Estandarización de condiciones de producción in vitro y ex vitro para la propagación y escalamiento de material de siembra de batata (Ipomoea batatas L.)

ilustraciones, diagramas, tablas

Autores:
Perez Pazos, Jazmin Vanessa
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82447
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82447
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología
580 - Plantas
630 - Agricultura y tecnologías relacionadas
Batata - Propagación in vitro
Compost
Plant micropropagation
Micropropagación vegetal
Cultivo de tejidos
Aclimatación
Medio de cultivo
Sustratos
Super elite
Mini-raíces tuberosas
Propagación
Tissue culture
Acclimatization
Culture medium
Substrates
Super elite
Tuberous mini-roots
Propagation
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_ceb238e4e6459ca946d1ecd4240b0dcc
oai_identifier_str oai:repositorio.unal.edu.co:unal/82447
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estandarización de condiciones de producción in vitro y ex vitro para la propagación y escalamiento de material de siembra de batata (Ipomoea batatas L.)
dc.title.translated.eng.fl_str_mv Standardization of in vitro and ex vitro production conditions for the propagation and scaling of sweet potato (Ipomoea batatas L.) planting material
title Estandarización de condiciones de producción in vitro y ex vitro para la propagación y escalamiento de material de siembra de batata (Ipomoea batatas L.)
spellingShingle Estandarización de condiciones de producción in vitro y ex vitro para la propagación y escalamiento de material de siembra de batata (Ipomoea batatas L.)
570 - Biología
580 - Plantas
630 - Agricultura y tecnologías relacionadas
Batata - Propagación in vitro
Compost
Plant micropropagation
Micropropagación vegetal
Cultivo de tejidos
Aclimatación
Medio de cultivo
Sustratos
Super elite
Mini-raíces tuberosas
Propagación
Tissue culture
Acclimatization
Culture medium
Substrates
Super elite
Tuberous mini-roots
Propagation
title_short Estandarización de condiciones de producción in vitro y ex vitro para la propagación y escalamiento de material de siembra de batata (Ipomoea batatas L.)
title_full Estandarización de condiciones de producción in vitro y ex vitro para la propagación y escalamiento de material de siembra de batata (Ipomoea batatas L.)
title_fullStr Estandarización de condiciones de producción in vitro y ex vitro para la propagación y escalamiento de material de siembra de batata (Ipomoea batatas L.)
title_full_unstemmed Estandarización de condiciones de producción in vitro y ex vitro para la propagación y escalamiento de material de siembra de batata (Ipomoea batatas L.)
title_sort Estandarización de condiciones de producción in vitro y ex vitro para la propagación y escalamiento de material de siembra de batata (Ipomoea batatas L.)
dc.creator.fl_str_mv Perez Pazos, Jazmin Vanessa
dc.contributor.advisor.none.fl_str_mv Rosero Alpala, Elvia Amparo
Gamez Carrillo, Rocio Margarita
Hoyos Sánchez, Rodrigo Alberto
dc.contributor.author.none.fl_str_mv Perez Pazos, Jazmin Vanessa
dc.subject.ddc.spa.fl_str_mv 570 - Biología
580 - Plantas
630 - Agricultura y tecnologías relacionadas
topic 570 - Biología
580 - Plantas
630 - Agricultura y tecnologías relacionadas
Batata - Propagación in vitro
Compost
Plant micropropagation
Micropropagación vegetal
Cultivo de tejidos
Aclimatación
Medio de cultivo
Sustratos
Super elite
Mini-raíces tuberosas
Propagación
Tissue culture
Acclimatization
Culture medium
Substrates
Super elite
Tuberous mini-roots
Propagation
dc.subject.lemb.none.fl_str_mv Batata - Propagación in vitro
Compost
Plant micropropagation
Micropropagación vegetal
dc.subject.proposal.spa.fl_str_mv Cultivo de tejidos
Aclimatación
Medio de cultivo
Sustratos
Super elite
Mini-raíces tuberosas
Propagación
dc.subject.proposal.eng.fl_str_mv Tissue culture
Acclimatization
Culture medium
Substrates
Super elite
Tuberous mini-roots
Propagation
description ilustraciones, diagramas, tablas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-10-25T14:49:57Z
dc.date.available.none.fl_str_mv 2022-10-25T14:49:57Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82447
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82447
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abad, M., Noguera, P., & Burés, S. (2001). National inventory of organic wastes for use as growing media for ornamental potted plant production: Case study in Spain. Bioresource Technology, 77(2), 197–200. https://doi.org/10.1016/S0960-8524(00)00152-8
Abad, M., Noguera, P., Puchades, R., Maquieira, A., & Noguera, V. (2002). Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants. Bioresource Technology, 82(3), 241–245. https://doi.org/10.1016/S0960-8524(01)00189-4
Abu Zeid, I. M., Soliman, H. I. A., & Metwali, E. M. R. (2021). In vitro evaluation of some high yield potato (Solanum tuberosum L.) cultivars under imposition of salinity at the cellular and organ levels. Saudi Journal of Biological Sciences. https://doi.org/10.1016/J.SJBS.2021.12.040
Acemi, A., Bayrak, B., Çakır, M., Demiryürek, E., Gün, E., El Gueddari, N. E., & Özen, F. (2018). Comparative analysis of the effects of chitosan and common plant growth regulators on in vitro propagation of Ipomoea purpurea (L.) Roth from nodal explants. In Vitro Cellular and Developmental Biology - Plant, 54(5), 537–544. https://doi.org/10.1007/s11627-018-9915-0
Adamski, J. M., Danieloski, R., Deuner, S., Braga, E. J. B., de Castro, L. A. S., & Peters, J. A. (2012). Responses to excess iron in sweet potato: Impacts on growth, enzyme activities, mineral concentrations, and anatomy. Acta Physiologiae Plantarum, 34(5), 1827–1836. https://doi.org/10.1007/S11738-012-0981-3/FIGURES/5
Agrawal, A., Singh, S., Malhotra, E. V., Meena, D. P. S., Tyagi, R. K., Agrawal, A., Singh, S., Malhotra, · E V, & Meena, · D P S. (2019). In Vitro Conservation and Cryopreservation of Clonally Propagated Horticultural Species. Conservation and Utilization of Horticultural Genetic Resources, 529–578. https://doi.org/10.1007/978-981-13-3669-0_18
Aguoru, C., & Amuzie, U. (2009). Associated microbial contaminants in in-vitro micropropagation of sweet potato (Ipomoea batatas L.). International Journal of Natural and Applied Sciences, 5(2). https://doi.org/10.4314/ijonas.v5i2.49964
Ahmed, A. B. A., Pallela, R., Rao, A. S., Rao, M. V, & Mat Taha, R. (2011). Optimized conditions for callus induction, plant regeneration and alkaloids accumulation in stem and shoot tip explants of Phyla nodiflora. Spanish Journal of Agricultural Research, 9(4), 1262–1270. https://doi.org/10.5424/sjar/20110904-453-10
Aksakal, E. L., Angin, I., & Sari, S. (2020). A new approach for calculating aggregate stability: Mean weight aggregate stability (MWAS). Catena, 194, 104708. https://doi.org/10.1016/j.catena.2020.104708
Alam, I., Sharmin, A. S., Naher, K. M., Alam, J. M., Anisuzzaman, M., & Alam, F. M. (2010). Effect of growth regulators on meristem culture and plantlet establishment in sweet potato [Ipomoea batatas (L.) Lam.]. Plant Omics Journal, 3(2), 35–39.
Alam, J., Alam, I., Sharmin, A. S., Rahman, M. M., Anisuzzaman, M., & Alam, F. M. (2010). Micropropagation and antimicrobial activity of Operculina turpethum (syn. Ipomoea turpethum), an endangered medicinal plant. Planr Omics Journal, 3(2), 40–46.
Alam, M. K., Sams, S., Rana, Z. H., Akhtaruzzaman, M., & Islam, S. N. (2020). Minerals, vitamin C, and effect of thermal processing on carotenoids composition in nine varieties orange-fleshed sweet potato (Ipomoea batatas L.). Journal of Food Composition and Analysis, 92, 103582. https://doi.org/10.1016/J.JFCA.2020.103582
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
Alula, K., Zeleke, H., & Manikandan, M. (2018). In vitro propagation of sweet potato Ipomoea batatas (L.) Lam) through apical meristem culture. J. Pharmacognosy and Phytochem., 7, 2386–2392.
Amagloh, F. C., Yada, B., Tumuhimbise, G. A., Amagloh, F. K., & Kaaya, A. N. (2021). The Potential of Sweetpotato as a Functional Food in Sub-Saharan Africa and Its Implications for Health: A Review. Molecules 2021, Vol. 26, Page 2971, 26(10), 2971. https://doi.org/10.3390/MOLECULES26102971
Ameri, A., Tehranifar, A., Shoor, M., & Davarynejad, G. H. (2012). Effect of substrate and cultivar on growth characteristic of strawberry in soilless culture system. AFRICAN JOURNAL OF BIOTECHNOLOGY, 11(56), 11960–11966. https://doi.org/10.5897/ajb-11-2524
Amirmijani, A., Khodaparast, S. A., & Zare, R. (2014). Contribution to the identification of Cladosporium species in the North of Iran. Rostaniha, 15(2), 133–145. https://doi.org/10.22092/BOTANY.2014.101237
Bashyal, B. M., Yadav, J., Gupta, A. K., & Aggarwal, R. (2019). Understanding the secondary metabolite production of Gibberella fujikuroi species complex in genomic era. In Indian Phytopathology (Vol. 72, Issue 4, pp. 607–617). Springer. https://doi.org/10.1007/s42360-019-00141-w
Bechtaoui, N., Rabiu, M. K., Raklami, A., Oufdou, K., Hafidi, M., & Jemo, M. (2021). Phosphate-Dependent Regulation of Growth and Stresses Management in Plants. Frontiers in Plant Science, 12, 2357.
Becker, B., Henningsen, L., Paulmann, D., Bischoff, B., Todt, D., Steinmann, E., Steinmann, J., Brill, F. H. H., & Steinmann, J. (2019). Evaluation of the virucidal efficacy of disinfectant wipes with a test method simulating practical conditions. Antimicrobial Resistance and Infection Control, 8(1), 121. https://doi.org/10.1186/s13756-019-0569-4
Ben-Amar, A., Oueslati, S., & Mliki, A. (2017). Universal direct PCR amplification system: a time- and cost-effective tool for high-throughput applications. 3 Biotech 2017 7:4, 7(4), 1–7. https://doi.org/10.1007/S13205-017-0890-7
Bensch, K., Groenewald, J. Z., Dijksterhuis, J., Starink-Willemse, M., Andersen, B., Summerell, B. A., Shin, H. D., Dugan, F. M., Schroers, H. J., Braun, U., & Crous, P. W. (2010). Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Studies in Mycology, 67, 1–94. https://doi.org/10.3114/sim.2010.67.01
Beyene, B., Menamo, T., & Haile, G. (2020). Protocol optimization for in vitro propagation of Kulfo, orange flesh sweet potato (Ipomoea batatas) variety using shoot tip culture. African Journal of Plant Science, 14(10), 395–401. https://doi.org/10.5897/AJPS2017.1621
Bhatia, S. (2015). Plant Tissue Culture. In Saurabh Bhatia, Kiran Sharma, Randhir Dahiya, & Tanmoy Bera (Eds.), Modern Applications of Plant Biotechnology in Pharmaceutical Sciences (1st ed., pp. 31–107). Academic Press. https://doi.org/10.1016/B978-0-12-802221-4.00002-9
Bigliardi, P. L., Alsagoff, S. A. L., El-Kafrawi, H. Y., Pyon, J. K., Wa, C. T. C., & Villa, M. A. (2017). Povidone iodine in wound healing: A review of current concepts and practices. International Journal of Surgery, 44, 260–268. https://doi.org/10.1016/j.ijsu.2017.06.073
Boekhout, T. (1995). Pseudozyma Bandoni emend. Boekhout, a genus for yeast-like anamorphs of Ustilaginales. The Journal of General and Applied Microbiology, 41(4), 359–366. https://doi.org/10.2323/jgam.41.359
Burbano-Erazo, E., Cordero, C., Pastrana, I., Espitia, L., Gomez, E., Morales, A., Pérez, J., López, L., & Rosero, A. (2020). Interrelation of ecophysiological and morpho-agronomic parameters in low altitude evaluation of selected ecotypes of sweet potato (Ipomoea batatas [l.] lam.). Horticulturae, 6(4), 1–22. https://doi.org/10.3390/horticulturae6040099
Buxdorf, K., Rahat, I., Gafni, A., & Levy, M. (2013). The epiphytic fungus Pseudozyma aphidis induces jasmonic acid-and salicylic acid/nonexpressor of PR1-independent local and systemic resistance. Plant Physiology, 161(4), 2014–2022. https://doi.org/10.1104/pp.112.212969
Cachique, D. H., Solsol, H. R., Sanchez, M. A. G., López, L. A. A., & Kodahl, N. (2018). Vegetative propagation of the underutilized oilseed crop sacha inchi (Plukenetia volubilis L.). Genetic Resources and Crop Evolution, 65(7), 2027–2036. https://doi.org/10.1007/S10722-018-0659-9/FIGURES/3
Cardona, W. A., Benavides, M. M. B., & Montoya, W. C. (2016). Effect of chemical and organic fertilizers on the aggregation of a soil cultivated with Musa acuminata AA. Acta Agronomica, 65(2), 144–148. https://doi.org/10.15446/acag.v65n2.44493
Carmello, C. R., & Cardoso, J. C. (2018). Effects of plant extracts and sodium hypochlorite on lettuce germination and inhibition of Cercospora longissima in vitro. Scientia Horticulturae, 234, 245–249. https://doi.org/10.1016/j.scienta.2018.02.056
Chandrasekara, A., & Josheph Kumar, T. (2016). Roots and tuber crops as functional foods: A review on phytochemical constituents and their potential health benefits. International Journal of Food Science, 2016. https://doi.org/10.1155/2016/3631647
Cheval, C., Aldon, D., Galaud, J. P., & Ranty, B. (2013). Calcium/calmodulin-mediated regulation of plant immunity. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1833(7), 1766–1771. https://doi.org/10.1016/J.BBAMCR.2013.01.031
Chowdhury, D., Rahman, A., Hu, H., Jensen, S. O., Deva, A. K., & Vickery, K. (2019). Effect of disinfectant formulation and organic soil on the efficacy of oxidizing disinfectants against biofilms. Journal of Hospital Infection, 103(1), e33–e41. https://doi.org/10.1016/j.jhin.2018.10.019
Cobrado, J. S., & Fernandez, A. M. (2016). Common fungi contamination affecting tissue-cultured Abaca (Musa textiles Nee) during initial stage of micropropagation. Asian Research Journal of Agriculture, 1(2), 1–7. https://doi.org/10.9734/ARJA/2016/28353
Cobrado, J. S., & Fernandez, A. M. (2017). Bioefficacy test of different chemotherapeutic substances against Aspergillus sp. and Chrysosporium sp. contaminants of tissue-cultured Abaca (Musa textiles NEE.) during initial stage of micropropagation. Journal of Advances in Microbiology, 4(1), 1–12. https://doi.org/10.9734/JAMB/2017/33289
Compant, S., Samad, A., Faist, H., & Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. Journal of Advanced Research, 19, 29–37. https://doi.org/10.1016/J.JARE.2019.03.004
Cordovez, V., Dini-Andreote, F., Carrión, V. J., & Raaijmakers, J. M. (2019). Ecology and Evolution of Plant Microbiomes. Https://Doi.Org/10.1146/Annurev-Micro-090817-062524, 73, 69–88. https://doi.org/10.1146/ANNUREV-MICRO-090817-062524
Dag, O., Dolgun, A., & Konar, N. M. (2018). Onewaytests: An R package for one-way tests in independent groups designs. R Journal, 10(1), 175–199. https://doi.org/10.32614/RJ-2018-022
Deb, C. R., & Imchen, T. (2010). An efficient in vitro hardening technique of tissue culture raised plants. Biotechnology, 9(1), 79–83. https://doi.org/10.3923/BIOTECH.2010.79.83
Delgado-Paredes, G. E., Idrogo, C. R., Chanamé-Céspedes, J., Floh, E. I., & Walter, H. (2016). In vitro direct organogenesis in roots of Ipomoea batatas. Asian Journal of Plant Science and Research, 6(3), 17–27.
Donado-Pestana, C. M., Salgado, J. M., de Oliveira Rios, A., dos Santos, P. R., & Jablonski, A. (2012). Stability of Carotenoids, Total Phenolics and In Vitro Antioxidant Capacity in the Thermal Processing of Orange-Fleshed Sweet Potato (Ipomoea batatas Lam.) Cultivars Grown in Brazil. Plant Foods for Human Nutrition, 67(3), 262–270. https://doi.org/10.1007/S11130-012-0298-9/FIGURES/2
Drake, P. L., Froend, R. H., & Franks, P. J. (2013). Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany, 64(2), 495–505. https://doi.org/10.1093/JXB/ERS347
Dugan, F. M. (2017). The Identification of Fungi: An Illustrated Introduction with Keys, Glossary, and Guide to Literature. In The Identification of Fungi: An Illustrated Introduction with Keys, Glossary, and Guide to Literature (3rd ed.). The American Phytopathological Society. https://doi.org/10.1094/9780890545041
Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340
Egamberdieva, D., Wirth, S. J., Shurigin, V. V., Hashem, A., & Abd_Allah, E. F. (2017). Endophytic Bacteria Improve Plant Growth, Symbiotic Performance of Chickpea (Cicer arietinum L.) and Induce Suppression of Root Rot Caused by Fusarium solani under Salt Stress. Frontiers in Microbiology, 0(SEP), 1887. https://doi.org/10.3389/FMICB.2017.01887
Ekman, J., & Lovatt, J. (2015). Pests, Diseases and Disorders of Sweetpotato: A Field Identification Guide (Applied Horticultural Research, Queensland Department of Agriculture, and Fisheries, & University of Queensland. (eds.)). https://www.soilwealth.com.au/imagesDB/news/Sweet-Potato-Pest-and-Disease-Guide.pdf
El Nagy M, M. M., Abou El-Salehein, E. H., Fekry, W. A., & Wahdan, H. (2020). EFFECT OF FOLIAR SPRAY WITH DIFFERENT POTASSIUM SOURCES AND ZINC RATES ON GROWTH AND YIELD OF SWEET POTATO (Ipomoea batatas L.). Journal of Productivity and Development, 25(2), 231–246. https://doi.org/10.21608/JPD.2020.120782
Estrela, C., Estrela, C. R. A., Barbin, E. L., Spanó, J. C. E., Marchesan, M. A., & Pécora, J. D. (2002). Mechanism of action of sodium hypochlorite. Brazilian Dental Journal, 13(2), 113–117. https://doi.org/10.1590/S0103-64402002000200007
Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 17(6), 368–376. https://doi.org/10.1007/BF01734359
Felsenstein, J. (1985). Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution, 39(4), 783. https://doi.org/10.2307/2408678
Ferreira, T. R., Pires, L. F., Wildenschild, D., Brinatti, A. M., Borges, J. A. R., Auler, A. C., & dos Reis, A. M. H. (2019). Lime application effects on soil aggregate properties: Use of the mean weight diameter and synchrotron-based X-ray μCT techniques. Geoderma, 338, 585–596. https://doi.org/10.1016/j.geoderma.2018.10.035
Frisvad, J. C., Petersen, L. M., Lyhne, E. K., & Larsen, T. O. (2014). Formation of Sclerotia and Production of Indoloterpenes by Aspergillus niger and Other Species in Section Nigri. PLoS ONE, 9(4), e94857. https://doi.org/10.1371/journal.pone.0094857
Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes ‐ application to the identification of mycorrhizae and rusts. Molecular Ecology, 2(2), 113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
Germain, G. S., & Summerbell, R. (2010). Identifyng fungi - A Clinical Laboratory Handbook. Star Publishing Company. http://www.identifyingfungi.com/actual-pages-from-the-book.html
Ghezzehei, T. A. (2012). Soil structure. In P. Ming Huang, Y. Li, & M. E. Sumner (Eds.), Handbook of Soil Sciences: Properties and Processes. (2nd ed., Vol. 2, pp. 1–17). Routledge Handbooks. Taylor & Francis Group. https://doi.org/https://doi.org/10.1201/b11267
Gholipoor, M., Prasad, P. V. V., Mutava, R. N., & Sinclair, T. R. (2010). Genetic variability of transpiration response to vapor pressure deficit among sorghum genotypes. Field Crops Research, 119(1), 85–90. https://doi.org/10.1016/j.fcr.2010.06.018
Giraldo, A., Gené, J., Sutton, D. A., Madrid, H., de Hoog, G. S., Cano, J., Decock, C., Crous, P. W., & Guarro, J. (2015). Phylogeny of Sarocladium (Hypocreales). Persoonia: Molecular Phylogeny and Evolution of Fungi, 34, 10–24. https://doi.org/10.3767/003158515X685364
González-Teuber, M., Jiménez-Alemán, G. H., & Boland, W. (2014). Foliar endophytic fungi as potential protectors from pathogens in myrmecophytic Acacia plants. Communicative & Integrative Biology, 7(5), e970500. https://doi.org/10.4161/19420889.2014.970500
Grace, M. H., Truong, A. N., Truong, V. Den, Raskin, I., & Lila, M. A. (2015). Novel value-added uses for sweet potato juice and flour in polyphenol- and protein-enriched functional food ingredients. Food Science and Nutrition, 3(5), 415–424. https://doi.org/10.1002/fsn3.234
Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., Sperry, J. S., & McDowell, N. G. (2020). Plant responses to rising vapor pressure deficit. In New Phytologist (Vol. 226, Issue 6, pp. 1550–1566). Blackwell Publishing Ltd. https://doi.org/10.1111/nph.16485
Grzebisz, W., Gransee, A., Szczepaniak, W., & Diatta, J. (2013). The effects of potassium fertilization on water-use efficiency in crop plants. Journal of Plant Nutrition and Soil Science, 176(3), 355–374. https://doi.org/10.1002/JPLN.201200287
Gu, J., Li, Z., Mao, Y., Struik, P. C., Zhang, H., Liu, L., Wang, Z., & Yang, J. (2018). Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Science, 274, 320–331. https://doi.org/10.1016/J.PLANTSCI.2018.06.010
Gutiérrez, D. L., Fuentes, S., & Salazar, L. F. (2007). Sweetpotato Virus Disease (SPVD): Distribution, Incidence, and Effect on Sweetpotato Yield in Peru. Https://Doi.Org/10.1094/PDIS.2003.87.3.297, 87(3), 297–302. https://doi.org/10.1094/PDIS.2003.87.3.297
Ha, S., & Tran, L. S. (2014). Understanding plant responses to phosphorus starvation for improvement of plant tolerance to phosphorus deficiency by biotechnological approaches. Https://Doi.Org/10.3109/07388551.2013.783549, 34(1), 16–30. https://doi.org/10.3109/07388551.2013.783549
Hainzer, K., O’Mullan, C., Bugajim, C., & Brown, P. H. (2021). Exploring the design and adoption of a clean seed system for sweet potato in Papua New Guinea. Journal of Crop Improvement, 1–25. https://doi.org/10.1080/15427528.2021.1960456
Hammond, R., Buah, J. N., Asare, P. A., & Acheampong, S. (2014). Optimizing Sterilization Condition for the Initiation of Sweet Potato (Ipomoea batatas) Culture in vitro. Asian Journal of Biotechnology, 6(2), 25–37. https://doi.org/10.3923/ajbkr.2014.25.37
Hang, V. T. T., Thu, H. T. A., & Hoa, V. D. (2016). Developing an efficient regeneration protocol for sweetpotato, Ipomoea batatas (L.) Lam., using nodal explant. Vietnam Journal of Agricultural Sciences, 14(10), 1491–1501.
Hasanuzzaman, M., Shahadat Hossain, M., M Borhannuddin Bhuyan, M. H., Al Mahmud, J., Nahar, K., Fujita, M., Hasanuzzaman, M., Hossain, M. S., Fujita, M., Al Mahmud, J., & Nahar, K. (2018). The Role of Sulfur in Plant Abiotic Stress Tolerance: Molecular Interactions and Defense Mechanisms. Plant Nutrients and Abiotic Stress Tolerance, 221–252. https://doi.org/10.1007/978-981-10-9044-8_10
Hay, F. R., Whitehouse, K. J., Ellis, R. H., Sackville Hamilton, N. R., Lusty, C., Ndjiondjop, M. N., Tia, D., Wenzl, P., Santos, L. G., Yazbek, M., Azevedo, V. C. R., Peerzada, O. H., Abberton, M., Oyatomi, O., de Guzman, F., Capilit, G., Muchugi, A., & Kinyanjui, Z. (2021). CGIAR genebank viability data reveal inconsistencies in seed collection management. Global Food Security, 30, 100557. https://doi.org/10.1016/J.GFS.2021.100557
Hunt, R. (2017). Growth Analysis, Individual Plants. In B. Thomas, B. G. Murray, & D. J. Murphy (Eds.), Encyclopedia of Applied Plant Sciences (Vol. 1, pp. 421–429). Elsevier Inc. https://doi.org/10.1016/B978-0-12-394807-6.00226-4
Hunt, R., Causton, D. R., Shipley, B., & Askew, A. P. (2002). A modern tool for classical plant growth analysis. Annals of Botany, 90, 485–488. https://doi.org/10.1093/aob/mcf214
Hussain, A., Qarshi, I. A., Nazir, H., & Ullah, I. (2012). Plant Tissue Culture: Current Status and Opportunities. In A. Leva & L. M. R. Rinaldi (Eds.), Recent Advances in Plant in vitro Culture (Vol. 1). IntechOpen. https://doi.org/10.5772/50568
Hussein, N., Abdel-Hafez, S. I. ., Abdel-Sater, M. ., Ismail, M. ., & Al-Amrey, E. (2017). Aspergillus homomorphus, a first global record from millet grains. Current Research in Environmental & Applied Mycology, 7(2), 82–89. https://www.cabdirect.org/cabdirect/abstract/20198658144
Icontec. (2011). Norma técnica colombiana 5167. Productos para la industria agrícola. productos orgánicos usados como abonos o fertilizantes y enmiendas o acondicionadores de suelo. Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC).
Ikeuchi, M., Sugimoto, K., & Iwase, A. (2013). Plant Callus: Mechanisms of Induction and Repression. The Plant Cell, 25(9), 3159–3173. https://doi.org/10.1105/TPC.113.116053
Imazaki, I., & Kadota, I. (2015). Molecular phylogeny and diversity of Fusarium endophytes isolated from tomato stems. FEMS Microbiology Ecology, 91(9), 98. https://doi.org/10.1093/femsec/fiv098
Into, P., Pontes, A., Sampaio, J. P., & Limtong, S. (2020). Yeast Diversity Associated with the Phylloplane of Corn Plants Cultivated in Thailand. Microorganisms, 8(1), 80. https://doi.org/10.3390/microorganisms8010080
Israel, A. U., Ogali, R. E., Akaranta, O., & Obot, I. B. (2011). Extraction and characterization of coconut (Cocos nucifera L.) coir dust. Songklanakarin Journal of Science and Technology , 33(6), 717–724. http://www.sjst.psu.ac.th
Jena, R. chandra, & Samal, K. C. (2011). Endogenous microbial contamination during in vitro culture of sweet potato [Ipomoea batatas (L.) Lam]: identification and prevention. Journal of Agricultural Technology, 7(6), 1725–1731.
Kačániová, M., Kunová, S., Sabo, J., Ivanišová, E., Žiarovská, J., Felsöciová, S., & Terentjeva, M. (2020). Identification of Yeasts with Mass Spectrometry during Wine Production. Fermentation 2020, Vol. 6, Page 5, 6(1), 5. https://doi.org/10.3390/FERMENTATION6010005
Karhu, K., Mattila, T., Bergström, I., & Regina, K. (2011). Biochar addition to agricultural soil increased CH4 uptake and water holding capacity - Results from a short-term pilot field study. Agriculture, Ecosystems and Environment, 140(1–2), 309–313. https://doi.org/10.1016/j.agee.2010.12.005
Kemper, W. D., & Chepil, W. S. (1965). Size Distribution of Aggregates. In C. A. Black (Ed.), Methods of Soil Analysis (pp. 499–510). American Society of Agronomy, Soil Science Society of America. https://doi.org/10.2134/agronmonogr9.1.c39
Khan, N., Bano, A. M. D., & Babar, A. (2020). Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. PLOS ONE, 15(4), e0231426. https://doi.org/10.1371/journal.pone.0231426
Khumaida, N., Ardie, S. W., Setiadi, A., & Artiningsih, L. N. (2019). In vitro multiplication and acclimatization of black galingale (Curcuma Aeruginosa Roxb.). Journal of Applied Pharmaceutical Science, 9(4), 110–116. https://doi.org/10.7324/JAPS.2019.90414
Kim, J., Kil, E.-J., Kim, S., Seo, H., Byun, H.-S., Park, J., Chung, M.-N., Kwak, H.-R., Kim, M.-K., Kim, C.-S., Yang, J.-W., Lee, K.-Y., Choi, H.-S., & Lee, S. (2015). Seed transmission of Sweet potato leaf curl virus in sweet potato (Ipomoea batatas). Plant Pathology, 64(6), 1284–1291. https://doi.org/10.1111/PPA.12366
Kim, J., Yang, J. wook, Kwak, H.-R., Kim, M.-K., Seo, J.-K., Chung, M.-N., Lee, H., Lee, K.-B., Nam, S. S., Kim, C.-S., Lee, G.-S., Kim, J.-S., Lee, S., & Choi, H.-S. (2017). Virus Incidence of Sweet Potato in Korea from 2011 to 2014. The Plant Pathology Journal, 33(5), 467. https://doi.org/10.5423/PPJ.OA.08.2016.0167
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111–120. https://doi.org/10.1007/BF01731581
Koike, I., Watanabe, S., Okazaki, K., Hayashi, K. ichiro, Kasahara, H., Shimomura, K., & Umehara, M. (2020). Endogenous auxin determines the pattern of adventitious shoot formation on internodal segments of ipecac. Planta, 251(3), 73. https://doi.org/10.1007/s00425-020-03367-5
Krochmal-Marczak, B., Sawicka, B., Słupski, J., Cybulak, T., & Paradowska, K. (2014). Nutrition value of the sweet potato (Ipomoea batatas (L.) Lam) cultivated in south – eastern Polish condition. Nutrition Value International Journal of Agronomy and Agricultural Research, 4(4), 169–178. http://www.innspub.net
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
Kumar, S., Yadav, A. K., & Prabha, C. (2019). Microbial contamination in tissue culture of Chlorophytum borivilianum, a rare medicinal herb: identification and prevention. Journal of Plant Pathology, 101(4), 991–995. https://doi.org/10.1007/s42161-019-00327-1
Kwak, H. R., Kim, M. K., Shin, J. C., Lee, Y. J., Seo, J. K., Lee, H. U., Jung, M. N., Kim, S. H., & Choi, H. S. (2014). The current incidence of viral disease in Korean sweet potatoes and development of multiplex RT-PCR assays for simultaneous detection of eight sweet potato viruses. Plant Pathology Journal, 30(4), 416–424. https://doi.org/10.5423/PPJ.OA.04.2014.0029
Kwaśniewska, D., Chen, Y. L., & Wieczorek, D. (2020). Biological activity of quaternary ammonium salts and their derivatives. Pathogens, 9(6), 1–12. https://doi.org/10.3390/pathogens9060459
Lazo-Javalera, M. F., Troncoso-Rojas, R., Tiznado-Hernández, M. E., Martínez-Tellez, M. A., Vargas-Arispuro, I., Islas-Osuna, M. A., & Rivera-Domínguez, M. (2016). Surface disinfection procedure and in vitro regeneration of grapevine (Vitis vinifera L.) axillary buds. SpringerPlus, 5(1), 453. https://doi.org/10.1186/s40064-016-2081-0
Le Bissonnais, Y. (2016). Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. European Journal of Soil Science, 67(1), 11–21. https://doi.org/10.1111/ejss.4_12311
León, R., Rosero, A., García, J. L., Morelo, J., Orozco, A., Silva, G., De la Ossa, V., Correa, E., Cordero, C., Villalba, L., Belalcazar, J., & Ceballos, H. (2021). Multi-Trait Selection Indices for Identifying New Cassava Varieties Adapted to the Caribbean Region of Colombia. Agronomy 2021, Vol. 11, Page 1694, 11(9), 1694. https://doi.org/10.3390/AGRONOMY11091694
Lepelletier, D., Maillard, J. Y., Pozzetto, B., & Simon, A. (2020). Povidone iodine: Properties, mechanisms of action, and role in infection control and staphylococcus aureus decolonization. Antimicrobial Agents and Chemotherapy, 64(9). https://doi.org/10.1128/AAC.00682-20/ASSET/C2A75034-4D9F-4196-8FD1-811395212C12/ASSETS/GRAPHIC/AAC.00682-20-F0002.JPEG
Lepengue, A. N., Nzengue, E., Mombo, S., Essougou, C. Y., Ontod, D. S. T.-T., Mokea-Niaty, A., & Mbatchi, B. (2019). Effet du Manganèse sur la Croissance de la Patate Douce (Ipomoea batatas L.) au Gabon. European Scientific Journal, ESJ, 15(24), 281–281. https://doi.org/10.19044/ESJ.2019.V15N24P281
Li, F., Zuo, R., Abad, J., Xu, D., Bao, G., & Li, R. (2012). Simultaneous detection and differentiation of four closely related sweet potato potyviruses by a multiplex one-step RT-PCR. Journal of Virological Methods, 186(1–2), 161–166. https://doi.org/10.1016/j.jviromet.2012.07.021
Li, T., Heuvelink, E., & Marcelis, L. F. M. (2015). Quantifying the source-sink balance and carbohydrate content in three tomato cultivars. Frontiers in Plant Science, 6(June), 416. https://doi.org/10.3389/fpls.2015.00416
Linington, S. H., & Pritchard, H. W. (2001). Gene Banks. In S. A. Levin (Ed.), Encyclopedia of Biodiversity: Second Edition (Vol. 7, pp. 641–653). Academic Press. https://doi.org/10.1016/B978-0-12-384719-5.00064-2
Liu, Y., Zou, Z., Hu, Z., Wang, W., & Xiong, J. (2019). Morphology and Molecular Analysis of Moesziomyces antarcticus Isolated From the Blood Samples of a Chinese Patient. Frontiers in Microbiology, 10(FEB), 254. https://doi.org/10.3389/fmicb.2019.00254
Liu, Z., Chen, X., Jing, Y., Li, Q., Zhang, J., & Huang, Q. (2014). Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. CATENA, 123, 45–51. https://doi.org/10.1016/J.CATENA.2014.07.005
Loyola-Vargas, V. M., & Ochoa-Alejo, N. (2018). An Introduction to Plant Tissue Culture: Advances and Perspectives. Methods in Molecular Biology, 1815, 3–13. https://doi.org/10.1007/978-1-4939-8594-4_1/COVER
Luis, G., Rubio, C., Gutiérrez, Á. J., González-Weller, D., Revert, C., & Hardisson, A. (2014). Evaluation of metals in several varieties of sweet potatoes (Ipomoea batatas L.): Comparative study. Environmental Monitoring and Assessment, 186(1), 433–440. https://doi.org/10.1007/S10661-013-3388-8/TABLES/7
Ma, L., Wang, Q., & Shen, S. (2020). Response of soil aggregate stability and distribution of organic carbon to alpine grassland degradation in Northwest Sichuan. Geoderma Regional, 22, e00309. https://doi.org/10.1016/J.GEODRS.2020.E00309
Makokha, P., Matasyoh, L. G., Ssali, R. T., Kiplagat, O. K., Wanjala, B. W., & Low, J. (2018). Optimization of nutrient media for sweetpotato (Ipomoea batatas L.) vine multiplication in sandponics: Unlocking the adoption and utilization of improved varieties. Gates Open Research, 2. https://doi.org/10.12688/GATESOPENRES.12879.1
Makokha, P., Ssali, R. T., Wanjala, B. W., Rajendran, S., McEwan, M. A., & Low, J. W. (2020). Yield potential of sandponically produced sweetpotato (Ipomoea batatas (L.) Lam) pre-basic seed for selected genotypes. Open Agriculture, 5(1), 236–242. https://doi.org/10.1515/opag-2020-0025
Manh, V. H., & Wang, C. H. (2014). Vermicompost as an Important Component in Substrate: Effects on Seedling Quality and Growth of Muskmelon (Cucumis Melo L.). APCBEE Procedia, 8, 32–40. https://doi.org/10.1016/j.apcbee.2014.01.076
Manns, H. R., & Martin, R. C. (2018). Cropping system yield stability in response to plant diversity and soil organic carbon in temperate ecosystems. Agroecology and Sustainable Food Systems, 42(7), 724–750. https://doi.org/10.1080/21683565.2017.1423529
Mbah, E. U., & Eke-Okoro, O. (2015). Relationship between some growth parameters, dry matter content and yield of some sweet potato genotypes grown under rainfed weathered ultisols in the humid tropics. Journal of Agronomy, 14(3), 121–129. https://doi.org/10.3923/ja.2015.121.129
Mbewe, W., Mtonga, A., Chiipanthenga, M., Masamba, K., Chitedze, G., Pamkomera, P., Gondwe, E., Mwenye, O., & Chipungu, F. (2021). Incidence and distribution of Sweetpotato viruses and their implication on sweetpotato seed system in Malawi. Journal of Plant Pathology 2021 103:3, 103(3), 961–968. https://doi.org/10.1007/S42161-021-00830-4
McDonnell, G. E. (2017). Antisepsis, Disinfection, and Sterilization: Types, Action, and Resistance. (Gerald E. McDonnell (ed.); 2nd ed.). ASM Press. https://www.wiley.com/en-us/Antisepsis%2C+Disinfection%2C+and+Sterilization%3A+Types%2C+Action%2C+and+Resistance%2C+2nd+Edition-p-9781555819675
McKeen, L. (2012). Introduction to Food Irradiation and Medical Sterilization. In L. McKeen (Ed.), The Effect of Sterilization on Plastics and Elastomers (1st ed., pp. 1–40). William Andrew Publishing. https://doi.org/10.1016/B978-1-4557-2598-4.00001-0
Monteith, J., & Unsworth, M. (2013). Principles of Environmental Physics: Plants, Animals, and the Atmosphere - John Monteith, Mike Unsworth - Google Libros (J. Monteith & M. Unsworth (eds.); Fourth edi). Elsevier Ltd. https://doi.org/https://doi.org/10.1016/B978-0-12-386910-4.00023-8.
Montoya-Martínez, A. C., Rodríguez-Alvarado, G., Fernández-Pavía, S. P., Proctor, R. H., Kim, H. S., & O’Donnell, K. (2019). Design and validation of a robust multiplex polymerase chain reaction assay for MAT idiomorph within the Fusarium fujikuroi species complex. Mycologia, 111(5), 772–781. https://doi.org/10.1080/00275514.2019.1649956
Moussa, T. A. A., Al-Zahrani, H. S., Kadasa, N. M. S., Ahmed, S. A., Hoog, G. S. de, & Al-Hatmi, A. M. S. (2017). Two new species of the Fusarium fujikuroi species complex isolated from the natural environment. Antonie van Leeuwenhoek 2017 110:6, 110(6), 819–832. https://doi.org/10.1007/S10482-017-0855-1
Mu, T. H., & Singh, J. (2019). Sweet potato: Chemistry, processing and nutrition. In T. H. Mu & J. Singh (Eds.), Sweet Potato: Chemistry, Processing and Nutrition. Elsevier. https://doi.org/10.1016/C2016-0-05204-X
Muhamad, S. N. S., Ling, A. P. K., & Wong, C. L. (2018). Effect of plant growth regulators on direct regeneration and callus induction from Sargassum polycystum C. Agardh. Journal of Applied Phycology, 30(6), 3299–3310. https://doi.org/10.1007/s10811-018-1649-1
Mulabisana, M. J., Cloete, M., Mabasa, K. G., Laurie, S. M., Oelofse, D., Esterhuizen, L. L., & Rey, M. E. C. (2018). Surveys in the Gauteng, Limpopo and Mpumalanga provinces of South Africa reveal novel isolates of sweet potato viruses. South African Journal of Botany, 114, 280–294. https://doi.org/10.1016/j.sajb.2017.11.022
Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Mwanga, R. O. M., Andrade, M. I., Carey, E. E., Low, J. W., Yencho, G. C., & Grüneberg, W. J. (2017). Sweetpotato (Ipomoea batatas L.). In Genetic Improvement of Tropical Crops (1st ed., pp. 181–218). Springer, Cham. https://doi.org/10.1007/978-3-319-59819-2_6
Nam, Y. J., Tran, L. S. P., Kojima, M., Sakakibara, H., Nishiyama, R., & Shin, R. (2012). Regulatory Roles of Cytokinins and Cytokinin Signaling in Response to Potassium Deficiency in Arabidopsis. PLOS ONE, 7(10), e47797. https://doi.org/10.1371/JOURNAL.PONE.0047797
Nedunchezhiyan, M., & Raya, R. C. (2010). Sweet potato growth, development, production and utilization: Overview. In R. C. Ray & K. I. Tomlins (Eds.), Sweet potato : post harvest aspects in food, feed and industry (Vol. 1, pp. 1–316). Nova Science Publishers. https://books.google.com/books/about/Sweet_Potato.html?hl=es&id=oKkYQAAACAAJ
Nicoletti, R. (2019). Endophytic Fungi of Citrus Plants. Agriculture, 9(12), 247. https://doi.org/10.3390/agriculture9120247
Niewczas, J., & Witkowska-Walczak, B. (2005). The soil aggregates stability index (ASI) and its extreme values. Soil and Tillage Research, 80(1–2), 69–78. https://doi.org/10.1016/j.still.2004.02.023
Nimmo, J. R., & Perkins, K. S. (2002). Aggregate stability and size distribution. In J. H. Dane & C. G. Topp (Eds.), Methods of Soil Analysis: Part 4–Physical Methods (pp. 317–328). Soil Science of America Book Series. https://doi.org/https://doi.org/10.2136/sssabookser5.4.c14
Obłąk, E., Piecuch, A., Rewak-Soroczyńska, J., & Paluch, E. (2019). Activity of gemini quaternary ammonium salts against microorganisms. Applied Microbiology and Biotechnology, 103(2), 625–632. https://doi.org/10.1007/s00253-018-9523-2
Oliveira, R., Souza, R., Lima, T., & Cavalcanti, M. (2014). Endophytic fungal diversity in coffee leaves (Coffea arabica) cultivated using organic and conventional crop management systems. Mycosphere, 5(4), 523–530. https://doi.org/10.5943/mycosphere/5/4/4
Oza, K., Jain, B., & Maitreya, B. (2020). Isolation and identification of fungi from Kalipati variety of Sapota fruits. International Journal of Botany Studies, 5(5), 264–266.
Park, S. chul, Yu, Y. cheng, Kou, M., Yan, H., Tsng, W., Wang, X., Liu, Y. ju, Zhang, Y. gang, Kwak, S. soo, Ma, D. fu, Sun, J., & Li, Q. (2017). Ipomoea batatas HKT1 transporter homolog mediates K+ and Na+ uptake in Saccharomyces cerevisiae. Journal of Integrative Agriculture, 16(10), 2168–2176. https://doi.org/10.1016/S2095-3119(16)61570-8
Patel, R. M., & Shah, R. R. (2009). Regeneration of stevia plant through callus culture. Indian Journal of Pharmaceutical Sciences, 71(1), 46–50. https://doi.org/10.4103/0250-474X.51954
Paul, N. C., Hwang, E. J., Nam, S. S., Lee, H. U., Lee, J. S., Yu, G. D., Kang, Y. G., Lee, K. B., Go, S., & Yang, J. W. (2017). Phylogenetic placement and morphological characterization of Sclerotium rolfsii (Teleomorph: Athelia rolfsii) associated with blight disease of Ipomoea batatas in Korea. Mycobiology, 45(3), 129–138. https://doi.org/10.5941/MYCO.2017.45.3.129
Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M. S., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., de Vos, A. C., … C Cornelissen, J. H. (2016). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 64(3), 715–716. https://doi.org/10.1071/BT12225_CO
Pérez-Pazos, J. V., Rosero, A., Martínez, R., Pérez, J., Morelo, J., Araujo, H., & Burbano-Erazo, E. (2021). Influence of morpho-physiological traits on root yield in sweet potato (Ipomoea batatas Lam.) genotypes and its adaptation in a sub-humid environment. Scientia Horticulturae, 275, 109703. https://doi.org/10.1016/J.SCIENTA.2020.109703
Pérez, M. B., Pérez, M. B., Vega, V. M., Jova, M. C., Pino, A. S., Delgado, M. T., Gálvez, E. O., Ortiz, A. O., Torres, J. L., Cabrera, A. R., García, Y. B., & Chávez, E. P. (2008). Multiplicación de <em>Ipomoea batatas clon ‘INIVITB2-2005’ en Sistema de Inmersión Temporal. Biotecnología Vegetal, 8(2). https://revista.ibp.co.cu/index.php/BV/article/view/343
Pernisová, M., Klíma, P., Horák, J., Válková, M., Malbeck, J., Souček, P., Reichman, P., Hoyerová, K., Dubová, J., Friml, J., Zažímalová, E., & Hejátko, J. (2009). Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3609–3614. https://doi.org/10.1073/pnas.0811539106
Piccolo, A., Pietramellara, G., & Mbagwu, J. S. C. (1997). Use of humic substances as soil conditioners to increase aggregate stability. Geoderma, 75(3–4), 267–277. https://doi.org/10.1016/S0016-7061(96)00092-4
Pinto-Stelle, M. A., Garcia, L. C., Gomes, J. A., Farias, A., Weirich, P. H., Rocha, C. H., & De Souza, N. M. (2021). Seed sweet potato production in aeroponics. International Journal of Development Research (IJDR), 11, 51256–51261. https://www.journalijdr.com/seed-sweet-potato-production-aeroponics
Poorter, H., & Nagel, O. (2000). The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 27(6), 595–607. https://doi.org/10.1071/PP99173
Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., & Mommer, L. (2012). Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytologist, 193(1), 30–50. https://doi.org/10.1111/j.1469-8137.2011.03952.x
Printz, B., Lutts, S., Hausman, J. F., & Sergeant, K. (2016). Copper trafficking in plants and its implication on cell wall dynamics. Frontiers in Plant Science, 7, 601. https://doi.org/10.3389/FPLS.2016.00601/BIBTEX
Qiao, Q., Zhang, Z., Zhao, X., Wang, Y., Wang, S., Qin, Y., Zhang, D., Tian, Y., & Zhao, F. (2019). Evidence for seed transmission of sweet potato symptomless virus 1 in sweet potato (Ipomoea batatas). Journal of Plant Pathology 2019 102:2, 102(2), 299–303. https://doi.org/10.1007/S42161-019-00427-Y
Rahayu, R. S., Ramadhani, I., Masrukhin, M., Riastiwi, I., Prawestri, A. D., & Yuliani, Y. (2021). CONFIRMATION OF ENDOPHYTIC MICROBES CAUSING CONTAMINATION IN WATER SPINACH (Ipomoea aquatica Forssk.) TISSUE CULTURE. Jurnal Bioteknologi & Biosains Indonesia (JBBI), 7(2), 234–249. https://doi.org/10.29122/jbbi.v7i2.4381
Rajendran, S., Kimenye, L. N., & McEwan, M. (2017). Strategies for the development of the sweetpotato early generation seed sector in eastern and southern Africa. Open Agriculture, 2(1), 236–243. https://doi.org/10.1515/OPAG-2017-0025
Ramazan, M., Daraz Khan, G., Hanif, M., & Ali, S. (2012). Impact of Soil Compaction on Root Length and Yield of Corn (Zea mays) under Irrigated Condition. Middle-East Journal of Scientific Research, 11(3), 382–385.
Ran, Y., Ma, M., Liu, Y., Zhu, K., Yi, X., Wang, X., Wu, S., & Huang, P. (2020). Physicochemical determinants in stabilizing soil aggregates along a hydrological stress gradient on reservoir riparian habitats: Implications to soil restoration. Ecological Engineering, 143, 105664. https://doi.org/10.1016/j.ecoleng.2019.105664
Ravi, V., Naskar, S. ., Makeshkumar, T., Babu, B., & Prakash Krishnan, B. S. (2009). Molecular Physiology of Storage Root Formation and Development in Sweet Potato (Ipomoea batatas (L.) Lam.). Journal of Root Crops, 35(1), 1–27.
Ricke, S. C. (2003). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Science, 82(4), 632–639. https://doi.org/10.1093/PS/82.4.632
Rosero, A., Pastrana Vargas, I. J., García Peña, J. A., Espitia Montes, A. A., Sierra Naranjo, C. M., Sierra Monroy, J. A., Martínez Botello, D. H., Santana Rodríguez, M. O., Pérez Gamero, J. L., Regino Hernández, S. M., Espitia Negrete, L. B., Araújo Vásquez, H. A., Martínez, R., & García Herazo, J. L. (2019). AGROSAVIA Aurora. Variedad de batata de pulpa anaranjada para el Caribe colombiano. In AGROSAVIA Aurora. Variedad de batata de pulpa anaranjada para el Caribe colombiano (No. 1). Corporación Colombiana de Investigación Agropecuaria (Agrosavia). https://doi.org/10.21930/AGROSAVIA.BROCHURE.7403107
Rosero, A., Sierra, C., Pastrana, I., Granda, L., Pérez, J. L., Martínez, R., Morelo, J., Espitia, L., Araujo, H., & De Paula, C. (2020). Genotypic and environmental factors influence the proximate composition and quality attributes of sweetpotato (Ipomoea batatas L.). Agriculture and Food Security, 9(1), 1–17. https://doi.org/10.1186/S40066-020-00268-4/TABLES/8
RTeam. (2020). R: The R Project for Statistical Computing. https://www.r-project.org/
Sadeghi, F., Samsampour, D., Seyahooei, M. A., Bagheri, A., & Soltani, J. (2019). Diversity and Spatiotemporal Distribution of Fungal Endophytes Associated with Citrus reticulata cv. Siyahoo. Current Microbiology, 76(3), 279–289. https://doi.org/10.1007/s00284-019-01632-9
Sadok, W., & Sinclair, T. R. (2009). Genetic variability of transpiration response to vapor pressure deficit among soybean (Glycine max [L.] Merr.) genotypes selected from a recombinant inbred line population. Field Crops Research, 113(2), 156–160. https://doi.org/10.1016/j.fcr.2009.05.002
Saidi, A., & Hajibarat, Z. (2021). Phytohormones: plant switchers in developmental and growth stages in potato. Journal of Genetic Engineering and Biotechnology 2021 19:1, 19(1), 1–17. https://doi.org/10.1186/S43141-021-00192-5
Salawu, S. O., Udi, E., Akindahunsi, A. A., Boligon, A. A., & Athayde, M. L. (2015). Antioxidant potential, phenolic profile and nutrient composition of flesh and peels from Nigerian white and purple skinned sweet potato (Ipomea batatas L.). Pelagia Research Library Asian Journal of Plant Science and Research, 5(5), 14–23.
Samiyarsih, S., Juwarno, J., & Muljowati, J. S. (2018). The Structural Resistance’s Anatomy of Sweet Potato Leaves to Fungal Pathogen Sphaceloma batatas. Biosaintifika: Journal of Biology & Biology Education, 10(1), 131–137. https://doi.org/10.15294/biosaintifika.v10i1.12116
Sandoval-Denis, M., Gené, J., Sutton, D. A., Wiederhold, N. P., Cano-Lira, J. F., & Guarro, J. (2016). New species of Cladosporium associated with human and animal infections. Persoonia: Molecular Phylogeny and Evolution of Fungi, 36(JUNE), 281–298. https://doi.org/10.3767/003158516X691951
Santiago-Rosario, L. Y., Harms, K. E., Elderd, B. D., Hart, P. B., & Dassanayake, M. (2021). No escape: The influence of substrate sodium on plant growth and tissue sodium responses. Ecology and Evolution, 11(20), 14231–14249. https://doi.org/10.1002/ECE3.8138
Santos, L. F., & Olivares, F. L. (2021). Plant microbiome structure and benefits for sustainable agriculture. Current Plant Biology, 26, 100198. https://doi.org/10.1016/J.CPB.2021.100198
Sastry, K. S. (2013). Seed-borne plant virus diseases. In Seed-borne plant virus diseases (1st ed.). Springer India. https://doi.org/10.1007/978-81-322-0813-6
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682. https://doi.org/10.1038/nmeth.2019
Seydi, S., Negahdar, N., Andevari, R. T., Ansari, M. H., & Kaviani, B. (2016). Effect of BAP and NAA on Micropropagation of Caladium bicolor (Aiton) Vent., an Ornamental Plant. Journal of Ornamental Plants, 6(1), 59–66.
Shamshiri, R. R., Jones, J. W., Thorp, K. R., Ahmad, D., Man, H. C., & Taheri, S. (2018). Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: A review. International Agrophysics, 32(2), 287–302. https://doi.org/10.1515/intag-2017-0005
Shirdel, M., Motallebi-Azar, A. R., Matloobi, M., Mokhtarzadeh, S., & Ozdemir, F. A. (2017). In Vitro establishment procedures of dog rose (Rosa canina). Journal of Applied Biological Sciences, 11(2), 06–09. http://jabsonline.org/index.php/jabs/article/view/530
Singh, A. (2015). Micropropagation of Plants. In Bir Bahadur, Manchikatla Venkat Rajam, Leela Sahijram, & K. V. Krishnamurthy (Eds.), Plant Biology and Biotechnology: Volume II: Plant Genomics and Biotechnology (1st ed., pp. 329–346). Springer, New Delhi. https://doi.org/10.1007/978-81-322-2283-5_16
Singh, C. R. (2018). Review on problems and its remedy in plant tissue culture. Asian Journal of Biological Sciences, 11(4), 165–172. https://doi.org/10.3923/ajbs.2018.165.172
Singh, P., Aravindakshan, K., Maurya, I. B., Singh, J., Singh, B., & Sharma, M. K. (2017). Effect of potassium and zinc on growth, yield and economics of sweet potato (Ipomoea batatas L.) cv. CO-34. Journal of Applied and Natural Science, 9(1), 291–297. https://doi.org/10.31018/JANS.V9I1.1186
Siose, T., Kader, M., & Tulin, A. (2017). Determination of limiting nutrient to Sweetpotato (L.) growth on Samoa Oxisol using a Ipomoea batatas Nutrient Omission Technique. Annals of Tropical Research, 105–119. https://doi.org/10.32945/ATR3917.2017
Sivparsad, B. ., & Gubba, A. (2012). Development of an efficient plant regeneration protocol for sweet potato (Ipomoea batatas L.) cv. Blesbok. African Journal of Biotechnology, 11(84), 14982–14987. https://doi.org/10.4314/ajb.v11i84.
Six, J., Feller, C., Denef, K., Ogle, S., Carlos De Moraes Sa, J., Albrecht, A., Carlos, J., & Ogle, S. M. (2002). Soil organic matter, biota and aggregation in temperate and tropical soils-effects of no-tillage. Agronomie, EDP Sciences, 22(7–8), 755–775. https://doi.org/10.1051/agro:2002043ï
Spielman, D. J., Gatto, M., Wossen, T., McEwan, M., Abdoulaye, T., Maredia, M. K., & Hareau, G. (2021). Regulatory options to improve seed systems for vegetatively propagated crops in developing countries. https://doi.org/10.2499/P15738COLL2.134441
Spinoso-Castillo, J. L., Pérez-Sato, J. A., Schettino-Salomón, S. S., & Bello-Bello, J. J. (2022). An alternative method for medium-term in vitro conservation of different plant species through gibberellin inhibitors. In Vitro Cellular and Developmental Biology - Plant, 1–9. https://doi.org/10.1007/S11627-022-10263-Y/FIGURES/4
Ssamula, A., Okiror, A., Avrahami-Moyal, L., Tam, Y., Gaba, V., Gibson, R. W., Gal-On, A., Mukasa, S. B., & Wasswa, P. (2020). Factors influencing reversion from virus infection in sweetpotato. Annals of Applied Biology, 176(2), 109–121. https://doi.org/10.1111/AAB.12551
Su, Y. H., Liu, Y. B., & Zhang, X. S. (2011). Auxin-cytokinin interaction regulates meristem development. In Molecular Plant (Vol. 4, Issue 4, pp. 616–625). Oxford University Press. https://doi.org/10.1093/mp/ssr007
Taiyun, W., & Viliam, S. (2021). R package “corrplot”: Visualization of a Correlation Matrix (Version 0.92). . https://github.com/taiyun/corrplot/blob/master/corrplot.Rproj
Talukdar, R., Wary, S., Mili, C., Roy, S., & Tayung, K. (2020). Antimicrobial secondary metabolites obtained from endophytic fungi inhabiting healthy leaf tissues of Houttuynia cordata Thunb., an ethnomedicinal plant of Northeast India. Journal of Applied Pharmaceutical Science, 10(9), 99–106. https://doi.org/10.7324/JAPS.2020.10912
Tekielska, D., Peňázová, E., Kovács, T., Křižan, B., Čechová, J., & Eichmeier, A. (2019). Bacterial Contamination of Plant in vitro Cultures in Commercial Production Detected by High‑Throughput Amplicon Sequencing. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 67(4), 1005–1014. https://doi.org/10.11118/actaun201967041005
Thompson, W. B., Schultheis, J. R., Chaudhari, S., Monks, D. W., Jennings, K. M., & Grabow, G. L. (2017). Sweetpotato Transplant Holding Duration Effects on Plant Survival and Yield. HortTechnology, 27(6), 818–823. https://doi.org/10.21273/HORTTECH03808-17
Tirez, K., Vanhoof, C., Hofman, S., Deproost, P., Swerts, M., & Salomez, J. (2014). Estimating the contribution of sampling, sample pretreatment, and analysis in the total uncertainty budget of agricultural soil pH and organic carbon monitoring. Communications in Soil Science and Plant Analysis, 45(7), 984–1002. https://doi.org/10.1080/00103624.2013.867056
Tivet, F., de Moraes Sá, J. C., Lal, R., Briedis, C., Borszowskei, P. R., dos Santos, J. B., Farias, A., Eurich, G., Hartman, D. da C., Nadolny Junior, M., Bouzinac, S., & Séguy, L. (2013). Aggregate C depletion by plowing and its restoration by diverse biomass-C inputs under no-till in sub-tropical and tropical regions of Brazil. Soil and Tillage Research, 126, 203–218. https://doi.org/10.1016/j.still.2012.09.004
Torres-Silva, G., Schnadelbach, A. S., Bezerra, H. B., Lima-Brito, A., & Resende, S. V. (2021). In vitro conservation and genetic diversity of threatened species of Melocactus (Cactaceae). Biodiversity and Conservation, 30(4), 1067–1080. https://doi.org/10.1007/S10531-021-02132-8/TABLES/2
Tripathi, N., & Sapra, A. (2021). Gram Staining. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK562156/
Tsakaldimi, M. (2006). Kenaf (Hibiscus cannabinus L.) core and rice hulls as components of container media for growing Pinus halepensis M. seedlings. Bioresource Technology, 97(14), 1631–1639. https://doi.org/10.1016/j.biortech.2005.07.027
Tumbarski, Y., Georgiev, V., Nikolova, R., & Pavlov, A. (2018). Isolation, identification and antibiotic susceptibility of Curtobacterium Flaccumfaciens strain Pm_Yt from sea daffodil (Pancratium Maritimum L.) shoot cultures. Journal of Microbiology, Biotechnology and Food Sciences, 7(6), 623–627. https://doi.org/10.15414/jmbfs.2018.7.6.623-627
Tyagi, B., Tewari, S., & Dubey, A. (2017). Biochemical characterization of fungus isolated during in vitro Propagation of Bambusa balcooa. Pharmacognosy Magazine, 13(52), S775–S779. https://doi.org/10.4103/pm.pm_20_17
Umaru, M. A., Adam, P., Zaharah, S. S., & Daljit, S. K. (2021). Impact of Soil Compaction on Soil Physical Properties and Physiological Performance of Sweet Potato (Ipomea batatas L.). Malaysian Journal of Soil Science, 25, 15–28.
Varga, J., Frisvad, J. C., Kocsubé, S., Brankovics, B., Tóth, B., Szigeti, G., & Samson, R. A. (2011). New and revisited species in Aspergillus section Nigri. Studies in Mycology, 69, 1–17. https://doi.org/10.3114/sim.2011.69.01
Venables, W. N., & Ripley, B. D. (2002). Exploratory Multivariate Analysis. In W. N. Venables & B. D. Ripley (Eds.), Modern Applied Statistics with S (4th ed., pp. 301–330). Springer, New York, NY. https://doi.org/10.1007/978-0-387-21706-2_11
Villordon, A., & Gregorie, J. C. (2021). Variation in boron availability alters root architecture attributes at the onset of storage root formation in three sweetpotato cultivars. HortScience, 56(11), 1423–1429. https://doi.org/10.21273/HORTSCI16134-21/-/DCSUPPLEMENTAL
Villordon, A., LaBonte, D., Solis, J., & Firon, N. (2012). Characterization of Lateral Root Development at the Onset of Storage Root Initiation in ‘Beauregard’ Sweetpotato Adventitious Roots. HortScience, 47(7), 961–968. https://doi.org/10.21273/HORTSCI.47.7.961
Wang, J., Lei, Y., Yu, Y., Yin, L., & Zhang, Y. (2021). Use of acetic acid to partially replace lactic acid for decontamination against Escherichia coli O157:H7 in fresh produce and mechanism of action. Foods, 10(10), 2406. https://doi.org/10.3390/FOODS10102406/S1
Wang, M. R., Lambardi, M., Engelmann, F., Pathirana, R., Panis, B., Volk, G. M., & Wang, Q. C. (2021). Advances in cryopreservation of in vitro-derived propagules: technologies and explant sources. Plant Cell, Tissue and Organ Culture, 144(1), 7–20. https://doi.org/10.1007/S11240-020-01770-0/FIGURES/3
Wang, Q.-M., Jia, J.-H., Bai, F.-Y., & Bai, Y. (2016). Pseudozyma hubeiensis sp. nov. and Pseudozyma shanxiensis sp. nov.,novel ustilaginomycetous anamorphic yeast species from plant leaves. International Journal of Systematic and Evolutionary Microbiology, 56, 289–293. https://doi.org/10.1099/ijs.0.63827-0
Wang, Q., Zhang, L. ming, Guan, Y. an, & Wang, Z. lin. (2006). Endogenous Hormone Concentration in Developing Tuberous Roots of Different Sweet Potato Genotypes. Agricultural Sciences in China, 5(12), 919–927. https://doi.org/10.1016/S1671-2927(07)60005-4
Wanger, A., Chavez, V., Huang, R. S. P., Wahed, A., Actor, J. K., & Dasgupta, A. (2017). Biochemical Tests and Staining Techniques for Microbial Identification. In A. Wanger, R. S. P. Huang, J. K. Actor, V. Chavez, A. Wahed, & A. Dasgupta (Eds.), Microbiology and Molecular Diagnosis in Pathology (pp. 61–73). Elsevier. https://doi.org/10.1016/b978-0-12-805351-5.00005-3
Wanjala, B. W., Srinivasulu, R., Makokha, P., Ssali, R. T., McEwan, M., Kreuze, J. F., & Low, J. W. (2020). Improving rapid multiplication of sweetpotato (Ipomoea batatas L. (Lam) pre-basic seed using sandponics technology in East Africa. Experimental Agriculture, 56(3), 347–354. https://doi.org/10.1017/S0014479719000413
Widaryanto, E., & Saitama, A. (2017). Analysis of plant growth of ten varieties of sweet potato (ipomoea batatas L.) cultivated in rainy season. Asian Journal of Plant Sciences, 16(4), 193–199. https://doi.org/10.3923/ajps.2017.193.199
Wondimu, T., Feyissa, T., & Bedada, G. (2012). Meristem culture of selected sweet potato (Ipomoea batatas L. Lam.) cultivars to produce virus-free planting material. Journal of Horticultural Science and Biotechnology, 87(3), 255–260. https://doi.org/10.1080/14620316.2012.11512861
Wu, H. X. (2018). Benefits and risks of using clones in forestry – a review. Scandinavian Journal of Forest Research, 34(5), 352–359. https://doi.org/10.1080/02827581.2018.1487579
Yadav, A. N. (2020). Plant Microbiomes for Sustainable Agriculture: Current Research and Future Challenges. 475–482. https://doi.org/10.1007/978-3-030-38453-1_16
Yang, X. (2010). Rapid production of virus-free plantlets by shoot tip culture in vitro of purple-coloured sweet potato (Ipomoea batatas (L.) Lam.). Pakistan Journal of Botany, 42(3), 2069–2075.
Yeasmin, S., Samiul Islam, M., Sujon, T., Sultana, R., Shah Alam, M., Sikdar, B., Asadul Islam, M., & Khalekuzzaman, M. (2018). Molecular and microscopic identification of fungi in micropropagation of nodal and shoot tip culture of orange. International Journal of Pure and Applied Bioscience, 6(6), 6–19. https://doi.org/10.18782/2320-7051.7081
Yzarra, W. J., & López, F. M. (2011). Manual de observaciones fenológicas. https://www.senamhi.gob.pe/load/file/01401SENA-11.pdf
Zamecnik, J., Faltus, M., Bilavcik, A., Benelli, C., Carillo, P., & Amoo, S. O. (2021). Vitrification Solutions for Plant Cryopreservation: Modification and Properties. Plants 2021, Vol. 10, Page 2623, 10(12), 2623. https://doi.org/10.3390/PLANTS10122623
Zhang, H., Tang, J., Liu, X. P., Wang, Y., Yu, W., Peng, W. Y., Fang, F., Ma, D. F., Wei, Z. J., & Hu, L. Y. (2009). Hydrogen sulfide promotes root organogenesis in Ipomoea batatas, Salix matsudana and Glycine max. Journal of Integrative Plant Biology, 51(12), 1086–1094. https://doi.org/10.1111/J.1744-7909.2009.00885.X
Zhang, K., Lu, H., Wan, C., Tang, D., Zhao, Y., Luo, K., Li, S., & Wang, J. (2020). The Spread and Transmission of Sweet Potato Virus Disease (SPVD) and Its Effect on the Gene Expression Profile in Sweet Potato. Plants, 9(4), 492. https://doi.org/10.3390/plants9040492
Zhang, Y., Jiang, G., Ding, Y., & Loria, R. (2018). Genetic background affects pathogenicity island function and pathogen emergence in Streptomyces. Molecular Plant Pathology, 19(7), 1733–1741. https://doi.org/10.1111/mpp.12656
Zhao, F., Wang, L., Zhang, Z., Qiao, Q., Qin, Y., Wang, Y., Wang, S., Tian, Y., Zhang, D., & Zhao, X. (2020). Seed transmission of sweet potato pakakuy virus in sweet potato (Ipomoea batatas). Journal of General Plant Pathology, 86(3), 205–210. https://doi.org/10.1007/S10327-020-00915-5
Zhou, X., Ren, X., Luo, H., Huang, L., Liu, N., Chen, W., Lei, Y., Liao, B., & Jiang, H. (2022). Safe conservation and utilization of peanut germplasm resources in the Oil Crops Middle-term Genebank of China. Oil Crop Science, 7(1), 9–13. https://doi.org/10.1016/J.OCSCI.2021.12.001
Ziv, M. (1995). In vitro acclimatization. In Jenny Aitken-Christie, T. Kozai, & M.A.L Smith (Eds.), Automation and environmental control in plant tissue culture (1st ed., Vol. 41, Issue 3, pp. 493–516). Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8461-6_20
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxv, 136 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.publisher.department.spa.fl_str_mv Escuela de biociencias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82447/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82447/2/1085282821.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82447/3/1085282821.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
b412efbee591aacc4e7cb2645a5a16fe
2d76eb2a8861d6c0ce209b3ef4ce04b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089499340177408
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rosero Alpala, Elvia Amparodbea913b044c94a76be918e8daede0f7Gamez Carrillo, Rocio Margarita956a2c5c728ba056926180c82634fd16600Hoyos Sánchez, Rodrigo Alberto6ddb39f31a5436d96ecc1e671ae2131e600Perez Pazos, Jazmin Vanessafaa40601a0466ff91b02b71d428fb0a56002022-10-25T14:49:57Z2022-10-25T14:49:57Z2022https://repositorio.unal.edu.co/handle/unal/82447Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasLa batata (Ipomoea batatas L.) es un cultivo de alta importancia en seguridad alimentaria por sus propiedades nutracéuticas. La disponibilidad de material de siembra libre de enfermedades asegura el éxito en el establecimiento, rendimiento y calidad del cultivo. La micropropagación in vitro es una alternativa eficaz para obtener material vegetal con calidad fitosanitaria. El objetivo de este estudio fue estandarizar las condiciones de producción in vitro y ex vitro para la propagación y escalado de material de siembra de batata En condiciones de laboratorio se evaluaron estrategias de desinfección, caracterizaron microorganismos contaminantes y determinó la influencia de reguladores de crecimiento sobre plántulas in vitro. En invernadero y vivero se evaluaron mezclas de sustratos a base de turba (T), lombriabono (LA), cascarilla de arroz (CA), fibra de coco (FC) y arena fina (A) para mejorar la producción de material de siembra. Los resultados indicaron que lavado con yodopovidona y desinfección con hipoclorito de sodio al 2%, ácido acético y amonio cuaternario permitió erradicar el 70% de contaminantes. de los géneros Fusarium, Sarocladium, Cladosporium, Aspergillus, Pseudozyma, Moesziomyces y Curtobacterium. Los explantes cultivados con ANA (0,2ppm) presentaron una mayor producción de nudos y crecimiento aéreo significativamente superior al control. Para la aclimatación de vitroplantas, el sustrato compuesto por T:LA:CA (3:1:1) y cámara húmeda por 8 días permitió obtener plántulas super elite con buen crecimiento, altas tasas de supervivencia (92%) y multiplicación (3,53) en comparación con la estrategia convencional (turba, sin cámara húmeda). En condiciones de vivero, sustrato de A:LA:FC (7:1:2), produjo exitosamente hasta 79 mini-raíces/m2. Una mayor eficiencia en la producción de material de siembra de alta calidad con condiciones fitosanitarias garantizadas es una contribución importante para mejorar las estrategias globales de manejo de enfermedades en el cultivo de batata. (Texto tomado de la fuente)Sweet potato (Ipomoea batatas L.) is a highly important crop for food security due to its nutraceutical properties. The availability of disease-free planting material ensures successful establishment, yield, and quality of the crop. In vitro micropropagation is an effective alternative to obtain plant material with phytosanitary quality. The objective of this study was to standardize the in vitro and ex vitro production conditions for the propagation and scaling of sweet potato planting material. In laboratory conditions, disinfection strategies were evaluated, contaminating microorganisms were characterized and the influence of growth regulators on the development of the in vitro plant was determined. In the greenhouse and nursery, mixtures of substrates based on peat (T), vermicompost (LA), rice husks (CA), coconut fiber (FC) and fine sand (A) were evaluated to improve the production of planting material. The results indicated that washing with povidone-iodine and disinfection with 2% sodium hypochlorite, acetic acid and quaternary ammonium eradicated 70% of contaminants. of the genera Fusarium, Sarocladium, Cladosporium, Aspergillus, Pseudozyma, Moesziomyces and Curtobacterium. The explants cultured with ANA (0.2ppm) showed a higher production of nodes and aerial growth significantly higher than the control. For the acclimatization of vitroplants, the substrate composed of T:LA:CA (3:1:1) and a humid chamber for 8 days allowed obtaining super elite seedlings with good growth, high survival rates (92%) and multiplication (3, 53) compared to the conventional strategy (peat, without humid chamber). Under nursery conditions, A:LA:FC (7:1:2) substrate successfully produced up to 79 mini-roots/m2. Greater efficiency in the production of high-quality planting material with guaranteed phytosanitary conditions is an important contribution to improve global disease management strategies in sweet potato cultivation.Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA (Ejecutor)MaestríaMagíster en Ciencias - BiotecnologíaÁrea Curricular Biotecnologíaxxv, 136 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - BiotecnologíaEscuela de biocienciasFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín570 - Biología580 - Plantas630 - Agricultura y tecnologías relacionadasBatata - Propagación in vitroCompostPlant micropropagationMicropropagación vegetalCultivo de tejidosAclimataciónMedio de cultivoSustratosSuper eliteMini-raíces tuberosasPropagaciónTissue cultureAcclimatizationCulture mediumSubstratesSuper eliteTuberous mini-rootsPropagationEstandarización de condiciones de producción in vitro y ex vitro para la propagación y escalamiento de material de siembra de batata (Ipomoea batatas L.)Standardization of in vitro and ex vitro production conditions for the propagation and scaling of sweet potato (Ipomoea batatas L.) planting materialTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbad, M., Noguera, P., & Burés, S. (2001). National inventory of organic wastes for use as growing media for ornamental potted plant production: Case study in Spain. Bioresource Technology, 77(2), 197–200. https://doi.org/10.1016/S0960-8524(00)00152-8Abad, M., Noguera, P., Puchades, R., Maquieira, A., & Noguera, V. (2002). Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants. Bioresource Technology, 82(3), 241–245. https://doi.org/10.1016/S0960-8524(01)00189-4Abu Zeid, I. M., Soliman, H. I. A., & Metwali, E. M. R. (2021). In vitro evaluation of some high yield potato (Solanum tuberosum L.) cultivars under imposition of salinity at the cellular and organ levels. Saudi Journal of Biological Sciences. https://doi.org/10.1016/J.SJBS.2021.12.040Acemi, A., Bayrak, B., Çakır, M., Demiryürek, E., Gün, E., El Gueddari, N. E., & Özen, F. (2018). Comparative analysis of the effects of chitosan and common plant growth regulators on in vitro propagation of Ipomoea purpurea (L.) Roth from nodal explants. In Vitro Cellular and Developmental Biology - Plant, 54(5), 537–544. https://doi.org/10.1007/s11627-018-9915-0Adamski, J. M., Danieloski, R., Deuner, S., Braga, E. J. B., de Castro, L. A. S., & Peters, J. A. (2012). Responses to excess iron in sweet potato: Impacts on growth, enzyme activities, mineral concentrations, and anatomy. Acta Physiologiae Plantarum, 34(5), 1827–1836. https://doi.org/10.1007/S11738-012-0981-3/FIGURES/5Agrawal, A., Singh, S., Malhotra, E. V., Meena, D. P. S., Tyagi, R. K., Agrawal, A., Singh, S., Malhotra, · E V, & Meena, · D P S. (2019). In Vitro Conservation and Cryopreservation of Clonally Propagated Horticultural Species. Conservation and Utilization of Horticultural Genetic Resources, 529–578. https://doi.org/10.1007/978-981-13-3669-0_18Aguoru, C., & Amuzie, U. (2009). Associated microbial contaminants in in-vitro micropropagation of sweet potato (Ipomoea batatas L.). International Journal of Natural and Applied Sciences, 5(2). https://doi.org/10.4314/ijonas.v5i2.49964Ahmed, A. B. A., Pallela, R., Rao, A. S., Rao, M. V, & Mat Taha, R. (2011). Optimized conditions for callus induction, plant regeneration and alkaloids accumulation in stem and shoot tip explants of Phyla nodiflora. Spanish Journal of Agricultural Research, 9(4), 1262–1270. https://doi.org/10.5424/sjar/20110904-453-10Aksakal, E. L., Angin, I., & Sari, S. (2020). A new approach for calculating aggregate stability: Mean weight aggregate stability (MWAS). Catena, 194, 104708. https://doi.org/10.1016/j.catena.2020.104708Alam, I., Sharmin, A. S., Naher, K. M., Alam, J. M., Anisuzzaman, M., & Alam, F. M. (2010). Effect of growth regulators on meristem culture and plantlet establishment in sweet potato [Ipomoea batatas (L.) Lam.]. Plant Omics Journal, 3(2), 35–39.Alam, J., Alam, I., Sharmin, A. S., Rahman, M. M., Anisuzzaman, M., & Alam, F. M. (2010). Micropropagation and antimicrobial activity of Operculina turpethum (syn. Ipomoea turpethum), an endangered medicinal plant. Planr Omics Journal, 3(2), 40–46.Alam, M. K., Sams, S., Rana, Z. H., Akhtaruzzaman, M., & Islam, S. N. (2020). Minerals, vitamin C, and effect of thermal processing on carotenoids composition in nine varieties orange-fleshed sweet potato (Ipomoea batatas L.). Journal of Food Composition and Analysis, 92, 103582. https://doi.org/10.1016/J.JFCA.2020.103582Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2Alula, K., Zeleke, H., & Manikandan, M. (2018). In vitro propagation of sweet potato Ipomoea batatas (L.) Lam) through apical meristem culture. J. Pharmacognosy and Phytochem., 7, 2386–2392.Amagloh, F. C., Yada, B., Tumuhimbise, G. A., Amagloh, F. K., & Kaaya, A. N. (2021). The Potential of Sweetpotato as a Functional Food in Sub-Saharan Africa and Its Implications for Health: A Review. Molecules 2021, Vol. 26, Page 2971, 26(10), 2971. https://doi.org/10.3390/MOLECULES26102971Ameri, A., Tehranifar, A., Shoor, M., & Davarynejad, G. H. (2012). Effect of substrate and cultivar on growth characteristic of strawberry in soilless culture system. AFRICAN JOURNAL OF BIOTECHNOLOGY, 11(56), 11960–11966. https://doi.org/10.5897/ajb-11-2524Amirmijani, A., Khodaparast, S. A., & Zare, R. (2014). Contribution to the identification of Cladosporium species in the North of Iran. Rostaniha, 15(2), 133–145. https://doi.org/10.22092/BOTANY.2014.101237Bashyal, B. M., Yadav, J., Gupta, A. K., & Aggarwal, R. (2019). Understanding the secondary metabolite production of Gibberella fujikuroi species complex in genomic era. In Indian Phytopathology (Vol. 72, Issue 4, pp. 607–617). Springer. https://doi.org/10.1007/s42360-019-00141-wBechtaoui, N., Rabiu, M. K., Raklami, A., Oufdou, K., Hafidi, M., & Jemo, M. (2021). Phosphate-Dependent Regulation of Growth and Stresses Management in Plants. Frontiers in Plant Science, 12, 2357.Becker, B., Henningsen, L., Paulmann, D., Bischoff, B., Todt, D., Steinmann, E., Steinmann, J., Brill, F. H. H., & Steinmann, J. (2019). Evaluation of the virucidal efficacy of disinfectant wipes with a test method simulating practical conditions. Antimicrobial Resistance and Infection Control, 8(1), 121. https://doi.org/10.1186/s13756-019-0569-4Ben-Amar, A., Oueslati, S., & Mliki, A. (2017). Universal direct PCR amplification system: a time- and cost-effective tool for high-throughput applications. 3 Biotech 2017 7:4, 7(4), 1–7. https://doi.org/10.1007/S13205-017-0890-7Bensch, K., Groenewald, J. Z., Dijksterhuis, J., Starink-Willemse, M., Andersen, B., Summerell, B. A., Shin, H. D., Dugan, F. M., Schroers, H. J., Braun, U., & Crous, P. W. (2010). Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Studies in Mycology, 67, 1–94. https://doi.org/10.3114/sim.2010.67.01Beyene, B., Menamo, T., & Haile, G. (2020). Protocol optimization for in vitro propagation of Kulfo, orange flesh sweet potato (Ipomoea batatas) variety using shoot tip culture. African Journal of Plant Science, 14(10), 395–401. https://doi.org/10.5897/AJPS2017.1621Bhatia, S. (2015). Plant Tissue Culture. In Saurabh Bhatia, Kiran Sharma, Randhir Dahiya, & Tanmoy Bera (Eds.), Modern Applications of Plant Biotechnology in Pharmaceutical Sciences (1st ed., pp. 31–107). Academic Press. https://doi.org/10.1016/B978-0-12-802221-4.00002-9Bigliardi, P. L., Alsagoff, S. A. L., El-Kafrawi, H. Y., Pyon, J. K., Wa, C. T. C., & Villa, M. A. (2017). Povidone iodine in wound healing: A review of current concepts and practices. International Journal of Surgery, 44, 260–268. https://doi.org/10.1016/j.ijsu.2017.06.073Boekhout, T. (1995). Pseudozyma Bandoni emend. Boekhout, a genus for yeast-like anamorphs of Ustilaginales. The Journal of General and Applied Microbiology, 41(4), 359–366. https://doi.org/10.2323/jgam.41.359Burbano-Erazo, E., Cordero, C., Pastrana, I., Espitia, L., Gomez, E., Morales, A., Pérez, J., López, L., & Rosero, A. (2020). Interrelation of ecophysiological and morpho-agronomic parameters in low altitude evaluation of selected ecotypes of sweet potato (Ipomoea batatas [l.] lam.). Horticulturae, 6(4), 1–22. https://doi.org/10.3390/horticulturae6040099Buxdorf, K., Rahat, I., Gafni, A., & Levy, M. (2013). The epiphytic fungus Pseudozyma aphidis induces jasmonic acid-and salicylic acid/nonexpressor of PR1-independent local and systemic resistance. Plant Physiology, 161(4), 2014–2022. https://doi.org/10.1104/pp.112.212969Cachique, D. H., Solsol, H. R., Sanchez, M. A. G., López, L. A. A., & Kodahl, N. (2018). Vegetative propagation of the underutilized oilseed crop sacha inchi (Plukenetia volubilis L.). Genetic Resources and Crop Evolution, 65(7), 2027–2036. https://doi.org/10.1007/S10722-018-0659-9/FIGURES/3Cardona, W. A., Benavides, M. M. B., & Montoya, W. C. (2016). Effect of chemical and organic fertilizers on the aggregation of a soil cultivated with Musa acuminata AA. Acta Agronomica, 65(2), 144–148. https://doi.org/10.15446/acag.v65n2.44493Carmello, C. R., & Cardoso, J. C. (2018). Effects of plant extracts and sodium hypochlorite on lettuce germination and inhibition of Cercospora longissima in vitro. Scientia Horticulturae, 234, 245–249. https://doi.org/10.1016/j.scienta.2018.02.056Chandrasekara, A., & Josheph Kumar, T. (2016). Roots and tuber crops as functional foods: A review on phytochemical constituents and their potential health benefits. International Journal of Food Science, 2016. https://doi.org/10.1155/2016/3631647Cheval, C., Aldon, D., Galaud, J. P., & Ranty, B. (2013). Calcium/calmodulin-mediated regulation of plant immunity. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1833(7), 1766–1771. https://doi.org/10.1016/J.BBAMCR.2013.01.031Chowdhury, D., Rahman, A., Hu, H., Jensen, S. O., Deva, A. K., & Vickery, K. (2019). Effect of disinfectant formulation and organic soil on the efficacy of oxidizing disinfectants against biofilms. Journal of Hospital Infection, 103(1), e33–e41. https://doi.org/10.1016/j.jhin.2018.10.019Cobrado, J. S., & Fernandez, A. M. (2016). Common fungi contamination affecting tissue-cultured Abaca (Musa textiles Nee) during initial stage of micropropagation. Asian Research Journal of Agriculture, 1(2), 1–7. https://doi.org/10.9734/ARJA/2016/28353Cobrado, J. S., & Fernandez, A. M. (2017). Bioefficacy test of different chemotherapeutic substances against Aspergillus sp. and Chrysosporium sp. contaminants of tissue-cultured Abaca (Musa textiles NEE.) during initial stage of micropropagation. Journal of Advances in Microbiology, 4(1), 1–12. https://doi.org/10.9734/JAMB/2017/33289Compant, S., Samad, A., Faist, H., & Sessitsch, A. (2019). A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. Journal of Advanced Research, 19, 29–37. https://doi.org/10.1016/J.JARE.2019.03.004Cordovez, V., Dini-Andreote, F., Carrión, V. J., & Raaijmakers, J. M. (2019). Ecology and Evolution of Plant Microbiomes. Https://Doi.Org/10.1146/Annurev-Micro-090817-062524, 73, 69–88. https://doi.org/10.1146/ANNUREV-MICRO-090817-062524Dag, O., Dolgun, A., & Konar, N. M. (2018). Onewaytests: An R package for one-way tests in independent groups designs. R Journal, 10(1), 175–199. https://doi.org/10.32614/RJ-2018-022Deb, C. R., & Imchen, T. (2010). An efficient in vitro hardening technique of tissue culture raised plants. Biotechnology, 9(1), 79–83. https://doi.org/10.3923/BIOTECH.2010.79.83Delgado-Paredes, G. E., Idrogo, C. R., Chanamé-Céspedes, J., Floh, E. I., & Walter, H. (2016). In vitro direct organogenesis in roots of Ipomoea batatas. Asian Journal of Plant Science and Research, 6(3), 17–27.Donado-Pestana, C. M., Salgado, J. M., de Oliveira Rios, A., dos Santos, P. R., & Jablonski, A. (2012). Stability of Carotenoids, Total Phenolics and In Vitro Antioxidant Capacity in the Thermal Processing of Orange-Fleshed Sweet Potato (Ipomoea batatas Lam.) Cultivars Grown in Brazil. Plant Foods for Human Nutrition, 67(3), 262–270. https://doi.org/10.1007/S11130-012-0298-9/FIGURES/2Drake, P. L., Froend, R. H., & Franks, P. J. (2013). Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany, 64(2), 495–505. https://doi.org/10.1093/JXB/ERS347Dugan, F. M. (2017). The Identification of Fungi: An Illustrated Introduction with Keys, Glossary, and Guide to Literature. In The Identification of Fungi: An Illustrated Introduction with Keys, Glossary, and Guide to Literature (3rd ed.). The American Phytopathological Society. https://doi.org/10.1094/9780890545041Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340Egamberdieva, D., Wirth, S. J., Shurigin, V. V., Hashem, A., & Abd_Allah, E. F. (2017). Endophytic Bacteria Improve Plant Growth, Symbiotic Performance of Chickpea (Cicer arietinum L.) and Induce Suppression of Root Rot Caused by Fusarium solani under Salt Stress. Frontiers in Microbiology, 0(SEP), 1887. https://doi.org/10.3389/FMICB.2017.01887Ekman, J., & Lovatt, J. (2015). Pests, Diseases and Disorders of Sweetpotato: A Field Identification Guide (Applied Horticultural Research, Queensland Department of Agriculture, and Fisheries, & University of Queensland. (eds.)). https://www.soilwealth.com.au/imagesDB/news/Sweet-Potato-Pest-and-Disease-Guide.pdfEl Nagy M, M. M., Abou El-Salehein, E. H., Fekry, W. A., & Wahdan, H. (2020). EFFECT OF FOLIAR SPRAY WITH DIFFERENT POTASSIUM SOURCES AND ZINC RATES ON GROWTH AND YIELD OF SWEET POTATO (Ipomoea batatas L.). Journal of Productivity and Development, 25(2), 231–246. https://doi.org/10.21608/JPD.2020.120782Estrela, C., Estrela, C. R. A., Barbin, E. L., Spanó, J. C. E., Marchesan, M. A., & Pécora, J. D. (2002). Mechanism of action of sodium hypochlorite. Brazilian Dental Journal, 13(2), 113–117. https://doi.org/10.1590/S0103-64402002000200007Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach. Journal of Molecular Evolution, 17(6), 368–376. https://doi.org/10.1007/BF01734359Felsenstein, J. (1985). Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution, 39(4), 783. https://doi.org/10.2307/2408678Ferreira, T. R., Pires, L. F., Wildenschild, D., Brinatti, A. M., Borges, J. A. R., Auler, A. C., & dos Reis, A. M. H. (2019). Lime application effects on soil aggregate properties: Use of the mean weight diameter and synchrotron-based X-ray μCT techniques. Geoderma, 338, 585–596. https://doi.org/10.1016/j.geoderma.2018.10.035Frisvad, J. C., Petersen, L. M., Lyhne, E. K., & Larsen, T. O. (2014). Formation of Sclerotia and Production of Indoloterpenes by Aspergillus niger and Other Species in Section Nigri. PLoS ONE, 9(4), e94857. https://doi.org/10.1371/journal.pone.0094857Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes ‐ application to the identification of mycorrhizae and rusts. Molecular Ecology, 2(2), 113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.xGermain, G. S., & Summerbell, R. (2010). Identifyng fungi - A Clinical Laboratory Handbook. Star Publishing Company. http://www.identifyingfungi.com/actual-pages-from-the-book.htmlGhezzehei, T. A. (2012). Soil structure. In P. Ming Huang, Y. Li, & M. E. Sumner (Eds.), Handbook of Soil Sciences: Properties and Processes. (2nd ed., Vol. 2, pp. 1–17). Routledge Handbooks. Taylor & Francis Group. https://doi.org/https://doi.org/10.1201/b11267Gholipoor, M., Prasad, P. V. V., Mutava, R. N., & Sinclair, T. R. (2010). Genetic variability of transpiration response to vapor pressure deficit among sorghum genotypes. Field Crops Research, 119(1), 85–90. https://doi.org/10.1016/j.fcr.2010.06.018Giraldo, A., Gené, J., Sutton, D. A., Madrid, H., de Hoog, G. S., Cano, J., Decock, C., Crous, P. W., & Guarro, J. (2015). Phylogeny of Sarocladium (Hypocreales). Persoonia: Molecular Phylogeny and Evolution of Fungi, 34, 10–24. https://doi.org/10.3767/003158515X685364González-Teuber, M., Jiménez-Alemán, G. H., & Boland, W. (2014). Foliar endophytic fungi as potential protectors from pathogens in myrmecophytic Acacia plants. Communicative & Integrative Biology, 7(5), e970500. https://doi.org/10.4161/19420889.2014.970500Grace, M. H., Truong, A. N., Truong, V. Den, Raskin, I., & Lila, M. A. (2015). Novel value-added uses for sweet potato juice and flour in polyphenol- and protein-enriched functional food ingredients. Food Science and Nutrition, 3(5), 415–424. https://doi.org/10.1002/fsn3.234Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., Sperry, J. S., & McDowell, N. G. (2020). Plant responses to rising vapor pressure deficit. In New Phytologist (Vol. 226, Issue 6, pp. 1550–1566). Blackwell Publishing Ltd. https://doi.org/10.1111/nph.16485Grzebisz, W., Gransee, A., Szczepaniak, W., & Diatta, J. (2013). The effects of potassium fertilization on water-use efficiency in crop plants. Journal of Plant Nutrition and Soil Science, 176(3), 355–374. https://doi.org/10.1002/JPLN.201200287Gu, J., Li, Z., Mao, Y., Struik, P. C., Zhang, H., Liu, L., Wang, Z., & Yang, J. (2018). Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Science, 274, 320–331. https://doi.org/10.1016/J.PLANTSCI.2018.06.010Gutiérrez, D. L., Fuentes, S., & Salazar, L. F. (2007). Sweetpotato Virus Disease (SPVD): Distribution, Incidence, and Effect on Sweetpotato Yield in Peru. Https://Doi.Org/10.1094/PDIS.2003.87.3.297, 87(3), 297–302. https://doi.org/10.1094/PDIS.2003.87.3.297Ha, S., & Tran, L. S. (2014). Understanding plant responses to phosphorus starvation for improvement of plant tolerance to phosphorus deficiency by biotechnological approaches. Https://Doi.Org/10.3109/07388551.2013.783549, 34(1), 16–30. https://doi.org/10.3109/07388551.2013.783549Hainzer, K., O’Mullan, C., Bugajim, C., & Brown, P. H. (2021). Exploring the design and adoption of a clean seed system for sweet potato in Papua New Guinea. Journal of Crop Improvement, 1–25. https://doi.org/10.1080/15427528.2021.1960456Hammond, R., Buah, J. N., Asare, P. A., & Acheampong, S. (2014). Optimizing Sterilization Condition for the Initiation of Sweet Potato (Ipomoea batatas) Culture in vitro. Asian Journal of Biotechnology, 6(2), 25–37. https://doi.org/10.3923/ajbkr.2014.25.37Hang, V. T. T., Thu, H. T. A., & Hoa, V. D. (2016). Developing an efficient regeneration protocol for sweetpotato, Ipomoea batatas (L.) Lam., using nodal explant. Vietnam Journal of Agricultural Sciences, 14(10), 1491–1501.Hasanuzzaman, M., Shahadat Hossain, M., M Borhannuddin Bhuyan, M. H., Al Mahmud, J., Nahar, K., Fujita, M., Hasanuzzaman, M., Hossain, M. S., Fujita, M., Al Mahmud, J., & Nahar, K. (2018). The Role of Sulfur in Plant Abiotic Stress Tolerance: Molecular Interactions and Defense Mechanisms. Plant Nutrients and Abiotic Stress Tolerance, 221–252. https://doi.org/10.1007/978-981-10-9044-8_10Hay, F. R., Whitehouse, K. J., Ellis, R. H., Sackville Hamilton, N. R., Lusty, C., Ndjiondjop, M. N., Tia, D., Wenzl, P., Santos, L. G., Yazbek, M., Azevedo, V. C. R., Peerzada, O. H., Abberton, M., Oyatomi, O., de Guzman, F., Capilit, G., Muchugi, A., & Kinyanjui, Z. (2021). CGIAR genebank viability data reveal inconsistencies in seed collection management. Global Food Security, 30, 100557. https://doi.org/10.1016/J.GFS.2021.100557Hunt, R. (2017). Growth Analysis, Individual Plants. In B. Thomas, B. G. Murray, & D. J. Murphy (Eds.), Encyclopedia of Applied Plant Sciences (Vol. 1, pp. 421–429). Elsevier Inc. https://doi.org/10.1016/B978-0-12-394807-6.00226-4Hunt, R., Causton, D. R., Shipley, B., & Askew, A. P. (2002). A modern tool for classical plant growth analysis. Annals of Botany, 90, 485–488. https://doi.org/10.1093/aob/mcf214Hussain, A., Qarshi, I. A., Nazir, H., & Ullah, I. (2012). Plant Tissue Culture: Current Status and Opportunities. In A. Leva & L. M. R. Rinaldi (Eds.), Recent Advances in Plant in vitro Culture (Vol. 1). IntechOpen. https://doi.org/10.5772/50568Hussein, N., Abdel-Hafez, S. I. ., Abdel-Sater, M. ., Ismail, M. ., & Al-Amrey, E. (2017). Aspergillus homomorphus, a first global record from millet grains. Current Research in Environmental & Applied Mycology, 7(2), 82–89. https://www.cabdirect.org/cabdirect/abstract/20198658144Icontec. (2011). Norma técnica colombiana 5167. Productos para la industria agrícola. productos orgánicos usados como abonos o fertilizantes y enmiendas o acondicionadores de suelo. Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC).Ikeuchi, M., Sugimoto, K., & Iwase, A. (2013). Plant Callus: Mechanisms of Induction and Repression. The Plant Cell, 25(9), 3159–3173. https://doi.org/10.1105/TPC.113.116053Imazaki, I., & Kadota, I. (2015). Molecular phylogeny and diversity of Fusarium endophytes isolated from tomato stems. FEMS Microbiology Ecology, 91(9), 98. https://doi.org/10.1093/femsec/fiv098Into, P., Pontes, A., Sampaio, J. P., & Limtong, S. (2020). Yeast Diversity Associated with the Phylloplane of Corn Plants Cultivated in Thailand. Microorganisms, 8(1), 80. https://doi.org/10.3390/microorganisms8010080Israel, A. U., Ogali, R. E., Akaranta, O., & Obot, I. B. (2011). Extraction and characterization of coconut (Cocos nucifera L.) coir dust. Songklanakarin Journal of Science and Technology , 33(6), 717–724. http://www.sjst.psu.ac.thJena, R. chandra, & Samal, K. C. (2011). Endogenous microbial contamination during in vitro culture of sweet potato [Ipomoea batatas (L.) Lam]: identification and prevention. Journal of Agricultural Technology, 7(6), 1725–1731.Kačániová, M., Kunová, S., Sabo, J., Ivanišová, E., Žiarovská, J., Felsöciová, S., & Terentjeva, M. (2020). Identification of Yeasts with Mass Spectrometry during Wine Production. Fermentation 2020, Vol. 6, Page 5, 6(1), 5. https://doi.org/10.3390/FERMENTATION6010005Karhu, K., Mattila, T., Bergström, I., & Regina, K. (2011). Biochar addition to agricultural soil increased CH4 uptake and water holding capacity - Results from a short-term pilot field study. Agriculture, Ecosystems and Environment, 140(1–2), 309–313. https://doi.org/10.1016/j.agee.2010.12.005Kemper, W. D., & Chepil, W. S. (1965). Size Distribution of Aggregates. In C. A. Black (Ed.), Methods of Soil Analysis (pp. 499–510). American Society of Agronomy, Soil Science Society of America. https://doi.org/10.2134/agronmonogr9.1.c39Khan, N., Bano, A. M. D., & Babar, A. (2020). Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. PLOS ONE, 15(4), e0231426. https://doi.org/10.1371/journal.pone.0231426Khumaida, N., Ardie, S. W., Setiadi, A., & Artiningsih, L. N. (2019). In vitro multiplication and acclimatization of black galingale (Curcuma Aeruginosa Roxb.). Journal of Applied Pharmaceutical Science, 9(4), 110–116. https://doi.org/10.7324/JAPS.2019.90414Kim, J., Kil, E.-J., Kim, S., Seo, H., Byun, H.-S., Park, J., Chung, M.-N., Kwak, H.-R., Kim, M.-K., Kim, C.-S., Yang, J.-W., Lee, K.-Y., Choi, H.-S., & Lee, S. (2015). Seed transmission of Sweet potato leaf curl virus in sweet potato (Ipomoea batatas). Plant Pathology, 64(6), 1284–1291. https://doi.org/10.1111/PPA.12366Kim, J., Yang, J. wook, Kwak, H.-R., Kim, M.-K., Seo, J.-K., Chung, M.-N., Lee, H., Lee, K.-B., Nam, S. S., Kim, C.-S., Lee, G.-S., Kim, J.-S., Lee, S., & Choi, H.-S. (2017). Virus Incidence of Sweet Potato in Korea from 2011 to 2014. The Plant Pathology Journal, 33(5), 467. https://doi.org/10.5423/PPJ.OA.08.2016.0167Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111–120. https://doi.org/10.1007/BF01731581Koike, I., Watanabe, S., Okazaki, K., Hayashi, K. ichiro, Kasahara, H., Shimomura, K., & Umehara, M. (2020). Endogenous auxin determines the pattern of adventitious shoot formation on internodal segments of ipecac. Planta, 251(3), 73. https://doi.org/10.1007/s00425-020-03367-5Krochmal-Marczak, B., Sawicka, B., Słupski, J., Cybulak, T., & Paradowska, K. (2014). Nutrition value of the sweet potato (Ipomoea batatas (L.) Lam) cultivated in south – eastern Polish condition. Nutrition Value International Journal of Agronomy and Agricultural Research, 4(4), 169–178. http://www.innspub.netKumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096Kumar, S., Yadav, A. K., & Prabha, C. (2019). Microbial contamination in tissue culture of Chlorophytum borivilianum, a rare medicinal herb: identification and prevention. Journal of Plant Pathology, 101(4), 991–995. https://doi.org/10.1007/s42161-019-00327-1Kwak, H. R., Kim, M. K., Shin, J. C., Lee, Y. J., Seo, J. K., Lee, H. U., Jung, M. N., Kim, S. H., & Choi, H. S. (2014). The current incidence of viral disease in Korean sweet potatoes and development of multiplex RT-PCR assays for simultaneous detection of eight sweet potato viruses. Plant Pathology Journal, 30(4), 416–424. https://doi.org/10.5423/PPJ.OA.04.2014.0029Kwaśniewska, D., Chen, Y. L., & Wieczorek, D. (2020). Biological activity of quaternary ammonium salts and their derivatives. Pathogens, 9(6), 1–12. https://doi.org/10.3390/pathogens9060459Lazo-Javalera, M. F., Troncoso-Rojas, R., Tiznado-Hernández, M. E., Martínez-Tellez, M. A., Vargas-Arispuro, I., Islas-Osuna, M. A., & Rivera-Domínguez, M. (2016). Surface disinfection procedure and in vitro regeneration of grapevine (Vitis vinifera L.) axillary buds. SpringerPlus, 5(1), 453. https://doi.org/10.1186/s40064-016-2081-0Le Bissonnais, Y. (2016). Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. European Journal of Soil Science, 67(1), 11–21. https://doi.org/10.1111/ejss.4_12311León, R., Rosero, A., García, J. L., Morelo, J., Orozco, A., Silva, G., De la Ossa, V., Correa, E., Cordero, C., Villalba, L., Belalcazar, J., & Ceballos, H. (2021). Multi-Trait Selection Indices for Identifying New Cassava Varieties Adapted to the Caribbean Region of Colombia. Agronomy 2021, Vol. 11, Page 1694, 11(9), 1694. https://doi.org/10.3390/AGRONOMY11091694Lepelletier, D., Maillard, J. Y., Pozzetto, B., & Simon, A. (2020). Povidone iodine: Properties, mechanisms of action, and role in infection control and staphylococcus aureus decolonization. Antimicrobial Agents and Chemotherapy, 64(9). https://doi.org/10.1128/AAC.00682-20/ASSET/C2A75034-4D9F-4196-8FD1-811395212C12/ASSETS/GRAPHIC/AAC.00682-20-F0002.JPEGLepengue, A. N., Nzengue, E., Mombo, S., Essougou, C. Y., Ontod, D. S. T.-T., Mokea-Niaty, A., & Mbatchi, B. (2019). Effet du Manganèse sur la Croissance de la Patate Douce (Ipomoea batatas L.) au Gabon. European Scientific Journal, ESJ, 15(24), 281–281. https://doi.org/10.19044/ESJ.2019.V15N24P281Li, F., Zuo, R., Abad, J., Xu, D., Bao, G., & Li, R. (2012). Simultaneous detection and differentiation of four closely related sweet potato potyviruses by a multiplex one-step RT-PCR. Journal of Virological Methods, 186(1–2), 161–166. https://doi.org/10.1016/j.jviromet.2012.07.021Li, T., Heuvelink, E., & Marcelis, L. F. M. (2015). Quantifying the source-sink balance and carbohydrate content in three tomato cultivars. Frontiers in Plant Science, 6(June), 416. https://doi.org/10.3389/fpls.2015.00416Linington, S. H., & Pritchard, H. W. (2001). Gene Banks. In S. A. Levin (Ed.), Encyclopedia of Biodiversity: Second Edition (Vol. 7, pp. 641–653). Academic Press. https://doi.org/10.1016/B978-0-12-384719-5.00064-2Liu, Y., Zou, Z., Hu, Z., Wang, W., & Xiong, J. (2019). Morphology and Molecular Analysis of Moesziomyces antarcticus Isolated From the Blood Samples of a Chinese Patient. Frontiers in Microbiology, 10(FEB), 254. https://doi.org/10.3389/fmicb.2019.00254Liu, Z., Chen, X., Jing, Y., Li, Q., Zhang, J., & Huang, Q. (2014). Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. CATENA, 123, 45–51. https://doi.org/10.1016/J.CATENA.2014.07.005Loyola-Vargas, V. M., & Ochoa-Alejo, N. (2018). An Introduction to Plant Tissue Culture: Advances and Perspectives. Methods in Molecular Biology, 1815, 3–13. https://doi.org/10.1007/978-1-4939-8594-4_1/COVERLuis, G., Rubio, C., Gutiérrez, Á. J., González-Weller, D., Revert, C., & Hardisson, A. (2014). Evaluation of metals in several varieties of sweet potatoes (Ipomoea batatas L.): Comparative study. Environmental Monitoring and Assessment, 186(1), 433–440. https://doi.org/10.1007/S10661-013-3388-8/TABLES/7Ma, L., Wang, Q., & Shen, S. (2020). Response of soil aggregate stability and distribution of organic carbon to alpine grassland degradation in Northwest Sichuan. Geoderma Regional, 22, e00309. https://doi.org/10.1016/J.GEODRS.2020.E00309Makokha, P., Matasyoh, L. G., Ssali, R. T., Kiplagat, O. K., Wanjala, B. W., & Low, J. (2018). Optimization of nutrient media for sweetpotato (Ipomoea batatas L.) vine multiplication in sandponics: Unlocking the adoption and utilization of improved varieties. Gates Open Research, 2. https://doi.org/10.12688/GATESOPENRES.12879.1Makokha, P., Ssali, R. T., Wanjala, B. W., Rajendran, S., McEwan, M. A., & Low, J. W. (2020). Yield potential of sandponically produced sweetpotato (Ipomoea batatas (L.) Lam) pre-basic seed for selected genotypes. Open Agriculture, 5(1), 236–242. https://doi.org/10.1515/opag-2020-0025Manh, V. H., & Wang, C. H. (2014). Vermicompost as an Important Component in Substrate: Effects on Seedling Quality and Growth of Muskmelon (Cucumis Melo L.). APCBEE Procedia, 8, 32–40. https://doi.org/10.1016/j.apcbee.2014.01.076Manns, H. R., & Martin, R. C. (2018). Cropping system yield stability in response to plant diversity and soil organic carbon in temperate ecosystems. Agroecology and Sustainable Food Systems, 42(7), 724–750. https://doi.org/10.1080/21683565.2017.1423529Mbah, E. U., & Eke-Okoro, O. (2015). Relationship between some growth parameters, dry matter content and yield of some sweet potato genotypes grown under rainfed weathered ultisols in the humid tropics. Journal of Agronomy, 14(3), 121–129. https://doi.org/10.3923/ja.2015.121.129Mbewe, W., Mtonga, A., Chiipanthenga, M., Masamba, K., Chitedze, G., Pamkomera, P., Gondwe, E., Mwenye, O., & Chipungu, F. (2021). Incidence and distribution of Sweetpotato viruses and their implication on sweetpotato seed system in Malawi. Journal of Plant Pathology 2021 103:3, 103(3), 961–968. https://doi.org/10.1007/S42161-021-00830-4McDonnell, G. E. (2017). Antisepsis, Disinfection, and Sterilization: Types, Action, and Resistance. (Gerald E. McDonnell (ed.); 2nd ed.). ASM Press. https://www.wiley.com/en-us/Antisepsis%2C+Disinfection%2C+and+Sterilization%3A+Types%2C+Action%2C+and+Resistance%2C+2nd+Edition-p-9781555819675McKeen, L. (2012). Introduction to Food Irradiation and Medical Sterilization. In L. McKeen (Ed.), The Effect of Sterilization on Plastics and Elastomers (1st ed., pp. 1–40). William Andrew Publishing. https://doi.org/10.1016/B978-1-4557-2598-4.00001-0Monteith, J., & Unsworth, M. (2013). Principles of Environmental Physics: Plants, Animals, and the Atmosphere - John Monteith, Mike Unsworth - Google Libros (J. Monteith & M. Unsworth (eds.); Fourth edi). Elsevier Ltd. https://doi.org/https://doi.org/10.1016/B978-0-12-386910-4.00023-8.Montoya-Martínez, A. C., Rodríguez-Alvarado, G., Fernández-Pavía, S. P., Proctor, R. H., Kim, H. S., & O’Donnell, K. (2019). Design and validation of a robust multiplex polymerase chain reaction assay for MAT idiomorph within the Fusarium fujikuroi species complex. Mycologia, 111(5), 772–781. https://doi.org/10.1080/00275514.2019.1649956Moussa, T. A. A., Al-Zahrani, H. S., Kadasa, N. M. S., Ahmed, S. A., Hoog, G. S. de, & Al-Hatmi, A. M. S. (2017). Two new species of the Fusarium fujikuroi species complex isolated from the natural environment. Antonie van Leeuwenhoek 2017 110:6, 110(6), 819–832. https://doi.org/10.1007/S10482-017-0855-1Mu, T. H., & Singh, J. (2019). Sweet potato: Chemistry, processing and nutrition. In T. H. Mu & J. Singh (Eds.), Sweet Potato: Chemistry, Processing and Nutrition. Elsevier. https://doi.org/10.1016/C2016-0-05204-XMuhamad, S. N. S., Ling, A. P. K., & Wong, C. L. (2018). Effect of plant growth regulators on direct regeneration and callus induction from Sargassum polycystum C. Agardh. Journal of Applied Phycology, 30(6), 3299–3310. https://doi.org/10.1007/s10811-018-1649-1Mulabisana, M. J., Cloete, M., Mabasa, K. G., Laurie, S. M., Oelofse, D., Esterhuizen, L. L., & Rey, M. E. C. (2018). Surveys in the Gauteng, Limpopo and Mpumalanga provinces of South Africa reveal novel isolates of sweet potato viruses. South African Journal of Botany, 114, 280–294. https://doi.org/10.1016/j.sajb.2017.11.022Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.xMwanga, R. O. M., Andrade, M. I., Carey, E. E., Low, J. W., Yencho, G. C., & Grüneberg, W. J. (2017). Sweetpotato (Ipomoea batatas L.). In Genetic Improvement of Tropical Crops (1st ed., pp. 181–218). Springer, Cham. https://doi.org/10.1007/978-3-319-59819-2_6Nam, Y. J., Tran, L. S. P., Kojima, M., Sakakibara, H., Nishiyama, R., & Shin, R. (2012). Regulatory Roles of Cytokinins and Cytokinin Signaling in Response to Potassium Deficiency in Arabidopsis. PLOS ONE, 7(10), e47797. https://doi.org/10.1371/JOURNAL.PONE.0047797Nedunchezhiyan, M., & Raya, R. C. (2010). Sweet potato growth, development, production and utilization: Overview. In R. C. Ray & K. I. Tomlins (Eds.), Sweet potato : post harvest aspects in food, feed and industry (Vol. 1, pp. 1–316). Nova Science Publishers. https://books.google.com/books/about/Sweet_Potato.html?hl=es&id=oKkYQAAACAAJNicoletti, R. (2019). Endophytic Fungi of Citrus Plants. Agriculture, 9(12), 247. https://doi.org/10.3390/agriculture9120247Niewczas, J., & Witkowska-Walczak, B. (2005). The soil aggregates stability index (ASI) and its extreme values. Soil and Tillage Research, 80(1–2), 69–78. https://doi.org/10.1016/j.still.2004.02.023Nimmo, J. R., & Perkins, K. S. (2002). Aggregate stability and size distribution. In J. H. Dane & C. G. Topp (Eds.), Methods of Soil Analysis: Part 4–Physical Methods (pp. 317–328). Soil Science of America Book Series. https://doi.org/https://doi.org/10.2136/sssabookser5.4.c14Obłąk, E., Piecuch, A., Rewak-Soroczyńska, J., & Paluch, E. (2019). Activity of gemini quaternary ammonium salts against microorganisms. Applied Microbiology and Biotechnology, 103(2), 625–632. https://doi.org/10.1007/s00253-018-9523-2Oliveira, R., Souza, R., Lima, T., & Cavalcanti, M. (2014). Endophytic fungal diversity in coffee leaves (Coffea arabica) cultivated using organic and conventional crop management systems. Mycosphere, 5(4), 523–530. https://doi.org/10.5943/mycosphere/5/4/4Oza, K., Jain, B., & Maitreya, B. (2020). Isolation and identification of fungi from Kalipati variety of Sapota fruits. International Journal of Botany Studies, 5(5), 264–266.Park, S. chul, Yu, Y. cheng, Kou, M., Yan, H., Tsng, W., Wang, X., Liu, Y. ju, Zhang, Y. gang, Kwak, S. soo, Ma, D. fu, Sun, J., & Li, Q. (2017). Ipomoea batatas HKT1 transporter homolog mediates K+ and Na+ uptake in Saccharomyces cerevisiae. Journal of Integrative Agriculture, 16(10), 2168–2176. https://doi.org/10.1016/S2095-3119(16)61570-8Patel, R. M., & Shah, R. R. (2009). Regeneration of stevia plant through callus culture. Indian Journal of Pharmaceutical Sciences, 71(1), 46–50. https://doi.org/10.4103/0250-474X.51954Paul, N. C., Hwang, E. J., Nam, S. S., Lee, H. U., Lee, J. S., Yu, G. D., Kang, Y. G., Lee, K. B., Go, S., & Yang, J. W. (2017). Phylogenetic placement and morphological characterization of Sclerotium rolfsii (Teleomorph: Athelia rolfsii) associated with blight disease of Ipomoea batatas in Korea. Mycobiology, 45(3), 129–138. https://doi.org/10.5941/MYCO.2017.45.3.129Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M. S., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., de Vos, A. C., … C Cornelissen, J. H. (2016). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 64(3), 715–716. https://doi.org/10.1071/BT12225_COPérez-Pazos, J. V., Rosero, A., Martínez, R., Pérez, J., Morelo, J., Araujo, H., & Burbano-Erazo, E. (2021). Influence of morpho-physiological traits on root yield in sweet potato (Ipomoea batatas Lam.) genotypes and its adaptation in a sub-humid environment. Scientia Horticulturae, 275, 109703. https://doi.org/10.1016/J.SCIENTA.2020.109703Pérez, M. B., Pérez, M. B., Vega, V. M., Jova, M. C., Pino, A. S., Delgado, M. T., Gálvez, E. O., Ortiz, A. O., Torres, J. L., Cabrera, A. R., García, Y. B., & Chávez, E. P. (2008). Multiplicación de <em>Ipomoea batatas clon ‘INIVITB2-2005’ en Sistema de Inmersión Temporal. Biotecnología Vegetal, 8(2). https://revista.ibp.co.cu/index.php/BV/article/view/343Pernisová, M., Klíma, P., Horák, J., Válková, M., Malbeck, J., Souček, P., Reichman, P., Hoyerová, K., Dubová, J., Friml, J., Zažímalová, E., & Hejátko, J. (2009). Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3609–3614. https://doi.org/10.1073/pnas.0811539106Piccolo, A., Pietramellara, G., & Mbagwu, J. S. C. (1997). Use of humic substances as soil conditioners to increase aggregate stability. Geoderma, 75(3–4), 267–277. https://doi.org/10.1016/S0016-7061(96)00092-4Pinto-Stelle, M. A., Garcia, L. C., Gomes, J. A., Farias, A., Weirich, P. H., Rocha, C. H., & De Souza, N. M. (2021). Seed sweet potato production in aeroponics. International Journal of Development Research (IJDR), 11, 51256–51261. https://www.journalijdr.com/seed-sweet-potato-production-aeroponicsPoorter, H., & Nagel, O. (2000). The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 27(6), 595–607. https://doi.org/10.1071/PP99173Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., & Mommer, L. (2012). Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytologist, 193(1), 30–50. https://doi.org/10.1111/j.1469-8137.2011.03952.xPrintz, B., Lutts, S., Hausman, J. F., & Sergeant, K. (2016). Copper trafficking in plants and its implication on cell wall dynamics. Frontiers in Plant Science, 7, 601. https://doi.org/10.3389/FPLS.2016.00601/BIBTEXQiao, Q., Zhang, Z., Zhao, X., Wang, Y., Wang, S., Qin, Y., Zhang, D., Tian, Y., & Zhao, F. (2019). Evidence for seed transmission of sweet potato symptomless virus 1 in sweet potato (Ipomoea batatas). Journal of Plant Pathology 2019 102:2, 102(2), 299–303. https://doi.org/10.1007/S42161-019-00427-YRahayu, R. S., Ramadhani, I., Masrukhin, M., Riastiwi, I., Prawestri, A. D., & Yuliani, Y. (2021). CONFIRMATION OF ENDOPHYTIC MICROBES CAUSING CONTAMINATION IN WATER SPINACH (Ipomoea aquatica Forssk.) TISSUE CULTURE. Jurnal Bioteknologi & Biosains Indonesia (JBBI), 7(2), 234–249. https://doi.org/10.29122/jbbi.v7i2.4381Rajendran, S., Kimenye, L. N., & McEwan, M. (2017). Strategies for the development of the sweetpotato early generation seed sector in eastern and southern Africa. Open Agriculture, 2(1), 236–243. https://doi.org/10.1515/OPAG-2017-0025Ramazan, M., Daraz Khan, G., Hanif, M., & Ali, S. (2012). Impact of Soil Compaction on Root Length and Yield of Corn (Zea mays) under Irrigated Condition. Middle-East Journal of Scientific Research, 11(3), 382–385.Ran, Y., Ma, M., Liu, Y., Zhu, K., Yi, X., Wang, X., Wu, S., & Huang, P. (2020). Physicochemical determinants in stabilizing soil aggregates along a hydrological stress gradient on reservoir riparian habitats: Implications to soil restoration. Ecological Engineering, 143, 105664. https://doi.org/10.1016/j.ecoleng.2019.105664Ravi, V., Naskar, S. ., Makeshkumar, T., Babu, B., & Prakash Krishnan, B. S. (2009). Molecular Physiology of Storage Root Formation and Development in Sweet Potato (Ipomoea batatas (L.) Lam.). Journal of Root Crops, 35(1), 1–27.Ricke, S. C. (2003). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Science, 82(4), 632–639. https://doi.org/10.1093/PS/82.4.632Rosero, A., Pastrana Vargas, I. J., García Peña, J. A., Espitia Montes, A. A., Sierra Naranjo, C. M., Sierra Monroy, J. A., Martínez Botello, D. H., Santana Rodríguez, M. O., Pérez Gamero, J. L., Regino Hernández, S. M., Espitia Negrete, L. B., Araújo Vásquez, H. A., Martínez, R., & García Herazo, J. L. (2019). AGROSAVIA Aurora. Variedad de batata de pulpa anaranjada para el Caribe colombiano. In AGROSAVIA Aurora. Variedad de batata de pulpa anaranjada para el Caribe colombiano (No. 1). Corporación Colombiana de Investigación Agropecuaria (Agrosavia). https://doi.org/10.21930/AGROSAVIA.BROCHURE.7403107Rosero, A., Sierra, C., Pastrana, I., Granda, L., Pérez, J. L., Martínez, R., Morelo, J., Espitia, L., Araujo, H., & De Paula, C. (2020). Genotypic and environmental factors influence the proximate composition and quality attributes of sweetpotato (Ipomoea batatas L.). Agriculture and Food Security, 9(1), 1–17. https://doi.org/10.1186/S40066-020-00268-4/TABLES/8RTeam. (2020). R: The R Project for Statistical Computing. https://www.r-project.org/Sadeghi, F., Samsampour, D., Seyahooei, M. A., Bagheri, A., & Soltani, J. (2019). Diversity and Spatiotemporal Distribution of Fungal Endophytes Associated with Citrus reticulata cv. Siyahoo. Current Microbiology, 76(3), 279–289. https://doi.org/10.1007/s00284-019-01632-9Sadok, W., & Sinclair, T. R. (2009). Genetic variability of transpiration response to vapor pressure deficit among soybean (Glycine max [L.] Merr.) genotypes selected from a recombinant inbred line population. Field Crops Research, 113(2), 156–160. https://doi.org/10.1016/j.fcr.2009.05.002Saidi, A., & Hajibarat, Z. (2021). Phytohormones: plant switchers in developmental and growth stages in potato. Journal of Genetic Engineering and Biotechnology 2021 19:1, 19(1), 1–17. https://doi.org/10.1186/S43141-021-00192-5Salawu, S. O., Udi, E., Akindahunsi, A. A., Boligon, A. A., & Athayde, M. L. (2015). Antioxidant potential, phenolic profile and nutrient composition of flesh and peels from Nigerian white and purple skinned sweet potato (Ipomea batatas L.). Pelagia Research Library Asian Journal of Plant Science and Research, 5(5), 14–23.Samiyarsih, S., Juwarno, J., & Muljowati, J. S. (2018). The Structural Resistance’s Anatomy of Sweet Potato Leaves to Fungal Pathogen Sphaceloma batatas. Biosaintifika: Journal of Biology & Biology Education, 10(1), 131–137. https://doi.org/10.15294/biosaintifika.v10i1.12116Sandoval-Denis, M., Gené, J., Sutton, D. A., Wiederhold, N. P., Cano-Lira, J. F., & Guarro, J. (2016). New species of Cladosporium associated with human and animal infections. Persoonia: Molecular Phylogeny and Evolution of Fungi, 36(JUNE), 281–298. https://doi.org/10.3767/003158516X691951Santiago-Rosario, L. Y., Harms, K. E., Elderd, B. D., Hart, P. B., & Dassanayake, M. (2021). No escape: The influence of substrate sodium on plant growth and tissue sodium responses. Ecology and Evolution, 11(20), 14231–14249. https://doi.org/10.1002/ECE3.8138Santos, L. F., & Olivares, F. L. (2021). Plant microbiome structure and benefits for sustainable agriculture. Current Plant Biology, 26, 100198. https://doi.org/10.1016/J.CPB.2021.100198Sastry, K. S. (2013). Seed-borne plant virus diseases. In Seed-borne plant virus diseases (1st ed.). Springer India. https://doi.org/10.1007/978-81-322-0813-6Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682. https://doi.org/10.1038/nmeth.2019Seydi, S., Negahdar, N., Andevari, R. T., Ansari, M. H., & Kaviani, B. (2016). Effect of BAP and NAA on Micropropagation of Caladium bicolor (Aiton) Vent., an Ornamental Plant. Journal of Ornamental Plants, 6(1), 59–66.Shamshiri, R. R., Jones, J. W., Thorp, K. R., Ahmad, D., Man, H. C., & Taheri, S. (2018). Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: A review. International Agrophysics, 32(2), 287–302. https://doi.org/10.1515/intag-2017-0005Shirdel, M., Motallebi-Azar, A. R., Matloobi, M., Mokhtarzadeh, S., & Ozdemir, F. A. (2017). In Vitro establishment procedures of dog rose (Rosa canina). Journal of Applied Biological Sciences, 11(2), 06–09. http://jabsonline.org/index.php/jabs/article/view/530Singh, A. (2015). Micropropagation of Plants. In Bir Bahadur, Manchikatla Venkat Rajam, Leela Sahijram, & K. V. Krishnamurthy (Eds.), Plant Biology and Biotechnology: Volume II: Plant Genomics and Biotechnology (1st ed., pp. 329–346). Springer, New Delhi. https://doi.org/10.1007/978-81-322-2283-5_16Singh, C. R. (2018). Review on problems and its remedy in plant tissue culture. Asian Journal of Biological Sciences, 11(4), 165–172. https://doi.org/10.3923/ajbs.2018.165.172Singh, P., Aravindakshan, K., Maurya, I. B., Singh, J., Singh, B., & Sharma, M. K. (2017). Effect of potassium and zinc on growth, yield and economics of sweet potato (Ipomoea batatas L.) cv. CO-34. Journal of Applied and Natural Science, 9(1), 291–297. https://doi.org/10.31018/JANS.V9I1.1186Siose, T., Kader, M., & Tulin, A. (2017). Determination of limiting nutrient to Sweetpotato (L.) growth on Samoa Oxisol using a Ipomoea batatas Nutrient Omission Technique. Annals of Tropical Research, 105–119. https://doi.org/10.32945/ATR3917.2017Sivparsad, B. ., & Gubba, A. (2012). Development of an efficient plant regeneration protocol for sweet potato (Ipomoea batatas L.) cv. Blesbok. African Journal of Biotechnology, 11(84), 14982–14987. https://doi.org/10.4314/ajb.v11i84.Six, J., Feller, C., Denef, K., Ogle, S., Carlos De Moraes Sa, J., Albrecht, A., Carlos, J., & Ogle, S. M. (2002). Soil organic matter, biota and aggregation in temperate and tropical soils-effects of no-tillage. Agronomie, EDP Sciences, 22(7–8), 755–775. https://doi.org/10.1051/agro:2002043ïSpielman, D. J., Gatto, M., Wossen, T., McEwan, M., Abdoulaye, T., Maredia, M. K., & Hareau, G. (2021). Regulatory options to improve seed systems for vegetatively propagated crops in developing countries. https://doi.org/10.2499/P15738COLL2.134441Spinoso-Castillo, J. L., Pérez-Sato, J. A., Schettino-Salomón, S. S., & Bello-Bello, J. J. (2022). An alternative method for medium-term in vitro conservation of different plant species through gibberellin inhibitors. In Vitro Cellular and Developmental Biology - Plant, 1–9. https://doi.org/10.1007/S11627-022-10263-Y/FIGURES/4Ssamula, A., Okiror, A., Avrahami-Moyal, L., Tam, Y., Gaba, V., Gibson, R. W., Gal-On, A., Mukasa, S. B., & Wasswa, P. (2020). Factors influencing reversion from virus infection in sweetpotato. Annals of Applied Biology, 176(2), 109–121. https://doi.org/10.1111/AAB.12551Su, Y. H., Liu, Y. B., & Zhang, X. S. (2011). Auxin-cytokinin interaction regulates meristem development. In Molecular Plant (Vol. 4, Issue 4, pp. 616–625). Oxford University Press. https://doi.org/10.1093/mp/ssr007Taiyun, W., & Viliam, S. (2021). R package “corrplot”: Visualization of a Correlation Matrix (Version 0.92). . https://github.com/taiyun/corrplot/blob/master/corrplot.RprojTalukdar, R., Wary, S., Mili, C., Roy, S., & Tayung, K. (2020). Antimicrobial secondary metabolites obtained from endophytic fungi inhabiting healthy leaf tissues of Houttuynia cordata Thunb., an ethnomedicinal plant of Northeast India. Journal of Applied Pharmaceutical Science, 10(9), 99–106. https://doi.org/10.7324/JAPS.2020.10912Tekielska, D., Peňázová, E., Kovács, T., Křižan, B., Čechová, J., & Eichmeier, A. (2019). Bacterial Contamination of Plant in vitro Cultures in Commercial Production Detected by High‑Throughput Amplicon Sequencing. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 67(4), 1005–1014. https://doi.org/10.11118/actaun201967041005Thompson, W. B., Schultheis, J. R., Chaudhari, S., Monks, D. W., Jennings, K. M., & Grabow, G. L. (2017). Sweetpotato Transplant Holding Duration Effects on Plant Survival and Yield. HortTechnology, 27(6), 818–823. https://doi.org/10.21273/HORTTECH03808-17Tirez, K., Vanhoof, C., Hofman, S., Deproost, P., Swerts, M., & Salomez, J. (2014). Estimating the contribution of sampling, sample pretreatment, and analysis in the total uncertainty budget of agricultural soil pH and organic carbon monitoring. Communications in Soil Science and Plant Analysis, 45(7), 984–1002. https://doi.org/10.1080/00103624.2013.867056Tivet, F., de Moraes Sá, J. C., Lal, R., Briedis, C., Borszowskei, P. R., dos Santos, J. B., Farias, A., Eurich, G., Hartman, D. da C., Nadolny Junior, M., Bouzinac, S., & Séguy, L. (2013). Aggregate C depletion by plowing and its restoration by diverse biomass-C inputs under no-till in sub-tropical and tropical regions of Brazil. Soil and Tillage Research, 126, 203–218. https://doi.org/10.1016/j.still.2012.09.004Torres-Silva, G., Schnadelbach, A. S., Bezerra, H. B., Lima-Brito, A., & Resende, S. V. (2021). In vitro conservation and genetic diversity of threatened species of Melocactus (Cactaceae). Biodiversity and Conservation, 30(4), 1067–1080. https://doi.org/10.1007/S10531-021-02132-8/TABLES/2Tripathi, N., & Sapra, A. (2021). Gram Staining. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK562156/Tsakaldimi, M. (2006). Kenaf (Hibiscus cannabinus L.) core and rice hulls as components of container media for growing Pinus halepensis M. seedlings. Bioresource Technology, 97(14), 1631–1639. https://doi.org/10.1016/j.biortech.2005.07.027Tumbarski, Y., Georgiev, V., Nikolova, R., & Pavlov, A. (2018). Isolation, identification and antibiotic susceptibility of Curtobacterium Flaccumfaciens strain Pm_Yt from sea daffodil (Pancratium Maritimum L.) shoot cultures. Journal of Microbiology, Biotechnology and Food Sciences, 7(6), 623–627. https://doi.org/10.15414/jmbfs.2018.7.6.623-627Tyagi, B., Tewari, S., & Dubey, A. (2017). Biochemical characterization of fungus isolated during in vitro Propagation of Bambusa balcooa. Pharmacognosy Magazine, 13(52), S775–S779. https://doi.org/10.4103/pm.pm_20_17Umaru, M. A., Adam, P., Zaharah, S. S., & Daljit, S. K. (2021). Impact of Soil Compaction on Soil Physical Properties and Physiological Performance of Sweet Potato (Ipomea batatas L.). Malaysian Journal of Soil Science, 25, 15–28.Varga, J., Frisvad, J. C., Kocsubé, S., Brankovics, B., Tóth, B., Szigeti, G., & Samson, R. A. (2011). New and revisited species in Aspergillus section Nigri. Studies in Mycology, 69, 1–17. https://doi.org/10.3114/sim.2011.69.01Venables, W. N., & Ripley, B. D. (2002). Exploratory Multivariate Analysis. In W. N. Venables & B. D. Ripley (Eds.), Modern Applied Statistics with S (4th ed., pp. 301–330). Springer, New York, NY. https://doi.org/10.1007/978-0-387-21706-2_11Villordon, A., & Gregorie, J. C. (2021). Variation in boron availability alters root architecture attributes at the onset of storage root formation in three sweetpotato cultivars. HortScience, 56(11), 1423–1429. https://doi.org/10.21273/HORTSCI16134-21/-/DCSUPPLEMENTALVillordon, A., LaBonte, D., Solis, J., & Firon, N. (2012). Characterization of Lateral Root Development at the Onset of Storage Root Initiation in ‘Beauregard’ Sweetpotato Adventitious Roots. HortScience, 47(7), 961–968. https://doi.org/10.21273/HORTSCI.47.7.961Wang, J., Lei, Y., Yu, Y., Yin, L., & Zhang, Y. (2021). Use of acetic acid to partially replace lactic acid for decontamination against Escherichia coli O157:H7 in fresh produce and mechanism of action. Foods, 10(10), 2406. https://doi.org/10.3390/FOODS10102406/S1Wang, M. R., Lambardi, M., Engelmann, F., Pathirana, R., Panis, B., Volk, G. M., & Wang, Q. C. (2021). Advances in cryopreservation of in vitro-derived propagules: technologies and explant sources. Plant Cell, Tissue and Organ Culture, 144(1), 7–20. https://doi.org/10.1007/S11240-020-01770-0/FIGURES/3Wang, Q.-M., Jia, J.-H., Bai, F.-Y., & Bai, Y. (2016). Pseudozyma hubeiensis sp. nov. and Pseudozyma shanxiensis sp. nov.,novel ustilaginomycetous anamorphic yeast species from plant leaves. International Journal of Systematic and Evolutionary Microbiology, 56, 289–293. https://doi.org/10.1099/ijs.0.63827-0Wang, Q., Zhang, L. ming, Guan, Y. an, & Wang, Z. lin. (2006). Endogenous Hormone Concentration in Developing Tuberous Roots of Different Sweet Potato Genotypes. Agricultural Sciences in China, 5(12), 919–927. https://doi.org/10.1016/S1671-2927(07)60005-4Wanger, A., Chavez, V., Huang, R. S. P., Wahed, A., Actor, J. K., & Dasgupta, A. (2017). Biochemical Tests and Staining Techniques for Microbial Identification. In A. Wanger, R. S. P. Huang, J. K. Actor, V. Chavez, A. Wahed, & A. Dasgupta (Eds.), Microbiology and Molecular Diagnosis in Pathology (pp. 61–73). Elsevier. https://doi.org/10.1016/b978-0-12-805351-5.00005-3Wanjala, B. W., Srinivasulu, R., Makokha, P., Ssali, R. T., McEwan, M., Kreuze, J. F., & Low, J. W. (2020). Improving rapid multiplication of sweetpotato (Ipomoea batatas L. (Lam) pre-basic seed using sandponics technology in East Africa. Experimental Agriculture, 56(3), 347–354. https://doi.org/10.1017/S0014479719000413Widaryanto, E., & Saitama, A. (2017). Analysis of plant growth of ten varieties of sweet potato (ipomoea batatas L.) cultivated in rainy season. Asian Journal of Plant Sciences, 16(4), 193–199. https://doi.org/10.3923/ajps.2017.193.199Wondimu, T., Feyissa, T., & Bedada, G. (2012). Meristem culture of selected sweet potato (Ipomoea batatas L. Lam.) cultivars to produce virus-free planting material. Journal of Horticultural Science and Biotechnology, 87(3), 255–260. https://doi.org/10.1080/14620316.2012.11512861Wu, H. X. (2018). Benefits and risks of using clones in forestry – a review. Scandinavian Journal of Forest Research, 34(5), 352–359. https://doi.org/10.1080/02827581.2018.1487579Yadav, A. N. (2020). Plant Microbiomes for Sustainable Agriculture: Current Research and Future Challenges. 475–482. https://doi.org/10.1007/978-3-030-38453-1_16Yang, X. (2010). Rapid production of virus-free plantlets by shoot tip culture in vitro of purple-coloured sweet potato (Ipomoea batatas (L.) