Revealing brain network dynamics during the emotional state of suspense using topological data analysis
ilustraciones, diagramas, gráficas, tablas
- Autores:
-
Olave Herrera, Astrid Arena
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81235
- Palabra clave:
- 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Neurofisiología
Neurophysiology
fMRI
Dynamic functional connectivity
Topological data analysis
Mapper
Suspense
Suspenso
Conectividad funcional dinámica
Análisis topológico de datos
Investigación sobre el cerebro
Brain research
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_d09f597d683bf355322b7fd32c21341f |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81235 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Revealing brain network dynamics during the emotional state of suspense using topological data analysis |
dc.title.translated.spa.fl_str_mv |
Descubriendo las dinámicas de las redes cerebrales durante el estado emocional de suspenso usando análisis topológico de datos |
title |
Revealing brain network dynamics during the emotional state of suspense using topological data analysis |
spellingShingle |
Revealing brain network dynamics during the emotional state of suspense using topological data analysis 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas Neurofisiología Neurophysiology fMRI Dynamic functional connectivity Topological data analysis Mapper Suspense Suspenso Conectividad funcional dinámica Análisis topológico de datos Investigación sobre el cerebro Brain research |
title_short |
Revealing brain network dynamics during the emotional state of suspense using topological data analysis |
title_full |
Revealing brain network dynamics during the emotional state of suspense using topological data analysis |
title_fullStr |
Revealing brain network dynamics during the emotional state of suspense using topological data analysis |
title_full_unstemmed |
Revealing brain network dynamics during the emotional state of suspense using topological data analysis |
title_sort |
Revealing brain network dynamics during the emotional state of suspense using topological data analysis |
dc.creator.fl_str_mv |
Olave Herrera, Astrid Arena |
dc.contributor.advisor.none.fl_str_mv |
Perea, José Gómez Jaramillo, Francisco Albeiro |
dc.contributor.author.none.fl_str_mv |
Olave Herrera, Astrid Arena |
dc.contributor.researchgroup.spa.fl_str_mv |
COMBIOS |
dc.subject.ddc.spa.fl_str_mv |
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas |
topic |
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas Neurofisiología Neurophysiology fMRI Dynamic functional connectivity Topological data analysis Mapper Suspense Suspenso Conectividad funcional dinámica Análisis topológico de datos Investigación sobre el cerebro Brain research |
dc.subject.other.spa.fl_str_mv |
Neurofisiología |
dc.subject.other.eng.fl_str_mv |
Neurophysiology |
dc.subject.proposal.eng.fl_str_mv |
fMRI Dynamic functional connectivity Topological data analysis Mapper Suspense |
dc.subject.proposal.spa.fl_str_mv |
Suspenso Conectividad funcional dinámica Análisis topológico de datos |
dc.subject.unesco.spa.fl_str_mv |
Investigación sobre el cerebro |
dc.subject.unesco.eng.fl_str_mv |
Brain research |
description |
ilustraciones, diagramas, gráficas, tablas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-03-16T13:13:26Z |
dc.date.available.none.fl_str_mv |
2022-03-16T13:13:26Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81235 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81235 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Lehne, M., and Koelsch, S., Toward a general psychological model of tension and suspense, Frontiers in Psychology 6 (2015) Schm ̈alzle, R., and Grall, C., The coupled brains of captivated audiences, Journal of Media Psychology (2020) Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., and Barrett, L. F., The brain basis of emotion: A meta-analytic review, Behavioral and Brain Sciences 35 (2012), no. 3 Lehne, M., Emotional experiences of tension and suspense: psychological mechanisms and neural correlates, Ph.D. thesis, Fachbereich Erziehungswissenschaft und Psychologie der Freien Universit ̈at Berlin, 2014 Pessoa, L., A network model of the emotional brain, Trends in cognitive sciences 21 (2017), no. 5 Hermans, E. J., Henckens, M. J., Jo ̈els, M., and Fernández, G., Dynamic adaptation of large-scale brain networks in response to acute stressors, Trends in Neurosciences 37 (2014), no. 6 McMenamin, B. W., Langeslag, S. J. E., Sirbu, M., Padmala, S., and Pessoa, L., Network organization unfolds over time during periods of anxious anticipation, Journal of Neuroscience 34 (2014), no. 34 Najafi, M., Kinnison, J., and Pessoa, L., Dynamics of intersubject brain networks during anxious anticipation, Frontiers in human neuroscience 11 (2017) Saggar, M., Sporns, O., Gonzalez-Castillo, J., Bandettini, P. A., Carlsson, G., Glover, G., and Reiss, A. L., Towards a new approach to reveal dynamical organization of the brain using topological data analysis, Nature communications 9 (2018), no. 1 Singh, G., Memoli, F., and Carlsson, G., Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition, Eurographics Symposium on Point-Based Graphics (Botsch, M., Pajarola, R., Chen, B., and Zwicker, M., eds.), The Eurographics Association, 2007 Lindquist, K., and Barrett, L., A functional architecture of the human brain: Emerging insights from the science of emotion, Trends in cognitive sciences 16 (2012) Pessoa, L., and McMenamin, B., Dynamic networks in the emotional brain, The Neuroscientist 23 (2017), no. 4 Edelsbrunner, H., and Harer, J., Computational topology: an introduction, American Mathematical Soc., 2010 Piekenbrock, M., Doran, D., and Kramer, R., Efficient multi-scale simplicial complex generation for mapper, 2018 Piekenbrock, M., Doran, D., and Kramer, R., Mapper, 2019, https://github.com/peekxc/Mapper Wang, H. E., B énar, C. G., Quilichini, P. P., Friston, K. J., Jirsa, V. K., and Bernard, C., A systematic framework for functional connectivity measures, Frontiers in Neuroscience 8 (2014) Bressler, S. L., and Menon, V., Large-scale brain networks in cognition: emerging methods and principles, Trends in cognitive sciences 14 (2010), no. 6 LeDoux, J. E., Emotion circuits in the brain, Annual Review of Neuroscience 23 (2000), no. 1. Celeghin, A., Diano, M., Bagnis, A., Viola, M., and Tamietto, M., Basic emotions in human neuroscience: neuroimaging and beyond, Frontiers in psychology 8 (2017) Knobloch-Westerwick, S., David, P., Eastin, M. S., Tamborini, R., and Greenwood, D., Sports spectators’ suspense: Affect and uncertainty in sports entertainment, Journal of Communication 59 (2009), no. 4 Knobloch-Westerwick, S., and Keplinger, C., Thrilling news: Factors generating suspense during news exposure, Media Psychology 9 (2007), no. 1 Löker, A., Film and suspense, Trafford Publishing, 2005 Smith, G. M., Film structure and the emotion system, Cambridge University Press, 2003 Prieto-Pablos, J. A., The paradox of suspense, Poetics 26 (1998), no. 2. Smuts, A., The paradox of suspense, 2009, https://plato.stanford.edu/archives/fall2009/entries/paradox- suspense/ Vorderer, P., Wulff, H. J., and Friedrichsen, M., Suspense: Conceptualizations, theoretical analyses, and empirical explorations, Routledge, 1996 Bezdek, M. A., Gerrig, R. J., Wenzel, W. G., Shin, J., Revill, K. P., and Schumacher, E. H., Neural evidence that suspense narrows attentional focus, Neuroscience 303 (2015) Bezdek, M. A., Wenzel, W. G., and Schumacher, E. H., The effect of visual and musical suspense on brain activation and memory during naturalistic viewing, Biological Psychology 129 (2017) Lehne, M., Engel, P., Rohrmeier, M., Menninghaus, W., Jacobs, A. M., and Koelsch, S., Reading a suspenseful literary text activates brain areas related to social cognition and predictive inference, PLoS One 10 (2015), no. 5 Lehne, M., Rohrmeier, M., and Koelsch, S., Tension-related activity in the orbitofrontal cortex and amygdala: an fMRI study with music, Social Cognitive and Affective Neuroscience 9 (2013), no. 10 NORDEN, M. F., Toward a theory of audience response to suspenseful films, Journal of the University Film Association 32 (1980), no. 1/2 Steinbeis, N., and Koelsch, S., Shared Neural Resources between Music and Language Indicate Semantic Processing of Musical Tension-Resolution Patterns, Cerebral Cortex 18 (2007), no. 5 Bassett, D. S., and Gazzaniga, M. S., Understanding complexity in the human brain, Trends in cognitive sciences 15 (2011), no. 5 Telesford, Q. K., Lynall, M.-E., Vettel, J., Miller, M. B., Grafton, S. T., and Bassett, D. S., Detection of functional brain network reconfiguration during task-driven cognitive states, NeuroImage 142 (2016) Kinnison, J., Padmala, S., Choi, J.-M., and Pessoa, L., Network analysis reveals increased integration during emotional and motivational processing, Journal of Neuro- science 32 (2012), no. 24 Raz, G., Winetraub, Y., Jacob, Y., Kinreich, S., Maron-Katz, A., Shaham, G., Podlip- sky, I., Gilam, G., Soreq, E., and Hendler, T., Portraying emotions at their unfolding: A multilayered approach for probing dynamics of neural networks, NeuroImage 60 (2012), no. 2 Touroutoglou, A., Bickart, K. C., Barrett, L. F., and Dickerson, B. C., Amygdala task-evoked activity and task-free connectivity independently contribute to feelings of arousal, Human Brain Mapping 35 (2014), no. 10 Touroutoglou, A., Lindquist, K. A., Dickerson, B. C., and Barrett, L. F., Intrinsic connectivity in the human brain does not reveal networks for ‘basic’emotions, Social cognitive and affective neuroscience 10 (2015), no. 9. Wilson-Mendenhall, C. D., Barrett, L. F., and Barsalou, L. W., Variety in emotional life: within-category typicality of emotional experiences is associated with neural activity in large-scale brain networks, Social cognitive and affective neuroscience 10 (2015), no. 1 Raz, G., Touroutoglou, A., Wilson-Mendenhall, C., Gilam, G., Lin, T., Gonen, T., Jacob, Y., Atzil, S., Admon, R., Bleich-Cohen, M., et al., Functional connectiv- ity dynamics during film viewing reveal common networks for different emotional experiences, Cognitive, Affective, & Behavioral Neuroscience 16 (2016), no. 4 Diano, M., Tamietto, M., Celeghin, A., Weiskrantz, L., Tatu, M.-K., Bagnis, A., Duca, S., Geminiani, G., Cauda, F., and Costa, T., Dynamic changes in amygdala psychophysiological connectivity reveal distinct neural networks for facial expressions of basic emotions, Scientific Reports 7 (2017), no. 1 Satpute, A. B., and Lindquist, K. A., The default mode network’s role in discrete emotion, Trends in Cognitive Sciences 23 (2019), no. 10 Dabaghian, Y., M ́emoli, F., Frank, L., and Carlsson, G., A topological paradigm for hippocampal spatial map formation using persistent homology, PLoS computational biology 8 (2012), no. 8 Reimann, M. W., Nolte, M., Scolamiero, M., Turner, K., Perin, R., Chindemi, G., D lotko, P., Levi, R., Hess, K., and Markram, H., Cliques of neurons bound into cavities provide a missing link between structure and function, Frontiers in computational neuroscience 11 (2017) Sizemore, A. E., Giusti, C., Kahn, A., Vettel, J. M., Betzel, R. F., and Bassett, D. S., Cliques and cavities in the human connectome, Journal of computational neuroscience 44 (2018), no. 1 Yoo, J., Kim, E. Y., Ahn, Y. M., and Ye, J. C., Topological persistence vineyard for dynamic functional brain connectivity during resting and gaming stages, Journal of neuroscience methods 267 (2016) Chazal, F., and Michel, B., An introduction to topological data analysis: fundamental and practical aspects for data scientists, ArXiv abs/1710.04019 (2017) Bressler, S. L., and Menon, V., Large-scale brain networks in cognition: emerging methods and principles, Trends in cognitive sciences 14 (2010), no. 6 Uddin, L. Q., Yeo, B. T. T., and Spreng, R. N., Towards a universal taxonomy of macro-scale functional human brain networks, Brain Topography 32 (2019), no. 6 Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., Vogel, A. C., Laumann, T. O., Miezin, F. M., Schlaggar, B. L., et al., Functional network organization of the human brain, Neuron 72 (2011), no. 4 Barrett, L. F., and Satpute, A. B., Large-scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain, Current opinion in neurobiology 23 (2013), no. 3 Pessoa, L., Understanding emotion with brain networks, Current opinion in behavioral sciences 19 (2018) Braun, U., Sch ̈afer, A., Walter, H., Erk, S., Romanczuk-Seiferth, N., Haddad, L., Schweiger, J. I., Grimm, O., Heinz, A., Tost, H., et al., Dynamic reconfiguration of frontal brain networks during executive cognition in humans, Proceedings of the National Academy of Sciences 112 (2015), no. 37 Khambhati, A. N., Sizemore, A. E., Betzel, R. F., and Bassett, D. S., Modeling and interpreting mesoscale network dynamics, NeuroImage 180 (2018) Huang, X., Yao, Y., Bowman, G. R., Sun, J., Guibas, L. J., Carlsson, G. E., and Pande, V. S., Constructing multi-resolution markov state models (msms) to elucidate rna hairpin folding mechanisms, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing (2010) Yao, Y., Sun, J., Huang, X., Bowman, G. R., Singh, G., Lesnick, M., Guibas, L. J., Pande, V. S., and Carlsson, G., Topological methods for exploring low-density states in biomolecular folding pathways, The Journal of Chemical Physics 130 (2009), no. 14 Nicolau, M., Levine, A. J., and Carlsson, G., Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival, Proceedings of the National Academy of Sciences 108 (2011), no. 17 Nielson, J. L., Paquette, J., Liu, A. W., Guandique, C. F., Tovar, C. A., Inoue, T., Irvine, K.-A., Gensel, J. C., Kloke, J., Petrossian, T. C., et al., Topological data analysis for discovery in preclinical spinal cord injury and traumatic brain injury, Nature communications 6 (2015), no. 1 Feged-Rivadeneira, A., ́Angel, A., Gonz ́alez-Casabianca, F., and Rivera, C., Malaria intensity in colombia by regions and populations, PLOS ONE 13 (2018), no. 9 Bakken Stovner, R., On the mapper algorithm, Ph.D. thesis, Norwegian University of Science and Technolog, 2012 Campbell, K. L., Shafto, M. A., Wright, P., Tsvetanov, K. A., Geerligs, L., Cusack, R., Tyler, L. K., and ..., Idiosyncratic responding during movie-watching predicted by age differences in attentional control, Neurobiology of Aging 36 (2015), no. 11 Shafto, M. A., , Tyler, L. K., Dixon, M., Taylor, J. R., Rowe, J. B., Cusack, R., Calder, A. J., Marslen-Wilson, W. D., Duncan, J., Dalgleish, T., Henson, R. N., Brayne, C., and Matthews, F. E., The cambridge centre for ageing and neuroscience (cam-CAN) study protocol: a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing, BMC Neurology 14 (2014), no. 1 Gabert-Quillen, C. A., Bartolini, E. E., Abravanel, B. T., and Sanislow, C. A., Ratings for emotion film clips, Behavior research methods 47 (2015), no. 3. Hasson, U., Landesman, O., Knappmeyer, B., Vallines, I., Rubin, N., and Heeger, D. J., Neurocinematics: The neuroscience of film, Projections 2 (2008), no. 1 Biocca, F., David, P., and West, M., Continuous response measurement (crm): A computerized tool for research on the cognitive processing of media messages, A. Lang (Ed.) (1993) Nummenmaa, L., Glerean, E., Viinikainen, M., J ̈a ̈askel ̈ainen, I. P., Hari, R., and Sams, M., Emotions promote social interaction by synchronizing brain activity across individuals, Proceedings of the National Academy of Sciences 109 (2012), no. 24 Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom, M. L., and Ghosh, S. S., Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python, Frontiers in neuroinformatics 5 (2011) Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., Gramfort, A., Thirion, B., and Varoquaux, G., Machine learning for neuroimaging with scikit-learn, Frontiers in neuroinformatics 8 (2014) Eickhoff, S. B., Yeo, B. T., and Genon, S., Imaging-based parcellations of the human brain, Nature Reviews Neuroscience 19 (2018), no. 11 Shen, X., Tokoglu, F., Papademetris, X., and Constable, R. T., Groupwise whole-brain parcellation from resting-state fmri data for network node identification, Neuroimage 82 (2013) Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., Papademetris, X., and Constable, R. T., Functional connectome fingerprinting: iden- tifying individuals using patterns of brain connectivity, Nature Neuroscience 18 (2015), no. 11 Papademetris, X., Bioimage suite web, https://github.com/bioimagesuiteweb/bisweb, GitHub. Retrieved February 2, 2021 Preti, M. G., Bolton, T. A., and Van De Ville, D., The dynamic functional connectome: State-of-the-art and perspectives, Neuroimage 160 (2017) Shakil, S., Lee, C.-H., and Keilholz, S. D., Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states, Neuroimage 133 (2016) Leonardi, N., and Van De Ville, D., On spurious and real fluctuations of dynamic functional connectivity during rest, Neuroimage 104 (2015) Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., Della Penna, S., Duyn, J. H., Glover, G. H., Gonzalez-Castillo, J., et al., Dynamic functional connectivity: promise, issues, and interpretations, Neuroimage 80 (2013) Dunlap, W. P., Jones, M. B., and Bittner, A. C., Average correlations vs. correlated averages, Bulletin of the Psychonomic Society 21 (1983), no. 3 Silver, N. C., and Dunlap, W. P., Averaging correlation coefficients: should fisher’s z transformation be used?, Journal of applied psychology 72 (1987), no. 1 Bullmore, E. T., and Bassett, D. S., Brain graphs: graphical models of the human brain connectome, Annual review of clinical psychology 7 (2011). Carriere, M., Michel, B., and Oudot, S., Statistical analysis and parameter selection for mapper, The Journal of Machine Learning Research 19 (2018), no. 1 Hajij, M., Wang, B., and Rosen, P., Mog: Mapper on graphs for relationship preserving clustering, 2018, arXiv preprint arXiv:1804.11242 Lum, P. Y., Singh, G., Lehman, A., Ishkanov, T., Vejdemo-Johansson, M., Alagappan, M., Carlsson, J., and Carlsson, G., Extracting insights from the shape of complex data using topology, Scientific reports 3 (2013) Tenenbaum, J. B., De Silva, V., and Langford, J. C., A global geometric framework for nonlinear dimensionality reduction, science 290 (2000), no. 5500 Borg, I., and Groenen, P. J., Modern multidimensional scaling: Theory and applica- tions, Springer Science & Business Media, 2005 Estivill-Castro, V., Why so many clustering algorithms: a position paper, SIGKDD Explorations 4 (2002) Gan, G., Ma, C., and Wu, J., Data clustering: theory, algorithms, and applications, vol. 20, Siam, 2007 Silverman, B. W., Density estimation for statistics and data analysis, vol. 26, CRC press, 1986 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E., Scikit-learn: Machine learning in Python, Journal of Machine Learning Research 12 (2011). Tralie, C., Saul, N., and Bar-On, R., Ripser.py: A lean persistent homology library for python, The Journal of Open Source Software 3 (2018), no. 29 Hindriks, R., Adhikari, M., Murayama, Y., Ganzetti, M., Mantini, D., Logothetis, N., and Deco, G., Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI?, NeuroImage 127 (2016) Prichard, D., and Theiler, J., Generating surrogate data for time series with several simultaneously measured variables, Physical Review Letters 73 (1994), no. 7 Girvan, M., and Newman, M. E. J., Community structure in social and biological networks, Proceedings of the National Academy of Sciences 99 (2002), no. 12 Chiang, S., Cassese, A., Guindani, M., Vannucci, M., Yeh, H. J., Haneef, Z., and Stern, J. M., Time-dependence of graph theory metrics in functional connectivity analysis, NeuroImage 125 (2016) Ou, J., Xie, L., Jin, C., Li, X., Zhu, D., Jiang, R., Chen, Y., Zhang, J., Li, L., and Liu, T., Characterizing and differentiating brain state dynamics via hidden markov models, Brain Topography 28 (2014), no. 5 Yang, Z., Craddock, R. C., Margulies, D. S., Yan, C.-G., and Milham, M. P., Common intrinsic connectivity states among posteromedial cortex subdivisions: Insights from analysis of temporal dynamics, NeuroImage 93 (2014) Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., and Calhoun, V. D., Tracking Whole-Brain Connectivity Dynamics in the Resting State, Cerebral Cortex 24 (2012), no. 3 Hutchison, R. M., and Morton, J. B., Tracking the brain’s functional coupling dynamics over development, Journal of Neuroscience 35 (2015), no. 17 Uddin, L. Q., Clare Kelly, A., Biswal, B. B., Xavier Castellanos, F., and Milham, M. P., Functional connectivity of default mode network components: correlation, anticorrelation, and causality, Human brain mapping 30 (2009), no. 2 Sun, F. T., Miller, L. M., and D’Esposito, M., Measuring interregional functional connectivity using coherence and partial coherence analyses of fmri data, NeuroImage 21 (2004), no. 2 Bastos, A. M., and Schoffelen, J.-M., A tutorial review of functional connectivity analysis methods and their interpretational pitfalls, Frontiers in systems neuroscience 9 (2016) |
dc.rights.spa.fl_str_mv |
Derechos reservados al autos, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional Derechos reservados al autos, 2021 http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
´xviii, 69 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Matemática Aplicada |
dc.publisher.department.spa.fl_str_mv |
Departamento de Matemáticas |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81235/3/1030657446.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/81235/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/81235/5/1030657446.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
b19f5ffa86a22a4dfe13574b15b1cc56 8153f7789df02f0a4c9e079953658ab2 167119c818a736f442ef54ab92335209 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089300465156096 |
spelling |
Reconocimiento 4.0 InternacionalDerechos reservados al autos, 2021http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Perea, Joséd889dee824ecb8a7f914ac1bd2a19a39Gómez Jaramillo, Francisco Albeiro415aa92d5615e8a2fa29cfa0a28ec210Olave Herrera, Astrid Arena8e1ae7b6c4b283dfed5cf70821bdd2daCOMBIOS2022-03-16T13:13:26Z2022-03-16T13:13:26Z2021https://repositorio.unal.edu.co/handle/unal/81235Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, gráficas, tablasSuspense is an affective state ubiquitous in human life, from art to quotidian events. However, little is known about the behavior of large-scale networks during suspenseful experiences. To address this question, we examined the continuous brain responses of participants watching a suspenseful movie along with a reported level of suspense from viewers. We employed sliding window analysis and Pearson correlation to measure functional connectivity states along time. Then, we used Mapper, a tool of Topological Data Analysis, to obtain a graphical representation capturing the brain’s dynamical transitions across states. Our analysis revealed changes in the functional connectivity within and between Salience, Fronto-Parietal, and Default networks associated with suspense. In particular, the functional connectivity between Salience and Fronto-Parietal networks increased with the level of suspense. In contrast, the connections of both networks with the Default network decreased. Together, our findings expose the dynamical changes of functional connectivity at the network level associated with the variation of suspense and reveal topological analysis as a potentially powerful tool for studying dynamic brain networks.El suspenso es un estado emocional omnipresente en la vida humana, desde el arte hasta los eventos cotidianos. Sin embargo, se sabe poco sobre el comportamiento de las redes cerebrales a gran escala durante las experiencias de suspenso. Para abordar esta pregunta, examinamos continuamente las respuestas cerebrales de participantes que ven una película de suspenso junto a un reporte de los espectadores ds su nivel de suspenso. Empleamos el análisis de ventana deslizante y el índice de correlación de Pearson para medir los estados de conectividad funcional a lo largo del tiempo. Luego, usamos Mapper, una herramienta del análisis topologico de datos, para obtener una representación gráfica que captura las transiciones dinámicas del cerebro a través de los estados. Nuestro análisis reveló cambios en la conectividad funcional dentro y entre las redes saliente, fronto-parietal y por defecto asociadas con el suspenso. En particular, la conectividad funcional entre las redes saliente y fronto-parietal aumentó con el nivel de suspenso. Por el contrario, las conexiones de ambas redes con la red por defecto disminuyeron. Nuestros resultados muestran los cambios dinámicos de la conectividad funcional a nivel de red asociados con la variacion de suspenso y revelan al análisis topológico de datos como una herramienta potencialmente poderosa para estudiar la redes dinámicas del cerebro. (Texto tomado de la fuente)Code to reproduce and document the analyses is accessible online at https://github.com/aaolaveh/TDA_suspenseMaestríaMagíster en Ciencias - Matemática AplicadaMatemáticas Aplicadas´xviii, 69 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - Matemática AplicadaDepartamento de MatemáticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasNeurofisiologíaNeurophysiologyfMRIDynamic functional connectivityTopological data analysisMapperSuspenseSuspensoConectividad funcional dinámicaAnálisis topológico de datosInvestigación sobre el cerebroBrain researchRevealing brain network dynamics during the emotional state of suspense using topological data analysisDescubriendo las dinámicas de las redes cerebrales durante el estado emocional de suspenso usando análisis topológico de datosTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLehne, M., and Koelsch, S., Toward a general psychological model of tension and suspense, Frontiers in Psychology 6 (2015)Schm ̈alzle, R., and Grall, C., The coupled brains of captivated audiences, Journal of Media Psychology (2020)Lindquist, K. A., Wager, T. D., Kober, H., Bliss-Moreau, E., and Barrett, L. F., The brain basis of emotion: A meta-analytic review, Behavioral and Brain Sciences 35 (2012), no. 3Lehne, M., Emotional experiences of tension and suspense: psychological mechanisms and neural correlates, Ph.D. thesis, Fachbereich Erziehungswissenschaft und Psychologie der Freien Universit ̈at Berlin, 2014Pessoa, L., A network model of the emotional brain, Trends in cognitive sciences 21 (2017), no. 5Hermans, E. J., Henckens, M. J., Jo ̈els, M., and Fernández, G., Dynamic adaptation of large-scale brain networks in response to acute stressors, Trends in Neurosciences 37 (2014), no. 6McMenamin, B. W., Langeslag, S. J. E., Sirbu, M., Padmala, S., and Pessoa, L., Network organization unfolds over time during periods of anxious anticipation, Journal of Neuroscience 34 (2014), no. 34Najafi, M., Kinnison, J., and Pessoa, L., Dynamics of intersubject brain networks during anxious anticipation, Frontiers in human neuroscience 11 (2017)Saggar, M., Sporns, O., Gonzalez-Castillo, J., Bandettini, P. A., Carlsson, G., Glover, G., and Reiss, A. L., Towards a new approach to reveal dynamical organization of the brain using topological data analysis, Nature communications 9 (2018), no. 1Singh, G., Memoli, F., and Carlsson, G., Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition, Eurographics Symposium on Point-Based Graphics (Botsch, M., Pajarola, R., Chen, B., and Zwicker, M., eds.), The Eurographics Association, 2007Lindquist, K., and Barrett, L., A functional architecture of the human brain: Emerging insights from the science of emotion, Trends in cognitive sciences 16 (2012)Pessoa, L., and McMenamin, B., Dynamic networks in the emotional brain, The Neuroscientist 23 (2017), no. 4Edelsbrunner, H., and Harer, J., Computational topology: an introduction, American Mathematical Soc., 2010Piekenbrock, M., Doran, D., and Kramer, R., Efficient multi-scale simplicial complex generation for mapper, 2018Piekenbrock, M., Doran, D., and Kramer, R., Mapper, 2019, https://github.com/peekxc/MapperWang, H. E., B énar, C. G., Quilichini, P. P., Friston, K. J., Jirsa, V. K., and Bernard, C., A systematic framework for functional connectivity measures, Frontiers in Neuroscience 8 (2014)Bressler, S. L., and Menon, V., Large-scale brain networks in cognition: emerging methods and principles, Trends in cognitive sciences 14 (2010), no. 6LeDoux, J. E., Emotion circuits in the brain, Annual Review of Neuroscience 23 (2000), no. 1.Celeghin, A., Diano, M., Bagnis, A., Viola, M., and Tamietto, M., Basic emotions in human neuroscience: neuroimaging and beyond, Frontiers in psychology 8 (2017)Knobloch-Westerwick, S., David, P., Eastin, M. S., Tamborini, R., and Greenwood, D., Sports spectators’ suspense: Affect and uncertainty in sports entertainment, Journal of Communication 59 (2009), no. 4Knobloch-Westerwick, S., and Keplinger, C., Thrilling news: Factors generating suspense during news exposure, Media Psychology 9 (2007), no. 1Löker, A., Film and suspense, Trafford Publishing, 2005Smith, G. M., Film structure and the emotion system, Cambridge University Press, 2003Prieto-Pablos, J. A., The paradox of suspense, Poetics 26 (1998), no. 2.Smuts, A., The paradox of suspense, 2009, https://plato.stanford.edu/archives/fall2009/entries/paradox- suspense/Vorderer, P., Wulff, H. J., and Friedrichsen, M., Suspense: Conceptualizations, theoretical analyses, and empirical explorations, Routledge, 1996Bezdek, M. A., Gerrig, R. J., Wenzel, W. G., Shin, J., Revill, K. P., and Schumacher, E. H., Neural evidence that suspense narrows attentional focus, Neuroscience 303 (2015)Bezdek, M. A., Wenzel, W. G., and Schumacher, E. H., The effect of visual and musical suspense on brain activation and memory during naturalistic viewing, Biological Psychology 129 (2017)Lehne, M., Engel, P., Rohrmeier, M., Menninghaus, W., Jacobs, A. M., and Koelsch, S., Reading a suspenseful literary text activates brain areas related to social cognition and predictive inference, PLoS One 10 (2015), no. 5Lehne, M., Rohrmeier, M., and Koelsch, S., Tension-related activity in the orbitofrontal cortex and amygdala: an fMRI study with music, Social Cognitive and Affective Neuroscience 9 (2013), no. 10NORDEN, M. F., Toward a theory of audience response to suspenseful films, Journal of the University Film Association 32 (1980), no. 1/2Steinbeis, N., and Koelsch, S., Shared Neural Resources between Music and Language Indicate Semantic Processing of Musical Tension-Resolution Patterns, Cerebral Cortex 18 (2007), no. 5Bassett, D. S., and Gazzaniga, M. S., Understanding complexity in the human brain, Trends in cognitive sciences 15 (2011), no. 5Telesford, Q. K., Lynall, M.-E., Vettel, J., Miller, M. B., Grafton, S. T., and Bassett, D. S., Detection of functional brain network reconfiguration during task-driven cognitive states, NeuroImage 142 (2016)Kinnison, J., Padmala, S., Choi, J.-M., and Pessoa, L., Network analysis reveals increased integration during emotional and motivational processing, Journal of Neuro- science 32 (2012), no. 24Raz, G., Winetraub, Y., Jacob, Y., Kinreich, S., Maron-Katz, A., Shaham, G., Podlip- sky, I., Gilam, G., Soreq, E., and Hendler, T., Portraying emotions at their unfolding: A multilayered approach for probing dynamics of neural networks, NeuroImage 60 (2012), no. 2Touroutoglou, A., Bickart, K. C., Barrett, L. F., and Dickerson, B. C., Amygdala task-evoked activity and task-free connectivity independently contribute to feelings of arousal, Human Brain Mapping 35 (2014), no. 10Touroutoglou, A., Lindquist, K. A., Dickerson, B. C., and Barrett, L. F., Intrinsic connectivity in the human brain does not reveal networks for ‘basic’emotions, Social cognitive and affective neuroscience 10 (2015), no. 9.Wilson-Mendenhall, C. D., Barrett, L. F., and Barsalou, L. W., Variety in emotional life: within-category typicality of emotional experiences is associated with neural activity in large-scale brain networks, Social cognitive and affective neuroscience 10 (2015), no. 1Raz, G., Touroutoglou, A., Wilson-Mendenhall, C., Gilam, G., Lin, T., Gonen, T., Jacob, Y., Atzil, S., Admon, R., Bleich-Cohen, M., et al., Functional connectiv- ity dynamics during film viewing reveal common networks for different emotional experiences, Cognitive, Affective, & Behavioral Neuroscience 16 (2016), no. 4Diano, M., Tamietto, M., Celeghin, A., Weiskrantz, L., Tatu, M.-K., Bagnis, A., Duca, S., Geminiani, G., Cauda, F., and Costa, T., Dynamic changes in amygdala psychophysiological connectivity reveal distinct neural networks for facial expressions of basic emotions, Scientific Reports 7 (2017), no. 1Satpute, A. B., and Lindquist, K. A., The default mode network’s role in discrete emotion, Trends in Cognitive Sciences 23 (2019), no. 10Dabaghian, Y., M ́emoli, F., Frank, L., and Carlsson, G., A topological paradigm for hippocampal spatial map formation using persistent homology, PLoS computational biology 8 (2012), no. 8Reimann, M. W., Nolte, M., Scolamiero, M., Turner, K., Perin, R., Chindemi, G., D lotko, P., Levi, R., Hess, K., and Markram, H., Cliques of neurons bound into cavities provide a missing link between structure and function, Frontiers in computational neuroscience 11 (2017)Sizemore, A. E., Giusti, C., Kahn, A., Vettel, J. M., Betzel, R. F., and Bassett, D. S., Cliques and cavities in the human connectome, Journal of computational neuroscience 44 (2018), no. 1Yoo, J., Kim, E. Y., Ahn, Y. M., and Ye, J. C., Topological persistence vineyard for dynamic functional brain connectivity during resting and gaming stages, Journal of neuroscience methods 267 (2016)Chazal, F., and Michel, B., An introduction to topological data analysis: fundamental and practical aspects for data scientists, ArXiv abs/1710.04019 (2017)Bressler, S. L., and Menon, V., Large-scale brain networks in cognition: emerging methods and principles, Trends in cognitive sciences 14 (2010), no. 6Uddin, L. Q., Yeo, B. T. T., and Spreng, R. N., Towards a universal taxonomy of macro-scale functional human brain networks, Brain Topography 32 (2019), no. 6Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., Vogel, A. C., Laumann, T. O., Miezin, F. M., Schlaggar, B. L., et al., Functional network organization of the human brain, Neuron 72 (2011), no. 4Barrett, L. F., and Satpute, A. B., Large-scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain, Current opinion in neurobiology 23 (2013), no. 3Pessoa, L., Understanding emotion with brain networks, Current opinion in behavioral sciences 19 (2018)Braun, U., Sch ̈afer, A., Walter, H., Erk, S., Romanczuk-Seiferth, N., Haddad, L., Schweiger, J. I., Grimm, O., Heinz, A., Tost, H., et al., Dynamic reconfiguration of frontal brain networks during executive cognition in humans, Proceedings of the National Academy of Sciences 112 (2015), no. 37Khambhati, A. N., Sizemore, A. E., Betzel, R. F., and Bassett, D. S., Modeling and interpreting mesoscale network dynamics, NeuroImage 180 (2018)Huang, X., Yao, Y., Bowman, G. R., Sun, J., Guibas, L. J., Carlsson, G. E., and Pande, V. S., Constructing multi-resolution markov state models (msms) to elucidate rna hairpin folding mechanisms, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing (2010)Yao, Y., Sun, J., Huang, X., Bowman, G. R., Singh, G., Lesnick, M., Guibas, L. J., Pande, V. S., and Carlsson, G., Topological methods for exploring low-density states in biomolecular folding pathways, The Journal of Chemical Physics 130 (2009), no. 14Nicolau, M., Levine, A. J., and Carlsson, G., Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival, Proceedings of the National Academy of Sciences 108 (2011), no. 17Nielson, J. L., Paquette, J., Liu, A. W., Guandique, C. F., Tovar, C. A., Inoue, T., Irvine, K.-A., Gensel, J. C., Kloke, J., Petrossian, T. C., et al., Topological data analysis for discovery in preclinical spinal cord injury and traumatic brain injury, Nature communications 6 (2015), no. 1Feged-Rivadeneira, A., ́Angel, A., Gonz ́alez-Casabianca, F., and Rivera, C., Malaria intensity in colombia by regions and populations, PLOS ONE 13 (2018), no. 9Bakken Stovner, R., On the mapper algorithm, Ph.D. thesis, Norwegian University of Science and Technolog, 2012Campbell, K. L., Shafto, M. A., Wright, P., Tsvetanov, K. A., Geerligs, L., Cusack, R., Tyler, L. K., and ..., Idiosyncratic responding during movie-watching predicted by age differences in attentional control, Neurobiology of Aging 36 (2015), no. 11Shafto, M. A., , Tyler, L. K., Dixon, M., Taylor, J. R., Rowe, J. B., Cusack, R., Calder, A. J., Marslen-Wilson, W. D., Duncan, J., Dalgleish, T., Henson, R. N., Brayne, C., and Matthews, F. E., The cambridge centre for ageing and neuroscience (cam-CAN) study protocol: a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing, BMC Neurology 14 (2014), no. 1Gabert-Quillen, C. A., Bartolini, E. E., Abravanel, B. T., and Sanislow, C. A., Ratings for emotion film clips, Behavior research methods 47 (2015), no. 3.Hasson, U., Landesman, O., Knappmeyer, B., Vallines, I., Rubin, N., and Heeger, D. J., Neurocinematics: The neuroscience of film, Projections 2 (2008), no. 1Biocca, F., David, P., and West, M., Continuous response measurement (crm): A computerized tool for research on the cognitive processing of media messages, A. Lang (Ed.) (1993)Nummenmaa, L., Glerean, E., Viinikainen, M., J ̈a ̈askel ̈ainen, I. P., Hari, R., and Sams, M., Emotions promote social interaction by synchronizing brain activity across individuals, Proceedings of the National Academy of Sciences 109 (2012), no. 24Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom, M. L., and Ghosh, S. S., Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python, Frontiers in neuroinformatics 5 (2011)Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller, A., Kossaifi, J., Gramfort, A., Thirion, B., and Varoquaux, G., Machine learning for neuroimaging with scikit-learn, Frontiers in neuroinformatics 8 (2014)Eickhoff, S. B., Yeo, B. T., and Genon, S., Imaging-based parcellations of the human brain, Nature Reviews Neuroscience 19 (2018), no. 11Shen, X., Tokoglu, F., Papademetris, X., and Constable, R. T., Groupwise whole-brain parcellation from resting-state fmri data for network node identification, Neuroimage 82 (2013)Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., Papademetris, X., and Constable, R. T., Functional connectome fingerprinting: iden- tifying individuals using patterns of brain connectivity, Nature Neuroscience 18 (2015), no. 11Papademetris, X., Bioimage suite web, https://github.com/bioimagesuiteweb/bisweb, GitHub. Retrieved February 2, 2021Preti, M. G., Bolton, T. A., and Van De Ville, D., The dynamic functional connectome: State-of-the-art and perspectives, Neuroimage 160 (2017)Shakil, S., Lee, C.-H., and Keilholz, S. D., Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states, Neuroimage 133 (2016)Leonardi, N., and Van De Ville, D., On spurious and real fluctuations of dynamic functional connectivity during rest, Neuroimage 104 (2015)Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., Della Penna, S., Duyn, J. H., Glover, G. H., Gonzalez-Castillo, J., et al., Dynamic functional connectivity: promise, issues, and interpretations, Neuroimage 80 (2013)Dunlap, W. P., Jones, M. B., and Bittner, A. C., Average correlations vs. correlated averages, Bulletin of the Psychonomic Society 21 (1983), no. 3Silver, N. C., and Dunlap, W. P., Averaging correlation coefficients: should fisher’s z transformation be used?, Journal of applied psychology 72 (1987), no. 1Bullmore, E. T., and Bassett, D. S., Brain graphs: graphical models of the human brain connectome, Annual review of clinical psychology 7 (2011).Carriere, M., Michel, B., and Oudot, S., Statistical analysis and parameter selection for mapper, The Journal of Machine Learning Research 19 (2018), no. 1Hajij, M., Wang, B., and Rosen, P., Mog: Mapper on graphs for relationship preserving clustering, 2018, arXiv preprint arXiv:1804.11242Lum, P. Y., Singh, G., Lehman, A., Ishkanov, T., Vejdemo-Johansson, M., Alagappan, M., Carlsson, J., and Carlsson, G., Extracting insights from the shape of complex data using topology, Scientific reports 3 (2013)Tenenbaum, J. B., De Silva, V., and Langford, J. C., A global geometric framework for nonlinear dimensionality reduction, science 290 (2000), no. 5500Borg, I., and Groenen, P. J., Modern multidimensional scaling: Theory and applica- tions, Springer Science & Business Media, 2005Estivill-Castro, V., Why so many clustering algorithms: a position paper, SIGKDD Explorations 4 (2002)Gan, G., Ma, C., and Wu, J., Data clustering: theory, algorithms, and applications, vol. 20, Siam, 2007Silverman, B. W., Density estimation for statistics and data analysis, vol. 26, CRC press, 1986Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E., Scikit-learn: Machine learning in Python, Journal of Machine Learning Research 12 (2011).Tralie, C., Saul, N., and Bar-On, R., Ripser.py: A lean persistent homology library for python, The Journal of Open Source Software 3 (2018), no. 29Hindriks, R., Adhikari, M., Murayama, Y., Ganzetti, M., Mantini, D., Logothetis, N., and Deco, G., Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI?, NeuroImage 127 (2016)Prichard, D., and Theiler, J., Generating surrogate data for time series with several simultaneously measured variables, Physical Review Letters 73 (1994), no. 7Girvan, M., and Newman, M. E. J., Community structure in social and biological networks, Proceedings of the National Academy of Sciences 99 (2002), no. 12Chiang, S., Cassese, A., Guindani, M., Vannucci, M., Yeh, H. J., Haneef, Z., and Stern, J. M., Time-dependence of graph theory metrics in functional connectivity analysis, NeuroImage 125 (2016)Ou, J., Xie, L., Jin, C., Li, X., Zhu, D., Jiang, R., Chen, Y., Zhang, J., Li, L., and Liu, T., Characterizing and differentiating brain state dynamics via hidden markov models, Brain Topography 28 (2014), no. 5Yang, Z., Craddock, R. C., Margulies, D. S., Yan, C.-G., and Milham, M. P., Common intrinsic connectivity states among posteromedial cortex subdivisions: Insights from analysis of temporal dynamics, NeuroImage 93 (2014)Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., and Calhoun, V. D., Tracking Whole-Brain Connectivity Dynamics in the Resting State, Cerebral Cortex 24 (2012), no. 3Hutchison, R. M., and Morton, J. B., Tracking the brain’s functional coupling dynamics over development, Journal of Neuroscience 35 (2015), no. 17Uddin, L. Q., Clare Kelly, A., Biswal, B. B., Xavier Castellanos, F., and Milham, M. P., Functional connectivity of default mode network components: correlation, anticorrelation, and causality, Human brain mapping 30 (2009), no. 2Sun, F. T., Miller, L. M., and D’Esposito, M., Measuring interregional functional connectivity using coherence and partial coherence analyses of fmri data, NeuroImage 21 (2004), no. 2Bastos, A. M., and Schoffelen, J.-M., A tutorial review of functional connectivity analysis methods and their interpretational pitfalls, Frontiers in systems neuroscience 9 (2016)EstudiantesInvestigadoresPúblico generalORIGINAL1030657446.2021.pdf1030657446.2021.pdfTesis de Maestría en Ciencias - Matemática Aplicadaapplication/pdf7613854https://repositorio.unal.edu.co/bitstream/unal/81235/3/1030657446.2021.pdfb19f5ffa86a22a4dfe13574b15b1cc56MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81235/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1030657446.2021.pdf.jpg1030657446.2021.pdf.jpgGenerated Thumbnailimage/jpeg4556https://repositorio.unal.edu.co/bitstream/unal/81235/5/1030657446.2021.pdf.jpg167119c818a736f442ef54ab92335209MD55unal/81235oai:repositorio.unal.edu.co:unal/812352023-08-03 23:03:28.264Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |