Entropía de entanglement de agujeros negros en la dualidad AdS/CFT

En esta tesis se estudia un campo escalar sobre un espacio tiempo de Schwarzschild usando los estados de vacío de Boulware y Hartle-Hawking-Israel teniendo en cuenta la interpretación Mukohyama-Israel para tratar de explicar la entropía de Bekenstein-Hawking y en donde se puede localizar. Igualmente...

Full description

Autores:
Alvarado Chavez, Sebastian Armando
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83745
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83745
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física::539 - Física moderna
530 - Física::535 - Luz y radiación relacionada
530 - Física::534 - Sonido y vibraciones relacionadas
Teoría del campo cuántico
Quantum field theory
Agujero negro de Schwarzschild
Estado de vacío de Boulware
Estado de vacío de Hartle-Hawking-Israel
Entropía de Bekenstein-Hawking
Dualidad AdS/CFT
Holografía
Schwarzschild Black Hole
Boulware vacuum state
Hartle-Hawking-Israel vacuum state
Bekenstein-Hawking entropy
AdS/CFT duality
Holography
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_cfe54d27a345a9fb49a8b722dd5e1265
oai_identifier_str oai:repositorio.unal.edu.co:unal/83745
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Entropía de entanglement de agujeros negros en la dualidad AdS/CFT
dc.title.translated.eng.fl_str_mv Black hole entanglement entropy in the AdS/CFT duality
dc.title.translated.por.fl_str_mv Entropia de emaranhamento de buracos negros na dualidade AdS/CFT
title Entropía de entanglement de agujeros negros en la dualidad AdS/CFT
spellingShingle Entropía de entanglement de agujeros negros en la dualidad AdS/CFT
530 - Física::539 - Física moderna
530 - Física::535 - Luz y radiación relacionada
530 - Física::534 - Sonido y vibraciones relacionadas
Teoría del campo cuántico
Quantum field theory
Agujero negro de Schwarzschild
Estado de vacío de Boulware
Estado de vacío de Hartle-Hawking-Israel
Entropía de Bekenstein-Hawking
Dualidad AdS/CFT
Holografía
Schwarzschild Black Hole
Boulware vacuum state
Hartle-Hawking-Israel vacuum state
Bekenstein-Hawking entropy
AdS/CFT duality
Holography
title_short Entropía de entanglement de agujeros negros en la dualidad AdS/CFT
title_full Entropía de entanglement de agujeros negros en la dualidad AdS/CFT
title_fullStr Entropía de entanglement de agujeros negros en la dualidad AdS/CFT
title_full_unstemmed Entropía de entanglement de agujeros negros en la dualidad AdS/CFT
title_sort Entropía de entanglement de agujeros negros en la dualidad AdS/CFT
dc.creator.fl_str_mv Alvarado Chavez, Sebastian Armando
dc.contributor.advisor.none.fl_str_mv Arenas Salazar, José Robel
dc.contributor.author.none.fl_str_mv Alvarado Chavez, Sebastian Armando
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Física Teórica
dc.subject.ddc.spa.fl_str_mv 530 - Física::539 - Física moderna
530 - Física::535 - Luz y radiación relacionada
530 - Física::534 - Sonido y vibraciones relacionadas
topic 530 - Física::539 - Física moderna
530 - Física::535 - Luz y radiación relacionada
530 - Física::534 - Sonido y vibraciones relacionadas
Teoría del campo cuántico
Quantum field theory
Agujero negro de Schwarzschild
Estado de vacío de Boulware
Estado de vacío de Hartle-Hawking-Israel
Entropía de Bekenstein-Hawking
Dualidad AdS/CFT
Holografía
Schwarzschild Black Hole
Boulware vacuum state
Hartle-Hawking-Israel vacuum state
Bekenstein-Hawking entropy
AdS/CFT duality
Holography
dc.subject.lemb.sá.fl_str_mv Teoría del campo cuántico
dc.subject.lemb.eng.fl_str_mv Quantum field theory
dc.subject.proposal.spa.fl_str_mv Agujero negro de Schwarzschild
Estado de vacío de Boulware
Estado de vacío de Hartle-Hawking-Israel
Entropía de Bekenstein-Hawking
Dualidad AdS/CFT
Holografía
dc.subject.proposal.eng.fl_str_mv Schwarzschild Black Hole
Boulware vacuum state
Hartle-Hawking-Israel vacuum state
Bekenstein-Hawking entropy
AdS/CFT duality
Holography
description En esta tesis se estudia un campo escalar sobre un espacio tiempo de Schwarzschild usando los estados de vacío de Boulware y Hartle-Hawking-Israel teniendo en cuenta la interpretación Mukohyama-Israel para tratar de explicar la entropía de Bekenstein-Hawking y en donde se puede localizar. Igualmente, se estudia la correspondencia entre un espacio tiempo Anti-de Sitter y una teoría de campos cuánticos conformes llamada Dualidad AdS/CFT y la forma en que trata de explicar la entropía de Bekenstein-Hawking.(Texto tomado de la fuente)
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-04-20T14:25:01Z
dc.date.available.none.fl_str_mv 2023-04-20T14:25:01Z
dc.date.issued.none.fl_str_mv 2023-04-19
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83745
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83745
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Hawking, S. W. (1975). Particle creation by black holes. In Euclidean quantum gravity (pp. 167-188).
Bekenstein, J. D. (1983). Entropy bounds and the second law for black holes. Physical Review D, 27(10), 2262.
Domagala, M., & Lewandowski, J. (2004). Black-hole entropy from quantum geometry. Classical and Quantum Gravity, 21(22), 5233.
Ydri, B. (2017). Lectures on General Relativity, Cosmology and Quantum Black Holes.
Srednicki, M. (1993). Entropy and area. Physical Review Letters, 71(5), 666.
Bombelli, L., Koul, R. K., Lee, J., & Sorkin, R. D. (1986). Quantum source of entropy for black holes. Physical Review D, 34(2), 373.
Terashima, H. (2000). Entanglement entropy of the black hole horizon. Physical Review D, 61(10), 104016.
Emparan, R. (2006). Black hole entropy as entanglement entropy: a holographic derivation. Journal of High Energy Physics, 2006(06), 012.
Hooft, G. T. (1985). On the quantum structure of a black hole. Nuclear Physics B, 256, 727-745.
Susskind, L., & Lindesay, J. (2004). Introduction To Black Holes, Information And The String Theory Revolution, An: The Holographic Universe. World Scientific.
Takahashi, Y., & Umezawa, H. (1996). Thermo field dynamics. International journal of modern Physics B, 10(13n14), 1755-1805.
Israel, W. (1976). Thermo-field dynamics of black holes. Physics Letters A, 57(2), 107- 110.
Mukohyama, S., & Israel, W. (1998). Black holes, brick walls, and the Boulware state. Physical Review D, 58(10), 104005.
Tejeiro-Sarmiento, J. M., & Arenas-Salazar, J. R. (2006, June). Black Hole Entanglement Entropy. In AIP Conference Proceedings (Vol. 841, No. 1, pp. 385-388). American Institute of Physics.
Pulido, W., & Arenas, J. R. Dinámica de Campos Térmicos y Agujeros Negros Thermofields Dynamics and Black Holes.
Rojas Castillo, W. A. (2018). Mecánica estadística de la termódinamica de black shells. Departamento de Física.
Rojas Castillo, W. A., & Arenas Salazar, J. R. (2020). A Conceptual Model for the Origin of the Cutoff Parameter in Exotic Compact Objects. Symmetry, 12(12), 2072.
Susskind, L. (1995). The world as a hologram. Journal of Mathematical Physics, 36(11), 6377-6396.
Hooft, G. T. (2001). The holographic principle. In Basics and Highlights in Fundamental Physics (pp. 72-100).
Bousso, R. (2002). The holographic principle. Reviews of Modern Physics, 74(3), 825.
Bigatti, D., & Susskind, L. (2001). TASI lectures on the holographic principle. In Strings, branes and gravity (pp. 883-933).
Bak, D., & Rey, S. J. (2000). Holographic principle and string cosmology. Classical and Quantum Gravity, 17(1), L1.
Thorlacius, L. (2004). Black holes and the holographic principle. Note Lectures. arXiv preprint hep-th/0404098.
Itzhaki, N., Maldacena, J. M., Sonnenschein, J., & Yankielowicz, S. (1998). Supergravity and the large N limit of theories with sixteen supercharges. Physical Review D, 58(4), 046004.
Introduction to gauge/gravity duality. In String Theory And Its Applications: TASI 2010 From meV to the Planck Scale (pp. 3-45).
Polchinski, J. (1998). String theory: Volume 1, an introduction to the bosonic string. Cambridge university press.
Penington, G. (2020). Entanglement wedge reconstruction and the information paradox. Journal of High Energy Physics, 2020(9), 1-84.
Zhang, J. L., Cai, R. G., & Yu, H. (2015). Phase transition and thermodynamical geometry for Schwarzschild AdS black hole in AdS 5× S 5 spacetime. Journal of High Energy Physics, 2015(2), 1-16.
Hawking, S., Maldacena, J., & Strominger, A. (2001). DeSitter entropy, quantum entanglement and AdS/CFT. Journal of High Energy Physics, 2001(05), 001.
Pathria, R. K., & Beale, P. D. (2011). Statistical mechanics.
Reif, F. (1969). Física estadística (Vol. 5). Reverté
Greiner, W., & Reinhardt, J. (2013). Field quantization. Springer Science & Business Media.
Ryder, L. H. (1996). Quantum field theory. Cambridge university press.
Takahashi, Y., & Umezawa, H. (1996). Thermo field dynamics. International journal of modern Physics B, 10(13n14), 1755-1805.
Umezawa, H., Matsumoto, H., & Tachiki, M. (1982). Thermo field dynamics and condensed states.
Khanna, F. C. (2009). Thermal quantum field theory: algebraic aspects and applications. World Scientific.
De la Torre, L. (2008). Elementos de relatividad. Universidad de Antioquia.
Carroll, S. M. (2019). Spacetime and geometry. Cambridge University Press.
Frolov, V. P., & Zelnikov, A. (2011). Introduction to black hole physics. OUP Oxford.
Blau, M. (2011). Apuntes de clase sobre relatividad general . Berna: Centro Albert Einstein de F´ısica Fundamental.
Griffiths, J. B.,& Podolsk´y, J. (2009). Exact space-times in Einstein’s general relativity. Cambridge University Press.
Bañados, M., Teitelboim, C., & Zanelli, J. (1992). Black hole in three-dimensional space time. Physical Review Letters, 69(13), 1849.
Bañados, M., Henneaux, M., Teitelboim, C., & Zanelli, J. (1993). Geometry of the 2+ 1 black hole. Physical Review D, 48(4), 1506.
Francesco, P., Mathieu, P., & Sénéchal, D. (2012). Conformal field theory. Springer Science & Business Media.
Ketov, S. V. (1995). Conformal field theory. World Scientific.
Moore, G., & Seiberg, N. (1989). Classical and quantum conformal field theory. Communications in Mathematical Physics, 123(2), 177-254.
Gaberdiel, M. R. (2000). An introduction to conformal field theory. Reports on Progress in Physics, 63(4), 607.
Hassani, S. (2009). Mathematical methods: for students of physics and related fields (Vol. 2). New York: springer.
Ash, R. B. (2014). Complex variables. Academic Press.
Krantz, S. G., Kress, S., & Kress, R. (1999). Handbook of complex variables. Boston: Birkh¨auser.
Nastase, H. (2015). Introduction to AdS/CFT Correspondence. Cambridge University Press.
D. Tong. Lectures on string theory. arXiv: hep-th/0908.0333, 2012.
Petersen, J. L. (1994). Notes on Conformal Field Theory. University of Copenhagen, Niels Borh Institute tryk (1994).
Ginsparg, P. (1988). Applied conformal field theory. arXiv: hep-th/9108028.
Visser, M., Verlinde, E., & Hofman, D. (2014). The emergence of space and gravity from entanglement in AdS3/CFT2. Master thesis, University of Amsterdam, Amsterdam, The Netherlands
Michopolus N., (2019). Conformal quantum field theory and black hole entropy. Doctoral dissertation. University of Patras, Grecia.
Karozis, N., (2011). Black Hole Entropy and 2D Confermal Field Theory-Towards Quantum Gravity. Doctoral dissertation, Kobenhavns Universitet. Niels Bohr Institutet.
Gómez R. S., (2017). La fórmula de Cardy Anisotrópica. Disertación Doctoral, Universidad de Talca, Chile.
Brown, J.D., Henneaux, M. Central charges in the canonical realization of asymptotic symmetries: An example from three dimensional gravity. Commun.Math. Phys. 104, 207–226 (1986).
A. Strominger, Black hole entropy from near-horizon microstates, JHEP 9802 (1998) 009. arXiv:hep-th/9712251
Ryu, S., & Takayanagi, T. (2006). Aspects of holographic entanglement entropy. Journal of High Energy Physics, 2006(08), 045.
Ryu, S., & Takayanagi, T. (2006). Holographic derivation of entanglement entropy from the anti–de sitter space/conformal field theory correspondence. Physical review letters, 96 (18), 181602.
Rangamani, M., & Takayanagi, T. (2017). Holographic entanglement entropy. In Holographic Entanglement Entropy (pp. 35-47). Springer, Cham.
Bueno, P., & Myers, R. C. (2015). Corner contributions to holographic entanglement entropy. Journal of High Energy Physics, 2015(8), 1-54.
Casini, H., Huerta, M., Myers, R. C., & Yale, A. (2015). Mutual information and the Ftheorem. Journal of High Energy Physics, 2015(10), 1-70.
Casini, H., Huerta, M., & Myers, R. C. (2011). Towards a derivation of holographic entanglement entropy. Journal of High Energy Physics, 2011(5), 1-41.
Susskind, L., & Witten, E. (1998). The holographic bound in anti-de Sitter space. arXiv preprint hep-th/9805114.
Peet, A. W., & Polchinski, J. (1999). UV-IR relations in AdS dynamics. Physical Review D, 59(6), 065011.
Holzhey, C., Larsen, F., &Wilczek, F. (1994). Geometric and renormalized entropy in conformal field theory. Nuclear physics b, 424(3), 443-467.
Calabrese, P., & Cardy, J. (2004). Entanglement entropy and quantum field theory. Journal of statistical mechanics: theory and experiment, 2004(06), P06002.s
Calabrese, P., & Cardy, J. (2009). Entanglement entropy and conformal field theory. Journal of physics a: mathematical and theoretical, 42(50), 504005.
Cadoni, M., & Melis, M. (2010). Entanglement entropy of AdS black holes. Entropy, 12 (11), 2244-2267.
Penrose, R.,& Hawking, S. (2010). The nature of space and time. Princeton University Press.
Hawking, S.W. (1979). Euclidean quantum gravity. In Recent developments in gravitation (pp. 145-173). Springer, Boston, MA.
Gibbons, G. W., & Hawking, S. W. (1993). Action integrals and partition functions in quantum gravity. In Euclidean Quantum Gravity (pp. 233-237).
Hawking, S. W. (1977). Zeta function regularization of path integrals in curved spacetime. In Euclidean quantum gravity (pp. 114-129).
Cassani, D. (2020). Black Holes and Semiclassical Quantum Gravity.
Arenas Salazar, J. R, (2020). Notas de clase: Agujeros Negros cuánticos. Universidad Nacional de Colombia. Departamento de Física.
Hartman, T. (2015). Lectures on quantum gravity and black holes. Cornell University, 21.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 55 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá,Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83745/4/1120218226.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/83745/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83745/6/1120218226.2023.pdf.jpg
bitstream.checksum.fl_str_mv 17e9a41f3c5e9ba2c43815d83f31e9c1
eb34b1cf90b7e1103fc9dfd26be24b4a
c91a480dc6216d2d250354eb223a9fbc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090035961528320
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Arenas Salazar, José Robelef9c9f40f98f012478a028312f2e76adAlvarado Chavez, Sebastian Armandoade33bc7e572c9e496a065f3f6a6f69eGrupo de Física Teórica2023-04-20T14:25:01Z2023-04-20T14:25:01Z2023-04-19https://repositorio.unal.edu.co/handle/unal/83745Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/En esta tesis se estudia un campo escalar sobre un espacio tiempo de Schwarzschild usando los estados de vacío de Boulware y Hartle-Hawking-Israel teniendo en cuenta la interpretación Mukohyama-Israel para tratar de explicar la entropía de Bekenstein-Hawking y en donde se puede localizar. Igualmente, se estudia la correspondencia entre un espacio tiempo Anti-de Sitter y una teoría de campos cuánticos conformes llamada Dualidad AdS/CFT y la forma en que trata de explicar la entropía de Bekenstein-Hawking.(Texto tomado de la fuente)In this thesis a scalar field over a Schwarzschild spacetime is studied using the Boulware and Hartle-Hawking-Israel vacuum states taking into account the Mukohyama-Israel interpretation to try to explain the Bekenstein-Hawking entropy and where it can be to locate. Likewise, the correspondence between an Anti-de Sitter spacetime and a conformal quantum field theory called AdS/CFT Duality is studied and the way in which it tries to explain the Bekenstein- Hawking entropy.MaestríaTermodinámica de agujeros negros55 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaFacultad de CienciasBogotá,ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - Física::539 - Física moderna530 - Física::535 - Luz y radiación relacionada530 - Física::534 - Sonido y vibraciones relacionadasTeoría del campo cuánticoQuantum field theoryAgujero negro de SchwarzschildEstado de vacío de BoulwareEstado de vacío de Hartle-Hawking-IsraelEntropía de Bekenstein-HawkingDualidad AdS/CFTHolografíaSchwarzschild Black HoleBoulware vacuum stateHartle-Hawking-Israel vacuum stateBekenstein-Hawking entropyAdS/CFT dualityHolographyEntropía de entanglement de agujeros negros en la dualidad AdS/CFTBlack hole entanglement entropy in the AdS/CFT dualityEntropia de emaranhamento de buracos negros na dualidade AdS/CFTTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMHawking, S. W. (1975). Particle creation by black holes. In Euclidean quantum gravity (pp. 167-188).Bekenstein, J. D. (1983). Entropy bounds and the second law for black holes. Physical Review D, 27(10), 2262.Domagala, M., & Lewandowski, J. (2004). Black-hole entropy from quantum geometry. Classical and Quantum Gravity, 21(22), 5233.Ydri, B. (2017). Lectures on General Relativity, Cosmology and Quantum Black Holes.Srednicki, M. (1993). Entropy and area. Physical Review Letters, 71(5), 666.Bombelli, L., Koul, R. K., Lee, J., & Sorkin, R. D. (1986). Quantum source of entropy for black holes. Physical Review D, 34(2), 373.Terashima, H. (2000). Entanglement entropy of the black hole horizon. Physical Review D, 61(10), 104016.Emparan, R. (2006). Black hole entropy as entanglement entropy: a holographic derivation. Journal of High Energy Physics, 2006(06), 012.Hooft, G. T. (1985). On the quantum structure of a black hole. Nuclear Physics B, 256, 727-745.Susskind, L., & Lindesay, J. (2004). Introduction To Black Holes, Information And The String Theory Revolution, An: The Holographic Universe. World Scientific.Takahashi, Y., & Umezawa, H. (1996). Thermo field dynamics. International journal of modern Physics B, 10(13n14), 1755-1805.Israel, W. (1976). Thermo-field dynamics of black holes. Physics Letters A, 57(2), 107- 110.Mukohyama, S., & Israel, W. (1998). Black holes, brick walls, and the Boulware state. Physical Review D, 58(10), 104005.Tejeiro-Sarmiento, J. M., & Arenas-Salazar, J. R. (2006, June). Black Hole Entanglement Entropy. In AIP Conference Proceedings (Vol. 841, No. 1, pp. 385-388). American Institute of Physics.Pulido, W., & Arenas, J. R. Dinámica de Campos Térmicos y Agujeros Negros Thermofields Dynamics and Black Holes.Rojas Castillo, W. A. (2018). Mecánica estadística de la termódinamica de black shells. Departamento de Física.Rojas Castillo, W. A., & Arenas Salazar, J. R. (2020). A Conceptual Model for the Origin of the Cutoff Parameter in Exotic Compact Objects. Symmetry, 12(12), 2072.Susskind, L. (1995). The world as a hologram. Journal of Mathematical Physics, 36(11), 6377-6396.Hooft, G. T. (2001). The holographic principle. In Basics and Highlights in Fundamental Physics (pp. 72-100).Bousso, R. (2002). The holographic principle. Reviews of Modern Physics, 74(3), 825.Bigatti, D., & Susskind, L. (2001). TASI lectures on the holographic principle. In Strings, branes and gravity (pp. 883-933).Bak, D., & Rey, S. J. (2000). Holographic principle and string cosmology. Classical and Quantum Gravity, 17(1), L1.Thorlacius, L. (2004). Black holes and the holographic principle. Note Lectures. arXiv preprint hep-th/0404098.Itzhaki, N., Maldacena, J. M., Sonnenschein, J., & Yankielowicz, S. (1998). Supergravity and the large N limit of theories with sixteen supercharges. Physical Review D, 58(4), 046004.Introduction to gauge/gravity duality. In String Theory And Its Applications: TASI 2010 From meV to the Planck Scale (pp. 3-45).Polchinski, J. (1998). String theory: Volume 1, an introduction to the bosonic string. Cambridge university press.Penington, G. (2020). Entanglement wedge reconstruction and the information paradox. Journal of High Energy Physics, 2020(9), 1-84.Zhang, J. L., Cai, R. G., & Yu, H. (2015). Phase transition and thermodynamical geometry for Schwarzschild AdS black hole in AdS 5× S 5 spacetime. Journal of High Energy Physics, 2015(2), 1-16.Hawking, S., Maldacena, J., & Strominger, A. (2001). DeSitter entropy, quantum entanglement and AdS/CFT. Journal of High Energy Physics, 2001(05), 001.Pathria, R. K., & Beale, P. D. (2011). Statistical mechanics.Reif, F. (1969). Física estadística (Vol. 5). RevertéGreiner, W., & Reinhardt, J. (2013). Field quantization. Springer Science & Business Media.Ryder, L. H. (1996). Quantum field theory. Cambridge university press.Takahashi, Y., & Umezawa, H. (1996). Thermo field dynamics. International journal of modern Physics B, 10(13n14), 1755-1805.Umezawa, H., Matsumoto, H., & Tachiki, M. (1982). Thermo field dynamics and condensed states.Khanna, F. C. (2009). Thermal quantum field theory: algebraic aspects and applications. World Scientific.De la Torre, L. (2008). Elementos de relatividad. Universidad de Antioquia.Carroll, S. M. (2019). Spacetime and geometry. Cambridge University Press.Frolov, V. P., & Zelnikov, A. (2011). Introduction to black hole physics. OUP Oxford.Blau, M. (2011). Apuntes de clase sobre relatividad general . Berna: Centro Albert Einstein de F´ısica Fundamental.Griffiths, J. B.,& Podolsk´y, J. (2009). Exact space-times in Einstein’s general relativity. Cambridge University Press.Bañados, M., Teitelboim, C., & Zanelli, J. (1992). Black hole in three-dimensional space time. Physical Review Letters, 69(13), 1849.Bañados, M., Henneaux, M., Teitelboim, C., & Zanelli, J. (1993). Geometry of the 2+ 1 black hole. Physical Review D, 48(4), 1506.Francesco, P., Mathieu, P., & Sénéchal, D. (2012). Conformal field theory. Springer Science & Business Media.Ketov, S. V. (1995). Conformal field theory. World Scientific.Moore, G., & Seiberg, N. (1989). Classical and quantum conformal field theory. Communications in Mathematical Physics, 123(2), 177-254.Gaberdiel, M. R. (2000). An introduction to conformal field theory. Reports on Progress in Physics, 63(4), 607.Hassani, S. (2009). Mathematical methods: for students of physics and related fields (Vol. 2). New York: springer.Ash, R. B. (2014). Complex variables. Academic Press.Krantz, S. G., Kress, S., & Kress, R. (1999). Handbook of complex variables. Boston: Birkh¨auser.Nastase, H. (2015). Introduction to AdS/CFT Correspondence. Cambridge University Press.D. Tong. Lectures on string theory. arXiv: hep-th/0908.0333, 2012.Petersen, J. L. (1994). Notes on Conformal Field Theory. University of Copenhagen, Niels Borh Institute tryk (1994).Ginsparg, P. (1988). Applied conformal field theory. arXiv: hep-th/9108028.Visser, M., Verlinde, E., & Hofman, D. (2014). The emergence of space and gravity from entanglement in AdS3/CFT2. Master thesis, University of Amsterdam, Amsterdam, The NetherlandsMichopolus N., (2019). Conformal quantum field theory and black hole entropy. Doctoral dissertation. University of Patras, Grecia.Karozis, N., (2011). Black Hole Entropy and 2D Confermal Field Theory-Towards Quantum Gravity. Doctoral dissertation, Kobenhavns Universitet. Niels Bohr Institutet.Gómez R. S., (2017). La fórmula de Cardy Anisotrópica. Disertación Doctoral, Universidad de Talca, Chile.Brown, J.D., Henneaux, M. Central charges in the canonical realization of asymptotic symmetries: An example from three dimensional gravity. Commun.Math. Phys. 104, 207–226 (1986).A. Strominger, Black hole entropy from near-horizon microstates, JHEP 9802 (1998) 009. arXiv:hep-th/9712251Ryu, S., & Takayanagi, T. (2006). Aspects of holographic entanglement entropy. Journal of High Energy Physics, 2006(08), 045.Ryu, S., & Takayanagi, T. (2006). Holographic derivation of entanglement entropy from the anti–de sitter space/conformal field theory correspondence. Physical review letters, 96 (18), 181602.Rangamani, M., & Takayanagi, T. (2017). Holographic entanglement entropy. In Holographic Entanglement Entropy (pp. 35-47). Springer, Cham.Bueno, P., & Myers, R. C. (2015). Corner contributions to holographic entanglement entropy. Journal of High Energy Physics, 2015(8), 1-54.Casini, H., Huerta, M., Myers, R. C., & Yale, A. (2015). Mutual information and the Ftheorem. Journal of High Energy Physics, 2015(10), 1-70.Casini, H., Huerta, M., & Myers, R. C. (2011). Towards a derivation of holographic entanglement entropy. Journal of High Energy Physics, 2011(5), 1-41.Susskind, L., & Witten, E. (1998). The holographic bound in anti-de Sitter space. arXiv preprint hep-th/9805114.Peet, A. W., & Polchinski, J. (1999). UV-IR relations in AdS dynamics. Physical Review D, 59(6), 065011.Holzhey, C., Larsen, F., &Wilczek, F. (1994). Geometric and renormalized entropy in conformal field theory. Nuclear physics b, 424(3), 443-467.Calabrese, P., & Cardy, J. (2004). Entanglement entropy and quantum field theory. Journal of statistical mechanics: theory and experiment, 2004(06), P06002.sCalabrese, P., & Cardy, J. (2009). Entanglement entropy and conformal field theory. Journal of physics a: mathematical and theoretical, 42(50), 504005.Cadoni, M., & Melis, M. (2010). Entanglement entropy of AdS black holes. Entropy, 12 (11), 2244-2267.Penrose, R.,& Hawking, S. (2010). The nature of space and time. Princeton University Press.Hawking, S.W. (1979). Euclidean quantum gravity. In Recent developments in gravitation (pp. 145-173). Springer, Boston, MA.Gibbons, G. W., & Hawking, S. W. (1993). Action integrals and partition functions in quantum gravity. In Euclidean Quantum Gravity (pp. 233-237).Hawking, S. W. (1977). Zeta function regularization of path integrals in curved spacetime. In Euclidean quantum gravity (pp. 114-129).Cassani, D. (2020). Black Holes and Semiclassical Quantum Gravity.Arenas Salazar, J. R, (2020). Notas de clase: Agujeros Negros cuánticos. Universidad Nacional de Colombia. Departamento de Física.Hartman, T. (2015). Lectures on quantum gravity and black holes. Cornell University, 21.EstudiantesInvestigadoresMaestrosMedios de comunicaciónPúblico generalORIGINAL1120218226.2023.pdf1120218226.2023.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf1226143https://repositorio.unal.edu.co/bitstream/unal/83745/4/1120218226.2023.pdf17e9a41f3c5e9ba2c43815d83f31e9c1MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83745/5/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD55THUMBNAIL1120218226.2023.pdf.jpg1120218226.2023.pdf.jpgGenerated Thumbnailimage/jpeg4213https://repositorio.unal.edu.co/bitstream/unal/83745/6/1120218226.2023.pdf.jpgc91a480dc6216d2d250354eb223a9fbcMD56unal/83745oai:repositorio.unal.edu.co:unal/837452023-08-02 23:03:59.265Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=