Modelo estructural de riesgo de crédito con intensidad estocástica de covariables observables y un factor de fragilidad determinado a partir de un proceso de saltos

In this work, the parameters for the default intensity of observable covariates in the presence of an unobservable fragility factor are estimated. The observable information corresponds to the evolution In this work, the parameters for the default intensity of observable covariates in the presence o...

Full description

Autores:
Bernal Berrio, Luis Alberto
Tipo de recurso:
Work document
Fecha de publicación:
2019
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/75596
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/75596
Palabra clave:
Matemáticas::Probabilidades y matemáticas aplicadas
Intensidad de default
Proceso de Cox
Algoritmo EM
Muestreador de Gibbs
Default Intensity
Cox Process
EM Algorithm
Gibbs Sampler
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_cedc499a3dbca5a00f6f8c1d2a31f9f6
oai_identifier_str oai:repositorio.unal.edu.co:unal/75596
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Modelo estructural de riesgo de crédito con intensidad estocástica de covariables observables y un factor de fragilidad determinado a partir de un proceso de saltos
title Modelo estructural de riesgo de crédito con intensidad estocástica de covariables observables y un factor de fragilidad determinado a partir de un proceso de saltos
spellingShingle Modelo estructural de riesgo de crédito con intensidad estocástica de covariables observables y un factor de fragilidad determinado a partir de un proceso de saltos
Matemáticas::Probabilidades y matemáticas aplicadas
Intensidad de default
Proceso de Cox
Algoritmo EM
Muestreador de Gibbs
Default Intensity
Cox Process
EM Algorithm
Gibbs Sampler
title_short Modelo estructural de riesgo de crédito con intensidad estocástica de covariables observables y un factor de fragilidad determinado a partir de un proceso de saltos
title_full Modelo estructural de riesgo de crédito con intensidad estocástica de covariables observables y un factor de fragilidad determinado a partir de un proceso de saltos
title_fullStr Modelo estructural de riesgo de crédito con intensidad estocástica de covariables observables y un factor de fragilidad determinado a partir de un proceso de saltos
title_full_unstemmed Modelo estructural de riesgo de crédito con intensidad estocástica de covariables observables y un factor de fragilidad determinado a partir de un proceso de saltos
title_sort Modelo estructural de riesgo de crédito con intensidad estocástica de covariables observables y un factor de fragilidad determinado a partir de un proceso de saltos
dc.creator.fl_str_mv Bernal Berrio, Luis Alberto
dc.contributor.advisor.spa.fl_str_mv Gómez Vélez, César Augusto
dc.contributor.author.spa.fl_str_mv Bernal Berrio, Luis Alberto
dc.subject.ddc.spa.fl_str_mv Matemáticas::Probabilidades y matemáticas aplicadas
topic Matemáticas::Probabilidades y matemáticas aplicadas
Intensidad de default
Proceso de Cox
Algoritmo EM
Muestreador de Gibbs
Default Intensity
Cox Process
EM Algorithm
Gibbs Sampler
dc.subject.proposal.spa.fl_str_mv Intensidad de default
Proceso de Cox
Algoritmo EM
Muestreador de Gibbs
dc.subject.proposal.eng.fl_str_mv Default Intensity
Cox Process
EM Algorithm
Gibbs Sampler
description In this work, the parameters for the default intensity of observable covariates in the presence of an unobservable fragility factor are estimated. The observable information corresponds to the evolution In this work, the parameters for the default intensity of observable covariates in the presence of an unobservable fragility factor are estimated. The observable information corresponds to the evolution of some macroeconomic variables over time, as well as the characteristic information of the individuals of a credit segment in a Colombian financial entity; a small modification to the Cox process proposed for intensity is made in Duffie et al. (2009), in order to include a jump component by means of which it is sought to describe the spontaneous clusters defaults, a program is finally implemented to estimate the parameters associated to the process for intensity by means of the EM algorithm and the Gibbs sampler.
publishDate 2019
dc.date.issued.spa.fl_str_mv 2019
dc.date.accessioned.spa.fl_str_mv 2020-02-13T20:04:57Z
dc.date.available.spa.fl_str_mv 2020-02-13T20:04:57Z
dc.type.spa.fl_str_mv Documento de trabajo
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/WP
format http://purl.org/coar/resource_type/c_8042
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/75596
url https://repositorio.unal.edu.co/handle/unal/75596
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ahn, J. J., Oh, K. J., Kim, T. Y., and Kim, D. H. (2011). Usefulness of support vector machine to develop an early warning system for financial crisis. Expert Systems with Applications, 38(4):2966 – 2973
Bielecki, T. R., Cousin, A., Crépey, S., and Herbertsson, A. (2014). Dynamic hedging of portfolio credit risk in a markov copula model. Journal of Optimization Theory and Applications, 161(1):90–102.
