doi.org/10.1039/c2ra21367bPaterson, G., Issariyakul, T., Baroi, C., Bassi, A., & Dalai, A. (2013). Ion-exchange resins as catalysts in transesterification of triolein. Catalysis Today, 212, 157–163. https://doi.org/10.1016/j.cattod.2012.10.013Pekala, R. (1989). Organic aerogels from the polycondensation of resorcinol with formaldehyde. Journal of Materials Science, 24(9), 3221–3227. https://doi.org/10.1007/BF01139044Pekala, R., Alviso, C., Kong, F., & Hulsey, S. (1991). Aerogels Derived from Multifunctional Organic Monomers. Third International SymPosium on Aerogels, 21.Peng, L., Philippaerts, A., Ke, X., Van Noyen, J., De Clippel, F., Van Tendeloo, G., Jacobs, P., & Sels, B. (2010). Preparation of sulfonated ordered mesoporous carbon and its use for the esterification of fatty acids. Catalysis Today, 150(1–2), 140–146. https://doi.org/10.1016/j.cattod.2009.07.066Rodriguez, F. (1998). The role of carbon materials in heterogeneous catalysis. Carbon, 36(3), 159–175. https://doi.org/https://doi.org/10.1016/S0008-6223(97)00173-5Rohm & Haas. (2005). AmberlystTM 70 Product Data Sheet. Rohm & Haas: Philadelphia, PA, USA, 1–2.Rohm and Haas. (2006). AmberlystTM 35WET Product Data SheetSaha, D., Payzant, A., Kumbhar, A., & Naskar, A. (2013). Sustainable mesoporous carbons as storage and controlled-delivery media for functional molecules. ACS Applied Materials and Interfaces, 5(12), 5868–5874. https://doi.org/10.1021/am401661fSandhu, K., & Singh, N. (2007). Some properties of corn starches II: Physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chemistry, 101(4), 1499–1507. https://doi.org/10.1016/j.foodchem.2006.01.060Shi, Y., & Seib, P. (1992). The structure of four waxy starches related to gelatinization and retrogradation. Carbohydrate Research, 227(C), 131–145. https://doi.org/10.1016/0008-6215(92)85066-9Shuttleworth, P., Budarin, V., White, R., Gun’Ko, V., Luque, R., & Clark, J. (2013). Molecular-level understanding of the carbonisation of polysaccharides. Chemistry - A European Journal, 19(28), 9351–9357. https://doi.org/10.1002/chem.201300825Silverstein, R. M., & Webster, F. X. (1996). Spectrometric Identification Of Organic Compounds 6th Edition. In John Wiley & Sons Ltd (Vol. 6, pp. 1–482).Sing, K., Everett, D., Haul, R., Moscou, L., Pierotti, R., Rouquérol, J., & Siemieniewska, T. (1985). Reporting phisisorption data for gas/solid systems. Pure and Applied Chemistry, 57(4), 603–619Sreedhar, I., Aniruddha, R., & Malik, S. (2019). Carbon capture using amine modified porous carbons derived from starch (Starbons®). SN Applied Sciences, 1(5), 1–11. https://doi.org/10.1007/s42452-019-0482-8Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., & Hara, M. (2008). Hydrolysis of Cellulose by Amorphous Carbon Bearing SO3H, COOH, and OH Groups. Journal of the American Chemical Society, 130(38), 12787–12793. https://doi.org/10.1021/la8040506Takagaki, A., Toda, M., Okamura, M., Kondo, J., Hayashi, S., Domen, K., & Hara, M. (2006). Esterification of higher fatty acids by a novel strong solid acid. Catalysis Today, 116(2 SPEC. ISS.), 157–161. https://doi.org/10.1016/j.cattod.2006.01.037Tamon, H., Ishizaka, H., Yamamoto, T., & Suzuki, T. (1999). Preparation of mesoporous carbon by freeze drying. Carbon, 37(12), 2049–2055. https://doi.org/10.1016/S0008- 6223(99)00089-5Tanaka, S., Nishiyama, N., Egashira, Y., & Ueyama, K. (2005). Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite. Chemical Communications, 16, 2125–2127. https://doi.org/10.1039/b501259gTang, M., & Copeland, L. (2007). Investigation of starch retrogradation using atomic force microscopy. Carbohydrate Polymers, 70(1), 1–7. https://doi.org/10.1016/j.carbpol.2007.02.025Tian, Y., Li, Y., Xu, X., & Jin, Z. (2011). Starch retrogradation studied by thermogravimetric analysis (TGA). Carbohydrate Polymers, 84(3), 1165–1168. https://doi.org/10.1016/j.carbpol.2011.01.006Titirici, M., White, R., Brun, N., Budarin, V., Su, D., Del Monte, F., Clark, J., & MacLachlan, M. (2015). Sustainable carbon materials. Chemical Society Reviews, 44(1), 250–290. https://doi.org/10.1039/c4cs00232Toda, M., Takagaki, A., Okamura, M., Kondo, J., Hayashi, S., Domen, K., & Hara, M. (2005). Biodiesel made with sugar catalyst. Nature Communications, 438, 178. https://doi.org/10.1038/438178Torres, P., Rodríguez, J., & Rojas, O. (2005). Extracción de almidón de yuca. Manejo integral y control de la contaminación hídrica. Livestock Research for Rural Development, 17(7), 2005.Uriburu-Gray, M., Pinar-Serrano, A., Cavus, G., Knipping, E., Aucher, C., Conesa Cabeza, A., Satti, A., Amantia, D., & Martínez-Crespiera, S. (2020). Mesoporous carbons from polysaccharides and their use in li-o2 batteries. Nanomaterials, 10(10), 1–18. https://doi.org/10.3390/nano10102036van Soest, J., de Wit, D., Tournois, H., & Vliegenthart, J. (1994). The influence of glycerol on structural changes in waxy maize starch as studied by Fourier transform infra-red spectroscopy. Polymer, 35(22), 4722–4727. https://doi.org/10.1016/0032- 3861(94)90724-2Wang, L., Dong, X., Jiang, H., Li, G., & Zhang, M. (2014). Phosphorylated ordered mesoporous carbon as a novel solid acid catalyst for the esterification of oleic acid. Catalysis Communications, 56, 164–167. https://doi.org/10.1016/j.catcom.2014.07.008Wang, S., & Copeland, L. (2013). Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: A review. Food and Function, 4(11), 1564–1580. https://doi.org/10.1039/c3fo60258cWang, S., Li, C., Copeland, L., Niu, Q., & Wang, S. (2015). Starch Retrogradation: A Comprehensive Review. Comprehensive Reviews in Food Science and Food Safety, 14(5), 568–585. https://doi.org/10.1111/1541-4337.12143Wenchao, W., Fashe, L., & Ying, L. (2019). Kinetics and the fluidity of the stearic acid esters with different carbon backbones. Green Process Synth, 8, 776–785. https://doi.org/https://doi.org/10.1515/gps-2019-0046White, R., Brun, N., Budarin, V., Clark, J., & Titirici, M. (2014). Always look on the “light” side of life: Sustainable carbon aerogels. ChemSusChem, 7(3), 670–689. https://doi.org/10.1002/cssc.201300961White, R., Budarin, V., & Clark, J. (2008). Tuneable mesoporous materials from alpha-D polysaccharides. ChemSusChem, 1(5), 408–411. https://doi.org/10.1002/cssc.200800012White, R., Budarin, V., Luque, R., Clark, J., & Macquarrie, D. (2009). Tuneable porous carbonaceous materials from renewable resources. Chemical Society Reviews, 38(12), 3401–3418. https://doi.org/10.1039/b822668gWhite, R., & Clark, J. (2015). Porous carbon materials from sustainable precursors. In RSC Green Chemistry No. 32 (Vol. 32).White, R., Shuttleworth, P., Budarin, V., De Bruyn, M., Fischer, A., & Clark, J. (2016). An Interesting Class of Porous Polymer - Revisiting the Structure of Mesoporous α- D - Polysaccharide Gels. ChemSusChem, 9(3), 280–288. https://doi.org/10.1002/cssc.201501354Yalçinyuva, T., Deligöz, H., Boz, İ., & Ali, M. (2008). Kinetics and mechanism of myristic acid and isopropyl alcohol esterification reaction with homogeneous and heterogeneous catalysts. International Journal of Chemical Kinetics, 40(3), 136–144. https://doi.org/10.1002/kin.20293Yamamoto, T., Nishimura, T., Suzuki, T., & Tamon, H. (2001). Control of mesoporosity of carbon gels prepared by sol-gel polycondensation and freeze drying. Journal of Non-Crystalline Solids, 288(1–3), 46–55. https://doi.org/10.1016/S0022-3093(01)00619-6Yameen, M., AlMohamadi, H., Naqvi, S., Noor, T., Chen, W., & Amin, N. (2023). Advances in production & activation of marine macroalgae-derived biochar catalyst for sustainable biodiesel production. Fuel, 337(December 2022), 127215. https://doi.org/10.1016/j.fuel.2022.127215Yang, N., Sheng, X., Ti, L., Jia, H., Ping, Q., & Li, N. (2023). Ball-milling as effective and economical process for biodiesel production under Kraft lignin activated carbon stabilized potassium carbonate. Bioresource Technology, 369(November 2022), 128379. https://doi.org/10.1016/j.biortech.2022.128379Zhan, S., Tao, X., Cai, L., Liu, X., & Liu, T. (2014). The carbon material functionalized with NH2+ and SO3H groups catalyzed esterification with high activity and selectivity. Green Chemistry, 16(11), 4649–4653. https://doi.org/10.1039/c4gc01395fZhang, B., Ren, J., Liu, X., Guo, Y., Guo, Y., Lu, G., & Wang, Y. (2010). Novel sulfonated carbonaceous materials from p-toluenesulfonic acid/glucose as a high-performance solid-acid catalyst. Catalysis Communications, 11(7), 629–632. https://doi.org/10.1016/j.catcom.2010.01.010Zhang, F., Meng, Y., Gu, D., Yan, Y., Yu, C., Tu, B., & Zhao, D. (2005). A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure. Journal of the American Chemical Society, 127(39), 13508–13509. https://doi.org/10.1021/ja0545721Zobel, H. (1988). Molecules to Granules: A Comprehensive Starch Review. Starch ‐ Stärke, 40(2), 44–50. https://doi.org/10.1002/star.19880400203Zong, M., Duan, Z., Lou, W., Smith, T., & Wu, H. (2007). Preparation of a sugar catalyst and its use for highly efficient production of biodiesel. Green Chemistry, 9(5), 434– 443. https://doi.org/10.1039/b615447fEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86374/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1032494539.2024.pdf1032494539.2024.pdfTesis de Maestría en Ingeniería - Químicaapplication/pdf5466220https://repositorio.unal.edu.co/bitstream/unal/86374/2/1032494539.2024.pdf624a82f4c75610ecd8d2aff3de9268b6MD52THUMBNAIL1032494539.2024.pdf.jpg1032494539.2024.pdf.jpgGenerated Thumbnailimage/jpeg5618https://repositorio.unal.edu.co/bitstream/unal/86374/3/1032494539.2024.pdf.jpgbb2662f521eef3bd606d9b202a041c74MD53unal/86374oai:repositorio.unal.edu.co:unal/863742024-07-04 08:01:40.184Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=