Metanación de CO2 sobre catalizadores básicos promovidos con CeO2
La reacción de metanacion de CO2 es una tecnología promisoria para el almacenamiento químico de energía a partir de H2 y CO2. Con el desarrollo del siguiente trabajo de grado se sinterizaron catalizadores de naturaleza básica tipo óxidos mixtos (OM) de CaCe y MgCe promovidos con cantidades nominales...
- Autores:
-
Osorio Restrepo, Ederson Arnedt
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79365
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/79365
- Palabra clave:
- 540 - Química y ciencias afines::547 - Química orgánica
Catálisis
Catalysis
Conversión de CO2
Metanacion de CO2
Promotor de CeO2
CO2 conversion
CO2 methanation
CeO2 promoter
Biogás
Biogas
Fuente de energía renovable
Alternative energy sources
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_cffa37c7c19faa41c7895d4e5d37dd7a |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79365 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Metanación de CO2 sobre catalizadores básicos promovidos con CeO2 |
title |
Metanación de CO2 sobre catalizadores básicos promovidos con CeO2 |
spellingShingle |
Metanación de CO2 sobre catalizadores básicos promovidos con CeO2 540 - Química y ciencias afines::547 - Química orgánica Catálisis Catalysis Conversión de CO2 Metanacion de CO2 Promotor de CeO2 CO2 conversion CO2 methanation CeO2 promoter Biogás Biogas Fuente de energía renovable Alternative energy sources |
title_short |
Metanación de CO2 sobre catalizadores básicos promovidos con CeO2 |
title_full |
Metanación de CO2 sobre catalizadores básicos promovidos con CeO2 |
title_fullStr |
Metanación de CO2 sobre catalizadores básicos promovidos con CeO2 |
title_full_unstemmed |
Metanación de CO2 sobre catalizadores básicos promovidos con CeO2 |
title_sort |
Metanación de CO2 sobre catalizadores básicos promovidos con CeO2 |
dc.creator.fl_str_mv |
Osorio Restrepo, Ederson Arnedt |
dc.contributor.advisor.none.fl_str_mv |
Daza Velasquez, Carlos Enrique |
dc.contributor.author.none.fl_str_mv |
Osorio Restrepo, Ederson Arnedt |
dc.contributor.researchgroup.spa.fl_str_mv |
Estado Sólido y Catálisis Ambiental |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines::547 - Química orgánica |
topic |
540 - Química y ciencias afines::547 - Química orgánica Catálisis Catalysis Conversión de CO2 Metanacion de CO2 Promotor de CeO2 CO2 conversion CO2 methanation CeO2 promoter Biogás Biogas Fuente de energía renovable Alternative energy sources |
dc.subject.other.none.fl_str_mv |
Catálisis Catalysis |
dc.subject.proposal.spa.fl_str_mv |
Conversión de CO2 Metanacion de CO2 Promotor de CeO2 |
dc.subject.proposal.eng.fl_str_mv |
CO2 conversion CO2 methanation CeO2 promoter |
dc.subject.unesco.none.fl_str_mv |
Biogás Biogas Fuente de energía renovable Alternative energy sources |
description |
La reacción de metanacion de CO2 es una tecnología promisoria para el almacenamiento químico de energía a partir de H2 y CO2. Con el desarrollo del siguiente trabajo de grado se sinterizaron catalizadores de naturaleza básica tipo óxidos mixtos (OM) de CaCe y MgCe promovidos con cantidades nominales de CeO2 de 3 y 5 % en masa, por el método de coprecipitación. Las técnicas de caracterización a los cuales fueron sometidos revelaron diferencia entre las propiedades físicas de los sólidos, para el caso de los OM CaCe se presentan áreas superficiales, tamaños de cristalito y de partícula inferiores los determinados para los OM MgCe. Por otra parte, con la incorporación de CeO2 a los OM se observaron tendencias decrecientes en el tamaño de cristalito y en el tamaño de partícula de los OM, solo las propiedades reductivas de los OM MgCe se afectaron obteniendo un descenso en el porcentaje de reducibilidad de los sólidos, adicionalmente, el estudio de espectroscopia IR de reflectancia difusa, muestra un aumento en los sitios de adsorción de CO2, a la par con el incremento en la cantidad de promotor adicionado y de acuerdo a las bandas formadas sobre los OM se sugiere que la ruta de metanacion de CO2 para los OM sintetizados es la ruta del formiato Los resultados de la actividad catalítica muestran que los todos los OM presentan una mayor conversión de CO2 a bajas temperatura en comparación con el sólido de referencia de Ni/γAl2O3 y una selectividad del 100% a la formación de CH4 bajo las condiciones de WHSV= 60000 mLg-1h-1, el incremento de la velocidad espacial genera una fuerte disminución en la conversión de CO2 y un aumento en la selectividad a CO, sin embargo, se aprecia una conversión mayor a medida que el contenido del promotor es mayor. Los ensayos de estabilidad indican que lo OM MgCe son estable y no presentan formación de depósitos de coque, en contraste, a los OM CaCe se forman depósitos de carbono, pero en menor medida en el OM con promotor. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-03-19T16:45:22Z |
dc.date.available.none.fl_str_mv |
2021-03-19T16:45:22Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79365 |
url |
https://repositorio.unal.edu.co/handle/unal/79365 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[1] B.P. Foundation, Territorial emissions in MtCO2, Glob. Carbon Atlas. (n.d.). http://www.globalcarbonatlas.org/en/CO2-emissions (accessed July 23, 2020). [2] N. National Oceanic and Atmospheric Administration, Trends in Atmospheric Carbon Dioxide, (2020). https://www.esrl.noaa.gov/gmd/ccgg/trends/history.html (accessed August 4, 2020). [3] P. Tans, R. Keeling, Trends in Atmospheric Carbon Dioxide, NOAA/GML Scripps Inst. Oceanogr. (2020) 1. https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html (accessed July 17, 2020). [4] IPCC, Global Warming of 1.5°C. Summary for Policymakers, (2018) 34. http://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf (accessed October 15, 2018). [5] IPCC, Comunicado de presa, (2018) 1–5. https://www.ipcc.ch/pdf/session48/pr_181008_P48_spm_es.pdf (accessed October 15, 2018). [6] M. Henriques, Will Covid-19 have a lasting impact on the environment?, BBC Futur. (2020). [7] D. Cucinotta, M. Vanelli, WHO declares COVID-19 a pandemic, Acta Biomed. 91 (2020) 157–160. doi:10.23750/abm.v91i1.9397. [8] R. Román, J.M. Cansino, J.A. Rodas, Analysis of the main drivers of CO2 emissions changes in Colombia (1990–2012) and its political implications, Renew. Energy. 116 (2018) 402–411. doi:10.1016/j.renene.2017.09.016. [9] IDEAM, PNUD, MADS, DNP, CANCILLERIA, Inventario Nacional Y Departamental De Gases Efecto Invernadero - Colombia, Bogotá, 2016. http://documentacion.ideam.gov.co/openbiblio/bvirtual/023634/INGEI.pdf. [10] S. Calderón, A.C. Alvarez, A.M. Loboguerrero, S. Arango, K. Calvin, T. Kober, K. Daenzer, K. Fisher-Vanden, Achieving CO2 reductions in Colombia: Effects of carbon taxes and abatement targets, Energy Econ. 56 (2014) 575–586. doi:10.1016/j.eneco.2015.05.010. [11] W. Wang, J. Gong, Methanation of carbon dioxide: An overview, Front. Chem. Eng. China. 5 (2011) 2–10. doi:10.1007/s11705-010-0528-3. [12] E. Baraj, S. Vagaský, T. Hlinčik, K. Ciahotný, V. Tekáč, Reaction mechanisms of carbon dioxide methanation, Chem. Pap. 70 (2016) 395–403. doi:10.1515/chempap- 2015-0216. [13] P. Frontera, A. Macario, M. Ferraro, P.L. Antonucci, Supported catalysts for CO2 methanation: A review, Catalysts. 7 (2017) 1–28. doi:10.3390/catal7020059. [14] M. Younas, L. Loong Kong, M.J.K. Bashir, H. Nadeem, A. Shehzad, S. Sethupathi, Recent Advancements, Fundamental Challenges, and Opportunities in Catalytic Methanation of CO2, Energy and Fuels. 30 (2016) 8815–8831. doi:10.1021/acs.energyfuels.6b01723. [15] H. Lu, X. Yang, G. Gao, J. Wang, C. Han, X. Liang, C. Li, Y. Li, W. Zhang, X. Chen, Metal (Fe, Co, Ce or La) doped nickel catalyst supported on ZrO2 modified mesoporous clays for CO and CO2 methanation, Fuel. 183 (2016) 335–344. doi:10.1016/j.fuel.2016.06.084. [16] J.J. Bravo-Suárez, R. V. Chaudhari, B. Subramaniam, Design of heterogeneous catalysts for fuels and chemicals processing: An overview, ACS Symp. Ser. 1132 (2013) 3–68. doi:10.1021/bk-2013-1132.ch001. [17] D.P.M.S.M.D.R.J.M.D.D.R. Rosseinsky, Metal Oxides, in: Electrochromism, 2007: pp. 59–92. doi:10.1002/9783527615377.ch4. [18] B. Solsona, P. Concepción, S. Hernández, B. Demicol, J.M.L. Nieto, Oxidative dehydrogenation of ethane over NiO-CeO2 mixed oxides catalysts, Catal. Today. 180 (2012) 51–58. doi:10.1016/j.cattod.2011.03.056. [19] O. Cairon, E. Dumitriu, C. Guimon, Acido-basicity of Mg-Ni-Al mixed oxides from LDH precursors: A FTIR and XPS study, J. Phys. Chem. C. 111 (2007) 8015–8023. doi:10.1021/jp0673011. [20] D. Wierzbicki, R. Debek, M. Motak, T. Grzybek, M.E. Gálvez, P. Da Costa, Novel Ni- La-hydrotalcite derived catalysts for CO2 methanation, Catal. Commun. 83 (2016) 5– 8. doi:10.1016/j.catcom.2016.04.021. [21] S. Tada, S. Ikeda, N. Shimoda, T. Honma, M. Takahashi, A. Nariyuki, S. Satokawa, Sponge Ni catalyst with high activity in CO2 methanation, Int. J. Hydrogen Energy. 42 (2017) 30126–30134. doi:10.1016/j.ijhydene.2017.10.138. [22] T.A. Le, M.S. Kim, S.H. Lee, T.W. Kim, E.D. Park, CO and CO2 methanation over supported Ni catalysts, Catal. Today. 293–294 (2017) 89–96. doi:10.1016/j.cattod.2016.12.036. [23] N. Von Der Assen, L.J. Müller, A. Steingrube, P. Voll, A. Bardow, Selecting CO2 sources for CO2 Utilization by Environmental-Merit-Order Curves, Environ. Sci. Technol. 50 (2016) 1093–1101. doi:10.1021/acs.est.5b03474. [24] J.I. Mikayilov, M. Galeotti, F.J. Hasanov, The impact of economic growth on CO2 emissions in Azerbaijan, J. Clean. Prod. 197 (2018) 1558–1572. doi:10.1016/j.jclepro.2018.06.269. [25] J.D.S. Pueyo, La cobertura de la Cumbre del Clima Chile Madrid COP25 en los informativos de la radio española The coverage of the Chile Madrid COP25 Climate Summit on the news of the Spanish radio stations, AdComunica. Rev. Científica Del Estrategias, Tendencias e Innovación En Comun. 20 (2020) 205–230. doi:http://dx.doi.org/10.6035/2174-0992.2020.20.9. [26] B.N. Mundo, COP25: 3 claves del polémico nuevo acuerdo por el clima (y por qué dicen que fracasó) - BBC News Mundo, BBC News. (2019). https://www.bbc.com/mundo/noticias-internacional-50800493 (accessed August 4, 2020). [27] X. Xu, X. Xu, Q. Chen, Y. Che, The impacts on CO2 emission reduction and haze by coal resource tax reform based on dynamic CGE model, Resour. Policy. 58 (2018) 268–276. doi:10.1016/j.resourpol.2018.05.015. [28] S.T.T. Piers M. Forster, Harriet I. Forster, Mat J. Evans, Matthew J. Gidden, Chris D. Jones, Christoph A. Keller, Robin Lamboll, Corinne Le Quéré, Joeri Rogelj, Deborah Rosen, Carl-Friedrich Schleussner, Thomas B. Richardson, Christopher J. Smith, Current and future global climate impacts resulting from COVID-19, Nat. Clim. Chang. (2020) 1–15. doi:10.1017/CBO9781107415324.004. [29] C. Le Quéré, R.B. Jackson, M.W. Jones, A.J.P. Smith, S. Abernethy, R.M. Andrew, A.J. De-Gol, D.R. Willis, Y. Shan, J.G. Canadell, P. Friedlingstein, F. Creutzig, G.P. Peters, Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement, Nat. Clim. Chang. 10 (2020) 647–653. doi:10.1038/s41558-020- 0797-x. [30] N. Abas, N. Khan, A. Haider, S. Iqbal, M. Shahbaz, CO2 utilization drivers, opportunities and conversion challenges, Ref. Modul. Mater. Sci. Mater. Eng. (2018). doi:10.1016/B978-0-12-803581-8.10494-1. [31] M. Aresta, A. Dibenedetto, A. Angelini, The changing paradigm in CO2 utilization, J. CO2 Util. 3–4 (2013) 65–73. doi:10.1016/j.jcou.2013.08.001. [32] E.I. Koytsoumpa, C. Bergins, E. Kakaras, The CO2 economy: Review of CO2 capture and reuse technologies, J. Supercrit. Fluids. 132 (2018) 3–16. doi:10.1016/j.supflu.2017.07.029. [33] C.H. Yu, C.H. Huang, C.S. Tan, A review of CO2 capture by absorption and adsorption, Aerosol Air Qual. Res. 12 (2012) 745–769. doi:10.4209/aaqr.2012.05.0132. [34] R.J. Perry, J.L. Davis, CO2 capture using solutions of alkanolamines and aminosilicones, Energy and Fuels. 26 (2012) 2512–2517. doi:10.1021/ef201963m. [35] A.E. Creamer, B. Gao, Carbon-based adsorbents for postcombustion CO2 capture: A critical review, Environ. Sci. Technol. 50 (2016) 7276–7289. doi:10.1021/acs.est.6b00627. [36] M. Songolzadeh, M.T. Ravanchi, M. Soleimani, Carbon Dioxide Capture and Storage : A General Review on Adsorbents, 6 (2012) 900–907. [37] Q. Wang, J. Luo, Z. Zhong, A. Borgna, CO2 capture by solid adsorbents and their applications: Current status and new trends, Energy Environ. Sci. 4 (2011) 42–55. doi:10.1039/c0ee00064g. [38] J. Miranda-Pizarro, A. Perejón, J.M. Valverde, L.A. Pérez-Maqueda, P.E. Sánchez- Jiménez, CO2 capture performance of Ca-Mg acetates at realistic Calcium Looping conditions, Fuel. 196 (2017) 497–507. doi:10.1016/j.fuel.2017.01.119. [39] J.M. Valverde, P.E. Sanchez-Jimenez, A. Perejon, L.A. Perez-Maqueda, Constant rate thermal analysis for enhancing the long-term CO2 capture of CaO at Ca-looping conditions, Appl. Energy. 108 (2013) 108–120. doi:10.1016/j.apenergy.2013.03.013 [40] E.J. (Ben) Anthony, Ca looping technology : current status , developments and future directions, Greenh. Gases Sci. Technol. 47 (2011) 36–47. doi:10.1002/ghg3. [41] M. Aresta, A. Dibenedetto, A. Angelini, From CO2 to Chemicals, Materials, and Fuels: The Role of Catalysis, Encycl. Inorg. Bioinorg. Chem. (2014) 1–18. doi:10.1002/9781119951438.eibc2257. [42] M. Aresta, A. Dibenedetto, A. Angelini, The changing paradigm in CO2 utilization, J. CO2 Util. 3–4 (2013) 65–73. doi:10.1016/j.jcou.2013.08.001. [43] G. Ibram, Solar fuels vis-à-vis electricity generation from sunlight: The current state- of-the-art (a review), Renew. Sustain. Energy Rev. 44 (2015) 904–932. doi:10.1016/j.rser.2015.01.019. [44] M. Aresta, A. Dibenedetto, Industrial utilization of carbon dioxide (CO2), Dev. Innov. Carbon Dioxide (Co. 2 (2010) 377–410. doi:10.1533/9781845699581.4.377. [45] C.H. Huang, C.S. Tan, A review: CO2 utilization, Aerosol Air Qual. Res. 14 (2014) 480–499. doi:10.4209/aaqr.2013.10.0326. [46] E. Alper, O.Y. Orhan, CO2 utilization: Developments in conversion processes, Petroleum. 3 (2017) 109–126. doi:10.1016/J.PETLM.2016.11.003. [47] A. Lewandowska-Bernat, U. Desideri, Opportunities of power-to-gas technology in different energy systems architectures, Appl. Energy. 228 (2018) 57–67. doi:10.1016/j.apenergy.2018.06.001. [48] R. Peters, M. Baltruweit, T. Grube, R.C. Samsun, D. Stolten, A techno economic analysis of the power to gas route, J. CO2 Util. 34 (2019) 616–634. doi:10.1016/j.jcou.2019.07.009. [49] M. Götz, J. Lefebvre, F. Mörs, A. McDaniel Koch, F. Graf, S. Bajohr, R. Reimert, T. Kolb, Renewable Power-to-Gas: A technological and economic review, Renew. Energy. 85 (2016) 1371–1390. doi:10.1016/j.renene.2015.07.066. [50] S. Schiebahn, T. Grube, M. Robinius, V. Tietze, B. Kumar, D. Stolten, Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany, Int. J. Hydrogen Energy. 40 (2015) 4285–4294. doi:10.1016/j.ijhydene.2015.01.123. [51] C. Vogt, M. Monai, G.J. Kramer, B.M. Weckhuysen, The renaissance of the Sabatier reaction and its applications on Earth and in space, Nat. Catal. 2 (2019) 188–197. doi:10.1038/s41929-019-0244-4. [52] D. Hidalgo, J.M. Martín-Marroquín, Power-to-methane, coupling CO2 capture with fuel production: An overview, Renew. Sustain. Energy Rev. 132 (2020) 110057. doi:10.1016/j.rser.2020.110057. [53] T.A. Le, T.W. Kim, S.H. Lee, E.D. Park, CO and CO2 methanation over Ni catalysts supported on alumina with different crystalline phases, Korean J. Chem. Eng. 34 (2017) 3085–3091. doi:10.1007/s11814-017-0257-0. [54] K. Ghaib, K. Nitz, F.-Z. Ben-Fares, Chemical Methanation of CO2: A Review , ChemBioEng Rev. 3 (2016) 266–275. doi:10.1002/cben.201600022. [55] J. Gao, Y. Wang, Y. Ping, D. Hu, G. Xu, F. Gu, F. Su, A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas, RSC Adv. 2 (2012) 2358–2368. doi:10.1039/c2ra00632d [56] B. Miao, S.S.K. Ma, X. Wang, H. Su, S.H. Chan, Catalysis mechanisms of CO2 and CO methanation, Catal. Sci. Technol. 6 (2016) 4048–4058. doi:10.1039/c6cy00478d. [57] A. Westermann, B. Azambre, M.C. Bacariza, I. Graça, M.F. Ribeiro, J.M. Lopes, C. Henriques, Insight into CO2 methanation mechanism over NiUSY zeolites: An operando IR study, Appl. Catal. B Environ. 174–175 (2015) 120–125. doi:10.1016/j.apcatb.2015.02.026. [58] A. Solis-Garcia, J.C. Fierro-Gonzalez, Mechanistic Insights into the CO2 Methanation Catalyzed by Supported Metals: A Review , J. Nanosci. Nanotechnol. 19 (2019) 3110–3123. doi:10.1166/jnn.2019.16606. [59] X. Wang, H. Shi, J.H. Kwak, J. Szanyi, Mechanism of CO2 Hydrogenation on Pd/Al2O3 Catalysts: Kinetics and Transient DRIFTS-MS Studies, ACS Catal. 5 (2015) 6337–6349. doi:10.1021/acscatal.5b01464. [60] M.Y. Shahul Hamid, S. Triwahyono, A.A. Jalil, N.W. Che Jusoh, S.M. Izan, T.A. Tuan Abdullah, Tailoring the Properties of Metal Oxide Loaded/KCC-1 toward a Different Mechanism of CO2 Methanation by in Situ IR and ESR, Inorg. Chem. 57 (2018) 5859–5869. doi:10.1021/acs.inorgchem.8b00241. [61] A. Beuls, C. Swalus, M. Jacquemin, G. Heyen, A. Karelovic, P. Ruiz, Methanation of CO2: Further insight into the mechanism over Rh/γ-Al2O3 catalyst, Appl. Catal. B Environ. 113–114 (2012) 2–10. doi:10.1016/j.apcatb.2011.02.033. [62] S. Eckle, H. Anfang, R. Ju, Reaction intermediates and side products in the methanation of CO and CO2 over supported Ru catalysts in H2 -Rich reformate gases, (2011) 1361–1367. [63] S. Rönsch, J. Schneider, S. Matthischke, M. Schlüter, M. Götz, J. Lefebvre, P. Prabhakaran, S. Bajohr, Review on methanation - From fundamentals to current projects, Fuel. 166 (2016) 276–296. doi:10.1016/j.fuel.2015.10.111 [64] M. Younas, L. Loong Kong, M.J.K. Bashir, H. Nadeem, A. Shehzad, S. Sethupathi, Recent Advancements, Fundamental Challenges, and Opportunities in Catalytic Methanation of CO2, Energy and Fuels. 30 (2016) 8815–8831. doi:10.1021/acs.energyfuels.6b01723. [65] Y. Cao, H. Li, J. Zhang, L. Shi, D. Zhang, Promotional effects of rare earth elements (Sc, Y, Ce, and Pr) on NiMgAl catalysts for dry reforming of methane, RSC Adv. 6 (2016) 112215–112225. doi:10.1039/c6ra19139h. [66] L. Karam, M.C. Bacariza, J.M. Lopes, C. Henriques, P. Massiani, N. El Hassan, Assessing the potential of xNi-yMg-Al2O3 catalysts prepared by EISA-one-pot synthesis towards CO2 methanation: An overall study, Int. J. Hydrogen Energy. (2020). doi:10.1016/j.ijhydene.2020.07.170. [67] L. Zhang, X. Wang, C. Chen, X. Zou, X. Shang, W. Ding, X. Lu, Investigation of mesoporous NiAl2O4/MO: X (M = La, Ce, Ca, Mg)-γ-Al2O3 nanocomposites for dry reforming of methane, RSC Adv. 7 (2017) 33143–33154. doi:10.1039/c7ra04497f. [68] R. Daroughegi, F. Meshkani, M. Rezaei, Enhanced activity of CO2 methanation over mesoporous nanocrystalline Ni–Al2O3 catalysts prepared by ultrasound-assisted co- precipitation method, Int. J. Hydrogen Energy. 42 (2017) 15115–15125. doi:10.1016/j.ijhydene.2017.04.244. [69] N.A.A. Fatah, A.A. Jalil, N.F.M. Salleh, M.Y.S. Hamid, Z.H. Hassan, M.G.M. Nawawi, Elucidation of cobalt disturbance on Ni/Al2O3 in dissociating hydrogen towards improved CO2 methanation and optimization by response surface methodology (RSM), Int. J. Hydrogen Energy. 45 (2020) 18562–18573. doi:10.1016/j.ijhydene.2019.04.119. [70] E. Marconi, S. Tuti, I. Luisetto, Structure-sensitivity of CO2 methanation over nanostructured Ni supported on CeO2 nanorods, Catalysts. 9 (2019) 1–13. doi:10.3390/catal9040375. [71] J.C. Védrine, Heterogeneous catalysis on metal oxides, Catalysts. 7 (2017). doi:10.3390/catal7110341. [72] U.P.M. Ashik, S. Kudo, J. Hayashi, An Overview of Metal Oxide Nanostructures, Elsevier Ltd., 2018. doi:10.1016/b978-0-08-101975-7.00002-6. [73] J.C. Védrine, Metal Oxides in Heterogeneous Oxidation Catalysis: State of the Art and Challenges for a More Sustainable World, ChemSusChem. 12 (2019) 577–588. doi:10.1002/cssc.201802248. [74] H. Dong, A. Wang, G.M. Koenig, Role of coprecipitation and calcination of precursors on phase homogeneity and electrochemical properties of battery active materials, Powder Technol. 335 (2018) 137–146. doi:10.1016/j.powtec.2018.05.020. [75] T. Ahn, J.H. Kim, H.M. Yang, J.W. Lee, J.D. Kim, Formation pathways of magnetite nanoparticles by coprecipitation method, J. Phys. Chem. C. 116 (2012) 6069–6076. doi:10.1021/jp211843g. [76] W.M. Rangel, R.A.A. Boca Santa, H.G. Riella, A facile method for synthesis of nanostructured copper (II) oxide by coprecipitation, J. Mater. Res. Technol. 9 (2020) 994–1004. doi:10.1016/j.jmrt.2019.11.039. [77] M.K. Zate, S.D. Raut, S.D. Shirsat, S. Sangale, A.S. Kadam, Ferrite nanostructures, Elsevier Inc., 2020. doi:10.1016/b978-0-12-819237-5.00002-x. [78] A. Karatutlu, A. Barhoum, A. Sapelkin, Liquid-phase synthesis of nanoparticles and nanostructured materials, Elsevier Inc., 2018. doi:10.1016/B978-0-323-51254- 1.00001-4. [79] P. Munnik, P.E. De Jongh, K.P. De Jong, Recent Developments in the Synthesis of Supported Catalysts, Chem. Rev. 115 (2015) 6687–6718. doi:10.1021/cr500486u. [80] Y.C. Sharma, B. Singh, J. Korstad, Latest developments on application of heterogenous basic catalysts for an efficient and eco friendly synthesis of biodiesel: A review, Fuel. 90 (2011) 1309–1324. doi:10.1016/j.fuel.2010.10.015. [81] N. Oueda, Y.L. Bonzi-Coulibaly, I.W.K. Ouédraogo, Deactivation Processes, Regeneration Conditions and Reusability Performance of CaO or MgO Based Catalysts Used for Biodiesel Production—A Review, Mater. Sci. Appl. 08 (2017) 94– 122. doi:10.4236/msa.2017.81007. [82] R. Dȩbek, M. Motak, D. Duraczyska, F. Launay, M.E. Galvez, T. Grzybek, P. Da Costa, Methane dry reforming over hydrotalcite-derived Ni-Mg-Al mixed oxides: The influence of Ni content on catalytic activity, selectivity and stability, Catal. Sci. Technol. 6 (2016) 6705–6715. doi:10.1039/c6cy00906a. [83] A. Jangam, S. Das, N. Dewangan, P. Hongmanorom, W.M. Hui, S. Kawi, Conversion of CO2 to C1 chemicals: Catalyst design, kinetics and mechanism aspects of the reactions, Catal. Today. (2019) 0–1. doi:10.1016/j.cattod.2019.08.049. [84] A. Alarcón, J. Guilera, J.A. Díaz, T. Andreu, Optimization of nickel and ceria catalyst content for synthetic natural gas production through CO2 methanation, Fuel Process. Technol. 193 (2019) 114–122. doi:10.1016/j.fuproc.2019.05.008 [85] A. Alarcón, J. Guilera, R. Soto, T. Andreu, Higher tolerance to sulfur poisoning in CO2 methanation by the presence of CeO2, Appl. Catal. B Environ. 263 (2020). doi:10.1016/j.apcatb.2019.118346. [86] H. Liu, X. Zou, X. Wang, X. Lu, W. Ding, Effect of CeO2 addition on Ni/Al2O3 catalysts for methanation of carbon dioxide with hydrogen, J. Nat. Gas Chem. 21 (2012) 703– 707. doi:10.1016/S1003-9953(11)60422-2. [87] A. Azizzadeh Fard, R. Arvaneh, S.M. Alavi, A. Bazyari, A. Valaei, Propane steam reforming over promoted Ni–Ce/MgAl2O4 catalysts: Effects of Ce promoter on the catalyst performance using developed CCD model, Int. J. Hydrogen Energy. 44 (2019) 21607–21622. doi:10.1016/j.ijhydene.2019.06.100. [88] N. Laosiripojana, W. Sutthisripok, S. Assabumrungrat, Synthesis gas production from dry reforming of methane over CeO2 doped Ni/Al2O3: Influence of the doping ceria on the resistance toward carbon formation, Chem. Eng. J. 112 (2005) 13–22. doi:10.1016/j.cej.2005.06.003. [89] A. Cárdenas-Arenas, A. Quindimil, A. Davó-Quiñonero, E. Bailón-García, D. Lozano- Castelló, U. De-La-Torre, B. Pereda-Ayo, J.A. González-Marcos, J.R. González- Velasco, A. Bueno-López, Isotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts, Appl. Catal. B Environ. 265 (2020) 118538. doi:10.1016/j.apcatb.2019.118538. [90] T. Sakpal, L. Lefferts, Structure-dependent activity of CeO2 supported Ru catalysts for CO2 methanation, J. Catal. 367 (2018) 171–180. doi:10.1016/j.jcat.2018.08.027. [91] S.M. Lee, Y.H. Lee, D.H. Moon, J.Y. Ahn, D.D. Nguyen, S.W. Chang, S.S. Kim, Reaction Mechanism and Catalytic Impact of Ni/CeO2–x Catalyst for Low- Temperature CO2 Methanation , Ind. Eng. Chem. Res. 58 (2019) 8656–8662. doi:10.1021/acs.iecr.9b00983. [92] S. Sharma, K.B. Sravan Kumar, Y.M. Chandnani, V.S. Phani Kumar, B.P. Gangwar, A. Singhal, P.A. Deshpande, Mechanistic Insights into CO2 Methanation over Ru- Substituted CeO2, J. Phys. Chem. C. 120 (2016) 14101–14112. doi:10.1021/acs.jpcc.6b03224. [93] L. Zhang, L. Bian, Z. Zhu, Z. Li, La-promoted Ni/Mg-Al catalysts with highly enhanced low-temperature CO2 methanation performance, Int. J. Hydrogen Energy. 43 (2018) 2197–2206. doi:10.1016/j.ijhydene.2017.12.082. [94] M.Y. Shahul Hamid, S. Triwahyono, A.A. Jalil, N.W. Che Jusoh, S.M. Izan, T.A. Tuan Abdullah, Tailoring the properties of metal oxide loaded/KCC-1 toward a different mechanism of CO2 methanation by in situ IR and ESR, Inorg. Chem. 57 (2018) 5859– 5869. doi:10.1021/acs.inorgchem.8b00241. [95] X. Guo, Z. Peng, M. Hu, C. Zuo, A. Traitangwong, V. Meeyoo, C. Li, S. Zhang, Highly active Ni-based catalyst derived from double hydroxides precursor for low temperature CO2 methanation, Ind. Eng. Chem. Res. 57 (2018) 9102–9111. doi:10.1021/acs.iecr.8b01619. [96] X. Guo, A. Traitangwong, M. Hu, C. Zuo, V. Meeyoo, Z. Peng, C. Li, Carbon dioxide methanation over Nickel-based catalysts supported on various mesoporous material, Energy and Fuels. 32 (2018) 3681–3689. doi:10.1021/acs.energyfuels.7b03826. [97] J. Guilera, J. Del Valle, A. Alarcón, J.A. Díaz, T. Andreu, Metal-oxide promoted Ni/Al2O3 as CO2 methanation micro-size catalysts, J. CO2 Util. 30 (2019) 11–17. doi:10.1016/j.jcou.2019.01.003. [98] Z. Li, B. Li, Z. Li, X. Rong, The promoter action of CeO2 for the Ni/Al2O3-catalyzed methanation of CO2, Kinet. Catal. 56 (2015) 329–334. doi:10.1134/S0023158415030143. [99] P.H. Ho, G.S. de Luna, S. Angelucci, A. Canciani, W. Jones, D. Decarolis, F. Ospitali, E.R. Aguado, E. Rodríguez-Castellón, G. Fornasari, A. Vaccari, A.M. Beale, P. Benito, Understanding structure-activity relationships in highly active La promoted Ni catalysts for CO2 methanation, Appl. Catal. B Environ. 278 (2020) 119256. doi:10.1016/j.apcatb.2020.119256. [100] Y. Wang, Y. Xu, Q. Liu, J. Sun, S. Ji, Z. jun Wang, Enhanced low-temperature activity for CO2 methanation over NiMgAl/SiC composite catalysts, J. Chem. Technol. Biotechnol. 94 (2019) 3780–3786. doi:10.1002/jctb.6078. [101] S. Wang, C. Li, S. Yan, Y. Zhao, X. Ma, Adsorption of CO2 on mixed oxides derived from Ca–Al–ClO4-Layered double hydroxide, Energy & Fuels. 30 (2016) 1217–1222. doi:10.1021/acs.energyfuels.5b02506. [102] M. Muñoz, S. Moreno, R. Molina, Synthesis of Ce and Pr-promoted Ni and Co catalysts from hydrotalcite type precursors by reconstruction method, Int. J. Hydrogen Energy. 37 (2012) 18827–18842. doi:10.1016/j.ijhydene.2012.09.132. [103] C.E. Daza, F. Mondragón, S. Moreno, R. Molina, Reformado de metano con CO2 sobre óxidos mixtos Ni-Mg-Al-Ce derivados de hidrotalcitas: Efecto de la relación Mg/Ni, Rev. Fac. Ing. (2011) 66–74. [104] C.E. Daza, S. Moreno, R. Molina, Co-precipitated Ni-Mg-Al catalysts containing Ce for CO2 reforming of methane, Int. J. Hydrogen Energy. 36 (2011) 3886–3894. doi:10.1016/j.ijhydene.2010.12.082 [105] C.E. Daza, S. Moreno, R. Molina, Co-precipitated Ni–Mg–Al catalysts containing Ce for CO2 reforming of methane, Int. J. Hydrogen Energy. 36 (2011) 3886–3894. doi:10.1016/J.IJHYDENE.2010.12.082. [106] C.E. Daza, J. Gallego, J.A. Moreno, F. Mondragón, S. Moreno, R. Molina, CO2 reforming of methane over Ni/Mg/Al/Ce mixed oxides, Catal. Today. 133–135 (2008) 357–366. doi:10.1016/j.cattod.2007.12.081. [107] C.E. Daza, J. Gallego, F. Mondragón, S. Moreno, R. Molina, High stability of Ce- promoted Ni/Mg-Al catalysts derived from hydrotalcites in dry reforming of methane, Fuel. 89 (2010) 592–603. doi:10.1016/j.fuel.2009.10.010. [108] S. Zhu, L. Avadiar, Y.K. Leong, Yield stress- and zeta potential-pH behaviour of washed α-Al2O3 suspensions with relatively high Ca(II) and Mg(II) concentrations: Hydrolysis product and bridging, Int. J. Miner. Process. 148 (2016) 1–8. doi:10.1016/j.minpro.2016.01.004. [109] F. XIAO, B. ZHANG, C. LEE, Effects of low temperature on aluminum(III) hydrolysis: Theoretical and experimental studies, J. Environ. Sci. 20 (2008) 907–914. doi:10.1016/S1001-0742(08)62185-3. [110] S.J. Hassani Rad, M. Haghighi, A. Alizadeh Eslami, F. Rahmani, N. Rahemi, Sol-gel vs. impregnation preparation of MgO and CeO2 doped Ni/Al2O3 nanocatalysts used in dry reforming of methane: Effect of process conditions, synthesis method and support composition, Int. J. Hydrogen Energy. 41 (2016) 5335–5350. doi:10.1016/j.ijhydene.2016.02.002. [111] D. Hu, J. Gao, Y. Ping, L. Jia, P. Gunawan, Z. Zhong, G. Xu, F. Gu, F. Su, Enhanced investigation of CO methanation over Ni/Al2O3 catalysts for synthetic natural gas production, Ind. Eng. Chem. Res. 51 (2012) 4875–4886. doi:10.1021/ie300049f. [112] K. Nakayama, T. Nakamura, Undersized (12.5mm diameter) glass beads with minimal amount (11mg) of geochemical and archeological silicic samples for X-ray fluorescence determination of major oxides, X-Ray Spectrom. 41 (2012) 225–234. doi:10.1002/xrs.2382. [113] G.J. Simandl, R.S. Stone, S. Paradis, R. Fajber, H.M. Reid, K. Grattan, An assessment of a handheld X-ray fluorescence instrument for use in exploration and development with an emphasis on REEs and related specialty metals, Miner. Depos. 49 (2014) 999–1012. doi:10.1007/s00126-013-0493-0. [114] J.S.J. Hargreaves, Some considerations related to the use of the Scherrer equation in powder X-ray diffraction as applied to heterogeneous catalysts, Catal. Struct. React. 2 (2016) 33–37. doi:10.1080/2055074X.2016.1252548. [115] F. Hu, S. Tong, K. Lu, C. Chen, F. Su, J. Zhou, Reduced graphene oxide supported Ni-Ce catalysts for CO2 methanation : The support and ceria promotion effects Reduced graphene oxide supported Ni-Ce catalysts for CO2 methanation : The support and ceria promotion effects Authors : Affiliation : Correspo, J. CO2 Util. 34 (2019) 676–687. doi:10.1016/j.jcou.2019.08.020. [116] N. Schreiter, J. Kirchner, S. Kureti, A DRIFTS and TPD study on the methanation of CO2 on Ni/Al2O3 catalyst, Catal. Commun. 140 (2020) 105988. doi:10.1016/j.catcom.2020.105988. [117] P. Muñoz, Síntesis de catalizadores de Ni y/o Co promovidos por Ce y/o Pr obtenidos a partir de hidróxidos de doble capa para la producción de hidrógeno por reformado de etanol con vapor oxidativo, Universidad Nacional de Colombia, 2014. https://repositorio.unal.edu.co/handle/unal/54195. [118] J. Jayaraj, C.L. Mendis, T. Ohkubo, K. Oh-Ishi, K. Hono, Enhanced precipitation hardening of Mg-Ca alloy by Al addition, Scr. Mater. 63 (2010) 831–834. doi:10.1016/j.scriptamat.2010.06.028. [119] X. Kou, C. Li, Y. Zhao, S. Wang, X. Ma, CO2 sorbents derived from capsule- connected Ca-Al hydrotalcite-like via low-saturated coprecipitation, Fuel Process. Technol. 177 (2018) 210–218. doi:10.1016/j.fuproc.2018.04.036 R.W. Wilson, Aluminum, Fish Physiol. 31 (2011) 67–123. doi:10.1016/S1546- 5098(11)31024-2. [121] J. Liu, S. Bi, L. Yang, X. Gu, P. Ma, N. Gan, X. Wang, X. Long, F. Zhang, Speciation analysis of aluminium(III) in natural waters and biological fluids by complexing with various catechols followed by differential pulse voltammetry detection, Analyst. 127 (2002) 1657–1665. doi:10.1039/b205559g. [122] Z. Li, L. Bian, Q. Zhu, W. Wang, Ni-based catalyst derived from Ni/Mg/Al hydrotalcite- like compounds and its activity in the methanation of carbon monoxide, Kinet. Catal. 55 (2014) 217–223. doi:10.1134/S0023158414020049. [123] Y. Zhu, S. Zhang, B. Chen, Z. Zhang, C. Shi, Effect of Mg/Al ratio of NiMgAl mixed oxide catalyst derived from hydrotalcite for carbon dioxide reforming of methane, Catal. Today. 264 (2016) 163–170. doi:10.1016/j.cattod.2015.07.037. [124] A.M. Campos, S. Moreno, R.A. Molina, Characterization of Al-Zr, Al-Hf and Al-Ce- pillared vermiculites by X-ray photoelectron spectroscopy, Rev. La Acad. Colomb. Ciencias Exactas, Físicas y Nat. 38 (2014) 401. doi:10.18257/raccefyn.85. [125] L. Wei, F. Zietzschmann, L.C. Rietveld, D. van Halem, Fluoride removal by Ca-Al- CO3 layered double hydroxides at environmentally-relevant concentrations, Chemosphere. 243 (2020) 125307. doi:10.1016/j.chemosphere.2019.125307. [126] A.P. Tsai, A test of Hume-Rothery rules for stable quasicrystals, J. Non. Cryst. Solids. 334–335 (2004) 317–322. doi:10.1016/j.jnoncrysol.2003.11.065. [127] J.Y. Jing, S.D. Wang, X.W. Zhang, Q. Li, W.Y. Li, Influence of Ca/Al molar ratio on structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst, Ranliao Huaxue Xuebao/Journal Fuel Chem. Technol. 45 (2017) 956–962. doi:10.1016/s1872-5813(17)30046-4 [128] D.G. Costa, A.B. Rocha, W.F. Souza, S.S.X. Chiaro, A.A. Leitão, Structural and energetic analysis of MgxM1-x(OH) 2 (M = Zn, Cu or Ca) brucite-like compounds by DFT calculations, J. Phys. Chem. C. 112 (2008) 10681–10687. doi:10.1021/jp8016453. [129] A.J. Vizcaíno, M. Lindo, A. Carrero, J.A. Calles, Hydrogen production by steam reforming of ethanol using Ni catalysts based on ternary mixed oxides prepared by coprecipitation, Int. J. Hydrogen Energy. 37 (2012) 1985–1992. doi:10.1016/j.ijhydene.2011.04.179. [130] D.H. Yang, B.Y. Hur, S.R. Yang, Study on fabrication and foaming mechanism of Mg foam using CaCO3 as blowing agent, J. Alloys Compd. 461 (2008) 221–227. doi:10.1016/j.jallcom.2007.07.098. [131] R. Atchudan, N. Lone, J. Joo, Preparation of CaCO3 and CaO Nanoparticles via Solid-State Conversion of Calcium Oleate Precursor , J. Nanosci. Nanotechnol. 18 (2017) 1958–1964. doi:10.1166/jnn.2018.14208. [132] H. Jo, M.G. Lee, J. Park, K.D. Jung, Preparation of high-purity nano-CaCO3 from steel slag, Energy. 120 (2017) 884–894. doi:10.1016/j.energy.2016.11.140. [133] J. Liu, W. Bing, X. Xue, F. Wang, B. Wang, S. He, Y. Zhang, M. Wei, Alkaline-assisted Ni nanocatalysts with largely enhanced low-temperature activity toward CO2 methanation Jie, Catal. Sci. Technol. (2015). doi:DOI:10.1039/C5CY02026C. [134] N.D. Charisiou, A. Baklavaridis, V.G. Papadakis, M.A. Goula, Synthesis Gas Production via the Biogas Reforming Reaction Over Ni/MgO–Al2O3 and Ni/CaO– Al2O3 Catalysts, Waste and Biomass Valorization. 7 (2016) 725–736. doi:10.1007/s12649-016-9627-9. [135] O. Aschenbrenner, P. McGuire, S. Alsamaq, J. Wang, S. Supasitmongkol, B. Al-Duri, P. Styring, J. Wood, Adsorption of carbon dioxide on hydrotalcite-like compounds of different compositions, Chem. Eng. Res. Des. 89 (2011) 1711–1721. doi:10.1016/j.cherd.2010.09.019. [136] M.K. Montañez, R. Molina, S. Moreno, Nickel catalysts obtained from hydrotalcites by coprecipitation and urea hydrolysis for hydrogen production, Int. J. Hydrogen Energy. 39 (2014) 8225–8237. doi:10.1016/j.ijhydene.2014.03.103. [137] D.Y. Kalai, K. Stangeland, W.M. Tucho, Y. Jin, Z. Yu, Biogas reforming on hydrotalcite-derived Ni-Mg-Al catalysts: The effect of Ni loading and Ce promotion, J. CO2 Util. 33 (2019) 189–200. doi:10.1016/j.jcou.2019.05.011. [138] R. Dębek, M. Radlik, M. Motak, M.E. Galvez, W. Turek, P. Da Costa, T. Grzybek, Ni- containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature - On the effect of basicity, Catal. Today. 257 (2015) 59–65. doi:10.1016/j.cattod.2015.03.017. [139] H. Han, J. Li, H. Wang, Y. Han, Y. Chen, J. Li, Y. Zhang, Y. Wang, B. Wang, One- Step Valorization of Calcium Lignosulfonate to Produce Phenolics with the Addition of Solid Base Oxides in the Hydrothermal Reaction System, Energy and Fuels. 33 (2019) 4302–4309. doi:10.1021/acs.energyfuels.9b00332. [140] M. Thommes, K. Kaneko, A. V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069. doi:10.1515/pac-2014-1117. [141] Z. Bao, Y. Lu, J. Han, Y. Li, F. Yu, Highly active and stable Ni-based bimodal pore catalyst for dry reforming of methane, Appl. Catal. A Gen. 491 (2015) 116–126. doi:10.1016/j.apcata.2014.12.005. [142] L. Xu, H. Yang, M. Chen, F. Wang, D. Nie, L. Qi, X. Lian, H. Chen, M. Wu, CO2 methanation over Ca doped ordered mesoporous Ni-Al composite oxide catalysts: The promoting effect of basic modifier, J. CO2 Util. 21 (2017) 200–210. doi:10.1016/j.jcou.2017.07.014. [143] P.H. Chang, Y.P. Chang, S.Y. Chen, C.T. Yu, Y.P. Chyou, Ca-rich Ca-Al-oxide, high- temperature-stable sorbents prepared from hydrotalcite precursors: Synthesis, characterization, and CO2 capture capacity, ChemSusChem. 4 (2011) 1844–1851. doi:10.1002/cssc.201100357. [144] G. Wu, C. Zhang, S. Li, Z. Huang, S. Yan, S. Wang, X. Ma, J. Gong, Sorption enhanced steam reforming of ethanol on Ni-CaO-Al2O3 multifunctional catalysts derived from hydrotalcite-like compounds, Energy Environ. Sci. 5 (2012) 8942–8949. doi:10.1039/c2ee21995f. [145] Y. Li, J. Wang, Z. Li, Q. Liu, J. Liu, L. Liu, X. Zhang, J. Yu, Ultrasound assisted synthesis of Ca-Al hydrotalcite for U (VI) and Cr (VI) adsorption, Chem. Eng. J. 218 (2013) 295–302. doi:10.1016/j.cej.2012.12.051. [146] W. Bing, L. Zheng, S. He, D. Rao, M. Xu, L. Zheng, B. Wang, Y. Wang, M. Wei, Insights on Active Sites of CaAl-Hydrotalcite as a High-Performance Solid Base Catalyst toward Aldol Condensation, ACS Catal. 8 (2018) 656–664. doi:10.1021/acscatal.7b03022 [147] A. Serrano-Lotina, L. Rodríguez, G. Muñoz, L. Daza, Biogas reforming on La- promoted NiMgAl catalysts derived from hydrotalcite-like precursors, J. Power Sources. 196 (2011) 4404–4410. doi:10.1016/j.jpowsour.2010.10.107. [148] Y. Yan, Y. Dai, H. He, Y. Yu, Y. Yang, A novel W-doped Ni-Mg mixed oxide catalyst for CO2 methanation, Appl. Catal. B Environ. 196 (2016) 108–116. doi:10.1016/j.apcatb.2016.05.016. [149] C. Mebrahtu, F. Krebs, S. Perathoner, S. Abate, G. Centi, R. Palkovits, Hydrotalcite based Ni-Fe/(Mg, Al)O:X catalysts for CO2 methanation-tailoring Fe content for improved CO dissociation, basicity, and particle size, Catal. Sci. Technol. 8 (2018) 1016–1027. doi:10.1039/c7cy02099f. [150] S. Ewald, M. Kolbeck, T. Kratky, M. Wolf, O. Hinrichsen, On the deactivation of Ni-Al catalysts in CO2 methanation, Appl. Catal. A Gen. 570 (2019) 376–386. doi:10.1016/j.apcata.2018.10.033. [151] S. Sivasangar, M.S. Mastuli, A. Islam, Y.H. Taufiq-Yap, Screening of modified CaO- based catalysts with a series of dopants for the supercritical water gasification of empty palm fruit bunches to produce hydrogen, RSC Adv. 5 (2015) 36798–36808. doi:10.1039/c5ra03430b. [152] J. Zhou, H. Ma, C. Liu, H. Zhang, W. Qian, W. Ying, Ni Based Catalysts Supported on Ce Modified MgAl Spinel Supports for High Temperature Syngas Methanation, Catal. Letters. 149 (2019) 2563–2574. doi:10.1007/s10562-019-02868-7. [153] A. Bermejo-López, B. Pereda-Ayo, J.A. González-Marcos, J.R. González-Velasco, Ni loading effects on dual function materials for capture and in-situ conversion of CO2 to CH4 using CaO or Na2CO3, J. CO2 Util. 34 (2019) 576–587. doi:10.1016/j.jcou.2019.08.011. [154] H.P. Ren, Y.H. Song, W. Wang, J.G. Chen, J. Cheng, J. Jiang, Z.T. Liu, Z.W. Liu, Z. Hao, J. Lu, Insights into CeO2-modified Ni-Mg-Al oxides for pressurized carbon dioxide reforming of methane, Chem. Eng. J. 259 (2015) 581–593. doi:10.1016/j.cej.2014.08.029. [155] R. Dębek, M. Motak, M.E. Galvez, P. Da Costa, T. Grzybek, Catalytic activity of hydrotalcite-derived catalysts in the dry reforming of methane: on the effect of Ce promotion and feed gas composition, React. Kinet. Mech. Catal. 121 (2017) 185–208. doi:10.1007/s11144-017-1167-1. [156] C.O. Calgaro, O.W. Perez-Lopez, Biogas dry reforming for hydrogen production over Ni-M-Al catalysts (M = Mg, Li, Ca, La, Cu, Co, Zn), Int. J. Hydrogen Energy. 44 (2019) 17750–17766. doi:10.1016/j.ijhydene.2019.05.113. [157] B.T. Meshesha, N. Barrabés, K. Föttinger, R.J. Chimentão, J. Llorca, F. Medina, G. Rupprechter, J.E. Sueiras, Gas-phase hydrodechlorination of trichloroethylene over Pd/NiMgAl mixed oxide catalysts, Appl. Catal. B Environ. 117–118 (2012) 236–245. doi:10.1016/j.apcatb.2012.01.018. [158] X.D. Feng, J. Feng, W.Y. Li, CO2 reforming of CH4 over a highly active and stable Ni-Mg-Al catalyst, Int. J. Hydrogen Energy. 42 (2017) 3036–3042. doi:10.1016/j.ijhydene.2016.09.205. [159] Y. Cao, H. Zhang, J. Dong, Y. Ma, H. Sun, L. Niu, X. Lan, L. Cao, G. Bai, A stable nickel-based catalyst derived from layered double hydroxide for selective hydrogenation of benzonitrile, Mol. Catal. 475 (2019) 110452. doi:10.1016/j.mcat.2019.110452. [160] H. Messaoudi, S. Thomas, A. Djaidja, S. Slyemi, A. Barama, Study of LaxNiOy and LaxNiOy/MgAl2O4 catalysts in dry reforming of methane, J. CO2 Util. 24 (2018) 40–49. doi:10.1016/j.jcou.2017.12.002. [161] A.F. Lucrédio, G. Jerkiewickz, E.M. Assaf, Nickel catalysts promoted with cerium and lanthanum to reduce carbon formation in partial oxidation of methane reactions, Appl. Catal. A Gen. 333 (2007) 90–95. doi:10.1016/j.apcata.2007.09.009. [162] A.V. Paladino Lino, C.B. Rodella, E.M. Assaf, J.M. Assaf, Methane tri-reforming for synthesis gas production using Ni/CeZrO2/MgAl2O4 catalysts: Effect of Zr/Ce molar ratio, Int. J. Hydrogen Energy. 5 (2020). doi:10.1016/j.ijhydene.2020.01.002. [163] A.R. Keshavarz, M. Soleimani, Nano-sized Ni/(CaO)x-(Al2O3)y catalysts for steam pre-reforming of ethane and propane in natural gas: The role of CaO/Al2O3 ratio to enhance conversion efficiency and resistance to coke formation, J. Nat. Gas Sci. Eng. 45 (2017) 1–10. doi:10.1016/j.jngse.2017.05.019. [164] M.J. Kim, J.R. Youn, H.J. Kim, M.W. Seo, D. Lee, K.S. Go, K.B. Lee, S.G. Jeon, Effect of surface properties controlled by Ce addition on CO2 methanation over Ni/Ce/Al2O3 catalyst, Int. J. Hydrogen Energy. (2020) 2–10. doi:10.1016/j.ijhydene.2020.06.144. [165] X. Du, D. Zhang, L. Shi, R. Gao, J. Zhang, Coke- and sintering-resistant monolithic catalysts derived from in situ supported hydrotalcite-like films on Al wires for dry reforming of methane, Nanoscale. 5 (2013) 2659–2663. doi:10.1039/c3nr33921a. [166] M. Shokrollahi Yancheshmeh, H.R. Radfarnia, M.C. Iliuta, Sustainable Production of High-Purity Hydrogen by Sorption Enhanced Steam Reforming of Glycerol over CeO2-Promoted Ca9Al6O18-CaO/NiO Bifunctional Material, ACS Sustain. Chem. Eng. 5 (2017) 9774–9786. doi:10.1021/acssuschemeng.7b01627. [167] E. Akbari, S.M. Alavi, M. Rezaei, CeO2 Promoted Ni-MgO-Al2O3 nanocatalysts for carbon dioxide reforming of methane, J. CO2 Util. 24 (2018) 128–138. doi:10.1016/j.jcou.2017.12.015. [168] X. Fang, J. Zhang, J. Liu, C. Wang, Q. Huang, X. Xu, H. Peng, W. Liu, X. Wang, W. Zhou, Methane dry reforming over Ni/Mg-Al-O: On the significant promotional effects of rare earth Ce and Nd metal oxides, J. CO2 Util. 25 (2018) 242–253. doi:10.1016/j.jcou.2018.04.011. [169] H.C. Wu, Y.C. Chang, J.H. Wu, J.H. Lin, I.K. Lin, C.S. Chen, Methanation of CO2 and reverse water gas shift reactions on Ni/SiO2 catalysts: the influence of particle size on selectivity and reaction pathway, Catal. Sci. Technol. 5 (2015) 4154–4163. doi:10.1039/c5cy00667h. [170] G. Botzolaki, G. Goula, A. Rontogianni, E. Nikolaraki, N. Chalmpes, P. Zygouri, M. Karakassides, D. Gournis, N. Charisiou, M. Goula, S. Papadopoulos, I. Yentekakis, CO2 Methanation on Supported Rh Nanoparticles : The combined Effect of Support Oxygen Storage Capacity and Rh Particle Size, Catalysts. (2020) 9–14. doi:doi:10.3390/catal10080944. [171] J.K. Kesavan, I. Luisetto, S. Tuti, C. Meneghini, G. Iucci, C. Battocchio, S. Mobilio, S. Casciardi, R. Sisto, Nickel supported on YSZ: The effect of Ni particle size on the catalytic activity for CO2 methanation, J. CO2 Util. 23 (2018) 200–211. doi:10.1016/j.jcou.2017.11.015. [172] J. Liao, B. Jin, Y. Zhao, Z. Liang, Highly efficient and durable metal-organic framework material derived Ca-based solid sorbents for CO2 capture, Chem. Eng. J. 372 (2019) 1028–1037. doi:10.1016/j.cej.2019.04.212. [173] A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD, World J. Nano Sci. Eng. 02 (2012) 154– 160. doi:10.4236/wjnse.2012.23020. [174] B. Akbari, M.P. Tavandashti, M. Zandrahimi, Particle size characterization of nanoparticles- a practicalapproach, Iran. J. Mater. Sci. Eng. 8 (2011) 48–56. [175] M.L. Lavčević, A. Turković, The measurements of particle/crystallite size in nanostructured TiO2 films by SAXS/WAXD method, Scr. Mater. 46 (2002) 501–505. doi:10.1016/S1359-6462(02)00021-0. [176] Q. Li, C.W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, K. Okuyama, Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles, Sci. Rep. 7 (2017) 1–4. doi:10.1038/s41598-017-09897-5. [177] T.T. Trinh, N.H. Tu, H.H. Le, K.Y. Ryu, K.B. Le, K. Pillai, J. Yi, Improving the ethanol sensing of ZnO nano-particle thin films - The correlation between the grain size and the sensing mechanism, Sensors Actuators, B Chem. 152 (2011) 73–81. doi:10.1016/j.snb.2010.09.045. [178] J. Ashok, Y. Kathiraser, M.L. Ang, S. Kawi, Bi-functional hydrotalcite-derived NiO- CaO-Al2O3 catalysts for steam reforming of biomass and/or tar model compound at low steam-to-carbon conditions, Appl. Catal. B Environ. 172–173 (2015) 116–128. doi:10.1016/j.apcatb.2015.02.017. [179] X. Yu, N. Wang, W. Chu, M. Liu, Carbon dioxide reforming of methane for syngas production over La-promoted NiMgAl catalysts derived from hydrotalcites, Chem. Eng. J. 209 (2012) 623–632. doi:10.1016/j.cej.2012.08.037. [180] J. Ashok, M.L. Ang, S. Kawi, Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts: Influence of preparation methods, Catal. Today. 281 (2017) 304–311. doi:10.1016/j.cattod.2016.07.020. [181] L. Proaño, M.A. Arellano-Treviño, R.J. Farrauto, M. Figueredo, C. Jeong-Potter, M. Cobo, Mechanistic assessment of dual function materials, composed of Ru-Ni, Na2O/Al2O3 and Pt-Ni, Na2O/Al2O3, for CO2 capture and methanation by in-situ DRIFTS, Appl. Surf. Sci. 533 (2020) 147469. doi:10.1016/j.apsusc.2020.147469. [182] F. Wang, S. He, H. Chen, B. Wang, L. Zheng, M. Wei, D.G. Evans, X. Duan, Active Site Dependent Reaction Mechanism over Ru/CeO2 Catalyst toward CO2 Methanation, J. Am. Chem. Soc. 138 (2016) 6298–6305. doi:10.1021/jacs.6b02762 [183] C. Liang, X. Hu, T. Wei, P. Jia, Z. Zhang, D. Dong, S. Zhang, Q. Liu, G. Hu, Methanation of CO2 over Ni/Al2O3 modified with alkaline earth metals: Impacts of oxygen vacancies on catalytic activity, Int. J. Hydrogen Energy. 44 (2019) 8197–8213. doi:10.1016/j.ijhydene.2019.02.014. [184] D. Cornu, H. Guesmi, J.M. Krafft, H. Lauron-Pernot, Lewis acido-basic interactions between CO2 and MgO surface: DFT and DRIFT approaches, J. Phys. Chem. C. 116 (2012) 6645–6654. doi:10.1021/jp211171t. [185] P. Gruene, A.G. Belova, T.M. Yegulalp, R.J. Farrauto, M.J. Castaldi, Dispersed calcium oxide as a reversible and efficient CO2 sorbent at intermediate temperatures, Ind. Eng. Chem. Res. 50 (2011) 4042–4049. doi:10.1021/ie102475d. [186] A. Lind, K. Thorshaug, K.A. Andreassen, R. Blom, B. Arstad, The Role of Water during CO2 Adsorption by Ca-Based Sorbents at High Temperature, Ind. Eng. Chem. Res. 57 (2018) 2829–2837. doi:10.1021/acs.iecr.7b04052. [187] A.S. Malik, S.F. Zaman, A.A. Al-Zahrani, M.A. Daous, H. Driss, L.A. Petrov, Development of highly selective PdZn/CeO2 and Ca-doped PdZn/CeO2 catalysts for methanol synthesis from CO2 hydrogenation, Appl. Catal. A Gen. 560 (2018) 42–53. doi:10.1016/j.apcata.2018.04.036. [188] W. Gao, T. Zhou, Q. Wang, Controlled synthesis of MgO with diverse basic sites and its CO2 capture mechanism under di ff erent adsorption conditions, Chem. Eng. J. 336 (2018) 710–720. doi:10.1016/j.cej.2017.12.025. [189] S. Sharma, Z. Hu, P. Zhang, E.W. McFarland, H. Metiu, CO2 methanation on Ru- doped ceria, J. Catal. 278 (2011) 297–309. doi:10.1016/j.jcat.2010.12.015. [190] A.S. Malik, S.F. Zaman, A.A. Al-Zahrani, M.A. Daous, H. Driss, L.A. Petrov, Selective hydrogenation of CO2 to CH3OH and in-depth DRIFT analysis for PdZn/ZrO2 and CaPdZn/ZrO2 catalysts, Catal. Today. (2019). doi:10.1016/j.cattod.2019.05.040. [191] K. Tahvildari, Y.N. Anaraki, R. Fazaeli, S. Mirpanji, E. Delrish, The study of CaO and MgO heterogenic nano-catalyst coupling on transesterification reaction efficacy in the production of biodiesel from recycled cooking oil, J. Environ. Heal. Sci. Eng. 13 (2015) 1–9. doi:10.1186/s40201-015-0226-7. [192] Y. Bang, S.J. Han, S. Kwon, V. Hiremath, I.K. Song, J.G. Seo, High temperature carbon dioxide capture on Nano-structured MgO-Al2O3 and CaO-Al2O3 adsorbents: An experimental and theoretical study, J. Nanosci. Nanotechnol. 14 (2014) 8531– 8538. doi:10.1166/jnn.2014.9954. [193] Z. Cheng, B.J. Sherman, C.S. Lo, Carbon dioxide activation and dissociation on ceria (110): A density functional theory study, J. Chem. Phys. 138 (2013). doi:10.1063/1.4773248. [194] X. Wang, L. Zhu, Y. Liu, S. Wang, CO2 methanation on the catalyst of Ni/MCM-41 promoted with CeO2, Sci. Total Environ. 625 (2018) 686–695. doi:10.1016/j.scitotenv.2017.12.308. [195] K. Zhao, W. Wang, Z. Li, Highly efficient Ni/ZrO2 catalysts prepared via combustion method for CO2 methanation, J. CO2 Util. 16 (2016) 236–244. doi:10.1016/j.jcou.2016.07.010. [196] Q. Liu, H. Dong, In Situ Immobilizing Ni Nanoparticles to FDU-12 via Trehalose with Fine Size and Location Control for CO2 Methanation, ACS Sustain. Chem. Eng. 8 (2020) 2093–2105. doi:10.1021/acssuschemeng.9b07004. [197] J. Gao, Y. Wang, Y. Ping, D. Hu, G. Xu, F. Gu, F. Su, A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas, RSC Adv. 2 (2012) 2358–2368. doi:10.1039/c2ra00632d. [198] L. He, Q. Lin, Y. Liu, Y. Huang, Unique catalysis of Ni-Al hydrotalcite derived catalyst in CO2 methanation: Cooperative effect between Ni nanoparticles and a basic support, J. Energy Chem. 23 (2014) 587–592. doi:10.1016/S2095-4956(14)60144-3. [199] A. Zhao, W. Ying, H. Zhang, M. Hongfang, D. Fang, Ni/Al2O3 catalysts for syngas methanation: Effect of Mn promoter, J. Nat. Gas Chem. 21 (2012) 170–177. doi:10.1016/S1003-9953(11)60350-2. [200] C. Bassano, P. Deiana, L. Lietti, C.G. Visconti, P2G movable modular plant operation on synthetic methane production from CO2 and hydrogen from renewables sources, Fuel. 253 (2019) 1071–1079. doi:10.1016/j.fuel.2019.05.074. [201] S. Kim, S.G. Jeon, K.B. Lee, High-temperature CO2 sorption on hydrotalcite having a high Mg/Al molar ratio, ACS Appl. Mater. Interfaces. 8 (2016) 5763–5767. doi:10.1021/acsami.5b12598. [202] W. Yang, Y. Feng, W. Chu, Promotion Effect of CaO Modification on Mesoporous Al2O3-Supported Ni Catalysts for CO2 Methanation, Int. J. Chem. Eng. 2016 (2016). doi:10.1155/2016/2041821. [203] Z. Taherian, V. Shahed Gharahshiran, A. Khataee, F. Meshkani, Y. Orooji, Comparative study of modified Ni catalysts over mesoporous CaO-Al2O3 support for CO2/methane reforming, Catal. Commun. 145 (2020) 106100. doi:10.1016/j.catcom.2020.106100. [204] L. Xu, F. Wang, M. Chen, H. Yang, D. Nie, L. Qi, X. Lian, Alkaline-promoted Ni based ordered mesoporous catalysts with enhanced low-temperature catalytic activity toward CO2 methanation, RSC Adv. 7 (2017) 18199–18210. doi:10.1039/c7ra01673e. [205] M. Broda, A.M. Kierzkowska, C.R. Müller, Sorbent-Enhanced Steam Methane Reforming Reaction Studied over a Ca-Based CO2 Sorbent and Ni Catalyst, Chem. Eng. Technol. 36 (2013) 1496–1502. doi:10.1002/ceat.201200643. [206] A. Sharma, I. Saito, H. Nakagawa, K. Miura, Effect of carbonization temperature on the nickel crystallite size of a Ni/C catalyst for catalytic hydrothermal gasification of organic compounds, Fuel. 86 (2007) 915–920. doi:10.1016/j.fuel.2006.11.001. [207] C.O. Calgaro, A.L. Rocha, O.W. Perez-Lopez, Deactivation control in CO2 reforming of methane over Ni–Mg–Al catalyst, React. Kinet. Mech. Catal. 130 (2020) 159–178. doi:10.1007/s11144-020-01770-3. [208] J.P. da S.Q. Menezes, A.P. do. S. Dias, M.A.P. da Silva, M.M.V.M. Souza, Effect of alkaline earth oxides on nickel catalysts supported over γ-alumina for butanol steam reforming: Coke formation and deactivation process, Int. J. Hydrogen Energy. 45 (2020) 22906–22920. doi:10.1016/j.ijhydene.2020.06.187. [209] J.P. da S.Q. Menezes, F.C. Jácome, R.L. Manfro, M.M.V.M. Souza, Effect of CaO Addition on Nickel Catalysts Supported on Alumina for Glycerol Steam Reforming, Catal. Letters. 149 (2019) 1991–2003. doi:10.1007/s10562-019-02792-w. [210] M. Ding, J. Tu, Q. Zhang, M. Wang, N. Tsubaki, T. Wang, L. Ma, Enhancement of methanation of bio-syngas over CeO2-modified Ni/Al2O3 catalysts, Biomass and Bioenergy. 85 (2016) 12–17. doi:10.1016/j.biombioe.2015.11.025. [211] Y. Jiang, T. Huang, L. Dong, Z. Qin, H. Ji, Ni/bentonite catalysts prepared by solution combustion method for CO2 methanation, Chinese J. Chem. Eng. (2018) 2361–2367. doi:10.1016/j.cjche.2018.03.029. [212] Y.R. Dias, O.W. Perez-Lopez, Carbon dioxide methanation over Ni-Cu/SiO2 catalysts, Energy Convers. Manag. 203 (2020) 112214. doi:10.1016/j.enconman.2019.112214. [213] A. Quindimil, U. De-La-Torre, B. Pereda-Ayo, J.A. González-Marcos, J.R. González- Velasco, Ni catalysts with La as promoter supported over Y- and BETA- zeolites for CO2 methanation, Appl. Catal. B Environ. 238 (2018) 393–403. doi:10.1016/j.apcatb.2018.07.034. [214] Z. Li, T. Zhao, L. Zhang, Promotion effect of additive Fe on Al2O3 supported Ni catalyst for CO2 methanation, Appl. Organomet. Chem. 32 (2018) 1–7. doi:10.1002/aoc.4328 [215] V. Alcalde-Santiago, A. Davó-Quiñonero, D. Lozano-Castelló, A. Quindimil, U. De- La-Torre, B. Pereda-Ayo, J.A. González-Marcos, J.R. González-Velasco, A. Bueno- López, Ni/LnOx Catalysts (Ln=La, Ce or Pr) for CO2 Methanation, ChemCatChem. 11 (2019) 810–819. doi:10.1002/cctc.201801585. [216] Z. Fan, K. Sun, N. Rui, B. Zhao, C.J. Liu, Improved activity of Ni/MgAl2O4 for CO2 methanation by the plasma decomposition, J. Energy Chem. 24 (2015) 655–659. doi:10.1016/j.jechem.2015.09.004. [217] L. Xu, H. Yang, M. Chen, F. Wang, D. Nie, L. Qi, X. Lian, H. Chen, M. Wu, CO2 methanation over Ca doped ordered mesoporous Ni-Al composite oxide catalysts: The promoting effect of basic modifier, J. CO2 Util. 21 (2017) 200–210. doi:10.1016/j.jcou.2017.07.014. [218] W. Ahmad, M.N. Younis, R. Shawabkeh, S. Ahmed, Synthesis of lanthanide series (La, Ce, Pr, Eu & Gd) promoted Ni/Γ-Al2O3 catalysts for methanation of CO2 at low temperature under atmospheric pressure, Catal. Commun. 100 (2017) 121–126. doi:10.1016/j.catcom.2017.06.044. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.spa.spa.fl_str_mv |
Acceso abierto |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia Acceso abierto http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
1 recurso en línea (83 páginas) |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Química |
dc.publisher.department.spa.fl_str_mv |
Departamento de Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79365/1/1080185196.2020.pdf https://repositorio.unal.edu.co/bitstream/unal/79365/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/79365/3/1080185196.2020.pdf.jpg |
bitstream.checksum.fl_str_mv |
1ba1969547a505b6b503ed82e87d749f cccfe52f796b7c63423298c2d3365fc6 20ffe8405b96df086a039b87c28b845f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089922568519680 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Daza Velasquez, Carlos Enriquea45290b28541ac792d818263871996b7Osorio Restrepo, Ederson Arnedt427876b253dbcea57e5ea9fe61e5b81fEstado Sólido y Catálisis Ambiental2021-03-19T16:45:22Z2021-03-19T16:45:22Z2020https://repositorio.unal.edu.co/handle/unal/79365La reacción de metanacion de CO2 es una tecnología promisoria para el almacenamiento químico de energía a partir de H2 y CO2. Con el desarrollo del siguiente trabajo de grado se sinterizaron catalizadores de naturaleza básica tipo óxidos mixtos (OM) de CaCe y MgCe promovidos con cantidades nominales de CeO2 de 3 y 5 % en masa, por el método de coprecipitación. Las técnicas de caracterización a los cuales fueron sometidos revelaron diferencia entre las propiedades físicas de los sólidos, para el caso de los OM CaCe se presentan áreas superficiales, tamaños de cristalito y de partícula inferiores los determinados para los OM MgCe. Por otra parte, con la incorporación de CeO2 a los OM se observaron tendencias decrecientes en el tamaño de cristalito y en el tamaño de partícula de los OM, solo las propiedades reductivas de los OM MgCe se afectaron obteniendo un descenso en el porcentaje de reducibilidad de los sólidos, adicionalmente, el estudio de espectroscopia IR de reflectancia difusa, muestra un aumento en los sitios de adsorción de CO2, a la par con el incremento en la cantidad de promotor adicionado y de acuerdo a las bandas formadas sobre los OM se sugiere que la ruta de metanacion de CO2 para los OM sintetizados es la ruta del formiato Los resultados de la actividad catalítica muestran que los todos los OM presentan una mayor conversión de CO2 a bajas temperatura en comparación con el sólido de referencia de Ni/γAl2O3 y una selectividad del 100% a la formación de CH4 bajo las condiciones de WHSV= 60000 mLg-1h-1, el incremento de la velocidad espacial genera una fuerte disminución en la conversión de CO2 y un aumento en la selectividad a CO, sin embargo, se aprecia una conversión mayor a medida que el contenido del promotor es mayor. Los ensayos de estabilidad indican que lo OM MgCe son estable y no presentan formación de depósitos de coque, en contraste, a los OM CaCe se forman depósitos de carbono, pero en menor medida en el OM con promotor.The CO2 methanation reaction is a promising technology for the chemical storage of energy from H2 and CO2, with the development of the following degree work, catalysts of a basic nature type mixed oxides (MO) of CaCe and MgCe promoted with amounts CeO2 nominals of 3 and 5% by mass, by the coprecipitation method the were synthetized. The characterization techniques to which they were subjected revealed a difference between the physical properties of the solids, for the case of the MO CaCe, surface areas, crystallite and particle sizes are presented lower than those determined for the MO MgCe. On the other hand, with the incorporation of CeO2 to the OM, decreasing trends were observed in the crystallite size and in the particle size of the MO, only the reductive properties of the OM MgCe were affected, obtaining a decrease in the percentage of deductibility of solids, additionally, diffuse reflectance IR spectroscopy study shows an increase in the CO2 adsorption sites, along with the increase in the amount of promoter added and according to the bands formed on the MO it is suggested that the CO2 methanation pathway for synthesized MO is the formiate pathway The results of the catalytic activity show that all the MO have a higher CO2 conversion at low temperature compared to the Ni/γAl2O3 reference solid and a selectivity of 100% to the formation of CH4 under the conditions of WHSV = 60000 mLg-1h-1, the increase in space velocity generates a strong decrease in CO2 conversion and an increase in selectivity to CO, however, a higher conversion is observed as the content of the promoter is higher. Stability tests indicate that MO MgCe are stable and do not present formation of coke deposits, in contrast, MO CaCe form carbon deposits, but to a lesser extent in MO with a promoter.MaestríaCatálisis heterogénea1 recurso en línea (83 páginas)application/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaDepartamento de QuímicaFacultad de CienciasBogotáUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::547 - Química orgánicaCatálisisCatalysisConversión de CO2Metanacion de CO2Promotor de CeO2CO2 conversionCO2 methanationCeO2 promoterBiogásBiogasFuente de energía renovableAlternative energy sourcesMetanación de CO2 sobre catalizadores básicos promovidos con CeO2Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[1] B.P. Foundation, Territorial emissions in MtCO2, Glob. Carbon Atlas. (n.d.). http://www.globalcarbonatlas.org/en/CO2-emissions (accessed July 23, 2020).[2] N. National Oceanic and Atmospheric Administration, Trends in Atmospheric Carbon Dioxide, (2020). https://www.esrl.noaa.gov/gmd/ccgg/trends/history.html (accessed August 4, 2020).[3] P. Tans, R. Keeling, Trends in Atmospheric Carbon Dioxide, NOAA/GML Scripps Inst. Oceanogr. (2020) 1. https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html (accessed July 17, 2020).[4] IPCC, Global Warming of 1.5°C. Summary for Policymakers, (2018) 34. http://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf (accessed October 15, 2018).[5] IPCC, Comunicado de presa, (2018) 1–5. https://www.ipcc.ch/pdf/session48/pr_181008_P48_spm_es.pdf (accessed October 15, 2018).[6] M. Henriques, Will Covid-19 have a lasting impact on the environment?, BBC Futur. (2020).[7] D. Cucinotta, M. Vanelli, WHO declares COVID-19 a pandemic, Acta Biomed. 91 (2020) 157–160. doi:10.23750/abm.v91i1.9397.[8] R. Román, J.M. Cansino, J.A. Rodas, Analysis of the main drivers of CO2 emissions changes in Colombia (1990–2012) and its political implications, Renew. Energy. 116 (2018) 402–411. doi:10.1016/j.renene.2017.09.016.[9] IDEAM, PNUD, MADS, DNP, CANCILLERIA, Inventario Nacional Y Departamental De Gases Efecto Invernadero - Colombia, Bogotá, 2016. http://documentacion.ideam.gov.co/openbiblio/bvirtual/023634/INGEI.pdf.[10] S. Calderón, A.C. Alvarez, A.M. Loboguerrero, S. Arango, K. Calvin, T. Kober, K. Daenzer, K. Fisher-Vanden, Achieving CO2 reductions in Colombia: Effects of carbon taxes and abatement targets, Energy Econ. 56 (2014) 575–586. doi:10.1016/j.eneco.2015.05.010.[11] W. Wang, J. Gong, Methanation of carbon dioxide: An overview, Front. Chem. Eng. China. 5 (2011) 2–10. doi:10.1007/s11705-010-0528-3.[12] E. Baraj, S. Vagaský, T. Hlinčik, K. Ciahotný, V. Tekáč, Reaction mechanisms of carbon dioxide methanation, Chem. Pap. 70 (2016) 395–403. doi:10.1515/chempap- 2015-0216.[13] P. Frontera, A. Macario, M. Ferraro, P.L. Antonucci, Supported catalysts for CO2 methanation: A review, Catalysts. 7 (2017) 1–28. doi:10.3390/catal7020059.[14] M. Younas, L. Loong Kong, M.J.K. Bashir, H. Nadeem, A. Shehzad, S. Sethupathi, Recent Advancements, Fundamental Challenges, and Opportunities in Catalytic Methanation of CO2, Energy and Fuels. 30 (2016) 8815–8831. doi:10.1021/acs.energyfuels.6b01723.[15] H. Lu, X. Yang, G. Gao, J. Wang, C. Han, X. Liang, C. Li, Y. Li, W. Zhang, X. Chen, Metal (Fe, Co, Ce or La) doped nickel catalyst supported on ZrO2 modified mesoporous clays for CO and CO2 methanation, Fuel. 183 (2016) 335–344. doi:10.1016/j.fuel.2016.06.084.[16] J.J. Bravo-Suárez, R. V. Chaudhari, B. Subramaniam, Design of heterogeneous catalysts for fuels and chemicals processing: An overview, ACS Symp. Ser. 1132 (2013) 3–68. doi:10.1021/bk-2013-1132.ch001.[17] D.P.M.S.M.D.R.J.M.D.D.R. Rosseinsky, Metal Oxides, in: Electrochromism, 2007: pp. 59–92. doi:10.1002/9783527615377.ch4.[18] B. Solsona, P. Concepción, S. Hernández, B. Demicol, J.M.L. Nieto, Oxidative dehydrogenation of ethane over NiO-CeO2 mixed oxides catalysts, Catal. Today. 180 (2012) 51–58. doi:10.1016/j.cattod.2011.03.056.[19] O. Cairon, E. Dumitriu, C. Guimon, Acido-basicity of Mg-Ni-Al mixed oxides from LDH precursors: A FTIR and XPS study, J. Phys. Chem. C. 111 (2007) 8015–8023. doi:10.1021/jp0673011.[20] D. Wierzbicki, R. Debek, M. Motak, T. Grzybek, M.E. Gálvez, P. Da Costa, Novel Ni- La-hydrotalcite derived catalysts for CO2 methanation, Catal. Commun. 83 (2016) 5– 8. doi:10.1016/j.catcom.2016.04.021.[21] S. Tada, S. Ikeda, N. Shimoda, T. Honma, M. Takahashi, A. Nariyuki, S. Satokawa, Sponge Ni catalyst with high activity in CO2 methanation, Int. J. Hydrogen Energy. 42 (2017) 30126–30134. doi:10.1016/j.ijhydene.2017.10.138.[22] T.A. Le, M.S. Kim, S.H. Lee, T.W. Kim, E.D. Park, CO and CO2 methanation over supported Ni catalysts, Catal. Today. 293–294 (2017) 89–96. doi:10.1016/j.cattod.2016.12.036.[23] N. Von Der Assen, L.J. Müller, A. Steingrube, P. Voll, A. Bardow, Selecting CO2 sources for CO2 Utilization by Environmental-Merit-Order Curves, Environ. Sci. Technol. 50 (2016) 1093–1101. doi:10.1021/acs.est.5b03474.[24] J.I. Mikayilov, M. Galeotti, F.J. Hasanov, The impact of economic growth on CO2 emissions in Azerbaijan, J. Clean. Prod. 197 (2018) 1558–1572. doi:10.1016/j.jclepro.2018.06.269.[25] J.D.S. Pueyo, La cobertura de la Cumbre del Clima Chile Madrid COP25 en los informativos de la radio española The coverage of the Chile Madrid COP25 Climate Summit on the news of the Spanish radio stations, AdComunica. Rev. Científica Del Estrategias, Tendencias e Innovación En Comun. 20 (2020) 205–230. doi:http://dx.doi.org/10.6035/2174-0992.2020.20.9.[26] B.N. Mundo, COP25: 3 claves del polémico nuevo acuerdo por el clima (y por qué dicen que fracasó) - BBC News Mundo, BBC News. (2019). https://www.bbc.com/mundo/noticias-internacional-50800493 (accessed August 4, 2020).[27] X. Xu, X. Xu, Q. Chen, Y. Che, The impacts on CO2 emission reduction and haze by coal resource tax reform based on dynamic CGE model, Resour. Policy. 58 (2018) 268–276. doi:10.1016/j.resourpol.2018.05.015.[28] S.T.T. Piers M. Forster, Harriet I. Forster, Mat J. Evans, Matthew J. Gidden, Chris D. Jones, Christoph A. Keller, Robin Lamboll, Corinne Le Quéré, Joeri Rogelj, Deborah Rosen, Carl-Friedrich Schleussner, Thomas B. Richardson, Christopher J. Smith, Current and future global climate impacts resulting from COVID-19, Nat. Clim. Chang. (2020) 1–15. doi:10.1017/CBO9781107415324.004.[29] C. Le Quéré, R.B. Jackson, M.W. Jones, A.J.P. Smith, S. Abernethy, R.M. Andrew, A.J. De-Gol, D.R. Willis, Y. Shan, J.G. Canadell, P. Friedlingstein, F. Creutzig, G.P. Peters, Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement, Nat. Clim. Chang. 10 (2020) 647–653. doi:10.1038/s41558-020- 0797-x.[30] N. Abas, N. Khan, A. Haider, S. Iqbal, M. Shahbaz, CO2 utilization drivers, opportunities and conversion challenges, Ref. Modul. Mater. Sci. Mater. Eng. (2018). doi:10.1016/B978-0-12-803581-8.10494-1.[31] M. Aresta, A. Dibenedetto, A. Angelini, The changing paradigm in CO2 utilization, J. CO2 Util. 3–4 (2013) 65–73. doi:10.1016/j.jcou.2013.08.001.[32] E.I. Koytsoumpa, C. Bergins, E. Kakaras, The CO2 economy: Review of CO2 capture and reuse technologies, J. Supercrit. Fluids. 132 (2018) 3–16. doi:10.1016/j.supflu.2017.07.029.[33] C.H. Yu, C.H. Huang, C.S. Tan, A review of CO2 capture by absorption and adsorption, Aerosol Air Qual. Res. 12 (2012) 745–769. doi:10.4209/aaqr.2012.05.0132.[34] R.J. Perry, J.L. Davis, CO2 capture using solutions of alkanolamines and aminosilicones, Energy and Fuels. 26 (2012) 2512–2517. doi:10.1021/ef201963m.[35] A.E. Creamer, B. Gao, Carbon-based adsorbents for postcombustion CO2 capture: A critical review, Environ. Sci. Technol. 50 (2016) 7276–7289. doi:10.1021/acs.est.6b00627.[36] M. Songolzadeh, M.T. Ravanchi, M. Soleimani, Carbon Dioxide Capture and Storage : A General Review on Adsorbents, 6 (2012) 900–907.[37] Q. Wang, J. Luo, Z. Zhong, A. Borgna, CO2 capture by solid adsorbents and their applications: Current status and new trends, Energy Environ. Sci. 4 (2011) 42–55. doi:10.1039/c0ee00064g.[38] J. Miranda-Pizarro, A. Perejón, J.M. Valverde, L.A. Pérez-Maqueda, P.E. Sánchez- Jiménez, CO2 capture performance of Ca-Mg acetates at realistic Calcium Looping conditions, Fuel. 196 (2017) 497–507. doi:10.1016/j.fuel.2017.01.119.[39] J.M. Valverde, P.E. Sanchez-Jimenez, A. Perejon, L.A. Perez-Maqueda, Constant rate thermal analysis for enhancing the long-term CO2 capture of CaO at Ca-looping conditions, Appl. Energy. 108 (2013) 108–120. doi:10.1016/j.apenergy.2013.03.013[40] E.J. (Ben) Anthony, Ca looping technology : current status , developments and future directions, Greenh. Gases Sci. Technol. 47 (2011) 36–47. doi:10.1002/ghg3.[41] M. Aresta, A. Dibenedetto, A. Angelini, From CO2 to Chemicals, Materials, and Fuels: The Role of Catalysis, Encycl. Inorg. Bioinorg. Chem. (2014) 1–18. doi:10.1002/9781119951438.eibc2257.[42] M. Aresta, A. Dibenedetto, A. Angelini, The changing paradigm in CO2 utilization, J. CO2 Util. 3–4 (2013) 65–73. doi:10.1016/j.jcou.2013.08.001.[43] G. Ibram, Solar fuels vis-à-vis electricity generation from sunlight: The current state- of-the-art (a review), Renew. Sustain. Energy Rev. 44 (2015) 904–932. doi:10.1016/j.rser.2015.01.019.[44] M. Aresta, A. Dibenedetto, Industrial utilization of carbon dioxide (CO2), Dev. Innov. Carbon Dioxide (Co. 2 (2010) 377–410. doi:10.1533/9781845699581.4.377.[45] C.H. Huang, C.S. Tan, A review: CO2 utilization, Aerosol Air Qual. Res. 14 (2014) 480–499. doi:10.4209/aaqr.2013.10.0326.[46] E. Alper, O.Y. Orhan, CO2 utilization: Developments in conversion processes, Petroleum. 3 (2017) 109–126. doi:10.1016/J.PETLM.2016.11.003.[47] A. Lewandowska-Bernat, U. Desideri, Opportunities of power-to-gas technology in different energy systems architectures, Appl. Energy. 228 (2018) 57–67. doi:10.1016/j.apenergy.2018.06.001.[48] R. Peters, M. Baltruweit, T. Grube, R.C. Samsun, D. Stolten, A techno economic analysis of the power to gas route, J. CO2 Util. 34 (2019) 616–634. doi:10.1016/j.jcou.2019.07.009.[49] M. Götz, J. Lefebvre, F. Mörs, A. McDaniel Koch, F. Graf, S. Bajohr, R. Reimert, T. Kolb, Renewable Power-to-Gas: A technological and economic review, Renew. Energy. 85 (2016) 1371–1390. doi:10.1016/j.renene.2015.07.066.[50] S. Schiebahn, T. Grube, M. Robinius, V. Tietze, B. Kumar, D. Stolten, Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany, Int. J. Hydrogen Energy. 40 (2015) 4285–4294. doi:10.1016/j.ijhydene.2015.01.123.[51] C. Vogt, M. Monai, G.J. Kramer, B.M. Weckhuysen, The renaissance of the Sabatier reaction and its applications on Earth and in space, Nat. Catal. 2 (2019) 188–197. doi:10.1038/s41929-019-0244-4.[52] D. Hidalgo, J.M. Martín-Marroquín, Power-to-methane, coupling CO2 capture with fuel production: An overview, Renew. Sustain. Energy Rev. 132 (2020) 110057. doi:10.1016/j.rser.2020.110057.[53] T.A. Le, T.W. Kim, S.H. Lee, E.D. Park, CO and CO2 methanation over Ni catalysts supported on alumina with different crystalline phases, Korean J. Chem. Eng. 34 (2017) 3085–3091. doi:10.1007/s11814-017-0257-0.[54] K. Ghaib, K. Nitz, F.-Z. Ben-Fares, Chemical Methanation of CO2: A Review , ChemBioEng Rev. 3 (2016) 266–275. doi:10.1002/cben.201600022.[55] J. Gao, Y. Wang, Y. Ping, D. Hu, G. Xu, F. Gu, F. Su, A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas, RSC Adv. 2 (2012) 2358–2368. doi:10.1039/c2ra00632d[56] B. Miao, S.S.K. Ma, X. Wang, H. Su, S.H. Chan, Catalysis mechanisms of CO2 and CO methanation, Catal. Sci. Technol. 6 (2016) 4048–4058. doi:10.1039/c6cy00478d.[57] A. Westermann, B. Azambre, M.C. Bacariza, I. Graça, M.F. Ribeiro, J.M. Lopes, C. Henriques, Insight into CO2 methanation mechanism over NiUSY zeolites: An operando IR study, Appl. Catal. B Environ. 174–175 (2015) 120–125. doi:10.1016/j.apcatb.2015.02.026.[58] A. Solis-Garcia, J.C. Fierro-Gonzalez, Mechanistic Insights into the CO2 Methanation Catalyzed by Supported Metals: A Review , J. Nanosci. Nanotechnol. 19 (2019) 3110–3123. doi:10.1166/jnn.2019.16606.[59] X. Wang, H. Shi, J.H. Kwak, J. Szanyi, Mechanism of CO2 Hydrogenation on Pd/Al2O3 Catalysts: Kinetics and Transient DRIFTS-MS Studies, ACS Catal. 5 (2015) 6337–6349. doi:10.1021/acscatal.5b01464.[60] M.Y. Shahul Hamid, S. Triwahyono, A.A. Jalil, N.W. Che Jusoh, S.M. Izan, T.A. Tuan Abdullah, Tailoring the Properties of Metal Oxide Loaded/KCC-1 toward a Different Mechanism of CO2 Methanation by in Situ IR and ESR, Inorg. Chem. 57 (2018) 5859–5869. doi:10.1021/acs.inorgchem.8b00241.[61] A. Beuls, C. Swalus, M. Jacquemin, G. Heyen, A. Karelovic, P. Ruiz, Methanation of CO2: Further insight into the mechanism over Rh/γ-Al2O3 catalyst, Appl. Catal. B Environ. 113–114 (2012) 2–10. doi:10.1016/j.apcatb.2011.02.033.[62] S. Eckle, H. Anfang, R. Ju, Reaction intermediates and side products in the methanation of CO and CO2 over supported Ru catalysts in H2 -Rich reformate gases, (2011) 1361–1367.[63] S. Rönsch, J. Schneider, S. Matthischke, M. Schlüter, M. Götz, J. Lefebvre, P. Prabhakaran, S. Bajohr, Review on methanation - From fundamentals to current projects, Fuel. 166 (2016) 276–296. doi:10.1016/j.fuel.2015.10.111[64] M. Younas, L. Loong Kong, M.J.K. Bashir, H. Nadeem, A. Shehzad, S. Sethupathi, Recent Advancements, Fundamental Challenges, and Opportunities in Catalytic Methanation of CO2, Energy and Fuels. 30 (2016) 8815–8831. doi:10.1021/acs.energyfuels.6b01723.[65] Y. Cao, H. Li, J. Zhang, L. Shi, D. Zhang, Promotional effects of rare earth elements (Sc, Y, Ce, and Pr) on NiMgAl catalysts for dry reforming of methane, RSC Adv. 6 (2016) 112215–112225. doi:10.1039/c6ra19139h.[66] L. Karam, M.C. Bacariza, J.M. Lopes, C. Henriques, P. Massiani, N. El Hassan, Assessing the potential of xNi-yMg-Al2O3 catalysts prepared by EISA-one-pot synthesis towards CO2 methanation: An overall study, Int. J. Hydrogen Energy. (2020). doi:10.1016/j.ijhydene.2020.07.170.[67] L. Zhang, X. Wang, C. Chen, X. Zou, X. Shang, W. Ding, X. Lu, Investigation of mesoporous NiAl2O4/MO: X (M = La, Ce, Ca, Mg)-γ-Al2O3 nanocomposites for dry reforming of methane, RSC Adv. 7 (2017) 33143–33154. doi:10.1039/c7ra04497f.[68] R. Daroughegi, F. Meshkani, M. Rezaei, Enhanced activity of CO2 methanation over mesoporous nanocrystalline Ni–Al2O3 catalysts prepared by ultrasound-assisted co- precipitation method, Int. J. Hydrogen Energy. 42 (2017) 15115–15125. doi:10.1016/j.ijhydene.2017.04.244.[69] N.A.A. Fatah, A.A. Jalil, N.F.M. Salleh, M.Y.S. Hamid, Z.H. Hassan, M.G.M. Nawawi, Elucidation of cobalt disturbance on Ni/Al2O3 in dissociating hydrogen towards improved CO2 methanation and optimization by response surface methodology (RSM), Int. J. Hydrogen Energy. 45 (2020) 18562–18573. doi:10.1016/j.ijhydene.2019.04.119.[70] E. Marconi, S. Tuti, I. Luisetto, Structure-sensitivity of CO2 methanation over nanostructured Ni supported on CeO2 nanorods, Catalysts. 9 (2019) 1–13. doi:10.3390/catal9040375.[71] J.C. Védrine, Heterogeneous catalysis on metal oxides, Catalysts. 7 (2017). doi:10.3390/catal7110341.[72] U.P.M. Ashik, S. Kudo, J. Hayashi, An Overview of Metal Oxide Nanostructures, Elsevier Ltd., 2018. doi:10.1016/b978-0-08-101975-7.00002-6.[73] J.C. Védrine, Metal Oxides in Heterogeneous Oxidation Catalysis: State of the Art and Challenges for a More Sustainable World, ChemSusChem. 12 (2019) 577–588. doi:10.1002/cssc.201802248.[74] H. Dong, A. Wang, G.M. Koenig, Role of coprecipitation and calcination of precursors on phase homogeneity and electrochemical properties of battery active materials, Powder Technol. 335 (2018) 137–146. doi:10.1016/j.powtec.2018.05.020.[75] T. Ahn, J.H. Kim, H.M. Yang, J.W. Lee, J.D. Kim, Formation pathways of magnetite nanoparticles by coprecipitation method, J. Phys. Chem. C. 116 (2012) 6069–6076. doi:10.1021/jp211843g.[76] W.M. Rangel, R.A.A. Boca Santa, H.G. Riella, A facile method for synthesis of nanostructured copper (II) oxide by coprecipitation, J. Mater. Res. Technol. 9 (2020) 994–1004. doi:10.1016/j.jmrt.2019.11.039.[77] M.K. Zate, S.D. Raut, S.D. Shirsat, S. Sangale, A.S. Kadam, Ferrite nanostructures, Elsevier Inc., 2020. doi:10.1016/b978-0-12-819237-5.00002-x.[78] A. Karatutlu, A. Barhoum, A. Sapelkin, Liquid-phase synthesis of nanoparticles and nanostructured materials, Elsevier Inc., 2018. doi:10.1016/B978-0-323-51254- 1.00001-4.[79] P. Munnik, P.E. De Jongh, K.P. De Jong, Recent Developments in the Synthesis of Supported Catalysts, Chem. Rev. 115 (2015) 6687–6718. doi:10.1021/cr500486u.[80] Y.C. Sharma, B. Singh, J. Korstad, Latest developments on application of heterogenous basic catalysts for an efficient and eco friendly synthesis of biodiesel: A review, Fuel. 90 (2011) 1309–1324. doi:10.1016/j.fuel.2010.10.015.[81] N. Oueda, Y.L. Bonzi-Coulibaly, I.W.K. Ouédraogo, Deactivation Processes, Regeneration Conditions and Reusability Performance of CaO or MgO Based Catalysts Used for Biodiesel Production—A Review, Mater. Sci. Appl. 08 (2017) 94– 122. doi:10.4236/msa.2017.81007.[82] R. Dȩbek, M. Motak, D. Duraczyska, F. Launay, M.E. Galvez, T. Grzybek, P. Da Costa, Methane dry reforming over hydrotalcite-derived Ni-Mg-Al mixed oxides: The influence of Ni content on catalytic activity, selectivity and stability, Catal. Sci. Technol. 6 (2016) 6705–6715. doi:10.1039/c6cy00906a.[83] A. Jangam, S. Das, N. Dewangan, P. Hongmanorom, W.M. Hui, S. Kawi, Conversion of CO2 to C1 chemicals: Catalyst design, kinetics and mechanism aspects of the reactions, Catal. Today. (2019) 0–1. doi:10.1016/j.cattod.2019.08.049.[84] A. Alarcón, J. Guilera, J.A. Díaz, T. Andreu, Optimization of nickel and ceria catalyst content for synthetic natural gas production through CO2 methanation, Fuel Process. Technol. 193 (2019) 114–122. doi:10.1016/j.fuproc.2019.05.008[85] A. Alarcón, J. Guilera, R. Soto, T. Andreu, Higher tolerance to sulfur poisoning in CO2 methanation by the presence of CeO2, Appl. Catal. B Environ. 263 (2020). doi:10.1016/j.apcatb.2019.118346.[86] H. Liu, X. Zou, X. Wang, X. Lu, W. Ding, Effect of CeO2 addition on Ni/Al2O3 catalysts for methanation of carbon dioxide with hydrogen, J. Nat. Gas Chem. 21 (2012) 703– 707. doi:10.1016/S1003-9953(11)60422-2.[87] A. Azizzadeh Fard, R. Arvaneh, S.M. Alavi, A. Bazyari, A. Valaei, Propane steam reforming over promoted Ni–Ce/MgAl2O4 catalysts: Effects of Ce promoter on the catalyst performance using developed CCD model, Int. J. Hydrogen Energy. 44 (2019) 21607–21622. doi:10.1016/j.ijhydene.2019.06.100.[88] N. Laosiripojana, W. Sutthisripok, S. Assabumrungrat, Synthesis gas production from dry reforming of methane over CeO2 doped Ni/Al2O3: Influence of the doping ceria on the resistance toward carbon formation, Chem. Eng. J. 112 (2005) 13–22. doi:10.1016/j.cej.2005.06.003.[89] A. Cárdenas-Arenas, A. Quindimil, A. Davó-Quiñonero, E. Bailón-García, D. Lozano- Castelló, U. De-La-Torre, B. Pereda-Ayo, J.A. González-Marcos, J.R. González- Velasco, A. Bueno-López, Isotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts, Appl. Catal. B Environ. 265 (2020) 118538. doi:10.1016/j.apcatb.2019.118538.[90] T. Sakpal, L. Lefferts, Structure-dependent activity of CeO2 supported Ru catalysts for CO2 methanation, J. Catal. 367 (2018) 171–180. doi:10.1016/j.jcat.2018.08.027.[91] S.M. Lee, Y.H. Lee, D.H. Moon, J.Y. Ahn, D.D. Nguyen, S.W. Chang, S.S. Kim, Reaction Mechanism and Catalytic Impact of Ni/CeO2–x Catalyst for Low- Temperature CO2 Methanation , Ind. Eng. Chem. Res. 58 (2019) 8656–8662. doi:10.1021/acs.iecr.9b00983.[92] S. Sharma, K.B. Sravan Kumar, Y.M. Chandnani, V.S. Phani Kumar, B.P. Gangwar, A. Singhal, P.A. Deshpande, Mechanistic Insights into CO2 Methanation over Ru- Substituted CeO2, J. Phys. Chem. C. 120 (2016) 14101–14112. doi:10.1021/acs.jpcc.6b03224.[93] L. Zhang, L. Bian, Z. Zhu, Z. Li, La-promoted Ni/Mg-Al catalysts with highly enhanced low-temperature CO2 methanation performance, Int. J. Hydrogen Energy. 43 (2018) 2197–2206. doi:10.1016/j.ijhydene.2017.12.082.[94] M.Y. Shahul Hamid, S. Triwahyono, A.A. Jalil, N.W. Che Jusoh, S.M. Izan, T.A. Tuan Abdullah, Tailoring the properties of metal oxide loaded/KCC-1 toward a different mechanism of CO2 methanation by in situ IR and ESR, Inorg. Chem. 57 (2018) 5859– 5869. doi:10.1021/acs.inorgchem.8b00241.[95] X. Guo, Z. Peng, M. Hu, C. Zuo, A. Traitangwong, V. Meeyoo, C. Li, S. Zhang, Highly active Ni-based catalyst derived from double hydroxides precursor for low temperature CO2 methanation, Ind. Eng. Chem. Res. 57 (2018) 9102–9111. doi:10.1021/acs.iecr.8b01619.[96] X. Guo, A. Traitangwong, M. Hu, C. Zuo, V. Meeyoo, Z. Peng, C. Li, Carbon dioxide methanation over Nickel-based catalysts supported on various mesoporous material, Energy and Fuels. 32 (2018) 3681–3689. doi:10.1021/acs.energyfuels.7b03826.[97] J. Guilera, J. Del Valle, A. Alarcón, J.A. Díaz, T. Andreu, Metal-oxide promoted Ni/Al2O3 as CO2 methanation micro-size catalysts, J. CO2 Util. 30 (2019) 11–17. doi:10.1016/j.jcou.2019.01.003.[98] Z. Li, B. Li, Z. Li, X. Rong, The promoter action of CeO2 for the Ni/Al2O3-catalyzed methanation of CO2, Kinet. Catal. 56 (2015) 329–334. doi:10.1134/S0023158415030143.[99] P.H. Ho, G.S. de Luna, S. Angelucci, A. Canciani, W. Jones, D. Decarolis, F. Ospitali, E.R. Aguado, E. Rodríguez-Castellón, G. Fornasari, A. Vaccari, A.M. Beale, P. Benito, Understanding structure-activity relationships in highly active La promoted Ni catalysts for CO2 methanation, Appl. Catal. B Environ. 278 (2020) 119256. doi:10.1016/j.apcatb.2020.119256.[100] Y. Wang, Y. Xu, Q. Liu, J. Sun, S. Ji, Z. jun Wang, Enhanced low-temperature activity for CO2 methanation over NiMgAl/SiC composite catalysts, J. Chem. Technol. Biotechnol. 94 (2019) 3780–3786. doi:10.1002/jctb.6078.[101] S. Wang, C. Li, S. Yan, Y. Zhao, X. Ma, Adsorption of CO2 on mixed oxides derived from Ca–Al–ClO4-Layered double hydroxide, Energy & Fuels. 30 (2016) 1217–1222. doi:10.1021/acs.energyfuels.5b02506.[102] M. Muñoz, S. Moreno, R. Molina, Synthesis of Ce and Pr-promoted Ni and Co catalysts from hydrotalcite type precursors by reconstruction method, Int. J. Hydrogen Energy. 37 (2012) 18827–18842. doi:10.1016/j.ijhydene.2012.09.132.[103] C.E. Daza, F. Mondragón, S. Moreno, R. Molina, Reformado de metano con CO2 sobre óxidos mixtos Ni-Mg-Al-Ce derivados de hidrotalcitas: Efecto de la relación Mg/Ni, Rev. Fac. Ing. (2011) 66–74.[104] C.E. Daza, S. Moreno, R. Molina, Co-precipitated Ni-Mg-Al catalysts containing Ce for CO2 reforming of methane, Int. J. Hydrogen Energy. 36 (2011) 3886–3894. doi:10.1016/j.ijhydene.2010.12.082[105] C.E. Daza, S. Moreno, R. Molina, Co-precipitated Ni–Mg–Al catalysts containing Ce for CO2 reforming of methane, Int. J. Hydrogen Energy. 36 (2011) 3886–3894. doi:10.1016/J.IJHYDENE.2010.12.082.[106] C.E. Daza, J. Gallego, J.A. Moreno, F. Mondragón, S. Moreno, R. Molina, CO2 reforming of methane over Ni/Mg/Al/Ce mixed oxides, Catal. Today. 133–135 (2008) 357–366. doi:10.1016/j.cattod.2007.12.081.[107] C.E. Daza, J. Gallego, F. Mondragón, S. Moreno, R. Molina, High stability of Ce- promoted Ni/Mg-Al catalysts derived from hydrotalcites in dry reforming of methane, Fuel. 89 (2010) 592–603. doi:10.1016/j.fuel.2009.10.010.[108] S. Zhu, L. Avadiar, Y.K. Leong, Yield stress- and zeta potential-pH behaviour of washed α-Al2O3 suspensions with relatively high Ca(II) and Mg(II) concentrations: Hydrolysis product and bridging, Int. J. Miner. Process. 148 (2016) 1–8. doi:10.1016/j.minpro.2016.01.004.[109] F. XIAO, B. ZHANG, C. LEE, Effects of low temperature on aluminum(III) hydrolysis: Theoretical and experimental studies, J. Environ. Sci. 20 (2008) 907–914. doi:10.1016/S1001-0742(08)62185-3.[110] S.J. Hassani Rad, M. Haghighi, A. Alizadeh Eslami, F. Rahmani, N. Rahemi, Sol-gel vs. impregnation preparation of MgO and CeO2 doped Ni/Al2O3 nanocatalysts used in dry reforming of methane: Effect of process conditions, synthesis method and support composition, Int. J. Hydrogen Energy. 41 (2016) 5335–5350. doi:10.1016/j.ijhydene.2016.02.002.[111] D. Hu, J. Gao, Y. Ping, L. Jia, P. Gunawan, Z. Zhong, G. Xu, F. Gu, F. Su, Enhanced investigation of CO methanation over Ni/Al2O3 catalysts for synthetic natural gas production, Ind. Eng. Chem. Res. 51 (2012) 4875–4886. doi:10.1021/ie300049f.[112] K. Nakayama, T. Nakamura, Undersized (12.5mm diameter) glass beads with minimal amount (11mg) of geochemical and archeological silicic samples for X-ray fluorescence determination of major oxides, X-Ray Spectrom. 41 (2012) 225–234. doi:10.1002/xrs.2382.[113] G.J. Simandl, R.S. Stone, S. Paradis, R. Fajber, H.M. Reid, K. Grattan, An assessment of a handheld X-ray fluorescence instrument for use in exploration and development with an emphasis on REEs and related specialty metals, Miner. Depos. 49 (2014) 999–1012. doi:10.1007/s00126-013-0493-0.[114] J.S.J. Hargreaves, Some considerations related to the use of the Scherrer equation in powder X-ray diffraction as applied to heterogeneous catalysts, Catal. Struct. React. 2 (2016) 33–37. doi:10.1080/2055074X.2016.1252548.[115] F. Hu, S. Tong, K. Lu, C. Chen, F. Su, J. Zhou, Reduced graphene oxide supported Ni-Ce catalysts for CO2 methanation : The support and ceria promotion effects Reduced graphene oxide supported Ni-Ce catalysts for CO2 methanation : The support and ceria promotion effects Authors : Affiliation : Correspo, J. CO2 Util. 34 (2019) 676–687. doi:10.1016/j.jcou.2019.08.020.[116] N. Schreiter, J. Kirchner, S. Kureti, A DRIFTS and TPD study on the methanation of CO2 on Ni/Al2O3 catalyst, Catal. Commun. 140 (2020) 105988. doi:10.1016/j.catcom.2020.105988.[117] P. Muñoz, Síntesis de catalizadores de Ni y/o Co promovidos por Ce y/o Pr obtenidos a partir de hidróxidos de doble capa para la producción de hidrógeno por reformado de etanol con vapor oxidativo, Universidad Nacional de Colombia, 2014. https://repositorio.unal.edu.co/handle/unal/54195.[118] J. Jayaraj, C.L. Mendis, T. Ohkubo, K. Oh-Ishi, K. Hono, Enhanced precipitation hardening of Mg-Ca alloy by Al addition, Scr. Mater. 63 (2010) 831–834. doi:10.1016/j.scriptamat.2010.06.028.[119] X. Kou, C. Li, Y. Zhao, S. Wang, X. Ma, CO2 sorbents derived from capsule- connected Ca-Al hydrotalcite-like via low-saturated coprecipitation, Fuel Process. Technol. 177 (2018) 210–218. doi:10.1016/j.fuproc.2018.04.036R.W. Wilson, Aluminum, Fish Physiol. 31 (2011) 67–123. doi:10.1016/S1546- 5098(11)31024-2.[121] J. Liu, S. Bi, L. Yang, X. Gu, P. Ma, N. Gan, X. Wang, X. Long, F. Zhang, Speciation analysis of aluminium(III) in natural waters and biological fluids by complexing with various catechols followed by differential pulse voltammetry detection, Analyst. 127 (2002) 1657–1665. doi:10.1039/b205559g.[122] Z. Li, L. Bian, Q. Zhu, W. Wang, Ni-based catalyst derived from Ni/Mg/Al hydrotalcite- like compounds and its activity in the methanation of carbon monoxide, Kinet. Catal. 55 (2014) 217–223. doi:10.1134/S0023158414020049.[123] Y. Zhu, S. Zhang, B. Chen, Z. Zhang, C. Shi, Effect of Mg/Al ratio of NiMgAl mixed oxide catalyst derived from hydrotalcite for carbon dioxide reforming of methane, Catal. Today. 264 (2016) 163–170. doi:10.1016/j.cattod.2015.07.037.[124] A.M. Campos, S. Moreno, R.A. Molina, Characterization of Al-Zr, Al-Hf and Al-Ce- pillared vermiculites by X-ray photoelectron spectroscopy, Rev. La Acad. Colomb. Ciencias Exactas, Físicas y Nat. 38 (2014) 401. doi:10.18257/raccefyn.85.[125] L. Wei, F. Zietzschmann, L.C. Rietveld, D. van Halem, Fluoride removal by Ca-Al- CO3 layered double hydroxides at environmentally-relevant concentrations, Chemosphere. 243 (2020) 125307. doi:10.1016/j.chemosphere.2019.125307.[126] A.P. Tsai, A test of Hume-Rothery rules for stable quasicrystals, J. Non. Cryst. Solids. 334–335 (2004) 317–322. doi:10.1016/j.jnoncrysol.2003.11.065.[127] J.Y. Jing, S.D. Wang, X.W. Zhang, Q. Li, W.Y. Li, Influence of Ca/Al molar ratio on structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst, Ranliao Huaxue Xuebao/Journal Fuel Chem. Technol. 45 (2017) 956–962. doi:10.1016/s1872-5813(17)30046-4[128] D.G. Costa, A.B. Rocha, W.F. Souza, S.S.X. Chiaro, A.A. Leitão, Structural and energetic analysis of MgxM1-x(OH) 2 (M = Zn, Cu or Ca) brucite-like compounds by DFT calculations, J. Phys. Chem. C. 112 (2008) 10681–10687. doi:10.1021/jp8016453.[129] A.J. Vizcaíno, M. Lindo, A. Carrero, J.A. Calles, Hydrogen production by steam reforming of ethanol using Ni catalysts based on ternary mixed oxides prepared by coprecipitation, Int. J. Hydrogen Energy. 37 (2012) 1985–1992. doi:10.1016/j.ijhydene.2011.04.179.[130] D.H. Yang, B.Y. Hur, S.R. Yang, Study on fabrication and foaming mechanism of Mg foam using CaCO3 as blowing agent, J. Alloys Compd. 461 (2008) 221–227. doi:10.1016/j.jallcom.2007.07.098.[131] R. Atchudan, N. Lone, J. Joo, Preparation of CaCO3 and CaO Nanoparticles via Solid-State Conversion of Calcium Oleate Precursor , J. Nanosci. Nanotechnol. 18 (2017) 1958–1964. doi:10.1166/jnn.2018.14208.[132] H. Jo, M.G. Lee, J. Park, K.D. Jung, Preparation of high-purity nano-CaCO3 from steel slag, Energy. 120 (2017) 884–894. doi:10.1016/j.energy.2016.11.140.[133] J. Liu, W. Bing, X. Xue, F. Wang, B. Wang, S. He, Y. Zhang, M. Wei, Alkaline-assisted Ni nanocatalysts with largely enhanced low-temperature activity toward CO2 methanation Jie, Catal. Sci. Technol. (2015). doi:DOI:10.1039/C5CY02026C.[134] N.D. Charisiou, A. Baklavaridis, V.G. Papadakis, M.A. Goula, Synthesis Gas Production via the Biogas Reforming Reaction Over Ni/MgO–Al2O3 and Ni/CaO– Al2O3 Catalysts, Waste and Biomass Valorization. 7 (2016) 725–736. doi:10.1007/s12649-016-9627-9.[135] O. Aschenbrenner, P. McGuire, S. Alsamaq, J. Wang, S. Supasitmongkol, B. Al-Duri, P. Styring, J. Wood, Adsorption of carbon dioxide on hydrotalcite-like compounds of different compositions, Chem. Eng. Res. Des. 89 (2011) 1711–1721. doi:10.1016/j.cherd.2010.09.019.[136] M.K. Montañez, R. Molina, S. Moreno, Nickel catalysts obtained from hydrotalcites by coprecipitation and urea hydrolysis for hydrogen production, Int. J. Hydrogen Energy. 39 (2014) 8225–8237. doi:10.1016/j.ijhydene.2014.03.103.[137] D.Y. Kalai, K. Stangeland, W.M. Tucho, Y. Jin, Z. Yu, Biogas reforming on hydrotalcite-derived Ni-Mg-Al catalysts: The effect of Ni loading and Ce promotion, J. CO2 Util. 33 (2019) 189–200. doi:10.1016/j.jcou.2019.05.011.[138] R. Dębek, M. Radlik, M. Motak, M.E. Galvez, W. Turek, P. Da Costa, T. Grzybek, Ni- containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature - On the effect of basicity, Catal. Today. 257 (2015) 59–65. doi:10.1016/j.cattod.2015.03.017.[139] H. Han, J. Li, H. Wang, Y. Han, Y. Chen, J. Li, Y. Zhang, Y. Wang, B. Wang, One- Step Valorization of Calcium Lignosulfonate to Produce Phenolics with the Addition of Solid Base Oxides in the Hydrothermal Reaction System, Energy and Fuels. 33 (2019) 4302–4309. doi:10.1021/acs.energyfuels.9b00332.[140] M. Thommes, K. Kaneko, A. V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069. doi:10.1515/pac-2014-1117.[141] Z. Bao, Y. Lu, J. Han, Y. Li, F. Yu, Highly active and stable Ni-based bimodal pore catalyst for dry reforming of methane, Appl. Catal. A Gen. 491 (2015) 116–126. doi:10.1016/j.apcata.2014.12.005.[142] L. Xu, H. Yang, M. Chen, F. Wang, D. Nie, L. Qi, X. Lian, H. Chen, M. Wu, CO2 methanation over Ca doped ordered mesoporous Ni-Al composite oxide catalysts: The promoting effect of basic modifier, J. CO2 Util. 21 (2017) 200–210. doi:10.1016/j.jcou.2017.07.014.[143] P.H. Chang, Y.P. Chang, S.Y. Chen, C.T. Yu, Y.P. Chyou, Ca-rich Ca-Al-oxide, high- temperature-stable sorbents prepared from hydrotalcite precursors: Synthesis, characterization, and CO2 capture capacity, ChemSusChem. 4 (2011) 1844–1851. doi:10.1002/cssc.201100357.[144] G. Wu, C. Zhang, S. Li, Z. Huang, S. Yan, S. Wang, X. Ma, J. Gong, Sorption enhanced steam reforming of ethanol on Ni-CaO-Al2O3 multifunctional catalysts derived from hydrotalcite-like compounds, Energy Environ. Sci. 5 (2012) 8942–8949. doi:10.1039/c2ee21995f.[145] Y. Li, J. Wang, Z. Li, Q. Liu, J. Liu, L. Liu, X. Zhang, J. Yu, Ultrasound assisted synthesis of Ca-Al hydrotalcite for U (VI) and Cr (VI) adsorption, Chem. Eng. J. 218 (2013) 295–302. doi:10.1016/j.cej.2012.12.051.[146] W. Bing, L. Zheng, S. He, D. Rao, M. Xu, L. Zheng, B. Wang, Y. Wang, M. Wei, Insights on Active Sites of CaAl-Hydrotalcite as a High-Performance Solid Base Catalyst toward Aldol Condensation, ACS Catal. 8 (2018) 656–664. doi:10.1021/acscatal.7b03022[147] A. Serrano-Lotina, L. Rodríguez, G. Muñoz, L. Daza, Biogas reforming on La- promoted NiMgAl catalysts derived from hydrotalcite-like precursors, J. Power Sources. 196 (2011) 4404–4410. doi:10.1016/j.jpowsour.2010.10.107.[148] Y. Yan, Y. Dai, H. He, Y. Yu, Y. Yang, A novel W-doped Ni-Mg mixed oxide catalyst for CO2 methanation, Appl. Catal. B Environ. 196 (2016) 108–116. doi:10.1016/j.apcatb.2016.05.016.[149] C. Mebrahtu, F. Krebs, S. Perathoner, S. Abate, G. Centi, R. Palkovits, Hydrotalcite based Ni-Fe/(Mg, Al)O:X catalysts for CO2 methanation-tailoring Fe content for improved CO dissociation, basicity, and particle size, Catal. Sci. Technol. 8 (2018) 1016–1027. doi:10.1039/c7cy02099f.[150] S. Ewald, M. Kolbeck, T. Kratky, M. Wolf, O. Hinrichsen, On the deactivation of Ni-Al catalysts in CO2 methanation, Appl. Catal. A Gen. 570 (2019) 376–386. doi:10.1016/j.apcata.2018.10.033.[151] S. Sivasangar, M.S. Mastuli, A. Islam, Y.H. Taufiq-Yap, Screening of modified CaO- based catalysts with a series of dopants for the supercritical water gasification of empty palm fruit bunches to produce hydrogen, RSC Adv. 5 (2015) 36798–36808. doi:10.1039/c5ra03430b.[152] J. Zhou, H. Ma, C. Liu, H. Zhang, W. Qian, W. Ying, Ni Based Catalysts Supported on Ce Modified MgAl Spinel Supports for High Temperature Syngas Methanation, Catal. Letters. 149 (2019) 2563–2574. doi:10.1007/s10562-019-02868-7.[153] A. Bermejo-López, B. Pereda-Ayo, J.A. González-Marcos, J.R. González-Velasco, Ni loading effects on dual function materials for capture and in-situ conversion of CO2 to CH4 using CaO or Na2CO3, J. CO2 Util. 34 (2019) 576–587. doi:10.1016/j.jcou.2019.08.011.[154] H.P. Ren, Y.H. Song, W. Wang, J.G. Chen, J. Cheng, J. Jiang, Z.T. Liu, Z.W. Liu, Z. Hao, J. Lu, Insights into CeO2-modified Ni-Mg-Al oxides for pressurized carbon dioxide reforming of methane, Chem. Eng. J. 259 (2015) 581–593. doi:10.1016/j.cej.2014.08.029.[155] R. Dębek, M. Motak, M.E. Galvez, P. Da Costa, T. Grzybek, Catalytic activity of hydrotalcite-derived catalysts in the dry reforming of methane: on the effect of Ce promotion and feed gas composition, React. Kinet. Mech. Catal. 121 (2017) 185–208. doi:10.1007/s11144-017-1167-1.[156] C.O. Calgaro, O.W. Perez-Lopez, Biogas dry reforming for hydrogen production over Ni-M-Al catalysts (M = Mg, Li, Ca, La, Cu, Co, Zn), Int. J. Hydrogen Energy. 44 (2019) 17750–17766. doi:10.1016/j.ijhydene.2019.05.113.[157] B.T. Meshesha, N. Barrabés, K. Föttinger, R.J. Chimentão, J. Llorca, F. Medina, G. Rupprechter, J.E. Sueiras, Gas-phase hydrodechlorination of trichloroethylene over Pd/NiMgAl mixed oxide catalysts, Appl. Catal. B Environ. 117–118 (2012) 236–245. doi:10.1016/j.apcatb.2012.01.018.[158] X.D. Feng, J. Feng, W.Y. Li, CO2 reforming of CH4 over a highly active and stable Ni-Mg-Al catalyst, Int. J. Hydrogen Energy. 42 (2017) 3036–3042. doi:10.1016/j.ijhydene.2016.09.205.[159] Y. Cao, H. Zhang, J. Dong, Y. Ma, H. Sun, L. Niu, X. Lan, L. Cao, G. Bai, A stable nickel-based catalyst derived from layered double hydroxide for selective hydrogenation of benzonitrile, Mol. Catal. 475 (2019) 110452. doi:10.1016/j.mcat.2019.110452.[160] H. Messaoudi, S. Thomas, A. Djaidja, S. Slyemi, A. Barama, Study of LaxNiOy and LaxNiOy/MgAl2O4 catalysts in dry reforming of methane, J. CO2 Util. 24 (2018) 40–49. doi:10.1016/j.jcou.2017.12.002.[161] A.F. Lucrédio, G. Jerkiewickz, E.M. Assaf, Nickel catalysts promoted with cerium and lanthanum to reduce carbon formation in partial oxidation of methane reactions, Appl. Catal. A Gen. 333 (2007) 90–95. doi:10.1016/j.apcata.2007.09.009.[162] A.V. Paladino Lino, C.B. Rodella, E.M. Assaf, J.M. Assaf, Methane tri-reforming for synthesis gas production using Ni/CeZrO2/MgAl2O4 catalysts: Effect of Zr/Ce molar ratio, Int. J. Hydrogen Energy. 5 (2020). doi:10.1016/j.ijhydene.2020.01.002.[163] A.R. Keshavarz, M. Soleimani, Nano-sized Ni/(CaO)x-(Al2O3)y catalysts for steam pre-reforming of ethane and propane in natural gas: The role of CaO/Al2O3 ratio to enhance conversion efficiency and resistance to coke formation, J. Nat. Gas Sci. Eng. 45 (2017) 1–10. doi:10.1016/j.jngse.2017.05.019.[164] M.J. Kim, J.R. Youn, H.J. Kim, M.W. Seo, D. Lee, K.S. Go, K.B. Lee, S.G. Jeon, Effect of surface properties controlled by Ce addition on CO2 methanation over Ni/Ce/Al2O3 catalyst, Int. J. Hydrogen Energy. (2020) 2–10. doi:10.1016/j.ijhydene.2020.06.144.[165] X. Du, D. Zhang, L. Shi, R. Gao, J. Zhang, Coke- and sintering-resistant monolithic catalysts derived from in situ supported hydrotalcite-like films on Al wires for dry reforming of methane, Nanoscale. 5 (2013) 2659–2663. doi:10.1039/c3nr33921a.[166] M. Shokrollahi Yancheshmeh, H.R. Radfarnia, M.C. Iliuta, Sustainable Production of High-Purity Hydrogen by Sorption Enhanced Steam Reforming of Glycerol over CeO2-Promoted Ca9Al6O18-CaO/NiO Bifunctional Material, ACS Sustain. Chem. Eng. 5 (2017) 9774–9786. doi:10.1021/acssuschemeng.7b01627.[167] E. Akbari, S.M. Alavi, M. Rezaei, CeO2 Promoted Ni-MgO-Al2O3 nanocatalysts for carbon dioxide reforming of methane, J. CO2 Util. 24 (2018) 128–138. doi:10.1016/j.jcou.2017.12.015.[168] X. Fang, J. Zhang, J. Liu, C. Wang, Q. Huang, X. Xu, H. Peng, W. Liu, X. Wang, W. Zhou, Methane dry reforming over Ni/Mg-Al-O: On the significant promotional effects of rare earth Ce and Nd metal oxides, J. CO2 Util. 25 (2018) 242–253. doi:10.1016/j.jcou.2018.04.011.[169] H.C. Wu, Y.C. Chang, J.H. Wu, J.H. Lin, I.K. Lin, C.S. Chen, Methanation of CO2 and reverse water gas shift reactions on Ni/SiO2 catalysts: the influence of particle size on selectivity and reaction pathway, Catal. Sci. Technol. 5 (2015) 4154–4163. doi:10.1039/c5cy00667h.[170] G. Botzolaki, G. Goula, A. Rontogianni, E. Nikolaraki, N. Chalmpes, P. Zygouri, M. Karakassides, D. Gournis, N. Charisiou, M. Goula, S. Papadopoulos, I. Yentekakis, CO2 Methanation on Supported Rh Nanoparticles : The combined Effect of Support Oxygen Storage Capacity and Rh Particle Size, Catalysts. (2020) 9–14. doi:doi:10.3390/catal10080944.[171] J.K. Kesavan, I. Luisetto, S. Tuti, C. Meneghini, G. Iucci, C. Battocchio, S. Mobilio, S. Casciardi, R. Sisto, Nickel supported on YSZ: The effect of Ni particle size on the catalytic activity for CO2 methanation, J. CO2 Util. 23 (2018) 200–211. doi:10.1016/j.jcou.2017.11.015.[172] J. Liao, B. Jin, Y. Zhao, Z. Liang, Highly efficient and durable metal-organic framework material derived Ca-based solid sorbents for CO2 capture, Chem. Eng. J. 372 (2019) 1028–1037. doi:10.1016/j.cej.2019.04.212.[173] A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD, World J. Nano Sci. Eng. 02 (2012) 154– 160. doi:10.4236/wjnse.2012.23020.[174] B. Akbari, M.P. Tavandashti, M. Zandrahimi, Particle size characterization of nanoparticles- a practicalapproach, Iran. J. Mater. Sci. Eng. 8 (2011) 48–56.[175] M.L. Lavčević, A. Turković, The measurements of particle/crystallite size in nanostructured TiO2 films by SAXS/WAXD method, Scr. Mater. 46 (2002) 501–505. doi:10.1016/S1359-6462(02)00021-0.[176] Q. Li, C.W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, K. Okuyama, Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles, Sci. Rep. 7 (2017) 1–4. doi:10.1038/s41598-017-09897-5.[177] T.T. Trinh, N.H. Tu, H.H. Le, K.Y. Ryu, K.B. Le, K. Pillai, J. Yi, Improving the ethanol sensing of ZnO nano-particle thin films - The correlation between the grain size and the sensing mechanism, Sensors Actuators, B Chem. 152 (2011) 73–81. doi:10.1016/j.snb.2010.09.045.[178] J. Ashok, Y. Kathiraser, M.L. Ang, S. Kawi, Bi-functional hydrotalcite-derived NiO- CaO-Al2O3 catalysts for steam reforming of biomass and/or tar model compound at low steam-to-carbon conditions, Appl. Catal. B Environ. 172–173 (2015) 116–128. doi:10.1016/j.apcatb.2015.02.017.[179] X. Yu, N. Wang, W. Chu, M. Liu, Carbon dioxide reforming of methane for syngas production over La-promoted NiMgAl catalysts derived from hydrotalcites, Chem. Eng. J. 209 (2012) 623–632. doi:10.1016/j.cej.2012.08.037.[180] J. Ashok, M.L. Ang, S. Kawi, Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts: Influence of preparation methods, Catal. Today. 281 (2017) 304–311. doi:10.1016/j.cattod.2016.07.020.[181] L. Proaño, M.A. Arellano-Treviño, R.J. Farrauto, M. Figueredo, C. Jeong-Potter, M. Cobo, Mechanistic assessment of dual function materials, composed of Ru-Ni, Na2O/Al2O3 and Pt-Ni, Na2O/Al2O3, for CO2 capture and methanation by in-situ DRIFTS, Appl. Surf. Sci. 533 (2020) 147469. doi:10.1016/j.apsusc.2020.147469.[182] F. Wang, S. He, H. Chen, B. Wang, L. Zheng, M. Wei, D.G. Evans, X. Duan, Active Site Dependent Reaction Mechanism over Ru/CeO2 Catalyst toward CO2 Methanation, J. Am. Chem. Soc. 138 (2016) 6298–6305. doi:10.1021/jacs.6b02762[183] C. Liang, X. Hu, T. Wei, P. Jia, Z. Zhang, D. Dong, S. Zhang, Q. Liu, G. Hu, Methanation of CO2 over Ni/Al2O3 modified with alkaline earth metals: Impacts of oxygen vacancies on catalytic activity, Int. J. Hydrogen Energy. 44 (2019) 8197–8213. doi:10.1016/j.ijhydene.2019.02.014.[184] D. Cornu, H. Guesmi, J.M. Krafft, H. Lauron-Pernot, Lewis acido-basic interactions between CO2 and MgO surface: DFT and DRIFT approaches, J. Phys. Chem. C. 116 (2012) 6645–6654. doi:10.1021/jp211171t.[185] P. Gruene, A.G. Belova, T.M. Yegulalp, R.J. Farrauto, M.J. Castaldi, Dispersed calcium oxide as a reversible and efficient CO2 sorbent at intermediate temperatures, Ind. Eng. Chem. Res. 50 (2011) 4042–4049. doi:10.1021/ie102475d.[186] A. Lind, K. Thorshaug, K.A. Andreassen, R. Blom, B. Arstad, The Role of Water during CO2 Adsorption by Ca-Based Sorbents at High Temperature, Ind. Eng. Chem. Res. 57 (2018) 2829–2837. doi:10.1021/acs.iecr.7b04052.[187] A.S. Malik, S.F. Zaman, A.A. Al-Zahrani, M.A. Daous, H. Driss, L.A. Petrov, Development of highly selective PdZn/CeO2 and Ca-doped PdZn/CeO2 catalysts for methanol synthesis from CO2 hydrogenation, Appl. Catal. A Gen. 560 (2018) 42–53. doi:10.1016/j.apcata.2018.04.036.[188] W. Gao, T. Zhou, Q. Wang, Controlled synthesis of MgO with diverse basic sites and its CO2 capture mechanism under di ff erent adsorption conditions, Chem. Eng. J. 336 (2018) 710–720. doi:10.1016/j.cej.2017.12.025.[189] S. Sharma, Z. Hu, P. Zhang, E.W. McFarland, H. Metiu, CO2 methanation on Ru- doped ceria, J. Catal. 278 (2011) 297–309. doi:10.1016/j.jcat.2010.12.015.[190] A.S. Malik, S.F. Zaman, A.A. Al-Zahrani, M.A. Daous, H. Driss, L.A. Petrov, Selective hydrogenation of CO2 to CH3OH and in-depth DRIFT analysis for PdZn/ZrO2 and CaPdZn/ZrO2 catalysts, Catal. Today. (2019). doi:10.1016/j.cattod.2019.05.040.[191] K. Tahvildari, Y.N. Anaraki, R. Fazaeli, S. Mirpanji, E. Delrish, The study of CaO and MgO heterogenic nano-catalyst coupling on transesterification reaction efficacy in the production of biodiesel from recycled cooking oil, J. Environ. Heal. Sci. Eng. 13 (2015) 1–9. doi:10.1186/s40201-015-0226-7.[192] Y. Bang, S.J. Han, S. Kwon, V. Hiremath, I.K. Song, J.G. Seo, High temperature carbon dioxide capture on Nano-structured MgO-Al2O3 and CaO-Al2O3 adsorbents: An experimental and theoretical study, J. Nanosci. Nanotechnol. 14 (2014) 8531– 8538. doi:10.1166/jnn.2014.9954.[193] Z. Cheng, B.J. Sherman, C.S. Lo, Carbon dioxide activation and dissociation on ceria (110): A density functional theory study, J. Chem. Phys. 138 (2013). doi:10.1063/1.4773248.[194] X. Wang, L. Zhu, Y. Liu, S. Wang, CO2 methanation on the catalyst of Ni/MCM-41 promoted with CeO2, Sci. Total Environ. 625 (2018) 686–695. doi:10.1016/j.scitotenv.2017.12.308.[195] K. Zhao, W. Wang, Z. Li, Highly efficient Ni/ZrO2 catalysts prepared via combustion method for CO2 methanation, J. CO2 Util. 16 (2016) 236–244. doi:10.1016/j.jcou.2016.07.010.[196] Q. Liu, H. Dong, In Situ Immobilizing Ni Nanoparticles to FDU-12 via Trehalose with Fine Size and Location Control for CO2 Methanation, ACS Sustain. Chem. Eng. 8 (2020) 2093–2105. doi:10.1021/acssuschemeng.9b07004.[197] J. Gao, Y. Wang, Y. Ping, D. Hu, G. Xu, F. Gu, F. Su, A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas, RSC Adv. 2 (2012) 2358–2368. doi:10.1039/c2ra00632d.[198] L. He, Q. Lin, Y. Liu, Y. Huang, Unique catalysis of Ni-Al hydrotalcite derived catalyst in CO2 methanation: Cooperative effect between Ni nanoparticles and a basic support, J. Energy Chem. 23 (2014) 587–592. doi:10.1016/S2095-4956(14)60144-3.[199] A. Zhao, W. Ying, H. Zhang, M. Hongfang, D. Fang, Ni/Al2O3 catalysts for syngas methanation: Effect of Mn promoter, J. Nat. Gas Chem. 21 (2012) 170–177. doi:10.1016/S1003-9953(11)60350-2.[200] C. Bassano, P. Deiana, L. Lietti, C.G. Visconti, P2G movable modular plant operation on synthetic methane production from CO2 and hydrogen from renewables sources, Fuel. 253 (2019) 1071–1079. doi:10.1016/j.fuel.2019.05.074.[201] S. Kim, S.G. Jeon, K.B. Lee, High-temperature CO2 sorption on hydrotalcite having a high Mg/Al molar ratio, ACS Appl. Mater. Interfaces. 8 (2016) 5763–5767. doi:10.1021/acsami.5b12598.[202] W. Yang, Y. Feng, W. Chu, Promotion Effect of CaO Modification on Mesoporous Al2O3-Supported Ni Catalysts for CO2 Methanation, Int. J. Chem. Eng. 2016 (2016). doi:10.1155/2016/2041821.[203] Z. Taherian, V. Shahed Gharahshiran, A. Khataee, F. Meshkani, Y. Orooji, Comparative study of modified Ni catalysts over mesoporous CaO-Al2O3 support for CO2/methane reforming, Catal. Commun. 145 (2020) 106100. doi:10.1016/j.catcom.2020.106100.[204] L. Xu, F. Wang, M. Chen, H. Yang, D. Nie, L. Qi, X. Lian, Alkaline-promoted Ni based ordered mesoporous catalysts with enhanced low-temperature catalytic activity toward CO2 methanation, RSC Adv. 7 (2017) 18199–18210. doi:10.1039/c7ra01673e.[205] M. Broda, A.M. Kierzkowska, C.R. Müller, Sorbent-Enhanced Steam Methane Reforming Reaction Studied over a Ca-Based CO2 Sorbent and Ni Catalyst, Chem. Eng. Technol. 36 (2013) 1496–1502. doi:10.1002/ceat.201200643.[206] A. Sharma, I. Saito, H. Nakagawa, K. Miura, Effect of carbonization temperature on the nickel crystallite size of a Ni/C catalyst for catalytic hydrothermal gasification of organic compounds, Fuel. 86 (2007) 915–920. doi:10.1016/j.fuel.2006.11.001.[207] C.O. Calgaro, A.L. Rocha, O.W. Perez-Lopez, Deactivation control in CO2 reforming of methane over Ni–Mg–Al catalyst, React. Kinet. Mech. Catal. 130 (2020) 159–178. doi:10.1007/s11144-020-01770-3.[208] J.P. da S.Q. Menezes, A.P. do. S. Dias, M.A.P. da Silva, M.M.V.M. Souza, Effect of alkaline earth oxides on nickel catalysts supported over γ-alumina for butanol steam reforming: Coke formation and deactivation process, Int. J. Hydrogen Energy. 45 (2020) 22906–22920. doi:10.1016/j.ijhydene.2020.06.187.[209] J.P. da S.Q. Menezes, F.C. Jácome, R.L. Manfro, M.M.V.M. Souza, Effect of CaO Addition on Nickel Catalysts Supported on Alumina for Glycerol Steam Reforming, Catal. Letters. 149 (2019) 1991–2003. doi:10.1007/s10562-019-02792-w.[210] M. Ding, J. Tu, Q. Zhang, M. Wang, N. Tsubaki, T. Wang, L. Ma, Enhancement of methanation of bio-syngas over CeO2-modified Ni/Al2O3 catalysts, Biomass and Bioenergy. 85 (2016) 12–17. doi:10.1016/j.biombioe.2015.11.025.[211] Y. Jiang, T. Huang, L. Dong, Z. Qin, H. Ji, Ni/bentonite catalysts prepared by solution combustion method for CO2 methanation, Chinese J. Chem. Eng. (2018) 2361–2367. doi:10.1016/j.cjche.2018.03.029.[212] Y.R. Dias, O.W. Perez-Lopez, Carbon dioxide methanation over Ni-Cu/SiO2 catalysts, Energy Convers. Manag. 203 (2020) 112214. doi:10.1016/j.enconman.2019.112214.[213] A. Quindimil, U. De-La-Torre, B. Pereda-Ayo, J.A. González-Marcos, J.R. González- Velasco, Ni catalysts with La as promoter supported over Y- and BETA- zeolites for CO2 methanation, Appl. Catal. B Environ. 238 (2018) 393–403. doi:10.1016/j.apcatb.2018.07.034.[214] Z. Li, T. Zhao, L. Zhang, Promotion effect of additive Fe on Al2O3 supported Ni catalyst for CO2 methanation, Appl. Organomet. Chem. 32 (2018) 1–7. doi:10.1002/aoc.4328[215] V. Alcalde-Santiago, A. Davó-Quiñonero, D. Lozano-Castelló, A. Quindimil, U. De- La-Torre, B. Pereda-Ayo, J.A. González-Marcos, J.R. González-Velasco, A. Bueno- López, Ni/LnOx Catalysts (Ln=La, Ce or Pr) for CO2 Methanation, ChemCatChem. 11 (2019) 810–819. doi:10.1002/cctc.201801585.[216] Z. Fan, K. Sun, N. Rui, B. Zhao, C.J. Liu, Improved activity of Ni/MgAl2O4 for CO2 methanation by the plasma decomposition, J. Energy Chem. 24 (2015) 655–659. doi:10.1016/j.jechem.2015.09.004.[217] L. Xu, H. Yang, M. Chen, F. Wang, D. Nie, L. Qi, X. Lian, H. Chen, M. Wu, CO2 methanation over Ca doped ordered mesoporous Ni-Al composite oxide catalysts: The promoting effect of basic modifier, J. CO2 Util. 21 (2017) 200–210. doi:10.1016/j.jcou.2017.07.014.[218] W. Ahmad, M.N. Younis, R. Shawabkeh, S. Ahmed, Synthesis of lanthanide series (La, Ce, Pr, Eu & Gd) promoted Ni/Γ-Al2O3 catalysts for methanation of CO2 at low temperature under atmospheric pressure, Catal. Commun. 100 (2017) 121–126. doi:10.1016/j.catcom.2017.06.044.ORIGINAL1080185196.2020.pdf1080185196.2020.pdfapplication/pdf2744246https://repositorio.unal.edu.co/bitstream/unal/79365/1/1080185196.2020.pdf1ba1969547a505b6b503ed82e87d749fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79365/2/license.txtcccfe52f796b7c63423298c2d3365fc6MD52THUMBNAIL1080185196.2020.pdf.jpg1080185196.2020.pdf.jpgGenerated Thumbnailimage/jpeg3706https://repositorio.unal.edu.co/bitstream/unal/79365/3/1080185196.2020.pdf.jpg20ffe8405b96df086a039b87c28b845fMD53unal/79365oai:repositorio.unal.edu.co:unal/793652023-07-10 23:04:01.754Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |