Características cristalográficas, eléctricas y magnéticas del material tipo perovskita doble LaCaMnFeO6

ilustraciones, diagramas, fotografías

Autores:
Rueda Cadavid, Diego Alejandro
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86836
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86836
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física::537 - Electricidad y electrónica
530 - Física::538 - Magnetismo
Semiconductores
Tierras raras
Ferromagnéticos
Ferromagnetics
Semiconductors
Rare earths
Perovskita
propiedad mecánica de los materiales
semiconductor
perovskite
mechanical property
semiconductor
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_ceea0f22535d5c0dde993c5cc8ed6812
oai_identifier_str oai:repositorio.unal.edu.co:unal/86836
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Características cristalográficas, eléctricas y magnéticas del material tipo perovskita doble LaCaMnFeO6
dc.title.translated.eng.fl_str_mv Crystallographic, electrical, and magnetic properties of the double perovskite material LaCaMnFeO6
title Características cristalográficas, eléctricas y magnéticas del material tipo perovskita doble LaCaMnFeO6
spellingShingle Características cristalográficas, eléctricas y magnéticas del material tipo perovskita doble LaCaMnFeO6
530 - Física::537 - Electricidad y electrónica
530 - Física::538 - Magnetismo
Semiconductores
Tierras raras
Ferromagnéticos
Ferromagnetics
Semiconductors
Rare earths
Perovskita
propiedad mecánica de los materiales
semiconductor
perovskite
mechanical property
semiconductor
title_short Características cristalográficas, eléctricas y magnéticas del material tipo perovskita doble LaCaMnFeO6
title_full Características cristalográficas, eléctricas y magnéticas del material tipo perovskita doble LaCaMnFeO6
title_fullStr Características cristalográficas, eléctricas y magnéticas del material tipo perovskita doble LaCaMnFeO6
title_full_unstemmed Características cristalográficas, eléctricas y magnéticas del material tipo perovskita doble LaCaMnFeO6
title_sort Características cristalográficas, eléctricas y magnéticas del material tipo perovskita doble LaCaMnFeO6
dc.creator.fl_str_mv Rueda Cadavid, Diego Alejandro
dc.contributor.advisor.spa.fl_str_mv Roa Rojas, Jairo
dc.contributor.author.spa.fl_str_mv Rueda Cadavid, Diego Alejandro
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Física de Nuevos Materiales
dc.subject.ddc.spa.fl_str_mv 530 - Física::537 - Electricidad y electrónica
530 - Física::538 - Magnetismo
topic 530 - Física::537 - Electricidad y electrónica
530 - Física::538 - Magnetismo
Semiconductores
Tierras raras
Ferromagnéticos
Ferromagnetics
Semiconductors
Rare earths
Perovskita
propiedad mecánica de los materiales
semiconductor
perovskite
mechanical property
semiconductor
dc.subject.proposal.spa.fl_str_mv Semiconductores
Tierras raras
Ferromagnéticos
dc.subject.proposal.eng.fl_str_mv Ferromagnetics
Semiconductors
Rare earths
dc.subject.wikidata.spa.fl_str_mv Perovskita
propiedad mecánica de los materiales
semiconductor
dc.subject.wikidata.eng.fl_str_mv perovskite
mechanical property
semiconductor
description ilustraciones, diagramas, fotografías
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-16T20:47:38Z
dc.date.available.none.fl_str_mv 2024-09-16T20:47:38Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86836
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86836
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Francy M Casallas-Caicedo, Enrique Vera-López, and Jairo Roa-Rojas. Impedance spectroscopy study of electrical response and correlation with structural properties in the la2srfe2coo9 triple complex perovskite. Physica B: Condensed Matter, 607:412865, 2021
Melvin M Vopson. Fundamentals of multiferroic materials and their possible applications. Critical Reviews in Solid State and Materials Sciences, 40(4):223–250, 2015
SS Kale, KR Jadhav, PS Patil, TP Gujar, and CD Lokhande. Characterizations of spray deposited lanthanum oxide (la2o3) thin films. Materials Letters, 59(24-25):3007–3009, 2005
Lucia I Olivares Lugo, Ana M Bolarín Miró, Antonia Martínez Luévanos, Claudia A Cortés Escobedo, Màrius Ramírez Cardona, and Félix Sánchez-De Jesús. Multiferroicidad en lafeo3 sintetizada mediante molienda de alta energía. Tópicos de Investigación en Ciencias de la Tierra y Materiales, 8(8):20–24, 2021
Robert M Hazen. Perovskites. Scientific American, 258(6):74–81, 1988
Magdalena Greluk, Marek Rotko, and Sylwia Turczyniak-Surdacka. Enhanced catalytic performance of la2o3 promoted co/ceo2 and ni/ceo2 catalysts for effective hydrogen production by ethanol steam reforming. Renewable Energy, 155:378–395, 2020
Chunwen Sun, Jose A Alonso, and Juanjuan Bian. Recent advances in perovskite type oxides for energy conversion and storage applications. Advanced Energy Materials,11(2):2000459, 2021
Mylène Hendrickx, Yawei Tang, Emily C Hunter, Peter D Battle, and Joke Hadermann. Structural and magnetic properties of the perovskites a2lafe2sbo9 (a= ca, sr, ba). Journal of Solid State Chemistry, 295:121914, 2021
Jin Won Seo, EE Fullerton, F Nolting, A Scholl, J Fompeyrine, and Jean-Pierre Locquet. Antiferromagnetic lafeo3 thin films and their effect on exchange bias. Journal of Physics: Condensed Matter, 20(26):264014, 2008
M Marezio and PD Dernier. The bond lengths in lafeo3. Materials Research Bulletin, 6(1):23–29, 1971
Xi-Tao Yin, Hua Huang, Jie-Li Xie, Davoud Dastan, Jing Li, Ying Liu, Xiao-Ming Tan, Xiao-Chun Gao, Wahab Ali Shah, and Xiao-Guang Ma. High-performance visible light active sr-doped porous lafeo3 semiconductor prepared via sol–gel method. Green Chemistry Letters and Reviews, 15(3):546–556, 2022
Luis G Tejuca and José LG Fierro. Properties and applications of perovskite-type oxides. CRC Press, 1992
Jorge Andrés Cardona Vásquez. Síntesis y caracterización del nuevo material con estructura perovskita triple R2AMn3-xCoxO9 (R= Gd, Dy; A= Ca, Sr; x= 0.0, 0.5, 1.0 y 1.5). PhD thesis, Universidad Nacional de Colombia
Ximena Audrey Velasquez Moya. Síntesis y estudio de las propiedades estructurales y magnéticas del estroncio-rutenato de tierra rara sr2ruhoo6. Master’s thesis, 2018.
Patrick M Woodward. Octahedral tilting in perovskites. i. geometrical considerations. Acta Crystallographica Section B: Structural Science, 53(1):32–43, 1997.
Juan de Dios Varela. Elementos geométricos de cristalografía. 2000.
DA Landínez Téllez, LA Carrero Bermúdez, CE Deluque Toro, R Cardona, and J Roa Rojas. Cristalographic, ferroelectric and electronic properties of the sr2zrtio6 double perovskite. Modern Physics Letters B, 27(20):1350141, 2013
Stephen Blundell. Magnetism in condensed matter. OUP Oxford, 2001
John MD Coey. Magnetism and magnetic materials. Cambridge university press, 2010.
Nicola A Spaldin. Magnetic materials: fundamentals and applications. Cambridge university press, 2010.
Javier A Cuervo Farfán, Críspulo E Deluque Toro, Carlos A Parra Vargas, David A Landínez Téllez, and Jairo Roa-Rojas. Experimental and theoretical determination of physical properties of sm 2 bi 2 fe 4 o 12 ferromagnetic semiconductors. Journal of Materials Chemistry C, 8(42):14925–14938, 2020.
Javier Alonso Cuervo Farfán. Producción y propiedades físicas de nuevas perovskitas complejas del tipo RAMOX (R= La, Nd, Sm, Eu; A= Sr, Bi; M= Ti, Mn, Fe). PhD thesis, Universidad Nacional de Colombia, 2021.
Fu-Chien Chiu et al. A review on conduction mechanisms in dielectric films. Advances in Materials Science and Engineering, 2014, 2014.
JA Sarmiento Vanegas, JA Cuervo Farfán, Críspulo E Deluque Toro, David A Landínez Téllez, and Jairo Roa-Rojas. Semiconductor-ferromagnetic nature of rare-earth based ferrocobaltite smfe0. 5co0. 5o3. Available at SSRN 4464427
ROCIO MARGARITA GUTIERREZ PEREZ. Transición antiferro-a ferromagnética parcial de átomos de mn en películas delgadas de mn3ga mediante dopaje con carbono. 2018.
ANGGA DITO Fauzi. Theoretical study of the effect of oxygen vacancies on magnetism and charge transport of fe3o4, 2017.
RM Hill. Variable-range hopping. physica status solidi (a), 34(2):601–613, 1976.
Ying Zhao and Jiawei Wang. Variable range hopping model based on gaussian disordered organic semiconductor for seebeck effect in thermoelectric device. Micromachines,13(5):707, 2022.
Jinhui Song, Jun Zhou, and Zhong Lin Wang. Piezoelectric and semiconducting coupled power generating process of a single zno belt/wire. a technology for harvesting electricity from the environment. Nano letters, 6(8):1656–1662, 2006.
Ce-Wen Nan, MI Bichurin, Shuxiang Dong, D Viehland, and G Srinivasan. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. Journal of applied physics, 103(3), 2008.
Martha Eloísa Aparicio Ceja and Gregorio Guadalupe Carbajal Arizaga. Utilidad de la difracción de rayos x en las nanociencias. Mundo nano. Revista interdisciplinaria en nanociencias y nanotecnología, 3(2):62–72, 2010.
ML Ramón García. Introducción al método rietveld. CdIe Energía., Editor, 12:7–16,2007.
Brian H Toby and Robert B Von Dreele. Gsas-ii: the genesis of a modern open source all purpose crystallography software package. Journal of Applied Crystallography, 46(2):544–549, 2013
Marcello Picollo, Maurizio Aceto, and Tatiana Vitorino. Uv-vis spectroscopy. Physical sciences reviews, 4(4):20180008, 2019.
Paul Kubelka and Franz Munk. An article on optics of paint layers. Z. Tech. Phys,12(593-601):259–274, 1931.
Vipin Kumar, Sachin Kr Sharma, TP Sharma, and V Singh. Band gap determination in thick films from reflectance measurements. Optical materials, 12(1):115–119, 1999.
R Shaheen, J Bashir, Håkan Rundlöf, and AR Rennie. The crystal structure of calamfeo6 double perovskite. Materials Letters, 59(18):2296–2299, 2005.
R Shaheen, J Bashir, M Siddique, Håkan Rundlöf, and AR Rennie. Crystal structure of alamnfeo6 (aca, sr, ba). Physica B: Condensed Matter, 385:103–105, 2006.
M Nasir Khan, R Shaheen, and J Bashir. Neutron, synchrotron x-ray diffraction and xray absorption studies of calafemno6 double perovskite. Solid state sciences, 10(11):1634-1639, 2008.
Ramaroorthy Ramesh and Nicola A Spaldin. Multiferroics: progress and prospects in thin films. Nature materials, 6(1):21–29, 2007.
Poorva Sharma and Ashwini Kumar. Recent advances in multifunctional perovskite materials. 2022.
Caroline A Schneider, Wayne S Rasband, and Kevin W Eliceiri. Nih image to imagej: 25 years of image analysis. Nature methods, 9(7):671–675, 2012.
William E Vargas. Difusión y absorción de luz en materiales no homogéneos: Modelo de kubelka-munk. Light scattering and absorption by non homogeneous materials: The KM model, 44:163–183, 2011.
Pu Huang, Jun-jie Shi, Ping Wang, Min Zhang, Yi-min Ding, Meng Wu, Jing Lu, and Xin-qiang Wang. Origin of the wide band gap from 0.6 to 2.3 ev in photovoltaic material inn: quantum confinement from surface nanostructure. Journal of materials chemistry A, 4(44):17412–17418, 2016.
J-S Zhou, LG Marshall, Z-Y Li, X Li, and J-M He. Weak ferromagnetism in perovskite oxides. Physical Review B, 102(10):104420, 2020.
Charles Kittel. Introduction to solid state physics. John Wiley & sons, inc, 2005.
N Brahiti, M Abbasi Eskandari, M Balli, Ch Gauvin-Ndiaye, R Nourafkan, A Tremblay, and P Fournier. Analysis of the magnetic and magnetocaloric properties of alafemno6 (a= sr, ba, and ca) double perovskites. Journal of Applied Physics, 127(11), 2020.
A Cortes, E Delgado, P Prieto, and W Lopera. Conduccion electronica a traves de estructuras capacitivas srtio 3+ nb/pb (zr 0.52 ti 0.48) o 3/ag crecidas sobre substratos de srtio 3 dopados con nb. Revista Colombiana de Física, 39(1), 2007.
N Gergel, N Majumdar, K Keyvanfar, N Swami, LR Harriott, JC Bean, Gyana Pattanaik, Giovanni Zangari, Y Yao, and JM Tour. Study of the room temperature molecular memory observed from a nanowell device. Journal of Vacuum Science & Technology A,23(4):880–885, 2005.
Juan-Carlos Sancho-Garcia. La teoría del funcional densidad y las ecuaciones variacionales de Kohn-Sham: aportación de nuevos aspectos sobre sus posibilidades y limitaciones. 2004.
Diana Milena Aljure García. Análisis estructural y electrónico de la perovskita doble compleja de labife2o6. Master’s thesis, 2016.
Peter E Blöchl. Projector augmented-wave method. Physical review B, 50(24):17953,1994
Hendrik J Monkhorst and James D Pack. Special points for brillouin-zone integrations. Physical review B, 13(12):5188, 1976.
Georg Kresse and Daniel Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical review b, 59(3):1758, 1999
John P Perdew and Yue Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Physical review B, 45(23):13244, 1992.
AB Shick, AI Liechtenstein, and WE Pickett. Implementation of the lda+ u method using the full-potential linearized augmented plane-wave basis. Physical Review B, 60(15):10763, 1999.
Pedro Borlido, Jonathan Schmidt, Ahmad W Huran, Fabien Tran, Miguel AL Marques, and Silvana Botti. Exchange-correlation functionals for band gaps of solids: benchmark, reparametrization and machine learning. npj Computational Materials, 6(1):1–17, 2020.
Dexin Yang, Peng Zhao, Chen Yang, Tao Yang, Yulong Chen, and Dexuan Huo. A spin-valve-system in ferromagnetic semiconductor sr2femoo6/srmoo4. Ceramics International, 45(8):10072–10079, 2019.
Philip W Anderson. Antiferromagnetism. theory of superexchange interaction. Physical Review, 79(2):350, 1950.
Patric W Anderson and HJPR Hasegawa. Considerations on double exchange. Physical Review, 100(2):675, 1955.
Eduard Leonovich Nagaev. Colossal-magnetoresistance materials: manganites and conventional ferromagnetic semiconductors. Physics Reports, 346(6):387–531, 2001.
Vijay Gopal Chilkuri, Georges Trinquier, Nadia Ben Amor, Jean-Paul Malrieu, and Nathalie Guihéry. In search of organic compounds presenting a double exchange phenomenon. Journal of Chemical Theory and Computation, 9(11):4805–4815, 2013.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiii, 71 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86836/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86836/2/1113682762.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86836/3/1113682762.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
91dbc2b28c7fdbf549bed449516da149
e1dc2690527804ad6fb2d892e8e2b8b1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089693784965120
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Roa Rojas, Jairo07f67cd42f02e686a14bccff900b3b5f600Rueda Cadavid, Diego Alejandroda7ceb03eda52138e3e23f470f4e5094Grupo de Física de Nuevos Materiales2024-09-16T20:47:38Z2024-09-16T20:47:38Z2024https://repositorio.unal.edu.co/handle/unal/86836Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasEn los últimos años, los materiales cerámicos de tipo perovskita han suscitado un creciente interés debido a sus diversas aplicaciones tecnológicas y a la amplia gama de propiedades eléctricas, magnéticas y ópticas que presentan. Estas propiedades pueden ser modificadas intencionalmente a través de la incorporación de metales de diferente naturaleza, logrando obtener materiales óptimos para diferentes aplicaciones. En ese sentido, el presente trabajo se centra en la síntesis y caracterización del material tipo perovskita doble LaCaMnFeO6, el cual se compone de tierras raras y alcalinotérreos en los sitios A y A' (La, Ca), y de metales de transición de naturaleza magnética en los sitios B y B' (Mn, Fe). La síntesis de la perovskita LaCaMnFeO6 se llevó a cabo mediante el método de reacción de estado sólido, utilizando óxidos precursores de alta pureza. La caracterización estructural se realizó mediante difracción de rayos X (DRX) con el software GSAS II, donde se confirmó una estructura ortorrómbica con un factor de tolerancia de τ = 0.9596. A partir del análisis estructural realizado, se concluyó que el material se describe adecuadamente mediante la fórmula La0.5Ca0.5Mn0.5Fe0.5O3, presentando distorsiones estructurales en los cationes BB'. El análisis morfológico indicó una superficie granular con un tamaño promedio de grano de 1.0 ± 0.2 μm y una porosidad significativa. La composición elemental confirmó la presencia de elementos según la fórmula estequiométrica, aunque se observó un exceso en Mn y Fe, atribuido al carácter óxido del material. Respecto a las propiedades ópticas, se identificaron tres vibraciones intermoleculares relacionadas con los enlaces Mn-O, Fe-O y La/Ca-O. A partir de este resultado se determinó la brecha de energía tipo semiconductor arrojando un valor de Eg = 2.30 ± 0.02 eV. La caracterización magnética reveló una marcada irreversibilidad entre las curvas de susceptibilidad ZFC y FC, indicando un comportamiento magnético frustrado. También se evidenció la presencia de momentos antiferromagnéticos en las curvas de histéresis de magnetización, con un carácter ferromagnético a temperaturas altas. Las mediciones eléctricas mostraron un comportamiento de tipo semiconductor con resistividad decreciente exponencialmente, ajustándose al modelo de Salto de Rango Variable de Mott. Las curvas I-V exhibieron un comportamiento no lineal e histéretico, sugiriendo aplicaciones potenciales en dispositivos de memoria lógica programable. Finalmente, el material de tipo perovskita La0.5Ca0.5Mn0.5Fe0.5O3 sintetizado en el presente trabajo, muestra gran potencial para aplicaciones en dispositivos de memoria lógica, válvulas de espín y transistores ferromagnéticos, entre otros, debido a sus interesantes propiedades semiconductoras y ferromagnéticas. (Texto tomado de la fuente).In recent years, perovskite-type ceramic materials have attracted increasing interest due to their diverse technological applications and the wide range of electrical, magnetic, and optical properties they exhibit. These properties can be intentionally modified through the incorporation of metals of different natures, thereby obtaining materials optimized for various applications. In this context, the present work focuses on the synthesis and characterization of the double perovskite material LaCaMnFeO6, which is composed of rare earth and alkaline earth metals at the A and A' sites (La, Ca), and magnetic transition metals at the B and B' sites (Mn, Fe). The synthesis of LaCaMnFeO6 was carried out using the solid-state reaction method, employing high-purity oxide precursors. The structural characterization was performed by X-ray diffraction (XRD) using the GSAS II software, which confirmed an orthorhombic structure with a tolerance factor of τ = 0.9596. Based on the structural analysis conducted, it was concluded that the material is adequately described by the formula La0.5Ca0.5Mn0.5Fe0.5O3, exhibiting structural distortions in the BB' cations. The morphological analysis indicated a granular surface with an average grain size of 1.0 ± 0.2 μm and significant porosity. The elemental composition confirmed the presence of elements according to the stoichiometric formula, although an excess of Mn and Fe was observed, attributed to the oxide nature of the material. Regarding the optical properties, three intermolecular vibrations related to the Mn-O, Fe-O, and La/Ca-O were identified. From this result, a semiconductor-type energy gap was determined, yielding a value of Eg = 2.30 ± 0.02 eV. The magnetic characterization revealed a marked irreversibility between the ZFC and FC susceptibility curves, indicating frustrated magnetic behavior. The presence of antiferromagnetic moments was also evidenced in the magnetization hysteresis curves, with a ferromagnetic character at high temperatures. Electrical measurements showed semiconductor behavior with exponentially decreasing resistivity, fitting the Mott Variable Range Hopping model. The I-V curves exhibited non-linear and hysteretic behavior, suggesting potential applications in programmable logic memory devices. Finally, the perovskite-type material La0.5Ca0.5Mn0.5Fe0.5O3 synthesized in this work shows great potential for applications in logic memory devices, spin valves, ferromagnetic transistors, and others, due to its interesting semiconducting and ferromagnetic properties.MaestríaMagíster en Ciencias - Físicaxiii, 71 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - Física::537 - Electricidad y electrónica530 - Física::538 - MagnetismoSemiconductoresTierras rarasFerromagnéticosFerromagneticsSemiconductorsRare earthsPerovskitapropiedad mecánica de los materialessemiconductorperovskitemechanical propertysemiconductorCaracterísticas cristalográficas, eléctricas y magnéticas del material tipo perovskita doble LaCaMnFeO6Crystallographic, electrical, and magnetic properties of the double perovskite material LaCaMnFeO6Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMFrancy M Casallas-Caicedo, Enrique Vera-López, and Jairo Roa-Rojas. Impedance spectroscopy study of electrical response and correlation with structural properties in the la2srfe2coo9 triple complex perovskite. Physica B: Condensed Matter, 607:412865, 2021Melvin M Vopson. Fundamentals of multiferroic materials and their possible applications. Critical Reviews in Solid State and Materials Sciences, 40(4):223–250, 2015SS Kale, KR Jadhav, PS Patil, TP Gujar, and CD Lokhande. Characterizations of spray deposited lanthanum oxide (la2o3) thin films. Materials Letters, 59(24-25):3007–3009, 2005Lucia I Olivares Lugo, Ana M Bolarín Miró, Antonia Martínez Luévanos, Claudia A Cortés Escobedo, Màrius Ramírez Cardona, and Félix Sánchez-De Jesús. Multiferroicidad en lafeo3 sintetizada mediante molienda de alta energía. Tópicos de Investigación en Ciencias de la Tierra y Materiales, 8(8):20–24, 2021Robert M Hazen. Perovskites. Scientific American, 258(6):74–81, 1988Magdalena Greluk, Marek Rotko, and Sylwia Turczyniak-Surdacka. Enhanced catalytic performance of la2o3 promoted co/ceo2 and ni/ceo2 catalysts for effective hydrogen production by ethanol steam reforming. Renewable Energy, 155:378–395, 2020Chunwen Sun, Jose A Alonso, and Juanjuan Bian. Recent advances in perovskite type oxides for energy conversion and storage applications. Advanced Energy Materials,11(2):2000459, 2021Mylène Hendrickx, Yawei Tang, Emily C Hunter, Peter D Battle, and Joke Hadermann. Structural and magnetic properties of the perovskites a2lafe2sbo9 (a= ca, sr, ba). Journal of Solid State Chemistry, 295:121914, 2021Jin Won Seo, EE Fullerton, F Nolting, A Scholl, J Fompeyrine, and Jean-Pierre Locquet. Antiferromagnetic lafeo3 thin films and their effect on exchange bias. Journal of Physics: Condensed Matter, 20(26):264014, 2008M Marezio and PD Dernier. The bond lengths in lafeo3. Materials Research Bulletin, 6(1):23–29, 1971Xi-Tao Yin, Hua Huang, Jie-Li Xie, Davoud Dastan, Jing Li, Ying Liu, Xiao-Ming Tan, Xiao-Chun Gao, Wahab Ali Shah, and Xiao-Guang Ma. High-performance visible light active sr-doped porous lafeo3 semiconductor prepared via sol–gel method. Green Chemistry Letters and Reviews, 15(3):546–556, 2022Luis G Tejuca and José LG Fierro. Properties and applications of perovskite-type oxides. CRC Press, 1992Jorge Andrés Cardona Vásquez. Síntesis y caracterización del nuevo material con estructura perovskita triple R2AMn3-xCoxO9 (R= Gd, Dy; A= Ca, Sr; x= 0.0, 0.5, 1.0 y 1.5). PhD thesis, Universidad Nacional de ColombiaXimena Audrey Velasquez Moya. Síntesis y estudio de las propiedades estructurales y magnéticas del estroncio-rutenato de tierra rara sr2ruhoo6. Master’s thesis, 2018.Patrick M Woodward. Octahedral tilting in perovskites. i. geometrical considerations. Acta Crystallographica Section B: Structural Science, 53(1):32–43, 1997.Juan de Dios Varela. Elementos geométricos de cristalografía. 2000.DA Landínez Téllez, LA Carrero Bermúdez, CE Deluque Toro, R Cardona, and J Roa Rojas. Cristalographic, ferroelectric and electronic properties of the sr2zrtio6 double perovskite. Modern Physics Letters B, 27(20):1350141, 2013Stephen Blundell. Magnetism in condensed matter. OUP Oxford, 2001John MD Coey. Magnetism and magnetic materials. Cambridge university press, 2010.Nicola A Spaldin. Magnetic materials: fundamentals and applications. Cambridge university press, 2010.Javier A Cuervo Farfán, Críspulo E Deluque Toro, Carlos A Parra Vargas, David A Landínez Téllez, and Jairo Roa-Rojas. Experimental and theoretical determination of physical properties of sm 2 bi 2 fe 4 o 12 ferromagnetic semiconductors. Journal of Materials Chemistry C, 8(42):14925–14938, 2020.Javier Alonso Cuervo Farfán. Producción y propiedades físicas de nuevas perovskitas complejas del tipo RAMOX (R= La, Nd, Sm, Eu; A= Sr, Bi; M= Ti, Mn, Fe). PhD thesis, Universidad Nacional de Colombia, 2021.Fu-Chien Chiu et al. A review on conduction mechanisms in dielectric films. Advances in Materials Science and Engineering, 2014, 2014.JA Sarmiento Vanegas, JA Cuervo Farfán, Críspulo E Deluque Toro, David A Landínez Téllez, and Jairo Roa-Rojas. Semiconductor-ferromagnetic nature of rare-earth based ferrocobaltite smfe0. 5co0. 5o3. Available at SSRN 4464427ROCIO MARGARITA GUTIERREZ PEREZ. Transición antiferro-a ferromagnética parcial de átomos de mn en películas delgadas de mn3ga mediante dopaje con carbono. 2018.ANGGA DITO Fauzi. Theoretical study of the effect of oxygen vacancies on magnetism and charge transport of fe3o4, 2017.RM Hill. Variable-range hopping. physica status solidi (a), 34(2):601–613, 1976.Ying Zhao and Jiawei Wang. Variable range hopping model based on gaussian disordered organic semiconductor for seebeck effect in thermoelectric device. Micromachines,13(5):707, 2022.Jinhui Song, Jun Zhou, and Zhong Lin Wang. Piezoelectric and semiconducting coupled power generating process of a single zno belt/wire. a technology for harvesting electricity from the environment. Nano letters, 6(8):1656–1662, 2006.Ce-Wen Nan, MI Bichurin, Shuxiang Dong, D Viehland, and G Srinivasan. Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. Journal of applied physics, 103(3), 2008.Martha Eloísa Aparicio Ceja and Gregorio Guadalupe Carbajal Arizaga. Utilidad de la difracción de rayos x en las nanociencias. Mundo nano. Revista interdisciplinaria en nanociencias y nanotecnología, 3(2):62–72, 2010.ML Ramón García. Introducción al método rietveld. CdIe Energía., Editor, 12:7–16,2007.Brian H Toby and Robert B Von Dreele. Gsas-ii: the genesis of a modern open source all purpose crystallography software package. Journal of Applied Crystallography, 46(2):544–549, 2013Marcello Picollo, Maurizio Aceto, and Tatiana Vitorino. Uv-vis spectroscopy. Physical sciences reviews, 4(4):20180008, 2019.Paul Kubelka and Franz Munk. An article on optics of paint layers. Z. Tech. Phys,12(593-601):259–274, 1931.Vipin Kumar, Sachin Kr Sharma, TP Sharma, and V Singh. Band gap determination in thick films from reflectance measurements. Optical materials, 12(1):115–119, 1999.R Shaheen, J Bashir, Håkan Rundlöf, and AR Rennie. The crystal structure of calamfeo6 double perovskite. Materials Letters, 59(18):2296–2299, 2005.R Shaheen, J Bashir, M Siddique, Håkan Rundlöf, and AR Rennie. Crystal structure of alamnfeo6 (aca, sr, ba). Physica B: Condensed Matter, 385:103–105, 2006.M Nasir Khan, R Shaheen, and J Bashir. Neutron, synchrotron x-ray diffraction and xray absorption studies of calafemno6 double perovskite. Solid state sciences, 10(11):1634-1639, 2008.Ramaroorthy Ramesh and Nicola A Spaldin. Multiferroics: progress and prospects in thin films. Nature materials, 6(1):21–29, 2007.Poorva Sharma and Ashwini Kumar. Recent advances in multifunctional perovskite materials. 2022.Caroline A Schneider, Wayne S Rasband, and Kevin W Eliceiri. Nih image to imagej: 25 years of image analysis. Nature methods, 9(7):671–675, 2012.William E Vargas. Difusión y absorción de luz en materiales no homogéneos: Modelo de kubelka-munk. Light scattering and absorption by non homogeneous materials: The KM model, 44:163–183, 2011.Pu Huang, Jun-jie Shi, Ping Wang, Min Zhang, Yi-min Ding, Meng Wu, Jing Lu, and Xin-qiang Wang. Origin of the wide band gap from 0.6 to 2.3 ev in photovoltaic material inn: quantum confinement from surface nanostructure. Journal of materials chemistry A, 4(44):17412–17418, 2016.J-S Zhou, LG Marshall, Z-Y Li, X Li, and J-M He. Weak ferromagnetism in perovskite oxides. Physical Review B, 102(10):104420, 2020.Charles Kittel. Introduction to solid state physics. John Wiley & sons, inc, 2005.N Brahiti, M Abbasi Eskandari, M Balli, Ch Gauvin-Ndiaye, R Nourafkan, A Tremblay, and P Fournier. Analysis of the magnetic and magnetocaloric properties of alafemno6 (a= sr, ba, and ca) double perovskites. Journal of Applied Physics, 127(11), 2020.A Cortes, E Delgado, P Prieto, and W Lopera. Conduccion electronica a traves de estructuras capacitivas srtio 3+ nb/pb (zr 0.52 ti 0.48) o 3/ag crecidas sobre substratos de srtio 3 dopados con nb. Revista Colombiana de Física, 39(1), 2007.N Gergel, N Majumdar, K Keyvanfar, N Swami, LR Harriott, JC Bean, Gyana Pattanaik, Giovanni Zangari, Y Yao, and JM Tour. Study of the room temperature molecular memory observed from a nanowell device. Journal of Vacuum Science & Technology A,23(4):880–885, 2005.Juan-Carlos Sancho-Garcia. La teoría del funcional densidad y las ecuaciones variacionales de Kohn-Sham: aportación de nuevos aspectos sobre sus posibilidades y limitaciones. 2004.Diana Milena Aljure García. Análisis estructural y electrónico de la perovskita doble compleja de labife2o6. Master’s thesis, 2016.Peter E Blöchl. Projector augmented-wave method. Physical review B, 50(24):17953,1994Hendrik J Monkhorst and James D Pack. Special points for brillouin-zone integrations. Physical review B, 13(12):5188, 1976.Georg Kresse and Daniel Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical review b, 59(3):1758, 1999John P Perdew and Yue Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Physical review B, 45(23):13244, 1992.AB Shick, AI Liechtenstein, and WE Pickett. Implementation of the lda+ u method using the full-potential linearized augmented plane-wave basis. Physical Review B, 60(15):10763, 1999.Pedro Borlido, Jonathan Schmidt, Ahmad W Huran, Fabien Tran, Miguel AL Marques, and Silvana Botti. Exchange-correlation functionals for band gaps of solids: benchmark, reparametrization and machine learning. npj Computational Materials, 6(1):1–17, 2020.Dexin Yang, Peng Zhao, Chen Yang, Tao Yang, Yulong Chen, and Dexuan Huo. A spin-valve-system in ferromagnetic semiconductor sr2femoo6/srmoo4. Ceramics International, 45(8):10072–10079, 2019.Philip W Anderson. Antiferromagnetism. theory of superexchange interaction. Physical Review, 79(2):350, 1950.Patric W Anderson and HJPR Hasegawa. Considerations on double exchange. Physical Review, 100(2):675, 1955.Eduard Leonovich Nagaev. Colossal-magnetoresistance materials: manganites and conventional ferromagnetic semiconductors. Physics Reports, 346(6):387–531, 2001.Vijay Gopal Chilkuri, Georges Trinquier, Nadia Ben Amor, Jean-Paul Malrieu, and Nathalie Guihéry. In search of organic compounds presenting a double exchange phenomenon. Journal of Chemical Theory and Computation, 9(11):4805–4815, 2013.EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86836/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1113682762.2024.pdf1113682762.2024.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf5242954https://repositorio.unal.edu.co/bitstream/unal/86836/2/1113682762.2024.pdf91dbc2b28c7fdbf549bed449516da149MD52THUMBNAIL1113682762.2024.pdf.jpg1113682762.2024.pdf.jpgGenerated Thumbnailimage/jpeg4439https://repositorio.unal.edu.co/bitstream/unal/86836/3/1113682762.2024.pdf.jpge1dc2690527804ad6fb2d892e8e2b8b1MD53unal/86836oai:repositorio.unal.edu.co:unal/868362024-09-16 23:44:55.948Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=