Efectos del aislamiento social sobre la inducción de procesos de plasticidad y en el aprendizaje de estímulos contextuales asociados a la nicotina

ilustraciones, fotografías, diagramas

Autores:
Ballesteros-Acosta, Hans
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84265
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84265
https://repositorio.unal.edu.co/
Palabra clave:
150 - Psicología::156 - Psicología comparada
Psicología del Adolescente
Conducta del Adolescente
Psychology, Adolescent
Adolescent Behavior
Adolescencia
Aislamiento social
Nicotina
ΔFosB
Sensibilización locomotora
Preferencia condicionada de lugar
Adolescence
Social isolation
Nicotine
ΔFosB
Locomotor sensitization
Conditioned place preference
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_d09b10e1dc382ae63190f06be9d3e2fd
oai_identifier_str oai:repositorio.unal.edu.co:unal/84265
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Efectos del aislamiento social sobre la inducción de procesos de plasticidad y en el aprendizaje de estímulos contextuales asociados a la nicotina
dc.title.translated.eng.fl_str_mv Effects of social isolation on the induction of plasticity processes and the learning of nicotine-associated contextual stimuli
title Efectos del aislamiento social sobre la inducción de procesos de plasticidad y en el aprendizaje de estímulos contextuales asociados a la nicotina
spellingShingle Efectos del aislamiento social sobre la inducción de procesos de plasticidad y en el aprendizaje de estímulos contextuales asociados a la nicotina
150 - Psicología::156 - Psicología comparada
Psicología del Adolescente
Conducta del Adolescente
Psychology, Adolescent
Adolescent Behavior
Adolescencia
Aislamiento social
Nicotina
ΔFosB
Sensibilización locomotora
Preferencia condicionada de lugar
Adolescence
Social isolation
Nicotine
ΔFosB
Locomotor sensitization
Conditioned place preference
title_short Efectos del aislamiento social sobre la inducción de procesos de plasticidad y en el aprendizaje de estímulos contextuales asociados a la nicotina
title_full Efectos del aislamiento social sobre la inducción de procesos de plasticidad y en el aprendizaje de estímulos contextuales asociados a la nicotina
title_fullStr Efectos del aislamiento social sobre la inducción de procesos de plasticidad y en el aprendizaje de estímulos contextuales asociados a la nicotina
title_full_unstemmed Efectos del aislamiento social sobre la inducción de procesos de plasticidad y en el aprendizaje de estímulos contextuales asociados a la nicotina
title_sort Efectos del aislamiento social sobre la inducción de procesos de plasticidad y en el aprendizaje de estímulos contextuales asociados a la nicotina
dc.creator.fl_str_mv Ballesteros-Acosta, Hans
dc.contributor.advisor.none.fl_str_mv Lamprea Rodríguez, Marisol
Cortés-Patiño, Diana
dc.contributor.author.none.fl_str_mv Ballesteros-Acosta, Hans
dc.contributor.researchgroup.spa.fl_str_mv Neurociencia Básica y Cognoscitiva
dc.contributor.orcid.spa.fl_str_mv Ballesteros-Acosta, Hans [0000000303879084]
dc.contributor.cvlac.spa.fl_str_mv Ballesteros-Acosta, Hans [0001711713#]
dc.contributor.researchgate.spa.fl_str_mv Ballesteros-Acosta, Hans [Hans-Ballesteros-Acosta]
dc.subject.ddc.spa.fl_str_mv 150 - Psicología::156 - Psicología comparada
topic 150 - Psicología::156 - Psicología comparada
Psicología del Adolescente
Conducta del Adolescente
Psychology, Adolescent
Adolescent Behavior
Adolescencia
Aislamiento social
Nicotina
ΔFosB
Sensibilización locomotora
Preferencia condicionada de lugar
Adolescence
Social isolation
Nicotine
ΔFosB
Locomotor sensitization
Conditioned place preference
dc.subject.decs.spa.fl_str_mv Psicología del Adolescente
Conducta del Adolescente
dc.subject.decs.eng.fl_str_mv Psychology, Adolescent
Adolescent Behavior
dc.subject.proposal.spa.fl_str_mv Adolescencia
Aislamiento social
Nicotina
ΔFosB
Sensibilización locomotora
Preferencia condicionada de lugar
dc.subject.proposal.eng.fl_str_mv Adolescence
Social isolation
Nicotine
ΔFosB
Locomotor sensitization
Conditioned place preference
description ilustraciones, fotografías, diagramas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-25T17:39:09Z
dc.date.available.none.fl_str_mv 2023-07-25T17:39:09Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84265
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84265
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ahsan, H. M., I. de la Peña, J. B., Botanas, C. J., Kim, H. J., Yu, G. Y., & Cheong, J. H. (2014). Conditioned Place Preference and Self-Administration Induced by Nicotine in Adolescent and Adult Rats. Biomolecules & Therapeutics, 22(5), 460–466. https://doi.org/10.4062/biomolther.2014.056
Alajaji, M., Lazenka, M. f., Kota, D., Wise, L. E., Younis, R. M., Carroll, F. I., Levine, A., Selley, D. E., Sim-Selley, L. J., & Damaj, M. I. (2016). Early adolescent nicotine exposure affects later-life cocaine reward in mice. Neuropharmacology, 105, 308–317. https://doi.org/10.1016/j.neuropharm.2016.01.032
Arain, M., Mathur, P., Rais, A., Nel, W., Sandhu, R., Haque, M., Johal, L., & Sharma, S. (2013). Maturation of the Adolescent Brain. Neuropsychiatric Disease and Treatment, 9(9), 449–461. https://doi.org/10.2147/ndt.s39776
Arakawa, H. (2018). Ethological approach to social isolation effects in behavioral studies of laboratory rodents. Behavioural Brain Research, 341, 98–108. https://doi.org/10.1016/j.bbr.2017.12.022
Ashokan, A., Lim, J. W. H., Hang, N., & Mitra, R. (2018). Complex housing causes a robust increase in dendritic complexity and spine density of medial prefrontal cortical neurons. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-25399-4
Baarendse, P. J. J., Counotte, D. S., O’Donnell, P., & Vanderschuren, L. J. M. J. (2013). Early Social Experience Is Critical for the Development of Cognitive Control and Dopamine Modulation of Prefrontal Cortex Function. Neuropsychopharmacology, 38(8), 1485–1494. https://doi.org/10.1038/npp.2013.47
Ballesteros-Acosta, H., Martinez, M. A., Martin, V., Cortes-Patiño, D., & Lamprea, M. R. (2022, September 12). PLASTIC CHANGES ASSOCIATED WITH JUVENILE SOCIAL ISOLATION AND ITS EFFECTS OVER CONTEXT-CUE REWARD ASSOCIATIONS. 3rd FALAN Congress, Belém, Brazil.
Bastle, R. M., Peartree, N. A., Goenaga, J., Hatch, K. N., Henricks, A., Scott, S., Hood, L. E., & Neisewander, J. L. (2016). Immediate early gene expression reveals interactions between social and nicotine rewards on brain activity in adolescent male rats. Behavioural Brain Research, 313, 244–254. https://doi.org/10.1016/j.bbr.2016.07.024
Belluzzi, J., Lee, A., Oliff, H., & Leslie, F. (2004). Age-dependent effects of nicotine on locomotor activity and conditioned place preference in rats. Psychopharmacology, 174(3). https://doi.org/10.1007/s00213-003-1758-6
Bendersky, C. J., Milian, A. A., Andrus, M. D., De La Torre, U., & Walker, D. M. (2021). Long-Term Impacts of Post-weaning Social Isolation on Nucleus Accumbens Function. Frontiers in Psychiatry, 12. https://doi.org/10.3389/fpsyt.2021.745406
Bockman, C. S., Zeng, W., Hall, J., Mittelstet, B., Schwarzkopf, L., & Stairs, D. J. (2018). Nicotine drug discrimination and nicotinic acetylcholine receptors in differentially reared rats. Psychopharmacology, 235(5), 1415–1426. https://doi.org/10.1007/s00213-018-4850-7
Bressan, R. A., & Crippa, J. A. (2005). The role of dopamine in reward and pleasure behaviour--review of data from preclinical research. Acta Psychiatrica Scandinavica. Supplementum, 111(427), 14–21. https://doi.org/10.1111/j.1600-0447.2005.00540.x
Burke, A. R., & Miczek, K. A. (2015). Escalation of cocaine self-administration in adulthood after social defeat of adolescent rats: role of social experience and adaptive coping behavior. Psychopharmacology, 232(16), 3067–3079. https://doi.org/10.1007/s00213-015-3947-5
Carola, V., D’Olimpio, F., Brunamonti, E., Mangia, F., & Renzi, P. (2002). Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behavioural Brain Research, 134(1), 49–57. https://doi.org/10.1016/S0166-4328(01)00452-1
Caruso, M. J., Seemiller, L. R., Fetherston, T. B., Miller, C. N., Reiss, D. E., Cavigelli, S. A., & Kamens, H. M. (2018). Adolescent social stress increases anxiety-like behavior and ethanol consumption in adult male and female C57BL/6J mice. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-28381-2
Cavazos‐Rehg, P., Li, X., Kasson, E., Kaiser, N., Borodovsky, J., & Grucza, R. A. (2021). Investigating the role of familial and peer‐related factors on electronic nicotine delivery systems (ENDS) use among U.S. adolescents. Journal of Adolescence, 87(1), 98–105. https://doi.org/10.1016/j.adolescence.2021.01.003
Chen, J., Kelz, M. B., Hope, B. T., Nakabeppu, Y., & Nestler, E. J. (1997). Chronic Fos-Related Antigens: Stable Variants of ΔFosB Induced in Brain by Chronic Treatments. Journal of Neuroscience, 17(13), 4933–4941. https://doi.org/10.1523/JNEUROSCI.17-13-04933.1997
Counotte, D. S., Spijker, S., Van de Burgwal, L. H., Hogenboom, F., Schoffelmeer, A. N. M., De Vries, T. J., Smit, A. B., & Pattij, T. (2009). Long-lasting cognitive deficits resulting from adolescent nicotine exposure in rats. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 34(2), 299–306. https://doi.org/10.1038/npp.2008.96
Crofton, E. J., Zhang, Y., & Green, T. A. (2015). Inoculation stress hypothesis of environmental enrichment. Neuroscience & Biobehavioral Reviews, 49, 19–31. https://doi.org/10.1016/j.neubiorev.2014.11.017
Di Ciano, P., Robbins, T. W., & Everitt, B. J. (2008). Differential Effects of Nucleus Accumbens Core, Shell, or Dorsal Striatal Inactivations on the Persistence, Reacquisition, or Reinstatement of Responding for a Drug-Paired Conditioned Reinforcer. Neuropsychopharmacology, 33(6), 1413–1425. https://doi.org/10.1038/sj.npp.1301522
DiFranza, J., & Wellman, R. (2007). Sensitization to nicotine: How the animal literature might inform future human research. Nicotine & Tobacco Research, 9(1), 9–20. https://doi.org/10.1080/14622200601078277
Doremus-Fitzwater, T. L., Varlinskaya, E. I., & Spear, L. P. (2010). Motivational systems in adolescence: Possible implications for age differences in substance abuse and other risk-taking behaviors. Brain and Cognition, 72(1), 114–123. https://doi.org/10.1016/j.bandc.2009.08.008
Douglas, L. A., Varlinskaya, E. I., & Spear, L. P. (2004). Rewarding properties of social interactions in adolescent and adult male and female rats: Impact of social versus isolate housing of subjects and partners. Developmental Psychobiology, 45(3), 153–162. https://doi.org/10.1002/dev.20025
D’Souza, M. S., & Markou, A. (2013). The “Stop” and “Go” of Nicotine Dependence: Role of GABA and Glutamate. Cold Spring Harbor Perspectives in Medicine, 3(6), a012146–a012146. https://doi.org/10.1101/cshperspect.a012146
DuRant, R. H., Smith, J. A., Kreiter, S. R., & Krowchuk, D. P. (1999). The Relationship Between Early Age of Onset of Initial Substance Use and Engaging in Multiple Health Risk Behaviors Among Young Adolescents. Archives of Pediatrics & Adolescent Medicine, 153(3). https://doi.org/10.1001/archpedi.153.3.286
Eddy, M. C., & Green, J. T. (2017). Running wheel exercise reduces renewal of extinguished instrumental behavior and alters medial prefrontal cortex neurons in adolescent, but not adult, rats. Behavioral Neuroscience, 131(6), 460–469. https://doi.org/10.1037/bne0000218
Eliasson, B. (2005). Los efectos del tabaco sobre las complicaciones diabéticas. Rev. Diabetes Voice, 50. https://diabetesmadrid.org/
El Rawas, R., Amaral, I. M., & Hofer, A. (2020). Social interaction reward: A resilience approach to overcome vulnerability to drugs of abuse. European Neuropsychopharmacology, 37, 12–28. https://doi.org/10.1016/j.euroneuro.2020.06.008
El Rawas, R., Klement, S., Kummer, K. K., Fritz, M., Dechant, G., Saria, A., & Zernig, G. (2012). Brain regions associated with the acquisition of conditioned place preference for cocaine vs. social interaction. Frontiers in Behavioral Neuroscience, 6. https://doi.org/10.3389/fnbeh.2012.00063
El Rawas, R., Thiriet, N., Lardeux, V., Jaber, M., & Solinas, M. (2009). Environmental enrichment decreases the rewarding but not the activating effects of heroin. Psychopharmacology, 203(3), 561–570. https://doi.org/10.1007/s00213-008-1402-6
Everitt, B. J., & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nature Neuroscience, 8(11), 1481–1489. https://doi.org/10.1038/nn1579
Ewin, S. E., Kangiser, M. M., & Stairs, D. J. (2015). The effects of environmental enrichment on nicotine condition place preference in male rats. Experimental and Clinical Psychopharmacology, 23(5), 387–394. https://doi.org/10.1037/pha0000024
Faraday, M. M., Elliott, B. M., Phillips, J. M., & Grunberg, N. E. (2003). Adolescent and adult male rats differ in sensitivity to nicotine’s activity effects. Pharmacology Biochemistry and Behavior, 74(4), 917–931. https://doi.org/10.1016/s0091-3057(03)00024-8
Faure, P., Tolu, S., Valverde, S., & Naudé, J. (2014). Role of nicotinic acetylcholine receptors in regulating dopamine neuron activity. Neuroscience, 282, 86–100. https://doi.org/10.1016/j.neuroscience.2014.05.040
Feja, M., Hayn, L., & Koch, M. (2014). Nucleus accumbens core and shell inactivation differentially affects impulsive behaviours in rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 54, 31–42. https://doi.org/10.1016/j.pnpbp.2014.04.012
Fenoglio, K. A., Chen, Y., & Baram, T. Z. (2006). Neuroplasticity of the hypothalamic–pituitary–adrenal (HPA) axis early in life requires recurrent recruitment of stress-regulating brain regions. Frontiers in Neuroendocrinology, 27(1), 50–51. https://doi.org/10.1016/j.yfrne.2006.03.103
Ferdman, N., Murmu, R., Bock, J., Braun, K., & Leshem, M. (2007). Weaning age, social isolation, and gender, interact to determine adult explorative and social behavior, and dendritic and spine morphology in prefrontal cortex of rats. Behavioural Brain Research, 180(2), 174–182. https://doi.org/10.1016/j.bbr.2007.03.011
Fosnocht, A. Q., Lucerne, K. E., Ellis, A. S., Olimpo, N. A., & Briand, L. A. (2019). Adolescent social isolation increases cocaine seeking in male and female mice. Behavioural Brain Research, 359, 589–596. https://doi.org/10.1016/j.bbr.2018.10.007
Fudala, P. J., Teoh, K. W., & Iwamoto, E. T. (1985). Pharmacologic characterization of nicotine-induced conditioned place preference. Pharmacology Biochemistry and Behavior, 22(2), 237–241. https://doi.org/10.1016/0091-3057(85)90384-3
Gobierno de Colombia. (2020). Encuesta nacional de consumo de sustanciaspsicoactivas (ENCSPA). Resultados 2019 [National survey on psychoactivesubstances consumption. Results 2019]. DANE, Gobierno de Colombia.https://bit.ly/3z9ywwr
Gomez, A. M., Midde, N. M., Mactutus, C. F., Booze, R. M., & Zhu, J. (2012). Environmental Enrichment Alters Nicotine-Mediated Locomotor Sensitization and Phosphorylation of DARPP-32 and CREB in Rat Prefrontal Cortex. PLoS ONE, 7(8), e44149. https://doi.org/10.1371/journal.pone.0044149
Gomez, A. M., Sun, W.-L., Midde, N. M., Harrod, S. B., & Zhu, J. (2015). Effects of environmental enrichment on ERK1/2 phosphorylation in the rat prefrontal cortex following nicotine-induced sensitization or nicotine self-administration. European Journal of Neuroscience, 41(1), 109–119. https://doi.org/10.1111/ejn.12758
Goriounova, N. A., & Mansvelder, H. D. (2012). Short- and Long-Term Consequences of Nicotine Exposure during Adolescence for Prefrontal Cortex Neuronal Network Function. Cold Spring Harbor Perspectives in Medicine, 2(12). https://doi.org/10.1101/cshperspect.a012120
Gould, T. J., & Leach, P. T. (2014). Cellular, molecular, and genetic substrates underlying the impact of nicotine on learning. Neurobiology of Learning and Memory, 107, 108–132. https://doi.org/10.1016/j.nlm.2013.08.004
Green, T. A., Cain, M. E., Thompson, M., & Bardo, M. T. (2003). Environmental enrichment decreases nicotine-induced hyperactivity in rats. Psychopharmacology, 170(3), 235–241. https://doi.org/10.1007/s00213-003-1538-3
Grueter, B. A., Robison, A. J., Neve, R. L., Nestler, E. J., & Malenka, R. C. (2012). FosB differentially modulates nucleus accumbens direct and indirect pathway function. Proceedings of the National Academy of Sciences, 110(5), 1923–1928. https://doi.org/10.1073/pnas.1221742110
Hachimine-Merli, P. (2017). The Role of Glutamate Neurotransmission in the Ventral Tegmental Area in the Expression of Conditioned Approach Learning [Thesis].
Haight, J. L., & Flagel, S. B. (2014). A potential role for the paraventricular nucleus of the thalamus in mediating individual variation in Pavlovian conditioned responses. Frontiers in Behavioral Neuroscience, 8. https://doi.org/10.3389/fnbeh.2014.00079
Haj-Mirzaian, A., Nikbakhsh, R., Ramezanzadeh, K., Rezaee, M., Amini-Khoei, H., Haj-Mirzaian, A., Ghesmati, M., Afshari, K., Haddadi, N.-S., & Dehpour, A. R. (2019). Involvement of opioid system in behavioral despair induced by social isolation stress in mice. Biomedicine & Pharmacotherapy, 109, 938–944. https://doi.org/10.1016/j.biopha.2018.10.144
Hall, S., Deurveilher, S., Ko, K. R., Burns, J., & Semba, K. (2017). Region-specific increases in FosB/ΔFosB immunoreactivity in the rat brain in response to chronic sleep restriction. Behavioural Brain Research, 322, 9–17. https://doi.org/10.1016/j.bbr.2017.01.024
Hearing, M. C., Jedynak, J., Ebner, S. R., Ingebretson, A., Asp, A. J., Fischer, R. A., Schmidt, C., Larson, E. B., & Thomas, M. J. (2016). Reversal of morphine-induced cell-type–specific synaptic plasticity in the nucleus accumbens shell blocks reinstatement. Proceedings of the National Academy of Sciences, 113(3), 757–762. https://doi.org/10.1073/pnas.1519248113
Henley, J. M., & Wilkinson, K. A. (2016). Synaptic AMPA receptor composition in development, plasticity and disease. Nature Reviews Neuroscience, 17(6), 337–350. https://doi.org/10.1038/nrn.2016.37
Holliday, E., & Gould, T. J. (2016). Nicotine, adolescence, and stress: A review of how stress can modulate the negative consequences of adolescent nicotine abuse. Neuroscience & Biobehavioral Reviews, 65, 173–184. https://doi.org/10.1016/j.neubiorev.2016.04.003
Hoops, D., & Flores, C. (2017). Making Dopamine Connections in Adolescence. Trends in Neurosciences, 40(12), 709–719. https://doi.org/10.1016/j.tins.2017.09.004
Huston, J. P., Silva, M. A. de S., Topic, B., & Müller, C. P. (2013). What’s conditioned in conditioned place preference? Trends in Pharmacological Sciences, 34(3), 162–166. https://doi.org/10.1016/j.tips.2013.01.004
Iglesias, A. G., & Flagel, S. B. (2021). The Paraventricular Thalamus as a Critical Node of Motivated Behavior via the Hypothalamic-Thalamic-Striatal Circuit. Frontiers in Integrative Neuroscience, 15. https://doi.org/10.3389/fnint.2021.706713
Iñiguez, S. D., Warren, B. L., Parise, E. M., Alcantara, L. F., Schuh, B., Maffeo, M. L., Manojlovic, Z., & Bolaños-Guzmán, C. A. (2009). Nicotine Exposure during Adolescence Induces a Depression-Like State in Adulthood. Neuropsychopharmacology, 34(6), 1609–1624. https://doi.org/10.1038/npp.2008.220
Jentsch, J. D., Ashenhurst, J. R., Cervantes, M. C., James, A. S., Groman, S. M., & Pennington, Z. T. (2014). Dissecting Impulsivity and its Relationships to Drug Addictions. Annals of the New York Academy of Sciences, 1327, 1–26. https://doi.org/10.1111/nyas.12388
Jeong, Y. H., Kim, J. M., Yoo, J., Lee, S. H., Kim, H.-S., & Suh, Y.-H. (2011). Environmental enrichment compensates for the effects of stress on disease progression in Tg2576 mice, an Alzheimer’s disease model. Journal of Neurochemistry, 119(6), 1282–1293. https://doi.org/10.1111/j.1471-4159.2011.07514.x
Kandel, E. R., & Kandel, D. B. (2014). A Molecular Basis for Nicotine as a Gateway Drug. New England Journal of Medicine, 371(10), 932–943. https://doi.org/10.1056/nejmsa1405092
Karkhanis, A. N., Leach, A. C., Yorgason, J. T., Uneri, A., Barth, S., Niere, F., Alexander, N. J., Weiner, J. L., McCool, B. A., Raab-Graham, K. F., Ferris, M. J., & Jones, S. R. (2018). Chronic Social Isolation Stress during Peri-Adolescence Alters Presynaptic Dopamine Terminal Dynamics via Augmentation in Accumbal Dopamine Availability. ACS Chemical Neuroscience, 10(4), 2033–2044. https://doi.org/10.1021/acschemneuro.8b00360
Kelz, M. B., Chen, J., Carlezon Jr, W. A., Whisler, K., Gilden, L., Beckmann, A. M., ... & Nestler, E. J. (1999). Expression of the transcription factor? FosB in the brain controls sensitivity to cocaine. Nature, 401(6750), 272-276. DOI: 10.1038/45790
Kenney, J. W., & Gould, T. J. (2008). Nicotine enhances context learning but not context-shock associative learning. Behavioral Neuroscience, 122(5), 1158–1165. https://doi.org/10.1037/a0012807
Kim, S., Kwok, S., Mayes, L. C., Potenza, M. N., Rutherford, H. J. V., & Strathearn, L. (2017). Early adverse experience and substance addiction: dopamine, oxytocin, and glucocorticoid pathways. Annals of the New York Academy of Sciences, 1394(1), 74–91. https://doi.org/10.1111/nyas.13140
Kirouac, G. (2015). Placing the paraventricular nucleus of the thalamus within the brain circuits that control behavior. Neuroscience & Biobehavioral Reviews, 56, 315–329. https://doi.org/10.1016/j.neubiorev.2015.08.005
Ko, J.-H. (2017). Social isolation effect on nicotine consumption in adolescent mice [Thesis].
Kooiker, C. L., Birnie, M. T., & Baram, T. Z. (2021). The Paraventricular Thalamus: A Potential Sensor and Integrator of Emotionally Salient Early-Life Experiences. Frontiers in Behavioral Neuroscience, 15. https://doi.org/10.3389/fnbeh.2021.673162
Kowiański, P., Lietzau, G., Steliga, A., Czuba, E., Ludkiewicz, B., Waśkow, M., Spodnik, J. H., & Moryś, J. (2018). Nicotine-induced CREB and DeltaFosB activity is modified by caffeine in the brain reward system of the rat. Journal of Chemical Neuroanatomy, 88, 1–12. https://doi.org/10.1016/j.jchemneu.2017.10.005
Kupferschmidt, D. A., Funk, D., Erb, S., & Lê, A. D. (2010). Age-related effects of acute nicotine on behavioural and neuronal measures of anxiety. Behavioural Brain Research, 213(2), 288–292. https://doi.org/10.1016/j.bbr.2010.05.022
Lapiz, A. Fulford, S. Muchimapura, R. Mason, T. Parker, C.A. Marsden (2003) Influence of Postweaning Social Isolation in the Rat on Brain Development,Conditioned Behavior, and Neurotransmission, Neurosci. Behav. Physiol. 33 13–29, https://doi.org/10.1023/A:1021171129766.
Laviola, G., Macri, S., Morley-Fletcher, S., & Adriani, W. (2003). Risk-taking behavior in adolescent mice: psychobiological determinants and early epigenetic influence. Neuroscience & Biobehavioral Reviews, 27(1-2), 19–31. https://doi.org/10.1016/s0149-7634(03)00006-x
Lee, H., Jang, M., Kim, W., & Noh, J. (2017). Differential effects of pair housing on voluntary nicotine consumption: a comparison between male and female adolescent rats. Psychopharmacology, 234(16), 2463–2473. https://doi.org/10.1007/s00213-017-4636-3
Le Foll, B., & Goldberg, S. R. (2005). Nicotine induces conditioned place preferences over a large range of doses in rats. Psychopharmacology, 178(4), 481–492. https://doi.org/10.1007/s00213-004-2021-5
Le Foll, B., Schwartz, J-C., & Sokoloff, P. (2003). Disruption of nicotine conditioning by dopamine D3 receptor ligands. Molecular Psychiatry, 8(2), 225–230. https://doi.org/10.1038/sj.mp.4001202
Lehmann, M. L., & Herkenham, M. (2011). Environmental Enrichment Confers Stress Resiliency to Social Defeat through an Infralimbic Cortex-Dependent Neuroanatomical Pathway. Journal of Neuroscience, 31(16), 6159–6173. https://doi.org/10.1523/jneurosci.0577-11.2011
Leslie, F. M. (2020). Unique, long-term effects of nicotine on adolescent brain. Pharmacology Biochemistry and Behavior, 197(173010), 173010. https://doi.org/10.1016/j.pbb.2020.173010
Liu, Y., & McNally, G. P. (2021). Dopamine and relapse to drug seeking. Journal of Neurochemistry, 157(5), 1572–1584. https://doi.org/10.1111/jnc.15309
Lobo, M. K., Zaman, S., Damez-Werno, D. M., Koo, J. W., Bagot, R. C., DiNieri, J. A., Nugent, A., Finkel, E., Chaudhury, D., Chandra, R., Riberio, E., Rabkin, J., Mouzon, E., Cachope, R., Cheer, J. F., Han, M.-H. ., Dietz, D. M., Self, D. W., Hurd, Y. L., & Vialou, V. (2013). FosB Induction in Striatal Medium Spiny Neuron Subtypes in Response to Chronic Pharmacological, Emotional, and Optogenetic Stimuli. Journal of Neuroscience, 33(47), 18381–18395. https://doi.org/10.1523/jneurosci.1875-13.2013
Lukkes, J. L., Mokin, M. V., Scholl, J. L., & Forster, G. L. (2009). Adult rats exposed to early-life social isolation exhibit increased anxiety and conditioned fear behavior, and altered hormonal stress responses. Hormones and Behavior, 55(1), 248–256. https://doi.org/10.1016/j.yhbeh.2008.10.014
Lukkes, J. L., Watt, M., Lowry, C., & Forster, G. (2009). Consequences of post-weaning social isolation on anxiety behavior and related neural circuits in rodents. Frontiers in Behavioral Neuroscience, 3. https://doi.org/10.3389/neuro.08.018.2009
Man, H.-Y. (2011). GluA2-lacking, calcium-permeable AMPA receptors — inducers of plasticity? Current Opinion in Neurobiology, 21(2), 291–298. https://doi.org/10.1016/j.conb.2011.01.001
Martin, V., Mejia, L. V., Martinez, M. A., Ballesteros-Acosta, H., Cortés-Patiño, D., & Lamprea, M. (2022, September 12). Modulatory role of social isolation on the effects of acute nicotine in behavioral inhibition and basal corticosterone levels. 3rd FALAN Congress, Belém, Brazil.
Marttila, K., Raattamaa, H., & Ahtee, L. (2006). Effects of chronic nicotine administration and its withdrawal on striatal FosB/ΔFosB and c-Fos expression in rats and mice. Neuropharmacology, 51(1), 44–51. https://doi.org/10.1016/j.neuropharm.2006.02.014
Mastrogiovanni, N. A., Wheeler, A. K., & Clemens, K. J. (2021). Social isolation enhances cued-reinstatement of sucrose and nicotine seeking, but this is reversed by a return to social housing. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-81966-2
Matta, S. G., Balfour, D. J., Benowitz, N. L., Boyd, R. T., Buccafusco, J. J., Caggiula, A. R., ... & Zirger, J. M. (2007). Guidelines on nicotine dose selection for in vivo research. Psychopharmacology, 190, 269-319. DOI: 10.1007/s00213-006-0441-0
McClung, C. A., & Nestler, E. J. (2003). Regulation of gene expression and cocaine reward by CREB and ΔFosB. Nature Neuroscience, 6(11), 1208–1215. https://doi.org/10.1038/nn1143
McCormick, C. M., & Ibrahim, F. N. (2007). Locomotor activity to nicotine and Fos immunoreactivity in the paraventricular nucleus of the hypothalamus in adolescent socially-stressed rats. Pharmacology Biochemistry and Behavior, 86(1), 92–102. https://doi.org/10.1016/j.pbb.2006.12.012
McCutcheon, J. E., & Marinelli, M. (2009). Age matters. European Journal of Neuroscience, 29(5), 997–1014. https://doi.org/10.1111/j.1460-9568.2009.06648.x
McFarland, K., & Kalivas, P. W. (2001). The Circuitry Mediating Cocaine-Induced Reinstatement of Drug-Seeking Behavior. The Journal of Neuroscience, 21(21), 8655–8663. https://doi.org/10.1523/jneurosci.21-21-08655.2001
McKendrick, G., & Graziane, N. M. (2020). Drug-Induced Conditioned Place Preference and Its Practical Use in Substance Use Disorder Research. Frontiers in Behavioral Neuroscience, 14. https://doi.org/10.3389/fnbeh.2020.582147
Meir Drexler, S., Merz, C. J., Jentsch, V. L., & Wolf, O. T. (2019). How stress and glucocorticoids timing-dependently affect extinction and relapse. Neuroscience & Biobehavioral Reviews, 98, 145–153. https://doi.org/10.1016/j.neubiorev.2018.12.029
Miguel-Aguilar, C. F., Rodríguez-Bolaños, R. D. los Á., Caballero, M., Arillo-Santillán, E., & Reynales-Shigematsu, L. M. (2017). Fumar entre adolescentes: análisis cuantitativo y cualitativo de factores psicosociales asociados con la decisión de fumar en escolares mexicanos. Salud Pública de México, 59, 63. https://doi.org/10.21149/7835
Mosaferi, B., Babri, S., Ebrahimi, H., & Mohaddes, G. (2015). Enduring effects of post-weaning rearing condition on depressive- and anxiety-like behaviors and motor activity in male rats. Physiology & Behavior, 142, 131–136. https://doi.org/10.1016/j.physbeh.2015.02.015
Mukhara, D., Banks, M. L., & Neigh, G. N. (2018). Stress as a Risk Factor for Substance Use Disorders: A Mini-Review of Molecular Mediators. Frontiers in Behavioral Neuroscience, 12. https://doi.org/10.3389/fnbeh.2018.00309
Muller, D. L., & Unterwald, E. M. (2005). D1 Dopamine Receptors Modulate ΔFosB Induction in Rat Striatum after Intermittent Morphine Administration. Journal of Pharmacology and Experimental Therapeutics, 314(1), 148–154. https://doi.org/10.1124/jpet.105.083410
Mumtaz, F., Khan, M. I., Zubair, M., & Dehpour, A. R. (2018). Neurobiology and consequences of social isolation stress in animal model—A comprehensive review. Biomedicine & Pharmacotherapy, 105, 1205–1222. https://doi.org/10.1016/j.biopha.2018.05.086
Nader, J., Claudia, C., Rawas, R. E., Favot, L., Jaber, M., Thiriet, N., & Solinas, M. (2012). Loss of Environmental Enrichment Increases Vulnerability to Cocaine Addiction. Neuropsychopharmacology, 37(7), 1579–1587. https://doi.org/10.1038/npp.2012.2
Nestler, E. J. (2015). ΔFosB: a transcriptional regulator of stress and antidepressant responses. European Journal of Pharmacology, 753, 66–72. https://doi.org/10.1016/j.ejphar.2014.10.034
Nestler, E. J., Barrot, M., & Self, D. W. (2001). ΔFosB: A sustained molecular switch for addiction. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11042–11046. https://doi.org/10.1073/pnas.191352698
Niedhammer, I., David, S., Degioanni, S., Drummond, A., & Philip, P. (2010). Workplace Bullying and Psychotropic Drug Use: The Mediating Role of Physical and Mental Health Status. The Annals of Occupational Hygiene, 55(2). https://doi.org/10.1093/annhyg/meq086
Noback, M., Zhang, G., White, N., Barrow, J. C., & Carr, G. V. (2021). Post-weaning social isolation increases ΔFosB/FosB protein expression in sex-specific patterns in the prelimbic/infralimbic cortex and hippocampus in mice. Neuroscience Letters, 740, 135423. https://doi.org/10.1016/j.neulet.2020.135423
Noschang, C., Lampert, C., Krolow, R., & de Almeida, R. M. M. (2021). Social isolation at adolescence: a systematic review on behaviour related to cocaine, amphetamine and nicotine use in rats and mice. Psychopharmacology, 238(4), 927–947. https://doi.org/10.1007/s00213-021-05777-z
Novak, G., Seeman, P., & Le Foll, B. (2010). Exposure to Nicotine Produces an Increase in Dopamine D2HighReceptors: A Possible Mechanism for Dopamine Hypersensitivity. International Journal of Neuroscience, 120(11), 691–697. https://doi.org/10.3109/00207454.2010.513462
Novoa, C., Solano, J. L., Ballesteros-Acosta, H. N., Lamprea, M. R., & Ortega, L. A. (2022). Nicotine Differentially Modulates Emotional-Locomotor Interactions for Adult or Adolescent Rats. Revista Colombiana de Psicología, 31(1), 13–22. https://doi.org/10.15446/rcp.v31n1.89822
Oficina de Naciones Unidas Contra la Droga y el Delito (UNODC). (2017). Tercer estudio epidemiológico andino sobre consumo de drogas en la población universitaria de Colombia 2016. https://www.unodc.org/colombia/es/press/2017/octubre/estudio-consumo-de-drogas-en-poblacion-universitaria.html.
Ohmura, Y., Tsutsui-Kimura, I., & Yoshioka, M. (2012). Impulsive Behavior and Nicotinic Acetylcholine Receptors. Journal of Pharmacological Sciences, 118(4), 413–422. https://doi.org/10.1254/jphs.11r06cr
Ortega, L. A., Tracy, B. A., Gould, T. J., & Parikh, V. (2013). Effects of chronic low- and high-dose nicotine on cognitive flexibility in C57BL/6J mice. Behavioural Brain Research, 238, 134–145. https://doi.org/10.1016/j.bbr.2012.10.032
O’Dell, L. E. (2009). A psychobiological framework of the substrates that mediate nicotine use during adolescence. Neuropharmacology, 56 Suppl 1, 263–278. https://doi.org/10.1016/j.neuropharm.2008.07.039
Palmatier, M. I., Matteson, G. L., Black, J. J., Liu, X., Caggiula, A. R., Craven, L., Donny, E. C., & Sved, A. F. (2007). The reinforcement enhancing effects of nicotine depend on the incentive value of non-drug reinforcers and increase with repeated drug injections. Drug and Alcohol Dependence, 89(1), 52–59. https://doi.org/10.1016/j.drugalcdep.2006.11.020
Pang, T. Y. C., & Hannan, A. J. (2013). Enhancement of cognitive function in models of brain disease through environmental enrichment and physical activity. Neuropharmacology, 64, 515–528. https://doi.org/10.1016/j.neuropharm.2012.06.029
Pascual, M. M., Pastor, V., & Bernabeu, R. O. (2009). Nicotine-conditioned place preference induced CREB phosphorylation and Fos expression in the adult rat brain. Psychopharmacology, 207(1), 57–71. https://doi.org/10.1007/s00213-009-1630-4
Pawlak, C., & Schwarting, R. (2002). Object preference and nicotine consumption in rats with high vs. low rearing activity in a novel open field. Pharmacology Biochemistry and Behavior, 73(3), 679–687. https://doi.org/10.1016/s0091-3057(02)00852-3
Paxinos, G., & Watson, C. (2018). The rat brain in stereotaxic coordinates. Elsevier Academic Press.
Perrotti, L. I., Hadeishi, Y., Ulery, P., Barrot, M., Monteggia, L., Duman, R., & Nestler, E. (2004). Induction of FosB in Reward-Related Brain Structures after Chronic Stress. Journal of Neuroscience, 24(47), 10594–10602. https://doi.org/10.1523/jneurosci.2542-04.2004
Perrotti, L. I., Weaver, R. R., Robison, B., Renthal, W., Maze, I., Yazdani, S., Elmore, R. G., Knapp, D. J., Selley, D. E., Martin, B. R., Sim-Selley, L., Bachtell, R. K., Self, D. W., & Nestler, E. J. (2008). Distinct patterns of ΔFosB induction in brain by drugs of abuse. Synapse, 62(5), 358–369. https://doi.org/10.1002/syn.20500
Peters, J., LaLumiere, R. T., & Kalivas, P. W. (2008). Infralimbic Prefrontal Cortex Is Responsible for Inhibiting Cocaine Seeking in Extinguished Rats. Journal of Neuroscience, 28(23), 6046–6053. https://doi.org/10.1523/jneurosci.1045-08.2008
Phillipson, O. T. (1979). Afferent projections to the ventral tegmental area of Tsai and interfascicular nucleus: A horseradish peroxidase study in the rat. The Journal of Comparative Neurology, 187(1), 117–143. https://doi.org/10.1002/cne.901870108
Picciotto, M. R., Addy, N. A., Mineur, Y. S., & Brunzell, D. H. (2008). It’s not “either/or”: activation and desensitization of nicotinic acetylcholine receptors both contribute to behaviors related to nicotine addiction and mood. Progress in Neurobiology, 84(4), 329–342. https://doi.org/10.1016/j.pneurobio.2007.12.005
Picciotto, M. R., Brunzell, D. H., & Caldarone, B. J. (2002). Effect of nicotine and nicotinic receptors on anxiety and depression. Neuroreport, 13(9), 1097–1106. https://doi.org/10.1097/00001756-200207020-00006
Pistillo, F., Clementi, F., Zoli, M., & Gotti, C. (2015). Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: Focus on nicotine effects. Progress in Neurobiology, 124, 1–27. https://doi.org/10.1016/j.pneurobio.2014.10.002
Pistillo, F., Fasoli, F., Moretti, M., McClure-Begley, T., Zoli, M., Marks, M. J., & Gotti, C. (2016). Chronic nicotine and withdrawal affect glutamatergic but not nicotinic receptor expression in the mesocorticolimbic pathway in a region-specific manner. Pharmacological Research, 103, 167–176. https://doi.org/10.1016/j.phrs.2015.11.016
Pitchers, K. K., Vialou, V., Nestler, E. J., Laviolette, S. R., Lehman, M. N., & Coolen, L. M. (2013). Natural and Drug Rewards Act on Common Neural Plasticity Mechanisms with FosB as a Key Mediator. Journal of Neuroscience, 33(8), 3434–3442. https://doi.org/10.1523/jneurosci.4881-12.2013
Pulgar Muñoz, S., & Fernández-Luna, A. (2018). Práctica de actividad física, consumo de tabaco y alcohol y sus efectos en la salud respiratoria de los jóvenes universitarios (Physical activity, smoking and alcohol consumption and their effects on the respiratory health of college students). Retos, 35, 130–135. https://doi.org/10.47197/retos.v0i35.60603
Pushkin, A. N., Eugene, A. J., Lallai, V., Torres-Mendoza, A., Fowler, J. P., Chen, E., & Fowler, C. D. (2019). Cannabinoid and nicotine exposure during adolescence induces sex-specific effects on anxiety- and reward-related behaviors during adulthood. PLOS ONE, 14(1), e0211346. https://doi.org/10.1371/journal.pone.0211346
Ribeiro Do Couto, B., Aguilar, M. A., Lluch, J., Rodríguez-Arias, M., & Miñarro, J. (2009). Social experiences affect reinstatement of cocaine-induced place preference in mice. Psychopharmacology, 207(3), 485–498. https://doi.org/10.1007/s00213-009-1678-1
Robison, A. J., & Nestler, E. J. (2021). ΔFOSB: A Potentially Druggable Master Orchestrator of Activity-Dependent Gene Expression. ACS Chemical Neuroscience, 13(3), 296–307. https://doi.org/10.1021/acschemneuro.1c00723
Romeo, R. D. (2010). Pubertal maturation and programming of hypothalamic–pituitary–adrenal reactivity. Frontiers in Neuroendocrinology, 31(2), 232–240. https://doi.org/10.1016/j.yfrne.2010.02.004
Ruffle, J. K. (2014). Molecular neurobiology of addiction: what’s all the (Δ)FosB about? The American Journal of Drug and Alcohol Abuse, 40(6), 428–437. https://doi.org/10.3109/00952990.2014.933840
Ruiz, A. M., Gómez, I. R., Rubio, C., Revert, C., & Hardisson, A. (2004). Efectos tóxicos del tabaco. Revista de toxicología, 21(2-3), 64-71.
Rupprecht LE, Smith TT, Schassburger RL, Buffalari DM, Sved AF, Donny EC. Behavioral mechanisms underlying nicotine reinforcement. In: The Neuropharmacology of Nicotine Dependence. Switzerland: Springer International Publishing; 2015:19–53
Russo, S. J., Mazei-Robison, M. S., Ables, J. L., & Nestler, E. J. (2009). Neurotrophic factors and structural plasticity in addiction. Neuropharmacology, 56, 73–82. https://doi.org/10.1016/j.neuropharm.2008.06.059
Russo, S. J., Wilkinson, M. B., Mazei-Robison, M. S., Dietz, D. M., Maze, I., Krishnan, V., Renthal, W., Graham, A., Birnbaum, S. G., Green, T. A., Robison, B., Lesselyong, A., Perrotti, L. I., Bolanos, C. A., Kumar, A., Clark, M. S., Neumaier, J. F., Neve, R. L., Bhakar, A. L., & Barker, P. A. (2009). Nuclear Factor B Signaling Regulates Neuronal Morphology and Cocaine Reward. Journal of Neuroscience, 29(11), 3529–3537. https://doi.org/10.1523/jneurosci.6173-08.2009
Ruxton, G. D., & Beauchamp, G. (2008). Time for some a priori thinking about post hoc testing. Behavioral Ecology, 19(3), 690–693. https://doi.org/10.1093/beheco/arn020
Salgado, S., & Kaplitt, M. G. (2015). The Nucleus Accumbens: A Comprehensive Review. Stereotactic and Functional Neurosurgery, 93(2), 75–93. https://doi.org/10.1159/000368279
Saunders, B. T., O’Donnell, E. G., Aurbach, E. L., & Robinson, T. E. (2014). A Cocaine Context Renews Drug Seeking Preferentially in a Subset of Individuals. Neuropsychopharmacology, 39(12), 2816–2823. https://doi.org/10.1038/npp.2014.131
Schiltz, C. A., Bremer, Q. Z., Landry, C. F., & Kelley, A. E. (2007). Food-associated cues alter forebrain functional connectivity as assessed with immediate early gene and proenkephalin expression. BMC Biology, 5(1). https://doi.org/10.1186/1741-7007-5-16
Schneider, M. (2013). Adolescence as a vulnerable period to alter rodent behavior. Cell and Tissue Research, 354(1), 99–106. https://doi.org/10.1007/s00441-013-1581-2
Schrijver, N. C. A., Bahr, N. I., Weiss, I. C., & Würbel, H. (2002). Dissociable effects of isolation rearing and environmental enrichment on exploration, spatial learning and HPA activity in adult rats. Pharmacology Biochemistry and Behavior, 73(1), 209–224. https://doi.org/10.1016/s0091-3057(02)00790-6
Sellings, L. H. L., & Clarke, P. B. S. (2003). Segregation of Amphetamine Reward and Locomotor Stimulation between Nucleus Accumbens Medial Shell and Core. The Journal of Neuroscience, 23(15), 6295–6303. https://doi.org/10.1523/jneurosci.23-15-06295.2003
Shepherd, J. D., & Huganir, R. L. (2007). The cell biology of synaptic plasticity: AMPA receptor trafficking. Annual Review of Cell and Developmental Biology, 23, 613–643. https://doi.org/10.1146/annurev.cellbio.23.090506.123516
Shram, M. J., Funk, D., Li, Z., & Lê, A. D. (2006). Periadolescent and adult rats respond differently in tests measuring the rewarding and aversive effects of nicotine. Psychopharmacology, 186(2), 201–208. https://doi.org/10.1007/s00213-006-0373-8
Shram, M. J., & Lê, A. D. (2010). Adolescent male Wistar rats are more responsive than adult rats to the conditioned rewarding effects of intravenously administered nicotine in the place conditioning procedure. Behavioural Brain Research, 206(2), 240–244. https://doi.org/10.1016/j.bbr.2009.09.018
Sinclair, D., Purves-Tyson, T. D., Allen, K. M., & Weickert, C. S. (2014). Impacts of stress and sex hormones on dopamine neurotransmission in the adolescent brain. Psychopharmacology, 231(8), 1581–1599. https://doi.org/10.1007/s00213-013-3415-z
Smail, M. A., Smith, B. L., Nawreen, N., & Herman, J. P. (2020). Differential impact of stress and environmental enrichment on corticolimbic circuits. Pharmacology Biochemistry and Behavior, 197, 172993. https://doi.org/10.1016/j.pbb.2020.172993
Solano, J. L. (2019). MODULACIÓN DE LA RESPUESTA EMOCIONAL Y LA MEMORIA ESPACIAL EN LA ADULTEZ POR EXPOSICIÓN TEMPRANA A NICOTINA [Thesis].
Solinas, M., Thiriet, N., Chauvet, C., & Jaber, M. (2010). Prevention and treatment of drug addiction by environmental enrichment. Progress in Neurobiology, 92(4), 572–592. https://doi.org/10.1016/j.pneurobio.2010.08.002
Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience & Biobehavioral Reviews, 24(4), 417–463. https://doi.org/10.1016/s0149-7634(00)00014-2
Tabbara, R. I., & Fletcher, P. J. (2019). Nicotine enhances responding for conditioned reinforcement via α4β2 nicotinic acetylcholine receptors in the ventral tegmental area, but not the nucleus accumbens or the prefrontal cortex. Neuropharmacology, 148, 68–76. https://doi.org/10.1016/j.neuropharm.2018.12.011
Tan, H., Bishop, S. F., Lauzon, N. M., Sun, N., & Laviolette, S. R. (2009). Chronic nicotine exposure switches the functional role of mesolimbic dopamine transmission in the processing of nicotine’s rewarding and aversive effects. Neuropharmacology, 56(4), 741–751. https://doi.org/10.1016/j.neuropharm.2008.12.008
Tarazi, F. I., & Baldessarini, R. J. (2000). Comparative postnatal development of dopamine D1, D2 and D4 receptors in rat forebrain. International Journal of Developmental Neuroscience, 18(1), 29–37. https://doi.org/10.1016/s0736-5748(99)00108-2
Taylor, J. R., Lynch, W. J., Sanchez, H., Olausson, P., Nestler, E. J., & Bibb, J. A. (2007). Inhibition of Cdk5 in the nucleus accumbens enhances the locomotor-activating and incentive-motivational effects of cocaine. Proceedings of the National Academy of Sciences of the United States of America, 104(10), 4147–4152. https://doi.org/10.1073/pnas.0610288104
Teegarden, S. L., Nestler, E. J., & Bale, T. L. (2008). ΔFosB-Mediated Alterations in Dopamine Signaling Are Normalized by a Palatable High-Fat Diet. Biological Psychiatry, 64(11), 941–950. https://doi.org/10.1016/j.biopsych.2008.06.007
Thiel, K. J., Sanabria, F., & Neisewander, J. L. (2009). Synergistic interaction between nicotine and social rewards in adolescent male rats. Psychopharmacology, 204(3), 391–402. https://doi.org/10.1007/s00213-009-1470-2
Thorpe, H. H. A., Hamidullah, S., Jenkins, B. W., & Khokhar, J. Y. (2020). Adolescent neurodevelopment and substance use: Receptor expression and behavioral consequences. Pharmacology & Therapeutics, 206, 107431. https://doi.org/10.1016/j.pharmthera.2019.107431
Tirelli, E., Laviola, G., & Adriani, W. (2003). Ontogenesis of behavioral sensitization and conditioned place preference induced by psychostimulants in laboratory rodents. Neuroscience & Biobehavioral Reviews, 27(1-2), 163–178. https://doi.org/10.1016/s0149-7634(03)00018-6
Torres, O., Tejeda, H., Natividad, L., & O’Dell, L. (2008). Enhanced vulnerability to the rewarding effects of nicotine during the adolescent period of development. Pharmacology Biochemistry and Behavior, 90(4), 658–663. https://doi.org/10.1016/j.pbb.2008.05.009
Tzschentke, T. M. (2007). Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addiction Biology, 12(3-4), 227–462. https://doi.org/10.1111/j.1369-1600.2007.00070.x
Vargas-López, V., Lamprea, M. R., & Múnera, A. (2011). Characterizing spatial extinction in an abbreviated version of the Barnes maze. Behavioural Processes, 86(1), 30–38. https://doi.org/10.1016/j.beproc.2010.08.002
Varty, G. B., Paulus, M. P., Braff, D. L., & Geyer, M. A. (2000). Environmental enrichment and isolation rearing in the rat: effects on locomotor behavior and startle response plasticity. Biological Psychiatry, 47(10), 864–873. https://doi.org/10.1016/s0006-3223(99)00269-3
Vastola, B. J., Douglas, L. A., Varlinskaya, E. I., & Spear, L. P. (2002). Nicotine-induced conditioned place preference in adolescent and adult rats. Physiology & Behavior, 77(1), 107–114. https://doi.org/10.1016/s0031-9384(02)00818-1
Venebra-Muñoz, A., Corona-Morales, A., Santiago-García, J., Melgarejo-Gutiérrez, M., Caba, M., & García-García, F. (2014). Enriched environment attenuates nicotine self-administration and induces changes in ΔFosB expression in the rat prefrontal cortex and nucleus accumbens. NeuroReport, 25(9), 688–692. https://doi.org/10.1097/wnr.0000000000000157
Vialou, V., Bagot, R. C., Cahill, M. E., Ferguson, D., Robison, A. J., Dietz, D. M., Fallon, B., Mazei-Robison, M., Ku, S. M., Harrigan, E., Winstanley, C. A., Joshi, T., Feng, J., Berton, O., & Nestler, E. J. (2014). Prefrontal Cortical Circuit for Depression- and Anxiety-Related Behaviors Mediated by Cholecystokinin: Role of FosB. Journal of Neuroscience, 34(11), 3878–3887. https://doi.org/10.1523/jneurosci.1787-13.2014
Vialou, V., Robison, A. J., LaPlant, Q. C., Covington, H. E., Dietz, D. M., Ohnishi, Y. N., Mouzon, E., Rush, A. J., Watts, E. L., Wallace, D. L., Iñiguez, S. D., Ohnishi, Y. H., Steiner, M. A., Warren, B. L., Krishnan, V., Bolaños, C. A., Neve, R. L., Ghose, S., Berton, O., & Tamminga, C. A. (2010). ΔFosB in brain reward circuits mediates resilience to stress and antidepressant responses. Nature Neuroscience, 13(6), 745–752. https://doi.org/10.1038/nn.2551
Volkow, N. D., Wang, G.-J. . Fowler, J. S., Tomasi, D., & Telang, F. (2011). Addiction: Beyond dopamine reward circuitry. Proceedings of the National Academy of Sciences, 108(37), 15037–15042. https://doi.org/10.1073/pnas.1010654108
Wahlstrom, D., White, T., & Luciana, M. (2010). Neurobehavioral evidence for changes in dopamine system activity during adolescence. Neuroscience & Biobehavioral Reviews, 34(5), 631–648. https://doi.org/10.1016/j.neubiorev.2009.12.007
Wahlstrom, D., White, T., & Luciana, M. (2010). Neurobehavioral evidence for changes in dopamine system activity during adolescence. Neuroscience & Biobehavioral Reviews, 34(5), 631–648. https://doi.org/10.1016/j.neubiorev.2009.12.007
Walker, D. M., Cunningham, A. M., Gregory, J. K., & Nestler, E. J. (2019). Long-Term Behavioral Effects of Post-weaning Social Isolation in Males and Females. Frontiers in Behavioral Neuroscience, 13. https://doi.org/10.3389/fnbeh.2019.00066
Wang, Y.-C., Ho, U.-C., Ko, M.-C., Liao, C.-C., & Lee, L.-J. (2012). Differential neuronal changes in medial prefrontal cortex, basolateral amygdala and nucleus accumbens after postweaning social isolation. Brain Structure & Function, 217(2), 337–351. https://doi.org/10.1007/s00429-011-0355-4
Watanasriyakul, W. T., Normann, M. C., Akinbo, O. I., Colburn, W., Dagner, A., & Grippo, A. J. (2019). Protective neuroendocrine effects of environmental enrichment and voluntary exercise against social isolation: evidence for mediation by limbic structures. Stress, 22(5), 603–618. https://doi.org/10.1080/10253890.2019.1617691
Watterson, E., Daniels, C. W., Watterson, L. R., Mazur, G. J., Brackney, R. J., Olive, M. F., & Sanabria, F. (2015). Nicotine-induced place conditioning and locomotor activity in an adolescent animal model of attention deficit/hyperactivity disorder (ADHD). Behavioural Brain Research, 291, 184–188. https://doi.org/10.1016/j.bbr.2015.05.031
Weissenborn, R., Robbins, T. W., & Everitt, B. J. (1997). Effects of medial prefrontal or anterior cingulate cortex lesions on responding for cocaine under fixed-ratio and second-order schedules of reinforcement in rats. Psychopharmacology, 134(3), 242–257. https://doi.org/10.1007/s002130050447
Weiss, J. W., Mouttapa, M., Cen, S., Johnson, C. A., & Unger, J. (2011). Longitudinal Effects of Hostility, Depression, and Bullying on Adolescent Smoking Initiation. Journal of Adolescent Health, 48(6), 591–596. https://doi.org/10.1016/j.jadohealth.2010.09.012
Werme, M., Messer, C., Olson, L., Gilden, L., Thorén, P., Nestler, E. J., & Brené, S. (2002). ΔFosBRegulates Wheel Running. The Journal of Neuroscience, 22(18), 8133–8138. https://doi.org/10.1523/jneurosci.22-18-08133.2002
Whitaker, Leslie R., Degoulet, M., & Morikawa, H. (2013). Social Deprivation Enhances VTA Synaptic Plasticity and Drug-Induced Contextual Learning. Neuron, 77(2), 335–345. https://doi.org/10.1016/j.neuron.2012.11.022
Wilar, G., Shinoda, Y., Sasaoka, T., & Fukunaga, K. (2019). Crucial Role of Dopamine D2 Receptor Signaling in Nicotine-Induced Conditioned Place Preference. Molecular Neurobiology, 56(12), 7911–7928. https://doi.org/10.1007/s12035-019-1635-x
Wolter, M. (2021). Neuropharmacological Mechanisms of Enhancement of Memory Consolidation by Nicotine, Cocaine, Heroin, and their Conditioned Stimuli (Doctoral dissertation, University of Guelph).
Wongwitdecha, N., & Alexander Marsden, C. (1996). Effects of social isolation rearing on learning in the morris water maze. Brain Research, 715(1-2), 119–124. https://doi.org/10.1016/0006-8993(95)01578-7
Yazdanfar, N., Farnam, A., Sadigh-Eteghad, S., Mahmoudi, J., & Sarkaki, A. (2021). Enriched environment and social isolation differentially modulate addiction-related behaviors in male offspring of morphine-addicted dams: The possible role of μ-opioid receptors and ΔFosB in the brain reward pathway. Brain Research Bulletin, 170, 98–105. https://doi.org/10.1016/j.brainresbull.2021.02.005
Yuan, M., Cross, S. J., Loughlin, S. E., & Leslie, F. M. (2015). Nicotine and the adolescent brain. The Journal of Physiology, 593(16), 3397–3412. https://doi.org/10.1113/jp270492
Zakharova, E., Miller, J., Unterwald, E., Wade, D., & Izenwasser, S. (2009). Social and physical environment alter cocaine conditioned place preference and dopaminergic markers in adolescent male rats. Neuroscience, 163(3), 890–897. https://doi.org/10.1016/j.neuroscience.2009.06.068
Zarrindast, M. R., Aghamohammadi-Sereshki, A., Rezayof, A., & Rostami, P. (2012). Nicotine-induced anxiogenic-like behaviours of rats in the elevated plus-maze: possible role of NMDA receptors of the central amygdala. Journal of Psychopharmacology, 26(4), 555–563. https://doi.org/10.1177/0269881111412094
Zhang, Y., Crofton, E. J., Li, D., Lobo, M. K., Fan, X., Nestler, E. J., & Green, T. A. (2014). Overexpression of DeltaFosB in nucleus accumbens mimics the protective addiction phenotype, but not the protective depression phenotype of environmental enrichment. Frontiers in Behavioral Neuroscience, 8. https://doi.org/10.3389/fnbeh.2014.00297
Zhao-Shea, R., Liu, L., Soll, L. G., Improgo, M. R., Meyers, E. E., McIntosh, J. M., Grady, S. R., Marks, M. J., Gardner, P. D., & Tapper, A. R. (2011). Nicotine-Mediated Activation of Dopaminergic Neurons in Distinct Regions of the Ventral Tegmental Area. Neuropsychopharmacology, 36(5), 1021–1032. https://doi.org/10.1038/npp.2010.240
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 104 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Humanas - Maestría en Psicología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Humanas
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84265/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84265/2/1015448642_2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84265/3/1015448642_2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
16699fa4dad3612af78b0f23a3f8c61f
9e4b351fd20b693aec6733029f079847
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090257011834880
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lamprea Rodríguez, Marisola14f7906338f9d662885067f2e6abfe0600Cortés-Patiño, Diana2ba7758fb394fe8bb5791be0ccf901ed600Ballesteros-Acosta, Hans5b0f4033c5c72fb1bcea6a25218d1d56600Neurociencia Básica y CognoscitivaBallesteros-Acosta, Hans [0000000303879084]Ballesteros-Acosta, Hans [0001711713#]Ballesteros-Acosta, Hans [Hans-Ballesteros-Acosta]2023-07-25T17:39:09Z2023-07-25T17:39:09Z2023https://repositorio.unal.edu.co/handle/unal/84265Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, diagramasLa interacción social resulta fundamental para el apropiado desarrollo del sistema nervioso y la adquisición de habilidades de supervivencia. Se ha demostrado que impedir las interacciones sociales durante la adolescencia aumenta los efectos de las drogas psicoactivas; sin embargo, existen pocos reportes sobre el impacto del aislamiento social sobre los efectos de la nicotina. El presente estudio evaluó los efectos del aislamiento social durante la adolescencia sobre (1) la acumulación del factor de transcripción ΔFosB en la corteza prelímbica, el núcleo accumbens y el núcleo paraventricular del tálamo, (2) la sensibilización a los efectos locomotores de la nicotina tras su administración repetida y (3) la preferencia condicionada de lugar inducida por diferentes dosis de nicotina (0,1 o 0,3 mg/kg). Los resultados indican que los animales aislados acumulan menos ΔFosB en las estructuras del circuito de recompensa evaluadas. El aislamiento no afectó los procesos de sensibilización locomotora inducida por dosis bajas de nicotina, pero sí se observó un efecto sobre la inducción de una mayor preferencia por lugares asociados con la nicotina. Dicho cambio se mantuvo por más de cuatro sesiones de extinción, únicamente para la dosis más baja. No se observaron incrementos significativos durante el restablecimiento de la asociación para ninguna de las dosis. Los resultados sugieren que el aislamiento social durante la adolescencia no afecta los procesos subyacentes a la expresión de la sensibilización locomotora, pero aumenta la sensibilidad de los animales a los efectos asociativos de la nicotina, incrementando el valor de incentivo de los contextos asociados con la misma. Este efecto podría estar mediado por reducciones en la acumulación de ΔFosB en las estructuras del circuito de recompensa. (Texto tomado de la fuente)Social interaction is essential for the proper development of the nervous system and the acquisition of survival skills. Preventing social interactions during adolescence has been shown to increase the effects of psychoactive drugs; however, there are few reports on the impact of social isolation on the effects of nicotine. The present study evaluated the effects of social isolation during adolescence on (1) the accumulation of the transcription factor ΔFosB in the prelimbic cortex, nucleus accumbens, and paraventricular nucleus of the thalamus, (2) sensitization to the locomotor effects of nicotine after repeated administration, and (3) conditioned place preference induced by different doses of nicotine (0.1 or 0.3 mg/kg). The results indicate that isolated animals accumulated less ΔFosB in the reward circuit structures evaluated. Isolation did not affect locomotor sensitization processes induced by low doses of nicotine but an effect on the induction of increased preference for nicotine-associated locations was observed. Such a change was maintained for more than four extinction sessions, only for the lowest dose. No significant increases were observed during reinstatement of the association for any of the doses. The results suggest that social isolation during adolescence does not affect the processes underlying the expression of locomotor sensitization but increases the sensitivity of animals to the associative effects of nicotine, increasing the incentive value of nicotine-associated contexts. This effect could be mediated by reductions in the accumulation of ΔFosB in reward circuit structures.MaestríaMaestría en Psicología104 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Humanas - Maestría en PsicologíaFacultad de Ciencias HumanasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá150 - Psicología::156 - Psicología comparadaPsicología del AdolescenteConducta del AdolescentePsychology, AdolescentAdolescent BehaviorAdolescenciaAislamiento socialNicotinaΔFosBSensibilización locomotoraPreferencia condicionada de lugarAdolescenceSocial isolationNicotineΔFosBLocomotor sensitizationConditioned place preferenceEfectos del aislamiento social sobre la inducción de procesos de plasticidad y en el aprendizaje de estímulos contextuales asociados a la nicotinaEffects of social isolation on the induction of plasticity processes and the learning of nicotine-associated contextual stimuliTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAhsan, H. M., I. de la Peña, J. B., Botanas, C. J., Kim, H. J., Yu, G. Y., & Cheong, J. H. (2014). Conditioned Place Preference and Self-Administration Induced by Nicotine in Adolescent and Adult Rats. Biomolecules & Therapeutics, 22(5), 460–466. https://doi.org/10.4062/biomolther.2014.056Alajaji, M., Lazenka, M. f., Kota, D., Wise, L. E., Younis, R. M., Carroll, F. I., Levine, A., Selley, D. E., Sim-Selley, L. J., & Damaj, M. I. (2016). Early adolescent nicotine exposure affects later-life cocaine reward in mice. Neuropharmacology, 105, 308–317. https://doi.org/10.1016/j.neuropharm.2016.01.032Arain, M., Mathur, P., Rais, A., Nel, W., Sandhu, R., Haque, M., Johal, L., & Sharma, S. (2013). Maturation of the Adolescent Brain. Neuropsychiatric Disease and Treatment, 9(9), 449–461. https://doi.org/10.2147/ndt.s39776Arakawa, H. (2018). Ethological approach to social isolation effects in behavioral studies of laboratory rodents. Behavioural Brain Research, 341, 98–108. https://doi.org/10.1016/j.bbr.2017.12.022Ashokan, A., Lim, J. W. H., Hang, N., & Mitra, R. (2018). Complex housing causes a robust increase in dendritic complexity and spine density of medial prefrontal cortical neurons. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-25399-4Baarendse, P. J. J., Counotte, D. S., O’Donnell, P., & Vanderschuren, L. J. M. J. (2013). Early Social Experience Is Critical for the Development of Cognitive Control and Dopamine Modulation of Prefrontal Cortex Function. Neuropsychopharmacology, 38(8), 1485–1494. https://doi.org/10.1038/npp.2013.47Ballesteros-Acosta, H., Martinez, M. A., Martin, V., Cortes-Patiño, D., & Lamprea, M. R. (2022, September 12). PLASTIC CHANGES ASSOCIATED WITH JUVENILE SOCIAL ISOLATION AND ITS EFFECTS OVER CONTEXT-CUE REWARD ASSOCIATIONS. 3rd FALAN Congress, Belém, Brazil.Bastle, R. M., Peartree, N. A., Goenaga, J., Hatch, K. N., Henricks, A., Scott, S., Hood, L. E., & Neisewander, J. L. (2016). Immediate early gene expression reveals interactions between social and nicotine rewards on brain activity in adolescent male rats. Behavioural Brain Research, 313, 244–254. https://doi.org/10.1016/j.bbr.2016.07.024Belluzzi, J., Lee, A., Oliff, H., & Leslie, F. (2004). Age-dependent effects of nicotine on locomotor activity and conditioned place preference in rats. Psychopharmacology, 174(3). https://doi.org/10.1007/s00213-003-1758-6Bendersky, C. J., Milian, A. A., Andrus, M. D., De La Torre, U., & Walker, D. M. (2021). Long-Term Impacts of Post-weaning Social Isolation on Nucleus Accumbens Function. Frontiers in Psychiatry, 12. https://doi.org/10.3389/fpsyt.2021.745406Bockman, C. S., Zeng, W., Hall, J., Mittelstet, B., Schwarzkopf, L., & Stairs, D. J. (2018). Nicotine drug discrimination and nicotinic acetylcholine receptors in differentially reared rats. Psychopharmacology, 235(5), 1415–1426. https://doi.org/10.1007/s00213-018-4850-7Bressan, R. A., & Crippa, J. A. (2005). The role of dopamine in reward and pleasure behaviour--review of data from preclinical research. Acta Psychiatrica Scandinavica. Supplementum, 111(427), 14–21. https://doi.org/10.1111/j.1600-0447.2005.00540.xBurke, A. R., & Miczek, K. A. (2015). Escalation of cocaine self-administration in adulthood after social defeat of adolescent rats: role of social experience and adaptive coping behavior. Psychopharmacology, 232(16), 3067–3079. https://doi.org/10.1007/s00213-015-3947-5Carola, V., D’Olimpio, F., Brunamonti, E., Mangia, F., & Renzi, P. (2002). Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behavioural Brain Research, 134(1), 49–57. https://doi.org/10.1016/S0166-4328(01)00452-1Caruso, M. J., Seemiller, L. R., Fetherston, T. B., Miller, C. N., Reiss, D. E., Cavigelli, S. A., & Kamens, H. M. (2018). Adolescent social stress increases anxiety-like behavior and ethanol consumption in adult male and female C57BL/6J mice. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-28381-2Cavazos‐Rehg, P., Li, X., Kasson, E., Kaiser, N., Borodovsky, J., & Grucza, R. A. (2021). Investigating the role of familial and peer‐related factors on electronic nicotine delivery systems (ENDS) use among U.S. adolescents. Journal of Adolescence, 87(1), 98–105. https://doi.org/10.1016/j.adolescence.2021.01.003Chen, J., Kelz, M. B., Hope, B. T., Nakabeppu, Y., & Nestler, E. J. (1997). Chronic Fos-Related Antigens: Stable Variants of ΔFosB Induced in Brain by Chronic Treatments. Journal of Neuroscience, 17(13), 4933–4941. https://doi.org/10.1523/JNEUROSCI.17-13-04933.1997Counotte, D. S., Spijker, S., Van de Burgwal, L. H., Hogenboom, F., Schoffelmeer, A. N. M., De Vries, T. J., Smit, A. B., & Pattij, T. (2009). Long-lasting cognitive deficits resulting from adolescent nicotine exposure in rats. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 34(2), 299–306. https://doi.org/10.1038/npp.2008.96Crofton, E. J., Zhang, Y., & Green, T. A. (2015). Inoculation stress hypothesis of environmental enrichment. Neuroscience & Biobehavioral Reviews, 49, 19–31. https://doi.org/10.1016/j.neubiorev.2014.11.017Di Ciano, P., Robbins, T. W., & Everitt, B. J. (2008). Differential Effects of Nucleus Accumbens Core, Shell, or Dorsal Striatal Inactivations on the Persistence, Reacquisition, or Reinstatement of Responding for a Drug-Paired Conditioned Reinforcer. Neuropsychopharmacology, 33(6), 1413–1425. https://doi.org/10.1038/sj.npp.1301522DiFranza, J., & Wellman, R. (2007). Sensitization to nicotine: How the animal literature might inform future human research. Nicotine & Tobacco Research, 9(1), 9–20. https://doi.org/10.1080/14622200601078277Doremus-Fitzwater, T. L., Varlinskaya, E. I., & Spear, L. P. (2010). Motivational systems in adolescence: Possible implications for age differences in substance abuse and other risk-taking behaviors. Brain and Cognition, 72(1), 114–123. https://doi.org/10.1016/j.bandc.2009.08.008Douglas, L. A., Varlinskaya, E. I., & Spear, L. P. (2004). Rewarding properties of social interactions in adolescent and adult male and female rats: Impact of social versus isolate housing of subjects and partners. Developmental Psychobiology, 45(3), 153–162. https://doi.org/10.1002/dev.20025D’Souza, M. S., & Markou, A. (2013). The “Stop” and “Go” of Nicotine Dependence: Role of GABA and Glutamate. Cold Spring Harbor Perspectives in Medicine, 3(6), a012146–a012146. https://doi.org/10.1101/cshperspect.a012146DuRant, R. H., Smith, J. A., Kreiter, S. R., & Krowchuk, D. P. (1999). The Relationship Between Early Age of Onset of Initial Substance Use and Engaging in Multiple Health Risk Behaviors Among Young Adolescents. Archives of Pediatrics & Adolescent Medicine, 153(3). https://doi.org/10.1001/archpedi.153.3.286Eddy, M. C., & Green, J. T. (2017). Running wheel exercise reduces renewal of extinguished instrumental behavior and alters medial prefrontal cortex neurons in adolescent, but not adult, rats. Behavioral Neuroscience, 131(6), 460–469. https://doi.org/10.1037/bne0000218Eliasson, B. (2005). Los efectos del tabaco sobre las complicaciones diabéticas. Rev. Diabetes Voice, 50. https://diabetesmadrid.org/El Rawas, R., Amaral, I. M., & Hofer, A. (2020). Social interaction reward: A resilience approach to overcome vulnerability to drugs of abuse. European Neuropsychopharmacology, 37, 12–28. https://doi.org/10.1016/j.euroneuro.2020.06.008El Rawas, R., Klement, S., Kummer, K. K., Fritz, M., Dechant, G., Saria, A., & Zernig, G. (2012). Brain regions associated with the acquisition of conditioned place preference for cocaine vs. social interaction. Frontiers in Behavioral Neuroscience, 6. https://doi.org/10.3389/fnbeh.2012.00063El Rawas, R., Thiriet, N., Lardeux, V., Jaber, M., & Solinas, M. (2009). Environmental enrichment decreases the rewarding but not the activating effects of heroin. Psychopharmacology, 203(3), 561–570. https://doi.org/10.1007/s00213-008-1402-6Everitt, B. J., & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nature Neuroscience, 8(11), 1481–1489. https://doi.org/10.1038/nn1579Ewin, S. E., Kangiser, M. M., & Stairs, D. J. (2015). The effects of environmental enrichment on nicotine condition place preference in male rats. Experimental and Clinical Psychopharmacology, 23(5), 387–394. https://doi.org/10.1037/pha0000024Faraday, M. M., Elliott, B. M., Phillips, J. M., & Grunberg, N. E. (2003). Adolescent and adult male rats differ in sensitivity to nicotine’s activity effects. Pharmacology Biochemistry and Behavior, 74(4), 917–931. https://doi.org/10.1016/s0091-3057(03)00024-8Faure, P., Tolu, S., Valverde, S., & Naudé, J. (2014). Role of nicotinic acetylcholine receptors in regulating dopamine neuron activity. Neuroscience, 282, 86–100. https://doi.org/10.1016/j.neuroscience.2014.05.040Feja, M., Hayn, L., & Koch, M. (2014). Nucleus accumbens core and shell inactivation differentially affects impulsive behaviours in rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 54, 31–42. https://doi.org/10.1016/j.pnpbp.2014.04.012Fenoglio, K. A., Chen, Y., & Baram, T. Z. (2006). Neuroplasticity of the hypothalamic–pituitary–adrenal (HPA) axis early in life requires recurrent recruitment of stress-regulating brain regions. Frontiers in Neuroendocrinology, 27(1), 50–51. https://doi.org/10.1016/j.yfrne.2006.03.103Ferdman, N., Murmu, R., Bock, J., Braun, K., & Leshem, M. (2007). Weaning age, social isolation, and gender, interact to determine adult explorative and social behavior, and dendritic and spine morphology in prefrontal cortex of rats. Behavioural Brain Research, 180(2), 174–182. https://doi.org/10.1016/j.bbr.2007.03.011Fosnocht, A. Q., Lucerne, K. E., Ellis, A. S., Olimpo, N. A., & Briand, L. A. (2019). Adolescent social isolation increases cocaine seeking in male and female mice. Behavioural Brain Research, 359, 589–596. https://doi.org/10.1016/j.bbr.2018.10.007Fudala, P. J., Teoh, K. W., & Iwamoto, E. T. (1985). Pharmacologic characterization of nicotine-induced conditioned place preference. Pharmacology Biochemistry and Behavior, 22(2), 237–241. https://doi.org/10.1016/0091-3057(85)90384-3Gobierno de Colombia. (2020). Encuesta nacional de consumo de sustanciaspsicoactivas (ENCSPA). Resultados 2019 [National survey on psychoactivesubstances consumption. Results 2019]. DANE, Gobierno de Colombia.https://bit.ly/3z9ywwrGomez, A. M., Midde, N. M., Mactutus, C. F., Booze, R. M., & Zhu, J. (2012). Environmental Enrichment Alters Nicotine-Mediated Locomotor Sensitization and Phosphorylation of DARPP-32 and CREB in Rat Prefrontal Cortex. PLoS ONE, 7(8), e44149. https://doi.org/10.1371/journal.pone.0044149Gomez, A. M., Sun, W.-L., Midde, N. M., Harrod, S. B., & Zhu, J. (2015). Effects of environmental enrichment on ERK1/2 phosphorylation in the rat prefrontal cortex following nicotine-induced sensitization or nicotine self-administration. European Journal of Neuroscience, 41(1), 109–119. https://doi.org/10.1111/ejn.12758Goriounova, N. A., & Mansvelder, H. D. (2012). Short- and Long-Term Consequences of Nicotine Exposure during Adolescence for Prefrontal Cortex Neuronal Network Function. Cold Spring Harbor Perspectives in Medicine, 2(12). https://doi.org/10.1101/cshperspect.a012120Gould, T. J., & Leach, P. T. (2014). Cellular, molecular, and genetic substrates underlying the impact of nicotine on learning. Neurobiology of Learning and Memory, 107, 108–132. https://doi.org/10.1016/j.nlm.2013.08.004Green, T. A., Cain, M. E., Thompson, M., & Bardo, M. T. (2003). Environmental enrichment decreases nicotine-induced hyperactivity in rats. Psychopharmacology, 170(3), 235–241. https://doi.org/10.1007/s00213-003-1538-3Grueter, B. A., Robison, A. J., Neve, R. L., Nestler, E. J., & Malenka, R. C. (2012). FosB differentially modulates nucleus accumbens direct and indirect pathway function. Proceedings of the National Academy of Sciences, 110(5), 1923–1928. https://doi.org/10.1073/pnas.1221742110Hachimine-Merli, P. (2017). The Role of Glutamate Neurotransmission in the Ventral Tegmental Area in the Expression of Conditioned Approach Learning [Thesis].Haight, J. L., & Flagel, S. B. (2014). A potential role for the paraventricular nucleus of the thalamus in mediating individual variation in Pavlovian conditioned responses. Frontiers in Behavioral Neuroscience, 8. https://doi.org/10.3389/fnbeh.2014.00079Haj-Mirzaian, A., Nikbakhsh, R., Ramezanzadeh, K., Rezaee, M., Amini-Khoei, H., Haj-Mirzaian, A., Ghesmati, M., Afshari, K., Haddadi, N.-S., & Dehpour, A. R. (2019). Involvement of opioid system in behavioral despair induced by social isolation stress in mice. Biomedicine & Pharmacotherapy, 109, 938–944. https://doi.org/10.1016/j.biopha.2018.10.144Hall, S., Deurveilher, S., Ko, K. R., Burns, J., & Semba, K. (2017). Region-specific increases in FosB/ΔFosB immunoreactivity in the rat brain in response to chronic sleep restriction. Behavioural Brain Research, 322, 9–17. https://doi.org/10.1016/j.bbr.2017.01.024Hearing, M. C., Jedynak, J., Ebner, S. R., Ingebretson, A., Asp, A. J., Fischer, R. A., Schmidt, C., Larson, E. B., & Thomas, M. J. (2016). Reversal of morphine-induced cell-type–specific synaptic plasticity in the nucleus accumbens shell blocks reinstatement. Proceedings of the National Academy of Sciences, 113(3), 757–762. https://doi.org/10.1073/pnas.1519248113Henley, J. M., & Wilkinson, K. A. (2016). Synaptic AMPA receptor composition in development, plasticity and disease. Nature Reviews Neuroscience, 17(6), 337–350. https://doi.org/10.1038/nrn.2016.37Holliday, E., & Gould, T. J. (2016). Nicotine, adolescence, and stress: A review of how stress can modulate the negative consequences of adolescent nicotine abuse. Neuroscience & Biobehavioral Reviews, 65, 173–184. https://doi.org/10.1016/j.neubiorev.2016.04.003Hoops, D., & Flores, C. (2017). Making Dopamine Connections in Adolescence. Trends in Neurosciences, 40(12), 709–719. https://doi.org/10.1016/j.tins.2017.09.004Huston, J. P., Silva, M. A. de S., Topic, B., & Müller, C. P. (2013). What’s conditioned in conditioned place preference? Trends in Pharmacological Sciences, 34(3), 162–166. https://doi.org/10.1016/j.tips.2013.01.004Iglesias, A. G., & Flagel, S. B. (2021). The Paraventricular Thalamus as a Critical Node of Motivated Behavior via the Hypothalamic-Thalamic-Striatal Circuit. Frontiers in Integrative Neuroscience, 15. https://doi.org/10.3389/fnint.2021.706713Iñiguez, S. D., Warren, B. L., Parise, E. M., Alcantara, L. F., Schuh, B., Maffeo, M. L., Manojlovic, Z., & Bolaños-Guzmán, C. A. (2009). Nicotine Exposure during Adolescence Induces a Depression-Like State in Adulthood. Neuropsychopharmacology, 34(6), 1609–1624. https://doi.org/10.1038/npp.2008.220Jentsch, J. D., Ashenhurst, J. R., Cervantes, M. C., James, A. S., Groman, S. M., & Pennington, Z. T. (2014). Dissecting Impulsivity and its Relationships to Drug Addictions. Annals of the New York Academy of Sciences, 1327, 1–26. https://doi.org/10.1111/nyas.12388Jeong, Y. H., Kim, J. M., Yoo, J., Lee, S. H., Kim, H.-S., & Suh, Y.-H. (2011). Environmental enrichment compensates for the effects of stress on disease progression in Tg2576 mice, an Alzheimer’s disease model. Journal of Neurochemistry, 119(6), 1282–1293. https://doi.org/10.1111/j.1471-4159.2011.07514.xKandel, E. R., & Kandel, D. B. (2014). A Molecular Basis for Nicotine as a Gateway Drug. New England Journal of Medicine, 371(10), 932–943. https://doi.org/10.1056/nejmsa1405092Karkhanis, A. N., Leach, A. C., Yorgason, J. T., Uneri, A., Barth, S., Niere, F., Alexander, N. J., Weiner, J. L., McCool, B. A., Raab-Graham, K. F., Ferris, M. J., & Jones, S. R. (2018). Chronic Social Isolation Stress during Peri-Adolescence Alters Presynaptic Dopamine Terminal Dynamics via Augmentation in Accumbal Dopamine Availability. ACS Chemical Neuroscience, 10(4), 2033–2044. https://doi.org/10.1021/acschemneuro.8b00360Kelz, M. B., Chen, J., Carlezon Jr, W. A., Whisler, K., Gilden, L., Beckmann, A. M., ... & Nestler, E. J. (1999). Expression of the transcription factor? FosB in the brain controls sensitivity to cocaine. Nature, 401(6750), 272-276. DOI: 10.1038/45790Kenney, J. W., & Gould, T. J. (2008). Nicotine enhances context learning but not context-shock associative learning. Behavioral Neuroscience, 122(5), 1158–1165. https://doi.org/10.1037/a0012807Kim, S., Kwok, S., Mayes, L. C., Potenza, M. N., Rutherford, H. J. V., & Strathearn, L. (2017). Early adverse experience and substance addiction: dopamine, oxytocin, and glucocorticoid pathways. Annals of the New York Academy of Sciences, 1394(1), 74–91. https://doi.org/10.1111/nyas.13140Kirouac, G. (2015). Placing the paraventricular nucleus of the thalamus within the brain circuits that control behavior. Neuroscience & Biobehavioral Reviews, 56, 315–329. https://doi.org/10.1016/j.neubiorev.2015.08.005Ko, J.-H. (2017). Social isolation effect on nicotine consumption in adolescent mice [Thesis].Kooiker, C. L., Birnie, M. T., & Baram, T. Z. (2021). The Paraventricular Thalamus: A Potential Sensor and Integrator of Emotionally Salient Early-Life Experiences. Frontiers in Behavioral Neuroscience, 15. https://doi.org/10.3389/fnbeh.2021.673162Kowiański, P., Lietzau, G., Steliga, A., Czuba, E., Ludkiewicz, B., Waśkow, M., Spodnik, J. H., & Moryś, J. (2018). Nicotine-induced CREB and DeltaFosB activity is modified by caffeine in the brain reward system of the rat. Journal of Chemical Neuroanatomy, 88, 1–12. https://doi.org/10.1016/j.jchemneu.2017.10.005Kupferschmidt, D. A., Funk, D., Erb, S., & Lê, A. D. (2010). Age-related effects of acute nicotine on behavioural and neuronal measures of anxiety. Behavioural Brain Research, 213(2), 288–292. https://doi.org/10.1016/j.bbr.2010.05.022Lapiz, A. Fulford, S. Muchimapura, R. Mason, T. Parker, C.A. Marsden (2003) Influence of Postweaning Social Isolation in the Rat on Brain Development,Conditioned Behavior, and Neurotransmission, Neurosci. Behav. Physiol. 33 13–29, https://doi.org/10.1023/A:1021171129766.Laviola, G., Macri, S., Morley-Fletcher, S., & Adriani, W. (2003). Risk-taking behavior in adolescent mice: psychobiological determinants and early epigenetic influence. Neuroscience & Biobehavioral Reviews, 27(1-2), 19–31. https://doi.org/10.1016/s0149-7634(03)00006-xLee, H., Jang, M., Kim, W., & Noh, J. (2017). Differential effects of pair housing on voluntary nicotine consumption: a comparison between male and female adolescent rats. Psychopharmacology, 234(16), 2463–2473. https://doi.org/10.1007/s00213-017-4636-3Le Foll, B., & Goldberg, S. R. (2005). Nicotine induces conditioned place preferences over a large range of doses in rats. Psychopharmacology, 178(4), 481–492. https://doi.org/10.1007/s00213-004-2021-5Le Foll, B., Schwartz, J-C., & Sokoloff, P. (2003). Disruption of nicotine conditioning by dopamine D3 receptor ligands. Molecular Psychiatry, 8(2), 225–230. https://doi.org/10.1038/sj.mp.4001202Lehmann, M. L., & Herkenham, M. (2011). Environmental Enrichment Confers Stress Resiliency to Social Defeat through an Infralimbic Cortex-Dependent Neuroanatomical Pathway. Journal of Neuroscience, 31(16), 6159–6173. https://doi.org/10.1523/jneurosci.0577-11.2011Leslie, F. M. (2020). Unique, long-term effects of nicotine on adolescent brain. Pharmacology Biochemistry and Behavior, 197(173010), 173010. https://doi.org/10.1016/j.pbb.2020.173010Liu, Y., & McNally, G. P. (2021). Dopamine and relapse to drug seeking. Journal of Neurochemistry, 157(5), 1572–1584. https://doi.org/10.1111/jnc.15309Lobo, M. K., Zaman, S., Damez-Werno, D. M., Koo, J. W., Bagot, R. C., DiNieri, J. A., Nugent, A., Finkel, E., Chaudhury, D., Chandra, R., Riberio, E., Rabkin, J., Mouzon, E., Cachope, R., Cheer, J. F., Han, M.-H. ., Dietz, D. M., Self, D. W., Hurd, Y. L., & Vialou, V. (2013). FosB Induction in Striatal Medium Spiny Neuron Subtypes in Response to Chronic Pharmacological, Emotional, and Optogenetic Stimuli. Journal of Neuroscience, 33(47), 18381–18395. https://doi.org/10.1523/jneurosci.1875-13.2013Lukkes, J. L., Mokin, M. V., Scholl, J. L., & Forster, G. L. (2009). Adult rats exposed to early-life social isolation exhibit increased anxiety and conditioned fear behavior, and altered hormonal stress responses. Hormones and Behavior, 55(1), 248–256. https://doi.org/10.1016/j.yhbeh.2008.10.014Lukkes, J. L., Watt, M., Lowry, C., & Forster, G. (2009). Consequences of post-weaning social isolation on anxiety behavior and related neural circuits in rodents. Frontiers in Behavioral Neuroscience, 3. https://doi.org/10.3389/neuro.08.018.2009Man, H.-Y. (2011). GluA2-lacking, calcium-permeable AMPA receptors — inducers of plasticity? Current Opinion in Neurobiology, 21(2), 291–298. https://doi.org/10.1016/j.conb.2011.01.001Martin, V., Mejia, L. V., Martinez, M. A., Ballesteros-Acosta, H., Cortés-Patiño, D., & Lamprea, M. (2022, September 12). Modulatory role of social isolation on the effects of acute nicotine in behavioral inhibition and basal corticosterone levels. 3rd FALAN Congress, Belém, Brazil.Marttila, K., Raattamaa, H., & Ahtee, L. (2006). Effects of chronic nicotine administration and its withdrawal on striatal FosB/ΔFosB and c-Fos expression in rats and mice. Neuropharmacology, 51(1), 44–51. https://doi.org/10.1016/j.neuropharm.2006.02.014Mastrogiovanni, N. A., Wheeler, A. K., & Clemens, K. J. (2021). Social isolation enhances cued-reinstatement of sucrose and nicotine seeking, but this is reversed by a return to social housing. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-81966-2Matta, S. G., Balfour, D. J., Benowitz, N. L., Boyd, R. T., Buccafusco, J. J., Caggiula, A. R., ... & Zirger, J. M. (2007). Guidelines on nicotine dose selection for in vivo research. Psychopharmacology, 190, 269-319. DOI: 10.1007/s00213-006-0441-0McClung, C. A., & Nestler, E. J. (2003). Regulation of gene expression and cocaine reward by CREB and ΔFosB. Nature Neuroscience, 6(11), 1208–1215. https://doi.org/10.1038/nn1143McCormick, C. M., & Ibrahim, F. N. (2007). Locomotor activity to nicotine and Fos immunoreactivity in the paraventricular nucleus of the hypothalamus in adolescent socially-stressed rats. Pharmacology Biochemistry and Behavior, 86(1), 92–102. https://doi.org/10.1016/j.pbb.2006.12.012McCutcheon, J. E., & Marinelli, M. (2009). Age matters. European Journal of Neuroscience, 29(5), 997–1014. https://doi.org/10.1111/j.1460-9568.2009.06648.xMcFarland, K., & Kalivas, P. W. (2001). The Circuitry Mediating Cocaine-Induced Reinstatement of Drug-Seeking Behavior. The Journal of Neuroscience, 21(21), 8655–8663. https://doi.org/10.1523/jneurosci.21-21-08655.2001McKendrick, G., & Graziane, N. M. (2020). Drug-Induced Conditioned Place Preference and Its Practical Use in Substance Use Disorder Research. Frontiers in Behavioral Neuroscience, 14. https://doi.org/10.3389/fnbeh.2020.582147Meir Drexler, S., Merz, C. J., Jentsch, V. L., & Wolf, O. T. (2019). How stress and glucocorticoids timing-dependently affect extinction and relapse. Neuroscience & Biobehavioral Reviews, 98, 145–153. https://doi.org/10.1016/j.neubiorev.2018.12.029Miguel-Aguilar, C. F., Rodríguez-Bolaños, R. D. los Á., Caballero, M., Arillo-Santillán, E., & Reynales-Shigematsu, L. M. (2017). Fumar entre adolescentes: análisis cuantitativo y cualitativo de factores psicosociales asociados con la decisión de fumar en escolares mexicanos. Salud Pública de México, 59, 63. https://doi.org/10.21149/7835Mosaferi, B., Babri, S., Ebrahimi, H., & Mohaddes, G. (2015). Enduring effects of post-weaning rearing condition on depressive- and anxiety-like behaviors and motor activity in male rats. Physiology & Behavior, 142, 131–136. https://doi.org/10.1016/j.physbeh.2015.02.015Mukhara, D., Banks, M. L., & Neigh, G. N. (2018). Stress as a Risk Factor for Substance Use Disorders: A Mini-Review of Molecular Mediators. Frontiers in Behavioral Neuroscience, 12. https://doi.org/10.3389/fnbeh.2018.00309Muller, D. L., & Unterwald, E. M. (2005). D1 Dopamine Receptors Modulate ΔFosB Induction in Rat Striatum after Intermittent Morphine Administration. Journal of Pharmacology and Experimental Therapeutics, 314(1), 148–154. https://doi.org/10.1124/jpet.105.083410Mumtaz, F., Khan, M. I., Zubair, M., & Dehpour, A. R. (2018). Neurobiology and consequences of social isolation stress in animal model—A comprehensive review. Biomedicine & Pharmacotherapy, 105, 1205–1222. https://doi.org/10.1016/j.biopha.2018.05.086Nader, J., Claudia, C., Rawas, R. E., Favot, L., Jaber, M., Thiriet, N., & Solinas, M. (2012). Loss of Environmental Enrichment Increases Vulnerability to Cocaine Addiction. Neuropsychopharmacology, 37(7), 1579–1587. https://doi.org/10.1038/npp.2012.2Nestler, E. J. (2015). ΔFosB: a transcriptional regulator of stress and antidepressant responses. European Journal of Pharmacology, 753, 66–72. https://doi.org/10.1016/j.ejphar.2014.10.034Nestler, E. J., Barrot, M., & Self, D. W. (2001). ΔFosB: A sustained molecular switch for addiction. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11042–11046. https://doi.org/10.1073/pnas.191352698Niedhammer, I., David, S., Degioanni, S., Drummond, A., & Philip, P. (2010). Workplace Bullying and Psychotropic Drug Use: The Mediating Role of Physical and Mental Health Status. The Annals of Occupational Hygiene, 55(2). https://doi.org/10.1093/annhyg/meq086Noback, M., Zhang, G., White, N., Barrow, J. C., & Carr, G. V. (2021). Post-weaning social isolation increases ΔFosB/FosB protein expression in sex-specific patterns in the prelimbic/infralimbic cortex and hippocampus in mice. Neuroscience Letters, 740, 135423. https://doi.org/10.1016/j.neulet.2020.135423Noschang, C., Lampert, C., Krolow, R., & de Almeida, R. M. M. (2021). Social isolation at adolescence: a systematic review on behaviour related to cocaine, amphetamine and nicotine use in rats and mice. Psychopharmacology, 238(4), 927–947. https://doi.org/10.1007/s00213-021-05777-zNovak, G., Seeman, P., & Le Foll, B. (2010). Exposure to Nicotine Produces an Increase in Dopamine D2HighReceptors: A Possible Mechanism for Dopamine Hypersensitivity. International Journal of Neuroscience, 120(11), 691–697. https://doi.org/10.3109/00207454.2010.513462Novoa, C., Solano, J. L., Ballesteros-Acosta, H. N., Lamprea, M. R., & Ortega, L. A. (2022). Nicotine Differentially Modulates Emotional-Locomotor Interactions for Adult or Adolescent Rats. Revista Colombiana de Psicología, 31(1), 13–22. https://doi.org/10.15446/rcp.v31n1.89822Oficina de Naciones Unidas Contra la Droga y el Delito (UNODC). (2017). Tercer estudio epidemiológico andino sobre consumo de drogas en la población universitaria de Colombia 2016. https://www.unodc.org/colombia/es/press/2017/octubre/estudio-consumo-de-drogas-en-poblacion-universitaria.html.Ohmura, Y., Tsutsui-Kimura, I., & Yoshioka, M. (2012). Impulsive Behavior and Nicotinic Acetylcholine Receptors. Journal of Pharmacological Sciences, 118(4), 413–422. https://doi.org/10.1254/jphs.11r06crOrtega, L. A., Tracy, B. A., Gould, T. J., & Parikh, V. (2013). Effects of chronic low- and high-dose nicotine on cognitive flexibility in C57BL/6J mice. Behavioural Brain Research, 238, 134–145. https://doi.org/10.1016/j.bbr.2012.10.032O’Dell, L. E. (2009). A psychobiological framework of the substrates that mediate nicotine use during adolescence. Neuropharmacology, 56 Suppl 1, 263–278. https://doi.org/10.1016/j.neuropharm.2008.07.039Palmatier, M. I., Matteson, G. L., Black, J. J., Liu, X., Caggiula, A. R., Craven, L., Donny, E. C., & Sved, A. F. (2007). The reinforcement enhancing effects of nicotine depend on the incentive value of non-drug reinforcers and increase with repeated drug injections. Drug and Alcohol Dependence, 89(1), 52–59. https://doi.org/10.1016/j.drugalcdep.2006.11.020Pang, T. Y. C., & Hannan, A. J. (2013). Enhancement of cognitive function in models of brain disease through environmental enrichment and physical activity. Neuropharmacology, 64, 515–528. https://doi.org/10.1016/j.neuropharm.2012.06.029Pascual, M. M., Pastor, V., & Bernabeu, R. O. (2009). Nicotine-conditioned place preference induced CREB phosphorylation and Fos expression in the adult rat brain. Psychopharmacology, 207(1), 57–71. https://doi.org/10.1007/s00213-009-1630-4Pawlak, C., & Schwarting, R. (2002). Object preference and nicotine consumption in rats with high vs. low rearing activity in a novel open field. Pharmacology Biochemistry and Behavior, 73(3), 679–687. https://doi.org/10.1016/s0091-3057(02)00852-3Paxinos, G., & Watson, C. (2018). The rat brain in stereotaxic coordinates. Elsevier Academic Press.Perrotti, L. I., Hadeishi, Y., Ulery, P., Barrot, M., Monteggia, L., Duman, R., & Nestler, E. (2004). Induction of FosB in Reward-Related Brain Structures after Chronic Stress. Journal of Neuroscience, 24(47), 10594–10602. https://doi.org/10.1523/jneurosci.2542-04.2004Perrotti, L. I., Weaver, R. R., Robison, B., Renthal, W., Maze, I., Yazdani, S., Elmore, R. G., Knapp, D. J., Selley, D. E., Martin, B. R., Sim-Selley, L., Bachtell, R. K., Self, D. W., & Nestler, E. J. (2008). Distinct patterns of ΔFosB induction in brain by drugs of abuse. Synapse, 62(5), 358–369. https://doi.org/10.1002/syn.20500Peters, J., LaLumiere, R. T., & Kalivas, P. W. (2008). Infralimbic Prefrontal Cortex Is Responsible for Inhibiting Cocaine Seeking in Extinguished Rats. Journal of Neuroscience, 28(23), 6046–6053. https://doi.org/10.1523/jneurosci.1045-08.2008Phillipson, O. T. (1979). Afferent projections to the ventral tegmental area of Tsai and interfascicular nucleus: A horseradish peroxidase study in the rat. The Journal of Comparative Neurology, 187(1), 117–143. https://doi.org/10.1002/cne.901870108Picciotto, M. R., Addy, N. A., Mineur, Y. S., & Brunzell, D. H. (2008). It’s not “either/or”: activation and desensitization of nicotinic acetylcholine receptors both contribute to behaviors related to nicotine addiction and mood. Progress in Neurobiology, 84(4), 329–342. https://doi.org/10.1016/j.pneurobio.2007.12.005Picciotto, M. R., Brunzell, D. H., & Caldarone, B. J. (2002). Effect of nicotine and nicotinic receptors on anxiety and depression. Neuroreport, 13(9), 1097–1106. https://doi.org/10.1097/00001756-200207020-00006Pistillo, F., Clementi, F., Zoli, M., & Gotti, C. (2015). Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: Focus on nicotine effects. Progress in Neurobiology, 124, 1–27. https://doi.org/10.1016/j.pneurobio.2014.10.002Pistillo, F., Fasoli, F., Moretti, M., McClure-Begley, T., Zoli, M., Marks, M. J., & Gotti, C. (2016). Chronic nicotine and withdrawal affect glutamatergic but not nicotinic receptor expression in the mesocorticolimbic pathway in a region-specific manner. Pharmacological Research, 103, 167–176. https://doi.org/10.1016/j.phrs.2015.11.016Pitchers, K. K., Vialou, V., Nestler, E. J., Laviolette, S. R., Lehman, M. N., & Coolen, L. M. (2013). Natural and Drug Rewards Act on Common Neural Plasticity Mechanisms with FosB as a Key Mediator. Journal of Neuroscience, 33(8), 3434–3442. https://doi.org/10.1523/jneurosci.4881-12.2013Pulgar Muñoz, S., & Fernández-Luna, A. (2018). Práctica de actividad física, consumo de tabaco y alcohol y sus efectos en la salud respiratoria de los jóvenes universitarios (Physical activity, smoking and alcohol consumption and their effects on the respiratory health of college students). Retos, 35, 130–135. https://doi.org/10.47197/retos.v0i35.60603Pushkin, A. N., Eugene, A. J., Lallai, V., Torres-Mendoza, A., Fowler, J. P., Chen, E., & Fowler, C. D. (2019). Cannabinoid and nicotine exposure during adolescence induces sex-specific effects on anxiety- and reward-related behaviors during adulthood. PLOS ONE, 14(1), e0211346. https://doi.org/10.1371/journal.pone.0211346Ribeiro Do Couto, B., Aguilar, M. A., Lluch, J., Rodríguez-Arias, M., & Miñarro, J. (2009). Social experiences affect reinstatement of cocaine-induced place preference in mice. Psychopharmacology, 207(3), 485–498. https://doi.org/10.1007/s00213-009-1678-1Robison, A. J., & Nestler, E. J. (2021). ΔFOSB: A Potentially Druggable Master Orchestrator of Activity-Dependent Gene Expression. ACS Chemical Neuroscience, 13(3), 296–307. https://doi.org/10.1021/acschemneuro.1c00723Romeo, R. D. (2010). Pubertal maturation and programming of hypothalamic–pituitary–adrenal reactivity. Frontiers in Neuroendocrinology, 31(2), 232–240. https://doi.org/10.1016/j.yfrne.2010.02.004Ruffle, J. K. (2014). Molecular neurobiology of addiction: what’s all the (Δ)FosB about? The American Journal of Drug and Alcohol Abuse, 40(6), 428–437. https://doi.org/10.3109/00952990.2014.933840Ruiz, A. M., Gómez, I. R., Rubio, C., Revert, C., & Hardisson, A. (2004). Efectos tóxicos del tabaco. Revista de toxicología, 21(2-3), 64-71.Rupprecht LE, Smith TT, Schassburger RL, Buffalari DM, Sved AF, Donny EC. Behavioral mechanisms underlying nicotine reinforcement. In: The Neuropharmacology of Nicotine Dependence. Switzerland: Springer International Publishing; 2015:19–53Russo, S. J., Mazei-Robison, M. S., Ables, J. L., & Nestler, E. J. (2009). Neurotrophic factors and structural plasticity in addiction. Neuropharmacology, 56, 73–82. https://doi.org/10.1016/j.neuropharm.2008.06.059Russo, S. J., Wilkinson, M. B., Mazei-Robison, M. S., Dietz, D. M., Maze, I., Krishnan, V., Renthal, W., Graham, A., Birnbaum, S. G., Green, T. A., Robison, B., Lesselyong, A., Perrotti, L. I., Bolanos, C. A., Kumar, A., Clark, M. S., Neumaier, J. F., Neve, R. L., Bhakar, A. L., & Barker, P. A. (2009). Nuclear Factor B Signaling Regulates Neuronal Morphology and Cocaine Reward. Journal of Neuroscience, 29(11), 3529–3537. https://doi.org/10.1523/jneurosci.6173-08.2009Ruxton, G. D., & Beauchamp, G. (2008). Time for some a priori thinking about post hoc testing. Behavioral Ecology, 19(3), 690–693. https://doi.org/10.1093/beheco/arn020Salgado, S., & Kaplitt, M. G. (2015). The Nucleus Accumbens: A Comprehensive Review. Stereotactic and Functional Neurosurgery, 93(2), 75–93. https://doi.org/10.1159/000368279Saunders, B. T., O’Donnell, E. G., Aurbach, E. L., & Robinson, T. E. (2014). A Cocaine Context Renews Drug Seeking Preferentially in a Subset of Individuals. Neuropsychopharmacology, 39(12), 2816–2823. https://doi.org/10.1038/npp.2014.131Schiltz, C. A., Bremer, Q. Z., Landry, C. F., & Kelley, A. E. (2007). Food-associated cues alter forebrain functional connectivity as assessed with immediate early gene and proenkephalin expression. BMC Biology, 5(1). https://doi.org/10.1186/1741-7007-5-16Schneider, M. (2013). Adolescence as a vulnerable period to alter rodent behavior. Cell and Tissue Research, 354(1), 99–106. https://doi.org/10.1007/s00441-013-1581-2Schrijver, N. C. A., Bahr, N. I., Weiss, I. C., & Würbel, H. (2002). Dissociable effects of isolation rearing and environmental enrichment on exploration, spatial learning and HPA activity in adult rats. Pharmacology Biochemistry and Behavior, 73(1), 209–224. https://doi.org/10.1016/s0091-3057(02)00790-6Sellings, L. H. L., & Clarke, P. B. S. (2003). Segregation of Amphetamine Reward and Locomotor Stimulation between Nucleus Accumbens Medial Shell and Core. The Journal of Neuroscience, 23(15), 6295–6303. https://doi.org/10.1523/jneurosci.23-15-06295.2003Shepherd, J. D., & Huganir, R. L. (2007). The cell biology of synaptic plasticity: AMPA receptor trafficking. Annual Review of Cell and Developmental Biology, 23, 613–643. https://doi.org/10.1146/annurev.cellbio.23.090506.123516Shram, M. J., Funk, D., Li, Z., & Lê, A. D. (2006). Periadolescent and adult rats respond differently in tests measuring the rewarding and aversive effects of nicotine. Psychopharmacology, 186(2), 201–208. https://doi.org/10.1007/s00213-006-0373-8Shram, M. J., & Lê, A. D. (2010). Adolescent male Wistar rats are more responsive than adult rats to the conditioned rewarding effects of intravenously administered nicotine in the place conditioning procedure. Behavioural Brain Research, 206(2), 240–244. https://doi.org/10.1016/j.bbr.2009.09.018Sinclair, D., Purves-Tyson, T. D., Allen, K. M., & Weickert, C. S. (2014). Impacts of stress and sex hormones on dopamine neurotransmission in the adolescent brain. Psychopharmacology, 231(8), 1581–1599. https://doi.org/10.1007/s00213-013-3415-zSmail, M. A., Smith, B. L., Nawreen, N., & Herman, J. P. (2020). Differential impact of stress and environmental enrichment on corticolimbic circuits. Pharmacology Biochemistry and Behavior, 197, 172993. https://doi.org/10.1016/j.pbb.2020.172993Solano, J. L. (2019). MODULACIÓN DE LA RESPUESTA EMOCIONAL Y LA MEMORIA ESPACIAL EN LA ADULTEZ POR EXPOSICIÓN TEMPRANA A NICOTINA [Thesis].Solinas, M., Thiriet, N., Chauvet, C., & Jaber, M. (2010). Prevention and treatment of drug addiction by environmental enrichment. Progress in Neurobiology, 92(4), 572–592. https://doi.org/10.1016/j.pneurobio.2010.08.002Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience & Biobehavioral Reviews, 24(4), 417–463. https://doi.org/10.1016/s0149-7634(00)00014-2Tabbara, R. I., & Fletcher, P. J. (2019). Nicotine enhances responding for conditioned reinforcement via α4β2 nicotinic acetylcholine receptors in the ventral tegmental area, but not the nucleus accumbens or the prefrontal cortex. Neuropharmacology, 148, 68–76. https://doi.org/10.1016/j.neuropharm.2018.12.011Tan, H., Bishop, S. F., Lauzon, N. M., Sun, N., & Laviolette, S. R. (2009). Chronic nicotine exposure switches the functional role of mesolimbic dopamine transmission in the processing of nicotine’s rewarding and aversive effects. Neuropharmacology, 56(4), 741–751. https://doi.org/10.1016/j.neuropharm.2008.12.008Tarazi, F. I., & Baldessarini, R. J. (2000). Comparative postnatal development of dopamine D1, D2 and D4 receptors in rat forebrain. International Journal of Developmental Neuroscience, 18(1), 29–37. https://doi.org/10.1016/s0736-5748(99)00108-2Taylor, J. R., Lynch, W. J., Sanchez, H., Olausson, P., Nestler, E. J., & Bibb, J. A. (2007). Inhibition of Cdk5 in the nucleus accumbens enhances the locomotor-activating and incentive-motivational effects of cocaine. Proceedings of the National Academy of Sciences of the United States of America, 104(10), 4147–4152. https://doi.org/10.1073/pnas.0610288104Teegarden, S. L., Nestler, E. J., & Bale, T. L. (2008). ΔFosB-Mediated Alterations in Dopamine Signaling Are Normalized by a Palatable High-Fat Diet. Biological Psychiatry, 64(11), 941–950. https://doi.org/10.1016/j.biopsych.2008.06.007Thiel, K. J., Sanabria, F., & Neisewander, J. L. (2009). Synergistic interaction between nicotine and social rewards in adolescent male rats. Psychopharmacology, 204(3), 391–402. https://doi.org/10.1007/s00213-009-1470-2Thorpe, H. H. A., Hamidullah, S., Jenkins, B. W., & Khokhar, J. Y. (2020). Adolescent neurodevelopment and substance use: Receptor expression and behavioral consequences. Pharmacology & Therapeutics, 206, 107431. https://doi.org/10.1016/j.pharmthera.2019.107431Tirelli, E., Laviola, G., & Adriani, W. (2003). Ontogenesis of behavioral sensitization and conditioned place preference induced by psychostimulants in laboratory rodents. Neuroscience & Biobehavioral Reviews, 27(1-2), 163–178. https://doi.org/10.1016/s0149-7634(03)00018-6Torres, O., Tejeda, H., Natividad, L., & O’Dell, L. (2008). Enhanced vulnerability to the rewarding effects of nicotine during the adolescent period of development. Pharmacology Biochemistry and Behavior, 90(4), 658–663. https://doi.org/10.1016/j.pbb.2008.05.009Tzschentke, T. M. (2007). Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addiction Biology, 12(3-4), 227–462. https://doi.org/10.1111/j.1369-1600.2007.00070.xVargas-López, V., Lamprea, M. R., & Múnera, A. (2011). Characterizing spatial extinction in an abbreviated version of the Barnes maze. Behavioural Processes, 86(1), 30–38. https://doi.org/10.1016/j.beproc.2010.08.002Varty, G. B., Paulus, M. P., Braff, D. L., & Geyer, M. A. (2000). Environmental enrichment and isolation rearing in the rat: effects on locomotor behavior and startle response plasticity. Biological Psychiatry, 47(10), 864–873. https://doi.org/10.1016/s0006-3223(99)00269-3Vastola, B. J., Douglas, L. A., Varlinskaya, E. I., & Spear, L. P. (2002). Nicotine-induced conditioned place preference in adolescent and adult rats. Physiology & Behavior, 77(1), 107–114. https://doi.org/10.1016/s0031-9384(02)00818-1Venebra-Muñoz, A., Corona-Morales, A., Santiago-García, J., Melgarejo-Gutiérrez, M., Caba, M., & García-García, F. (2014). Enriched environment attenuates nicotine self-administration and induces changes in ΔFosB expression in the rat prefrontal cortex and nucleus accumbens. NeuroReport, 25(9), 688–692. https://doi.org/10.1097/wnr.0000000000000157Vialou, V., Bagot, R. C., Cahill, M. E., Ferguson, D., Robison, A. J., Dietz, D. M., Fallon, B., Mazei-Robison, M., Ku, S. M., Harrigan, E., Winstanley, C. A., Joshi, T., Feng, J., Berton, O., & Nestler, E. J. (2014). Prefrontal Cortical Circuit for Depression- and Anxiety-Related Behaviors Mediated by Cholecystokinin: Role of FosB. Journal of Neuroscience, 34(11), 3878–3887. https://doi.org/10.1523/jneurosci.1787-13.2014Vialou, V., Robison, A. J., LaPlant, Q. C., Covington, H. E., Dietz, D. M., Ohnishi, Y. N., Mouzon, E., Rush, A. J., Watts, E. L., Wallace, D. L., Iñiguez, S. D., Ohnishi, Y. H., Steiner, M. A., Warren, B. L., Krishnan, V., Bolaños, C. A., Neve, R. L., Ghose, S., Berton, O., & Tamminga, C. A. (2010). ΔFosB in brain reward circuits mediates resilience to stress and antidepressant responses. Nature Neuroscience, 13(6), 745–752. https://doi.org/10.1038/nn.2551Volkow, N. D., Wang, G.-J. . Fowler, J. S., Tomasi, D., & Telang, F. (2011). Addiction: Beyond dopamine reward circuitry. Proceedings of the National Academy of Sciences, 108(37), 15037–15042. https://doi.org/10.1073/pnas.1010654108Wahlstrom, D., White, T., & Luciana, M. (2010). Neurobehavioral evidence for changes in dopamine system activity during adolescence. Neuroscience & Biobehavioral Reviews, 34(5), 631–648. https://doi.org/10.1016/j.neubiorev.2009.12.007Wahlstrom, D., White, T., & Luciana, M. (2010). Neurobehavioral evidence for changes in dopamine system activity during adolescence. Neuroscience & Biobehavioral Reviews, 34(5), 631–648. https://doi.org/10.1016/j.neubiorev.2009.12.007Walker, D. M., Cunningham, A. M., Gregory, J. K., & Nestler, E. J. (2019). Long-Term Behavioral Effects of Post-weaning Social Isolation in Males and Females. Frontiers in Behavioral Neuroscience, 13. https://doi.org/10.3389/fnbeh.2019.00066Wang, Y.-C., Ho, U.-C., Ko, M.-C., Liao, C.-C., & Lee, L.-J. (2012). Differential neuronal changes in medial prefrontal cortex, basolateral amygdala and nucleus accumbens after postweaning social isolation. Brain Structure & Function, 217(2), 337–351. https://doi.org/10.1007/s00429-011-0355-4Watanasriyakul, W. T., Normann, M. C., Akinbo, O. I., Colburn, W., Dagner, A., & Grippo, A. J. (2019). Protective neuroendocrine effects of environmental enrichment and voluntary exercise against social isolation: evidence for mediation by limbic structures. Stress, 22(5), 603–618. https://doi.org/10.1080/10253890.2019.1617691Watterson, E., Daniels, C. W., Watterson, L. R., Mazur, G. J., Brackney, R. J., Olive, M. F., & Sanabria, F. (2015). Nicotine-induced place conditioning and locomotor activity in an adolescent animal model of attention deficit/hyperactivity disorder (ADHD). Behavioural Brain Research, 291, 184–188. https://doi.org/10.1016/j.bbr.2015.05.031Weissenborn, R., Robbins, T. W., & Everitt, B. J. (1997). Effects of medial prefrontal or anterior cingulate cortex lesions on responding for cocaine under fixed-ratio and second-order schedules of reinforcement in rats. Psychopharmacology, 134(3), 242–257. https://doi.org/10.1007/s002130050447Weiss, J. W., Mouttapa, M., Cen, S., Johnson, C. A., & Unger, J. (2011). Longitudinal Effects of Hostility, Depression, and Bullying on Adolescent Smoking Initiation. Journal of Adolescent Health, 48(6), 591–596. https://doi.org/10.1016/j.jadohealth.2010.09.012Werme, M., Messer, C., Olson, L., Gilden, L., Thorén, P., Nestler, E. J., & Brené, S. (2002). ΔFosBRegulates Wheel Running. The Journal of Neuroscience, 22(18), 8133–8138. https://doi.org/10.1523/jneurosci.22-18-08133.2002Whitaker, Leslie R., Degoulet, M., & Morikawa, H. (2013). Social Deprivation Enhances VTA Synaptic Plasticity and Drug-Induced Contextual Learning. Neuron, 77(2), 335–345. https://doi.org/10.1016/j.neuron.2012.11.022Wilar, G., Shinoda, Y., Sasaoka, T., & Fukunaga, K. (2019). Crucial Role of Dopamine D2 Receptor Signaling in Nicotine-Induced Conditioned Place Preference. Molecular Neurobiology, 56(12), 7911–7928. https://doi.org/10.1007/s12035-019-1635-xWolter, M. (2021). Neuropharmacological Mechanisms of Enhancement of Memory Consolidation by Nicotine, Cocaine, Heroin, and their Conditioned Stimuli (Doctoral dissertation, University of Guelph).Wongwitdecha, N., & Alexander Marsden, C. (1996). Effects of social isolation rearing on learning in the morris water maze. Brain Research, 715(1-2), 119–124. https://doi.org/10.1016/0006-8993(95)01578-7Yazdanfar, N., Farnam, A., Sadigh-Eteghad, S., Mahmoudi, J., & Sarkaki, A. (2021). Enriched environment and social isolation differentially modulate addiction-related behaviors in male offspring of morphine-addicted dams: The possible role of μ-opioid receptors and ΔFosB in the brain reward pathway. Brain Research Bulletin, 170, 98–105. https://doi.org/10.1016/j.brainresbull.2021.02.005Yuan, M., Cross, S. J., Loughlin, S. E., & Leslie, F. M. (2015). Nicotine and the adolescent brain. The Journal of Physiology, 593(16), 3397–3412. https://doi.org/10.1113/jp270492Zakharova, E., Miller, J., Unterwald, E., Wade, D., & Izenwasser, S. (2009). Social and physical environment alter cocaine conditioned place preference and dopaminergic markers in adolescent male rats. Neuroscience, 163(3), 890–897. https://doi.org/10.1016/j.neuroscience.2009.06.068Zarrindast, M. R., Aghamohammadi-Sereshki, A., Rezayof, A., & Rostami, P. (2012). Nicotine-induced anxiogenic-like behaviours of rats in the elevated plus-maze: possible role of NMDA receptors of the central amygdala. Journal of Psychopharmacology, 26(4), 555–563. https://doi.org/10.1177/0269881111412094Zhang, Y., Crofton, E. J., Li, D., Lobo, M. K., Fan, X., Nestler, E. J., & Green, T. A. (2014). Overexpression of DeltaFosB in nucleus accumbens mimics the protective addiction phenotype, but not the protective depression phenotype of environmental enrichment. Frontiers in Behavioral Neuroscience, 8. https://doi.org/10.3389/fnbeh.2014.00297Zhao-Shea, R., Liu, L., Soll, L. G., Improgo, M. R., Meyers, E. E., McIntosh, J. M., Grady, S. R., Marks, M. J., Gardner, P. D., & Tapper, A. R. (2011). Nicotine-Mediated Activation of Dopaminergic Neurons in Distinct Regions of the Ventral Tegmental Area. Neuropsychopharmacology, 36(5), 1021–1032. https://doi.org/10.1038/npp.2010.240Convocatoria pacto para la generación de nuevo conocimiento a través de proyectos de investigación científica en ciencias médicas y de la salud 2019 Proyecto Código 67701MincienciasEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84265/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1015448642_2023.pdf1015448642_2023.pdfTesis de Maestría en Psicologíaapplication/pdf2251025https://repositorio.unal.edu.co/bitstream/unal/84265/2/1015448642_2023.pdf16699fa4dad3612af78b0f23a3f8c61fMD52THUMBNAIL1015448642_2023.pdf.jpg1015448642_2023.pdf.jpgGenerated Thumbnailimage/jpeg4251https://repositorio.unal.edu.co/bitstream/unal/84265/3/1015448642_2023.pdf.jpg9e4b351fd20b693aec6733029f079847MD53unal/84265oai:repositorio.unal.edu.co:unal/842652024-08-12 23:11:27.408Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=