Estudio numerico de la interdepedencia de los numeros adimensionales Nusselt, Reynolds y Prandtl.

ilustraciones, gráficas

Autores:
Mendez Bohorquez, Miguel David
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82830
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82830
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física::532 - Mecánica de fluidos
530 - Física::536 - Calor
620 - Ingeniería y operaciones afines::621 - Física aplicada
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Análisis numérico
Numerical analysis
Transmisión del calor
Procesamiento de datos
Heat - Transmission
data processing
Convección de calor forzada
Flujo externo
Separación de flujo
Número de Reynolds
Número de Prandtl
Flujo incompresible
Heat Transfer Forced Convection
External flow
Flow separation
Reynolds number
Prandtl number
Large Eddy Simulations
Incompressible flow
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_d062efa61e2273462382a15c204d87f5
oai_identifier_str oai:repositorio.unal.edu.co:unal/82830
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estudio numerico de la interdepedencia de los numeros adimensionales Nusselt, Reynolds y Prandtl.
dc.title.translated.eng.fl_str_mv Numerical assessment of the interdependency of the non-dimensional numbers Nusselt, Reynolds and Prandtl.
title Estudio numerico de la interdepedencia de los numeros adimensionales Nusselt, Reynolds y Prandtl.
spellingShingle Estudio numerico de la interdepedencia de los numeros adimensionales Nusselt, Reynolds y Prandtl.
530 - Física::532 - Mecánica de fluidos
530 - Física::536 - Calor
620 - Ingeniería y operaciones afines::621 - Física aplicada
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Análisis numérico
Numerical analysis
Transmisión del calor
Procesamiento de datos
Heat - Transmission
data processing
Convección de calor forzada
Flujo externo
Separación de flujo
Número de Reynolds
Número de Prandtl
Flujo incompresible
Heat Transfer Forced Convection
External flow
Flow separation
Reynolds number
Prandtl number
Large Eddy Simulations
Incompressible flow
title_short Estudio numerico de la interdepedencia de los numeros adimensionales Nusselt, Reynolds y Prandtl.
title_full Estudio numerico de la interdepedencia de los numeros adimensionales Nusselt, Reynolds y Prandtl.
title_fullStr Estudio numerico de la interdepedencia de los numeros adimensionales Nusselt, Reynolds y Prandtl.
title_full_unstemmed Estudio numerico de la interdepedencia de los numeros adimensionales Nusselt, Reynolds y Prandtl.
title_sort Estudio numerico de la interdepedencia de los numeros adimensionales Nusselt, Reynolds y Prandtl.
dc.creator.fl_str_mv Mendez Bohorquez, Miguel David
dc.contributor.advisor.none.fl_str_mv Duque Daza, Carlos Alberto
Mantilla Gonzalez, Juan Miguel
dc.contributor.author.none.fl_str_mv Mendez Bohorquez, Miguel David
dc.contributor.researchgroup.spa.fl_str_mv Gnum Grupo de Modelado y Métodos Numericos en Ingeniería
dc.subject.ddc.spa.fl_str_mv 530 - Física::532 - Mecánica de fluidos
530 - Física::536 - Calor
620 - Ingeniería y operaciones afines::621 - Física aplicada
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 530 - Física::532 - Mecánica de fluidos
530 - Física::536 - Calor
620 - Ingeniería y operaciones afines::621 - Física aplicada
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Análisis numérico
Numerical analysis
Transmisión del calor
Procesamiento de datos
Heat - Transmission
data processing
Convección de calor forzada
Flujo externo
Separación de flujo
Número de Reynolds
Número de Prandtl
Flujo incompresible
Heat Transfer Forced Convection
External flow
Flow separation
Reynolds number
Prandtl number
Large Eddy Simulations
Incompressible flow
dc.subject.armarc.spa.fl_str_mv Análisis numérico
dc.subject.armarc.eng.fl_str_mv Numerical analysis
dc.subject.lemb.spa.fl_str_mv Transmisión del calor
Procesamiento de datos
dc.subject.lemb.eng.fl_str_mv Heat - Transmission
data processing
dc.subject.proposal.spa.fl_str_mv Convección de calor forzada
Flujo externo
Separación de flujo
Número de Reynolds
Número de Prandtl
Flujo incompresible
dc.subject.proposal.eng.fl_str_mv Heat Transfer Forced Convection
External flow
Flow separation
Reynolds number
Prandtl number
Large Eddy Simulations
Incompressible flow
description ilustraciones, gráficas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-12-01T17:16:14Z
dc.date.available.none.fl_str_mv 2022-12-01T17:16:14Z
dc.date.issued.none.fl_str_mv 2022-11-29
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82830
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82830
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ahmed, G. R. and Yovanovich, M. M. (1997). Experimental Study of Forced Convection From Isothermal Circular and Square Cylinders and Toroids. Journal of Heat Transfer, 119(1):70–79.
Bergman, T., Lavine, A., Incropera, F., and Dewitt, D. (2011). Fundamentals of Heat and Mass Transfer. John Wiley and Sons, 7th edition.
Çengel, Y. (1998). Heat Transfer: A Practical Approach. McGraw-Hill series in mechanical engineering. McGraw-Hill.
Chang, P. (1970). Separation of Flow. Commonwealth and International Library. History Division. Elsevier Science & Technology.
Dey, P. and Das, A. K. (2016). Heat Transfer Enhancement Around a Cylinder-A CFD Study of Effect of Corner Radius and Prandtl Number. International Journal of Chemical Reactor Engineering, 14(2):587–597.
Dhiman, A. K., Chhabra, R. P., Sharma, A., and Eswaran, V. (2006). Effects of reynolds and prandtl numbers on heat transfer across a square cylinder in the steady flow regime. Numerical Heat Transfer, Part A: Applications, 49:717–731.
Ducros, F., Nicoud, F., and Poinsot, T. (2007). Wall-adapting local eddy-viscosity models for simulations in complex geometries.
Eckert, E. R. G. (1950). Introduction to the Transfer of Heat and Mass. McGraw-Hill Book Company.
Gerbhardt, B. (1961). Heat Transfer. McGraw-Hill Book Company, New York.
Goldstein, R., Yoo, S., and Chung, M. (1990). Convective mass transfer from a square cylinder and its base plate. International Journal of Heat and Mass Transfer, 33(1):9–18.
Hilpert, R. (1933). Wärmeabgabe von geheizten Drähten und Rohren im Luftstrom. Fors- chung auf dem Gebiet des Ingenieurwesens., 4:215–224.
Hu, S. and Herold, K. E. (1995). Prandtl number effect on offset fin heat exchanger perfor- mance: experimental results. International Journal of Heat and Mass Transfer, 38(6):1053– 1061.
Igarashi, T. (1985). Heat transfer from a square prism to an air stream. International Journal of Heat and Mass Transfer, 28(1):175–181.
Jakob, M. (1949). Heat Transfer Volume 1. John Wiley and Sons, New York.
Joshi, H. M. and Webb, R. L. (1987). Heat transfer and friction in the offset stripfin heat exchanger. International Journal of Heat and Mass Transfer, 30(1):69–84.
Kapitz, M., Teigeler, C., Wagner, R., Helcig, C., and aus der Wiesche, S. (2018). Experimental study of the influence of the Prandtl number on the convective heat transfer from a square cylinder. International Journal of Heat and Mass Transfer, 120:471–480.
Knudsen, J. and Katz, D. (1959). Fluid Dynamics and Heat Transfer. McGraw-Hill Book Company, New York.
Kumar, R. S. and Jayavel, S. (2018). Forced Convective Air-Cooling Effect on Electronic Components of Different Geometries and Orientations at Flow Shedding Region. IEEE Transactions on Components, Packaging and Manufacturing Technology, 8(4):597–605.
Lienhard, J. I. and Lienhard, J. V. (2011). A Heat Transfer Textbook. Dove, New York, 4th edition.
Murmu, S. C., Bhattacharyya, S., Chattopadhyay, H., and Biswas, R. (2020). Analysis of heat transfer around bluff bodies with variable inlet turbulent intensity: A numerical simulation. International Communications in Heat and Mass Transfer, 117(August).
Pope, S. (2000). Turbulent Flows. Cambridge University Press.
Reiher, H. (1925). Der Wärmeubergang von stromender luft and rohrbundel in Kreuztrom. VDI Forschungsheft, 269:47
Sahu, A. K., Chhabra, R. P., and Eswaran, V. (2009). Effects of Reynolds and Prandtl numbers on heat transfer from a square cylinder in the unsteady flow regime. International Journal of Heat and Mass Transfer, 52(3-4):839–850.
Sharma, A. and Eswaran, V. (2004). Heat and fluid flow across a square cylinder in the two-dimensional laminar flow regime. Numerical Heat Transfer, Part A: Applications, 45:247–269.
Shyam, R. and Chhabra, R. P. (2013). Effect of Prandtl number on heat transfer from tandem square cylinders immersed in power-law fluids in the low Reynolds number regime. International Journal of Heat and Mass Transfer, 57(2):742–755.
Smith, R., Peters, C., and Inomata, H. (2013). Heat transfer and finite-difference methods.
Sparrow, E. M., Abraham, J. P., and Tong, J. C. (2004). Archival correlations for average heat transfer coefficients for non-circular and circular cylinders and for spheres in cross- flow. International Journal of Heat and Mass Transfer, 47(24):5285–5296.
White, F. (1999). Fluid Mechanics. McGraw-Hill International Editions. WCB/McGraw- Hill
Wieting, A. R. (1975). Empirical Correlations for Heat Transfer and Flow Friction Charac- teristics of Rectangular Offset-Fin Plate-Fin Heat Exchangers. Journal of Heat Transfer, 97(3):488–490.
Yousif, A. H. (2019). Effect of triangular splitter on heat transfer and fluid flow over triangu- lar cylinder. International Journal of Engineering Research and Technology, 12(12):2874– 2879.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvi, 83 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82830/4/1015442515.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82830/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82830/6/1015442515.2022.pdf.jpg
bitstream.checksum.fl_str_mv cce8da0c98f6101fbf15187f7c2bdef7
eb34b1cf90b7e1103fc9dfd26be24b4a
c3f83abae43ab8e1d3a13fec32352ce5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089214302617600
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Duque Daza, Carlos Alberto2af3fa9fc1551951a8ddefbc637c4cd8Mantilla Gonzalez, Juan Migueleb4fa2a83831797fa715ae0c48f3dbbfMendez Bohorquez, Miguel Davidab7c7c65c45222dae186f9fdf5d71789Gnum Grupo de Modelado y Métodos Numericos en Ingeniería2022-12-01T17:16:14Z2022-12-01T17:16:14Z2022-11-29https://repositorio.unal.edu.co/handle/unal/82830Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficasSe realizó un estudio numérico sobre la interrelación entre los números adimensioanles de Reynolds y Prandtl en situaciones de transferencia de calor por convección forzada en flujo externo. Para cada geometría se exploraron dos condiciones de flujo diferentes con el objetivo de recrear un conjunto amplio de escenarios de separación. Se hizo un estudio parametrico, utilizando cinco valores del número de Prandtl, entre 0.1 < Pr < 500, y cuatro valores del número de Reynolds, entre 10 < Re < 10000. El número de Nusselt local y promedio, en conjunto con perfiles de velocidad, coeficientes de presión y coeficientes de fricción fueron analizados. De los resultados se observó que los valores del número de Nusselt promediados en las caras tienen un valor máximo pra Pr = 50 entre 10 < Re < 1000. Para Re = 10000, la difusión térmica adquiere mayor relevancia y los valores máximos se desplazan hacia Pr = 5, en la mayoría de los casos, y Pr = 0.72 y Pr = 0.1 en casos puntuales. Con relación al comportamiento local, se observa que la aparición de los valores máximos o mínimos del número de Nusselt, se da en la vecindad de los puntos de separación del flujo, donde la aparición de vórtices influye en el posicionamiento de estos. Del estudio se infiere que, contrario a lo establecido por varios autores y en diferentes libros de texto, el exponente n = 1/3 para el número de Prandtl, en las correlaciones tipo ley de potencia del número de Nusselt, no describe completamente los fenómenos capturados para el conjunto de situaciones de flujo analizadas en este estudio. (Texto tomado de la fuente)A numerical study was done in order to assess the interrelationship between the nondimensional numbers Reynolds and Prandtl in the heat transfer forced convection around blunt bodies. For each case, two different flow conditions were explored in order to obtain a wide set of separation situations. A parametric study was carried out using five Prandtl numbers, between 0.1 < Pr < 500, and four Reynolds numbers, between 10 < Re < 10000$. The local and average Nusselt number was analyzed in conjunction with the velocity profiles, the pressure coefficient and surface shear stress coefficient. The averaged Nusselt over the studied faces showed a maximum value at Pr = 50 between 10 < Re < 1000. For Re = 10000, the thermal diffusivity was more relevant and the maximum values shifted to Pr = 5, in most of the cases, and Pr = 0.72 and Pr = 0.1 in less situations. From the local behavior was observed the apparition of relative extreme values in the neighborhood of the boundary layer detachment points, where the vortex formation influenced the positioning of these values. It can be inferred from the study that, contrary to what has been established by several authors and textbooks, the assumption for the exponent n = 1/3, in the Nusselt power lay correlations, do not fully describe the phenomena observed in the situations analyzed in this work.MaestríaMagíster en Ingeniería MecánicaTransferencia de calorMecánica de fluidosxvi, 83 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería MecánicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - Física::532 - Mecánica de fluidos530 - Física::536 - Calor620 - Ingeniería y operaciones afines::621 - Física aplicada620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaAnálisis numéricoNumerical analysisTransmisión del calorProcesamiento de datosHeat - Transmissiondata processingConvección de calor forzadaFlujo externoSeparación de flujoNúmero de ReynoldsNúmero de PrandtlFlujo incompresibleHeat Transfer Forced ConvectionExternal flowFlow separationReynolds numberPrandtl numberLarge Eddy SimulationsIncompressible flowEstudio numerico de la interdepedencia de los numeros adimensionales Nusselt, Reynolds y Prandtl.Numerical assessment of the interdependency of the non-dimensional numbers Nusselt, Reynolds and Prandtl.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAhmed, G. R. and Yovanovich, M. M. (1997). Experimental Study of Forced Convection From Isothermal Circular and Square Cylinders and Toroids. Journal of Heat Transfer, 119(1):70–79.Bergman, T., Lavine, A., Incropera, F., and Dewitt, D. (2011). Fundamentals of Heat and Mass Transfer. John Wiley and Sons, 7th edition.Çengel, Y. (1998). Heat Transfer: A Practical Approach. McGraw-Hill series in mechanical engineering. McGraw-Hill.Chang, P. (1970). Separation of Flow. Commonwealth and International Library. History Division. Elsevier Science & Technology.Dey, P. and Das, A. K. (2016). Heat Transfer Enhancement Around a Cylinder-A CFD Study of Effect of Corner Radius and Prandtl Number. International Journal of Chemical Reactor Engineering, 14(2):587–597.Dhiman, A. K., Chhabra, R. P., Sharma, A., and Eswaran, V. (2006). Effects of reynolds and prandtl numbers on heat transfer across a square cylinder in the steady flow regime. Numerical Heat Transfer, Part A: Applications, 49:717–731.Ducros, F., Nicoud, F., and Poinsot, T. (2007). Wall-adapting local eddy-viscosity models for simulations in complex geometries.Eckert, E. R. G. (1950). Introduction to the Transfer of Heat and Mass. McGraw-Hill Book Company.Gerbhardt, B. (1961). Heat Transfer. McGraw-Hill Book Company, New York.Goldstein, R., Yoo, S., and Chung, M. (1990). Convective mass transfer from a square cylinder and its base plate. International Journal of Heat and Mass Transfer, 33(1):9–18.Hilpert, R. (1933). Wärmeabgabe von geheizten Drähten und Rohren im Luftstrom. Fors- chung auf dem Gebiet des Ingenieurwesens., 4:215–224.Hu, S. and Herold, K. E. (1995). Prandtl number effect on offset fin heat exchanger perfor- mance: experimental results. International Journal of Heat and Mass Transfer, 38(6):1053– 1061.Igarashi, T. (1985). Heat transfer from a square prism to an air stream. International Journal of Heat and Mass Transfer, 28(1):175–181.Jakob, M. (1949). Heat Transfer Volume 1. John Wiley and Sons, New York.Joshi, H. M. and Webb, R. L. (1987). Heat transfer and friction in the offset stripfin heat exchanger. International Journal of Heat and Mass Transfer, 30(1):69–84.Kapitz, M., Teigeler, C., Wagner, R., Helcig, C., and aus der Wiesche, S. (2018). Experimental study of the influence of the Prandtl number on the convective heat transfer from a square cylinder. International Journal of Heat and Mass Transfer, 120:471–480.Knudsen, J. and Katz, D. (1959). Fluid Dynamics and Heat Transfer. McGraw-Hill Book Company, New York.Kumar, R. S. and Jayavel, S. (2018). Forced Convective Air-Cooling Effect on Electronic Components of Different Geometries and Orientations at Flow Shedding Region. IEEE Transactions on Components, Packaging and Manufacturing Technology, 8(4):597–605.Lienhard, J. I. and Lienhard, J. V. (2011). A Heat Transfer Textbook. Dove, New York, 4th edition.Murmu, S. C., Bhattacharyya, S., Chattopadhyay, H., and Biswas, R. (2020). Analysis of heat transfer around bluff bodies with variable inlet turbulent intensity: A numerical simulation. International Communications in Heat and Mass Transfer, 117(August).Pope, S. (2000). Turbulent Flows. Cambridge University Press.Reiher, H. (1925). Der Wärmeubergang von stromender luft and rohrbundel in Kreuztrom. VDI Forschungsheft, 269:47Sahu, A. K., Chhabra, R. P., and Eswaran, V. (2009). Effects of Reynolds and Prandtl numbers on heat transfer from a square cylinder in the unsteady flow regime. International Journal of Heat and Mass Transfer, 52(3-4):839–850.Sharma, A. and Eswaran, V. (2004). Heat and fluid flow across a square cylinder in the two-dimensional laminar flow regime. Numerical Heat Transfer, Part A: Applications, 45:247–269.Shyam, R. and Chhabra, R. P. (2013). Effect of Prandtl number on heat transfer from tandem square cylinders immersed in power-law fluids in the low Reynolds number regime. International Journal of Heat and Mass Transfer, 57(2):742–755.Smith, R., Peters, C., and Inomata, H. (2013). Heat transfer and finite-difference methods.Sparrow, E. M., Abraham, J. P., and Tong, J. C. (2004). Archival correlations for average heat transfer coefficients for non-circular and circular cylinders and for spheres in cross- flow. International Journal of Heat and Mass Transfer, 47(24):5285–5296.White, F. (1999). Fluid Mechanics. McGraw-Hill International Editions. WCB/McGraw- HillWieting, A. R. (1975). Empirical Correlations for Heat Transfer and Flow Friction Charac- teristics of Rectangular Offset-Fin Plate-Fin Heat Exchangers. Journal of Heat Transfer, 97(3):488–490.Yousif, A. H. (2019). Effect of triangular splitter on heat transfer and fluid flow over triangu- lar cylinder. International Journal of Engineering Research and Technology, 12(12):2874– 2879.EstudiantesInvestigadoresMaestrosORIGINAL1015442515.2022.pdf1015442515.2022.pdfTesis de Maestría en Ingeniería Mecánicaapplication/pdf11971712https://repositorio.unal.edu.co/bitstream/unal/82830/4/1015442515.2022.pdfcce8da0c98f6101fbf15187f7c2bdef7MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82830/5/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD55THUMBNAIL1015442515.2022.pdf.jpg1015442515.2022.pdf.jpgGenerated Thumbnailimage/jpeg4626https://repositorio.unal.edu.co/bitstream/unal/82830/6/1015442515.2022.pdf.jpgc3f83abae43ab8e1d3a13fec32352ce5MD56unal/82830oai:repositorio.unal.edu.co:unal/828302023-08-11 23:04:27.642Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=