Bingham, N. (2007). Regular variation and probability: The early years. Journal of Computational and Applied Mathematics, 200(1):357 – 363.
Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3):637–54.
Company, M. G. T. (1996). Riskmetrics technical document. Technical Report 2, JP Morgan and Reuters, ttps://www.msci.com/documents/10199/5915b101-4206-4ba0-aee2- 3449d5c7e95ar. An optional note.
Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B, 39(1):1–38.
Duffie, D. (2010). Dynamic Asset Pricing Theory. Princeton Series in Finance. Princeton University Press.
Duffie, D., Eckner, A., Horel, G., and Saita, L. (2009). Frailty correlated default. Journal of Finance, 64(5):2089–2123
Edwin O. Fischer, Robert Heinkel, J. Z. (1989). Dynamic capital structure choice: Theory and tests. The Journal of Finance, 44(1):19–40.
Gregoriou, G. (2006). Advances in Risk Management. Finance and Capital Markets Series. Palgrave Macmillan UK.
Hillegeist, S. A., Keating, E. K., Cram, D. P., and Lundstedt, K. G. (2004). Assessing the probability of bankruptcy. Review of Accounting Studies, 9(1):5–34.
Hull, J., Predescu, M., and White, A. (2004). The relationship between credit default swap spreads, bond yields, and credit rating announcements. Journal of Banking & Finance, 28(11):2789 – 2811. Recent Research on Credit Ratings.
Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598):671–680.
Lamberton, D. and Lapeyre, B. (2011). Introduction to Stochastic Calculus Applied to Finance, Second Edition. Chapman and Hall/CRC Financial Mathematics Series. CRC Press.
McNeil, A. J., Frey, R., and Embrechts, P. (2005). Quantitative risk management : concepts, techniques and tools. Princeton series in finance. Princeton University Press, Princeton (N.J.).
Musiela, M. and Rutkowski, M. (2006). Martingale Methods in Financial Modelling. Stochastic Modelling and Applied Probability. Springer Berlin Heidelberg.
Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. The Journal of Business, 74(1):101–124.
Spiliopoulos, K. (2015). Systemic Risk and Default Clustering for Large Financial Systems, pages 529–557. Springer International Publishing, Cham
Tankov, P. (2003). Financial Modelling with Jump Processes. Chapman and Hall/CRC Financial Mathematics Series. CRC Press
Wei, G. C. G. and Tanner, M. A. (1990). A monte carlo implementation of the em algorithm and the poor man’s data augmentation algorithms. Journal of the American Statistical Association,85(411):699–704.
Zhou, C. (2001). The term structure of credit spreads with jump risk. Journal of Banking & Finance, 25(11):2015–2040
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
Acceso abierto
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 123
dc.publisher.department.spa.fl_str_mv Escuela de estadística
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/75596/1/1152188078.2019.pdf
https://repositorio.unal.edu.co/bitstream/unal/75596/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/75596/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/75596/4/1152188078.2019.pdf.jpg
bitstream.checksum.fl_str_mv 77405017f668705f3b99adb2caba3736
6f3f13b02594d02ad110b3ad534cd5df
4460e5956bc1d1639be9ae6146a50347
587273b2eb844845cb66f6f251a6627b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090217043263488
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gómez Vélez, César Augusto279c0bd8-0c20-4053-aef6-ecb83498a954-1Bernal Berrio, Luis Alberto263a1b5e-71b1-4064-b75a-c40abe13be982020-02-13T20:04:57Z2020-02-13T20:04:57Z2019https://repositorio.unal.edu.co/handle/unal/75596In this work, the parameters for the default intensity of observable covariates in the presence of an unobservable fragility factor are estimated. The observable information corresponds to the evolution In this work, the parameters for the default intensity of observable covariates in the presence of an unobservable fragility factor are estimated. The observable information corresponds to the evolution of some macroeconomic variables over time, as well as the characteristic information of the individuals of a credit segment in a Colombian financial entity; a small modification to the Cox process proposed for intensity is made in Duffie et al. (2009), in order to include a jump component by means of which it is sought to describe the spontaneous clusters defaults, a program is finally implemented to estimate the parameters associated to the process for intensity by means of the EM algorithm and the Gibbs sampler.En este trabajo se estiman los parámetros para la intensidad de default de covariables observables en presencia de un factor de fragilidad no observable. La información observable corresponde a la evolución de algunas variables macroeconómicas en el tiempo, así como la información característica de individuos de un segmento de crédito en una entidad financiera colombiana; se realiza una pequeña modificación al proceso de Cox propuesto para la intensidad en Duffie et al. (2009), con el fin de incluir una componente de saltos a partir de la cual se busca describir los agrupamientos espontáneos de defaults, finalmente se implementa un programa para estimar los parámetros asociados al proceso para la intensidad por medio del algoritmo EM y el muestreador de GibbsMagister en Ciencias EstadísticaMaestría123spaMatemáticas::Probabilidades y matemáticas aplicadasIntensidad de defaultProceso de CoxAlgoritmo EMMuestreador de GibbsDefault IntensityCox ProcessEM AlgorithmGibbs SamplerModelo estructural de riesgo de crédito con intensidad estocástica de covariables observables y un factor de fragilidad determinado a partir de un proceso de saltosDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_8042Texthttp://purl.org/redcol/resource_type/WPEscuela de estadísticaUniversidad Nacional de Colombia - Sede MedellínAhn, J. J., Oh, K. J., Kim, T. Y., and Kim, D. H. (2011). Usefulness of support vector machine to develop an early warning system for financial crisis. Expert Systems with Applications, 38(4):2966 – 2973Bielecki, T. R., Cousin, A., Crépey, S., and Herbertsson, A. (2014). Dynamic hedging of portfolio credit risk in a markov copula model. Journal of Optimization Theory and Applications, 161(1):90–102.Bingham, N. (2007). Regular variation and probability: The early years. Journal of Computational and Applied Mathematics, 200(1):357 – 363.Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3):637–54.Company, M. G. T. (1996). Riskmetrics technical document. Technical Report 2, JP Morgan and Reuters, ttps://www.msci.com/documents/10199/5915b101-4206-4ba0-aee2- 3449d5c7e95ar. An optional note.Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B, 39(1):1–38.Duffie, D. (2010). Dynamic Asset Pricing Theory. Princeton Series in Finance. Princeton University Press.Duffie, D., Eckner, A., Horel, G., and Saita, L. (2009). Frailty correlated default. Journal of Finance, 64(5):2089–2123Edwin O. Fischer, Robert Heinkel, J. Z. (1989). Dynamic capital structure choice: Theory and tests. The Journal of Finance, 44(1):19–40.Gregoriou, G. (2006). Advances in Risk Management. Finance and Capital Markets Series. Palgrave Macmillan UK.Hillegeist, S. A., Keating, E. K., Cram, D. P., and Lundstedt, K. G. (2004). Assessing the probability of bankruptcy. Review of Accounting Studies, 9(1):5–34.Hull, J., Predescu, M., and White, A. (2004). The relationship between credit default swap spreads, bond yields, and credit rating announcements. Journal of Banking & Finance, 28(11):2789 – 2811. Recent Research on Credit Ratings.Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598):671–680.Lamberton, D. and Lapeyre, B. (2011). Introduction to Stochastic Calculus Applied to Finance, Second Edition. Chapman and Hall/CRC Financial Mathematics Series. CRC Press.McNeil, A. J., Frey, R., and Embrechts, P. (2005). Quantitative risk management : concepts, techniques and tools. Princeton series in finance. Princeton University Press, Princeton (N.J.).Musiela, M. and Rutkowski, M. (2006). Martingale Methods in Financial Modelling. Stochastic Modelling and Applied Probability. Springer Berlin Heidelberg.Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. The Journal of Business, 74(1):101–124.Spiliopoulos, K. (2015). Systemic Risk and Default Clustering for Large Financial Systems, pages 529–557. Springer International Publishing, ChamTankov, P. (2003). Financial Modelling with Jump Processes. Chapman and Hall/CRC Financial Mathematics Series. CRC PressWei, G. C. G. and Tanner, M. A. (1990). A monte carlo implementation of the em algorithm and the poor man’s data augmentation algorithms. Journal of the American Statistical Association,85(411):699–704.Zhou, C. (2001). The term structure of credit spreads with jump risk. Journal of Banking & Finance, 25(11):2015–2040ORIGINAL1152188078.2019.pdf1152188078.2019.pdfapplication/pdf977374https://repositorio.unal.edu.co/bitstream/unal/75596/1/1152188078.2019.pdf77405017f668705f3b99adb2caba3736MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/75596/2/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/75596/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53THUMBNAIL1152188078.2019.pdf.jpg1152188078.2019.pdf.jpgGenerated Thumbnailimage/jpeg5206https://repositorio.unal.edu.co/bitstream/unal/75596/4/1152188078.2019.pdf.jpg587273b2eb844845cb66f6f251a6627bMD54unal/75596oai:repositorio.unal.edu.co:unal/755962023-06-28 23:11:17.83Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg==