Entropía de entanglement de agujeros negros en la dualidad AdS/CFT
En esta tesis se estudia un campo escalar sobre un espacio tiempo de Schwarzschild usando los estados de vacío de Boulware y Hartle-Hawking-Israel teniendo en cuenta la interpretación Mukohyama-Israel para tratar de explicar la entropía de Bekenstein-Hawking y en donde se puede localizar. Igualmente...
- Autores:
-
Alvarado Chavez, Sebastian Armando
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/83745
- Palabra clave:
- 530 - Física::539 - Física moderna
530 - Física::535 - Luz y radiación relacionada
530 - Física::534 - Sonido y vibraciones relacionadas
Teoría del campo cuántico
Quantum field theory
Agujero negro de Schwarzschild
Estado de vacío de Boulware
Estado de vacío de Hartle-Hawking-Israel
Entropía de Bekenstein-Hawking
Dualidad AdS/CFT
Holografía
Schwarzschild Black Hole
Boulware vacuum state
Hartle-Hawking-Israel vacuum state
Bekenstein-Hawking entropy
AdS/CFT duality
Holography
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_cfe54d27a345a9fb49a8b722dd5e1265 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/83745 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Entropía de entanglement de agujeros negros en la dualidad AdS/CFT |
dc.title.translated.eng.fl_str_mv |
Black hole entanglement entropy in the AdS/CFT duality |
dc.title.translated.por.fl_str_mv |
Entropia de emaranhamento de buracos negros na dualidade AdS/CFT |
title |
Entropía de entanglement de agujeros negros en la dualidad AdS/CFT |
spellingShingle |
Entropía de entanglement de agujeros negros en la dualidad AdS/CFT 530 - Física::539 - Física moderna 530 - Física::535 - Luz y radiación relacionada 530 - Física::534 - Sonido y vibraciones relacionadas Teoría del campo cuántico Quantum field theory Agujero negro de Schwarzschild Estado de vacío de Boulware Estado de vacío de Hartle-Hawking-Israel Entropía de Bekenstein-Hawking Dualidad AdS/CFT Holografía Schwarzschild Black Hole Boulware vacuum state Hartle-Hawking-Israel vacuum state Bekenstein-Hawking entropy AdS/CFT duality Holography |
title_short |
Entropía de entanglement de agujeros negros en la dualidad AdS/CFT |
title_full |
Entropía de entanglement de agujeros negros en la dualidad AdS/CFT |
title_fullStr |
Entropía de entanglement de agujeros negros en la dualidad AdS/CFT |
title_full_unstemmed |
Entropía de entanglement de agujeros negros en la dualidad AdS/CFT |
title_sort |
Entropía de entanglement de agujeros negros en la dualidad AdS/CFT |
dc.creator.fl_str_mv |
Alvarado Chavez, Sebastian Armando |
dc.contributor.advisor.none.fl_str_mv |
Arenas Salazar, José Robel |
dc.contributor.author.none.fl_str_mv |
Alvarado Chavez, Sebastian Armando |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Física Teórica |
dc.subject.ddc.spa.fl_str_mv |
530 - Física::539 - Física moderna 530 - Física::535 - Luz y radiación relacionada 530 - Física::534 - Sonido y vibraciones relacionadas |
topic |
530 - Física::539 - Física moderna 530 - Física::535 - Luz y radiación relacionada 530 - Física::534 - Sonido y vibraciones relacionadas Teoría del campo cuántico Quantum field theory Agujero negro de Schwarzschild Estado de vacío de Boulware Estado de vacío de Hartle-Hawking-Israel Entropía de Bekenstein-Hawking Dualidad AdS/CFT Holografía Schwarzschild Black Hole Boulware vacuum state Hartle-Hawking-Israel vacuum state Bekenstein-Hawking entropy AdS/CFT duality Holography |
dc.subject.lemb.sá.fl_str_mv |
Teoría del campo cuántico |
dc.subject.lemb.eng.fl_str_mv |
Quantum field theory |
dc.subject.proposal.spa.fl_str_mv |
Agujero negro de Schwarzschild Estado de vacío de Boulware Estado de vacío de Hartle-Hawking-Israel Entropía de Bekenstein-Hawking Dualidad AdS/CFT Holografía |
dc.subject.proposal.eng.fl_str_mv |
Schwarzschild Black Hole Boulware vacuum state Hartle-Hawking-Israel vacuum state Bekenstein-Hawking entropy AdS/CFT duality Holography |
description |
En esta tesis se estudia un campo escalar sobre un espacio tiempo de Schwarzschild usando los estados de vacío de Boulware y Hartle-Hawking-Israel teniendo en cuenta la interpretación Mukohyama-Israel para tratar de explicar la entropía de Bekenstein-Hawking y en donde se puede localizar. Igualmente, se estudia la correspondencia entre un espacio tiempo Anti-de Sitter y una teoría de campos cuánticos conformes llamada Dualidad AdS/CFT y la forma en que trata de explicar la entropía de Bekenstein-Hawking.(Texto tomado de la fuente) |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-04-20T14:25:01Z |
dc.date.available.none.fl_str_mv |
2023-04-20T14:25:01Z |
dc.date.issued.none.fl_str_mv |
2023-04-19 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/83745 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/83745 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Hawking, S. W. (1975). Particle creation by black holes. In Euclidean quantum gravity (pp. 167-188). Bekenstein, J. D. (1983). Entropy bounds and the second law for black holes. Physical Review D, 27(10), 2262. Domagala, M., & Lewandowski, J. (2004). Black-hole entropy from quantum geometry. Classical and Quantum Gravity, 21(22), 5233. Ydri, B. (2017). Lectures on General Relativity, Cosmology and Quantum Black Holes. Srednicki, M. (1993). Entropy and area. Physical Review Letters, 71(5), 666. Bombelli, L., Koul, R. K., Lee, J., & Sorkin, R. D. (1986). Quantum source of entropy for black holes. Physical Review D, 34(2), 373. Terashima, H. (2000). Entanglement entropy of the black hole horizon. Physical Review D, 61(10), 104016. Emparan, R. (2006). Black hole entropy as entanglement entropy: a holographic derivation. Journal of High Energy Physics, 2006(06), 012. Hooft, G. T. (1985). On the quantum structure of a black hole. Nuclear Physics B, 256, 727-745. Susskind, L., & Lindesay, J. (2004). Introduction To Black Holes, Information And The String Theory Revolution, An: The Holographic Universe. World Scientific. Takahashi, Y., & Umezawa, H. (1996). Thermo field dynamics. International journal of modern Physics B, 10(13n14), 1755-1805. Israel, W. (1976). Thermo-field dynamics of black holes. Physics Letters A, 57(2), 107- 110. Mukohyama, S., & Israel, W. (1998). Black holes, brick walls, and the Boulware state. Physical Review D, 58(10), 104005. Tejeiro-Sarmiento, J. M., & Arenas-Salazar, J. R. (2006, June). Black Hole Entanglement Entropy. In AIP Conference Proceedings (Vol. 841, No. 1, pp. 385-388). American Institute of Physics. Pulido, W., & Arenas, J. R. Dinámica de Campos Térmicos y Agujeros Negros Thermofields Dynamics and Black Holes. Rojas Castillo, W. A. (2018). Mecánica estadística de la termódinamica de black shells. Departamento de Física. Rojas Castillo, W. A., & Arenas Salazar, J. R. (2020). A Conceptual Model for the Origin of the Cutoff Parameter in Exotic Compact Objects. Symmetry, 12(12), 2072. Susskind, L. (1995). The world as a hologram. Journal of Mathematical Physics, 36(11), 6377-6396. Hooft, G. T. (2001). The holographic principle. In Basics and Highlights in Fundamental Physics (pp. 72-100). Bousso, R. (2002). The holographic principle. Reviews of Modern Physics, 74(3), 825. Bigatti, D., & Susskind, L. (2001). TASI lectures on the holographic principle. In Strings, branes and gravity (pp. 883-933). Bak, D., & Rey, S. J. (2000). Holographic principle and string cosmology. Classical and Quantum Gravity, 17(1), L1. Thorlacius, L. (2004). Black holes and the holographic principle. Note Lectures. arXiv preprint hep-th/0404098. Itzhaki, N., Maldacena, J. M., Sonnenschein, J., & Yankielowicz, S. (1998). Supergravity and the large N limit of theories with sixteen supercharges. Physical Review D, 58(4), 046004. Introduction to gauge/gravity duality. In String Theory And Its Applications: TASI 2010 From meV to the Planck Scale (pp. 3-45). Polchinski, J. (1998). String theory: Volume 1, an introduction to the bosonic string. Cambridge university press. Penington, G. (2020). Entanglement wedge reconstruction and the information paradox. Journal of High Energy Physics, 2020(9), 1-84. Zhang, J. L., Cai, R. G., & Yu, H. (2015). Phase transition and thermodynamical geometry for Schwarzschild AdS black hole in AdS 5× S 5 spacetime. Journal of High Energy Physics, 2015(2), 1-16. Hawking, S., Maldacena, J., & Strominger, A. (2001). DeSitter entropy, quantum entanglement and AdS/CFT. Journal of High Energy Physics, 2001(05), 001. Pathria, R. K., & Beale, P. D. (2011). Statistical mechanics. Reif, F. (1969). Física estadística (Vol. 5). Reverté Greiner, W., & Reinhardt, J. (2013). Field quantization. Springer Science & Business Media. Ryder, L. H. (1996). Quantum field theory. Cambridge university press. Takahashi, Y., & Umezawa, H. (1996). Thermo field dynamics. International journal of modern Physics B, 10(13n14), 1755-1805. Umezawa, H., Matsumoto, H., & Tachiki, M. (1982). Thermo field dynamics and condensed states. Khanna, F. C. (2009). Thermal quantum field theory: algebraic aspects and applications. World Scientific. De la Torre, L. (2008). Elementos de relatividad. Universidad de Antioquia. Carroll, S. M. (2019). Spacetime and geometry. Cambridge University Press. Frolov, V. P., & Zelnikov, A. (2011). Introduction to black hole physics. OUP Oxford. Blau, M. (2011). Apuntes de clase sobre relatividad general . Berna: Centro Albert Einstein de F´ısica Fundamental. Griffiths, J. B.,& Podolsk´y, J. (2009). Exact space-times in Einstein’s general relativity. Cambridge University Press. Bañados, M., Teitelboim, C., & Zanelli, J. (1992). Black hole in three-dimensional space time. Physical Review Letters, 69(13), 1849. Bañados, M., Henneaux, M., Teitelboim, C., & Zanelli, J. (1993). Geometry of the 2+ 1 black hole. Physical Review D, 48(4), 1506. Francesco, P., Mathieu, P., & Sénéchal, D. (2012). Conformal field theory. Springer Science & Business Media. Ketov, S. V. (1995). Conformal field theory. World Scientific. Moore, G., & Seiberg, N. (1989). Classical and quantum conformal field theory. Communications in Mathematical Physics, 123(2), 177-254. Gaberdiel, M. R. (2000). An introduction to conformal field theory. Reports on Progress in Physics, 63(4), 607. Hassani, S. (2009). Mathematical methods: for students of physics and related fields (Vol. 2). New York: springer. Ash, R. B. (2014). Complex variables. Academic Press. Krantz, S. G., Kress, S., & Kress, R. (1999). Handbook of complex variables. Boston: Birkh¨auser. Nastase, H. (2015). Introduction to AdS/CFT Correspondence. Cambridge University Press. D. Tong. Lectures on string theory. arXiv: hep-th/0908.0333, 2012. Petersen, J. L. (1994). Notes on Conformal Field Theory. University of Copenhagen, Niels Borh Institute tryk (1994). Ginsparg, P. (1988). Applied conformal field theory. arXiv: hep-th/9108028. Visser, M., Verlinde, E., & Hofman, D. (2014). The emergence of space and gravity from entanglement in AdS3/CFT2. Master thesis, University of Amsterdam, Amsterdam, The Netherlands Michopolus N., (2019). Conformal quantum field theory and black hole entropy. Doctoral dissertation. University of Patras, Grecia. Karozis, N., (2011). Black Hole Entropy and 2D Confermal Field Theory-Towards Quantum Gravity. Doctoral dissertation, Kobenhavns Universitet. Niels Bohr Institutet. Gómez R. S., (2017). La fórmula de Cardy Anisotrópica. Disertación Doctoral, Universidad de Talca, Chile. Brown, J.D., Henneaux, M. Central charges in the canonical realization of asymptotic symmetries: An example from three dimensional gravity. Commun.Math. Phys. 104, 207–226 (1986). A. Strominger, Black hole entropy from near-horizon microstates, JHEP 9802 (1998) 009. arXiv:hep-th/9712251 Ryu, S., & Takayanagi, T. (2006). Aspects of holographic entanglement entropy. Journal of High Energy Physics, 2006(08), 045. Ryu, S., & Takayanagi, T. (2006). Holographic derivation of entanglement entropy from the anti–de sitter space/conformal field theory correspondence. Physical review letters, 96 (18), 181602. Rangamani, M., & Takayanagi, T. (2017). Holographic entanglement entropy. In Holographic Entanglement Entropy (pp. 35-47). Springer, Cham. Bueno, P., & Myers, R. C. (2015). Corner contributions to holographic entanglement entropy. Journal of High Energy Physics, 2015(8), 1-54. Casini, H., Huerta, M., Myers, R. C., & Yale, A. (2015). Mutual information and the Ftheorem. Journal of High Energy Physics, 2015(10), 1-70. Casini, H., Huerta, M., & Myers, R. C. (2011). Towards a derivation of holographic entanglement entropy. Journal of High Energy Physics, 2011(5), 1-41. Susskind, L., & Witten, E. (1998). The holographic bound in anti-de Sitter space. arXiv preprint hep-th/9805114. Peet, A. W., & Polchinski, J. (1999). UV-IR relations in AdS dynamics. Physical Review D, 59(6), 065011. Holzhey, C., Larsen, F., &Wilczek, F. (1994). Geometric and renormalized entropy in conformal field theory. Nuclear physics b, 424(3), 443-467. Calabrese, P., & Cardy, J. (2004). Entanglement entropy and quantum field theory. Journal of statistical mechanics: theory and experiment, 2004(06), P06002.s Calabrese, P., & Cardy, J. (2009). Entanglement entropy and conformal field theory. Journal of physics a: mathematical and theoretical, 42(50), 504005. Cadoni, M., & Melis, M. (2010). Entanglement entropy of AdS black holes. Entropy, 12 (11), 2244-2267. Penrose, R.,& Hawking, S. (2010). The nature of space and time. Princeton University Press. Hawking, S.W. (1979). Euclidean quantum gravity. In Recent developments in gravitation (pp. 145-173). Springer, Boston, MA. Gibbons, G. W., & Hawking, S. W. (1993). Action integrals and partition functions in quantum gravity. In Euclidean Quantum Gravity (pp. 233-237). Hawking, S. W. (1977). Zeta function regularization of path integrals in curved spacetime. In Euclidean quantum gravity (pp. 114-129). Cassani, D. (2020). Black Holes and Semiclassical Quantum Gravity. Arenas Salazar, J. R, (2020). Notas de clase: Agujeros Negros cuánticos. Universidad Nacional de Colombia. Departamento de Física. Hartman, T. (2015). Lectures on quantum gravity and black holes. Cornell University, 21. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
55 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Física |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá,Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/83745/4/1120218226.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/83745/5/license.txt https://repositorio.unal.edu.co/bitstream/unal/83745/6/1120218226.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
17e9a41f3c5e9ba2c43815d83f31e9c1 eb34b1cf90b7e1103fc9dfd26be24b4a c91a480dc6216d2d250354eb223a9fbc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090035961528320 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Arenas Salazar, José Robelef9c9f40f98f012478a028312f2e76adAlvarado Chavez, Sebastian Armandoade33bc7e572c9e496a065f3f6a6f69eGrupo de Física Teórica2023-04-20T14:25:01Z2023-04-20T14:25:01Z2023-04-19https://repositorio.unal.edu.co/handle/unal/83745Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/En esta tesis se estudia un campo escalar sobre un espacio tiempo de Schwarzschild usando los estados de vacío de Boulware y Hartle-Hawking-Israel teniendo en cuenta la interpretación Mukohyama-Israel para tratar de explicar la entropía de Bekenstein-Hawking y en donde se puede localizar. Igualmente, se estudia la correspondencia entre un espacio tiempo Anti-de Sitter y una teoría de campos cuánticos conformes llamada Dualidad AdS/CFT y la forma en que trata de explicar la entropía de Bekenstein-Hawking.(Texto tomado de la fuente)In this thesis a scalar field over a Schwarzschild spacetime is studied using the Boulware and Hartle-Hawking-Israel vacuum states taking into account the Mukohyama-Israel interpretation to try to explain the Bekenstein-Hawking entropy and where it can be to locate. Likewise, the correspondence between an Anti-de Sitter spacetime and a conformal quantum field theory called AdS/CFT Duality is studied and the way in which it tries to explain the Bekenstein- Hawking entropy.MaestríaTermodinámica de agujeros negros55 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaFacultad de CienciasBogotá,ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - Física::539 - Física moderna530 - Física::535 - Luz y radiación relacionada530 - Física::534 - Sonido y vibraciones relacionadasTeoría del campo cuánticoQuantum field theoryAgujero negro de SchwarzschildEstado de vacío de BoulwareEstado de vacío de Hartle-Hawking-IsraelEntropía de Bekenstein-HawkingDualidad AdS/CFTHolografíaSchwarzschild Black HoleBoulware vacuum stateHartle-Hawking-Israel vacuum stateBekenstein-Hawking entropyAdS/CFT dualityHolographyEntropía de entanglement de agujeros negros en la dualidad AdS/CFTBlack hole entanglement entropy in the AdS/CFT dualityEntropia de emaranhamento de buracos negros na dualidade AdS/CFTTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMHawking, S. W. (1975). Particle creation by black holes. In Euclidean quantum gravity (pp. 167-188).Bekenstein, J. D. (1983). Entropy bounds and the second law for black holes. Physical Review D, 27(10), 2262.Domagala, M., & Lewandowski, J. (2004). Black-hole entropy from quantum geometry. Classical and Quantum Gravity, 21(22), 5233.Ydri, B. (2017). Lectures on General Relativity, Cosmology and Quantum Black Holes.Srednicki, M. (1993). Entropy and area. Physical Review Letters, 71(5), 666.Bombelli, L., Koul, R. K., Lee, J., & Sorkin, R. D. (1986). Quantum source of entropy for black holes. Physical Review D, 34(2), 373.Terashima, H. (2000). Entanglement entropy of the black hole horizon. Physical Review D, 61(10), 104016.Emparan, R. (2006). Black hole entropy as entanglement entropy: a holographic derivation. Journal of High Energy Physics, 2006(06), 012.Hooft, G. T. (1985). On the quantum structure of a black hole. Nuclear Physics B, 256, 727-745.Susskind, L., & Lindesay, J. (2004). Introduction To Black Holes, Information And The String Theory Revolution, An: The Holographic Universe. World Scientific.Takahashi, Y., & Umezawa, H. (1996). Thermo field dynamics. International journal of modern Physics B, 10(13n14), 1755-1805.Israel, W. (1976). Thermo-field dynamics of black holes. Physics Letters A, 57(2), 107- 110.Mukohyama, S., & Israel, W. (1998). Black holes, brick walls, and the Boulware state. Physical Review D, 58(10), 104005.Tejeiro-Sarmiento, J. M., & Arenas-Salazar, J. R. (2006, June). Black Hole Entanglement Entropy. In AIP Conference Proceedings (Vol. 841, No. 1, pp. 385-388). American Institute of Physics.Pulido, W., & Arenas, J. R. Dinámica de Campos Térmicos y Agujeros Negros Thermofields Dynamics and Black Holes.Rojas Castillo, W. A. (2018). Mecánica estadística de la termódinamica de black shells. Departamento de Física.Rojas Castillo, W. A., & Arenas Salazar, J. R. (2020). A Conceptual Model for the Origin of the Cutoff Parameter in Exotic Compact Objects. Symmetry, 12(12), 2072.Susskind, L. (1995). The world as a hologram. Journal of Mathematical Physics, 36(11), 6377-6396.Hooft, G. T. (2001). The holographic principle. In Basics and Highlights in Fundamental Physics (pp. 72-100).Bousso, R. (2002). The holographic principle. Reviews of Modern Physics, 74(3), 825.Bigatti, D., & Susskind, L. (2001). TASI lectures on the holographic principle. In Strings, branes and gravity (pp. 883-933).Bak, D., & Rey, S. J. (2000). Holographic principle and string cosmology. Classical and Quantum Gravity, 17(1), L1.Thorlacius, L. (2004). Black holes and the holographic principle. Note Lectures. arXiv preprint hep-th/0404098.Itzhaki, N., Maldacena, J. M., Sonnenschein, J., & Yankielowicz, S. (1998). Supergravity and the large N limit of theories with sixteen supercharges. Physical Review D, 58(4), 046004.Introduction to gauge/gravity duality. In String Theory And Its Applications: TASI 2010 From meV to the Planck Scale (pp. 3-45).Polchinski, J. (1998). String theory: Volume 1, an introduction to the bosonic string. Cambridge university press.Penington, G. (2020). Entanglement wedge reconstruction and the information paradox. Journal of High Energy Physics, 2020(9), 1-84.Zhang, J. L., Cai, R. G., & Yu, H. (2015). Phase transition and thermodynamical geometry for Schwarzschild AdS black hole in AdS 5× S 5 spacetime. Journal of High Energy Physics, 2015(2), 1-16.Hawking, S., Maldacena, J., & Strominger, A. (2001). DeSitter entropy, quantum entanglement and AdS/CFT. Journal of High Energy Physics, 2001(05), 001.Pathria, R. K., & Beale, P. D. (2011). Statistical mechanics.Reif, F. (1969). Física estadística (Vol. 5). RevertéGreiner, W., & Reinhardt, J. (2013). Field quantization. Springer Science & Business Media.Ryder, L. H. (1996). Quantum field theory. Cambridge university press.Takahashi, Y., & Umezawa, H. (1996). Thermo field dynamics. International journal of modern Physics B, 10(13n14), 1755-1805.Umezawa, H., Matsumoto, H., & Tachiki, M. (1982). Thermo field dynamics and condensed states.Khanna, F. C. (2009). Thermal quantum field theory: algebraic aspects and applications. World Scientific.De la Torre, L. (2008). Elementos de relatividad. Universidad de Antioquia.Carroll, S. M. (2019). Spacetime and geometry. Cambridge University Press.Frolov, V. P., & Zelnikov, A. (2011). Introduction to black hole physics. OUP Oxford.Blau, M. (2011). Apuntes de clase sobre relatividad general . Berna: Centro Albert Einstein de F´ısica Fundamental.Griffiths, J. B.,& Podolsk´y, J. (2009). Exact space-times in Einstein’s general relativity. Cambridge University Press.Bañados, M., Teitelboim, C., & Zanelli, J. (1992). Black hole in three-dimensional space time. Physical Review Letters, 69(13), 1849.Bañados, M., Henneaux, M., Teitelboim, C., & Zanelli, J. (1993). Geometry of the 2+ 1 black hole. Physical Review D, 48(4), 1506.Francesco, P., Mathieu, P., & Sénéchal, D. (2012). Conformal field theory. Springer Science & Business Media.Ketov, S. V. (1995). Conformal field theory. World Scientific.Moore, G., & Seiberg, N. (1989). Classical and quantum conformal field theory. Communications in Mathematical Physics, 123(2), 177-254.Gaberdiel, M. R. (2000). An introduction to conformal field theory. Reports on Progress in Physics, 63(4), 607.Hassani, S. (2009). Mathematical methods: for students of physics and related fields (Vol. 2). New York: springer.Ash, R. B. (2014). Complex variables. Academic Press.Krantz, S. G., Kress, S., & Kress, R. (1999). Handbook of complex variables. Boston: Birkh¨auser.Nastase, H. (2015). Introduction to AdS/CFT Correspondence. Cambridge University Press.D. Tong. Lectures on string theory. arXiv: hep-th/0908.0333, 2012.Petersen, J. L. (1994). Notes on Conformal Field Theory. University of Copenhagen, Niels Borh Institute tryk (1994).Ginsparg, P. (1988). Applied conformal field theory. arXiv: hep-th/9108028.Visser, M., Verlinde, E., & Hofman, D. (2014). The emergence of space and gravity from entanglement in AdS3/CFT2. Master thesis, University of Amsterdam, Amsterdam, The NetherlandsMichopolus N., (2019). Conformal quantum field theory and black hole entropy. Doctoral dissertation. University of Patras, Grecia.Karozis, N., (2011). Black Hole Entropy and 2D Confermal Field Theory-Towards Quantum Gravity. Doctoral dissertation, Kobenhavns Universitet. Niels Bohr Institutet.Gómez R. S., (2017). La fórmula de Cardy Anisotrópica. Disertación Doctoral, Universidad de Talca, Chile.Brown, J.D., Henneaux, M. Central charges in the canonical realization of asymptotic symmetries: An example from three dimensional gravity. Commun.Math. Phys. 104, 207–226 (1986).A. Strominger, Black hole entropy from near-horizon microstates, JHEP 9802 (1998) 009. arXiv:hep-th/9712251Ryu, S., & Takayanagi, T. (2006). Aspects of holographic entanglement entropy. Journal of High Energy Physics, 2006(08), 045.Ryu, S., & Takayanagi, T. (2006). Holographic derivation of entanglement entropy from the anti–de sitter space/conformal field theory correspondence. Physical review letters, 96 (18), 181602.Rangamani, M., & Takayanagi, T. (2017). Holographic entanglement entropy. In Holographic Entanglement Entropy (pp. 35-47). Springer, Cham.Bueno, P., & Myers, R. C. (2015). Corner contributions to holographic entanglement entropy. Journal of High Energy Physics, 2015(8), 1-54.Casini, H., Huerta, M., Myers, R. C., & Yale, A. (2015). Mutual information and the Ftheorem. Journal of High Energy Physics, 2015(10), 1-70.Casini, H., Huerta, M., & Myers, R. C. (2011). Towards a derivation of holographic entanglement entropy. Journal of High Energy Physics, 2011(5), 1-41.Susskind, L., & Witten, E. (1998). The holographic bound in anti-de Sitter space. arXiv preprint hep-th/9805114.Peet, A. W., & Polchinski, J. (1999). UV-IR relations in AdS dynamics. Physical Review D, 59(6), 065011.Holzhey, C., Larsen, F., &Wilczek, F. (1994). Geometric and renormalized entropy in conformal field theory. Nuclear physics b, 424(3), 443-467.Calabrese, P., & Cardy, J. (2004). Entanglement entropy and quantum field theory. Journal of statistical mechanics: theory and experiment, 2004(06), P06002.sCalabrese, P., & Cardy, J. (2009). Entanglement entropy and conformal field theory. Journal of physics a: mathematical and theoretical, 42(50), 504005.Cadoni, M., & Melis, M. (2010). Entanglement entropy of AdS black holes. Entropy, 12 (11), 2244-2267.Penrose, R.,& Hawking, S. (2010). The nature of space and time. Princeton University Press.Hawking, S.W. (1979). Euclidean quantum gravity. In Recent developments in gravitation (pp. 145-173). Springer, Boston, MA.Gibbons, G. W., & Hawking, S. W. (1993). Action integrals and partition functions in quantum gravity. In Euclidean Quantum Gravity (pp. 233-237).Hawking, S. W. (1977). Zeta function regularization of path integrals in curved spacetime. In Euclidean quantum gravity (pp. 114-129).Cassani, D. (2020). Black Holes and Semiclassical Quantum Gravity.Arenas Salazar, J. R, (2020). Notas de clase: Agujeros Negros cuánticos. Universidad Nacional de Colombia. Departamento de Física.Hartman, T. (2015). Lectures on quantum gravity and black holes. Cornell University, 21.EstudiantesInvestigadoresMaestrosMedios de comunicaciónPúblico generalORIGINAL1120218226.2023.pdf1120218226.2023.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf1226143https://repositorio.unal.edu.co/bitstream/unal/83745/4/1120218226.2023.pdf17e9a41f3c5e9ba2c43815d83f31e9c1MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83745/5/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD55THUMBNAIL1120218226.2023.pdf.jpg1120218226.2023.pdf.jpgGenerated Thumbnailimage/jpeg4213https://repositorio.unal.edu.co/bitstream/unal/83745/6/1120218226.2023.pdf.jpgc91a480dc6216d2d250354eb223a9fbcMD56unal/83745oai:repositorio.unal.edu.co:unal/837452023-08-02 23:03:59.265Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |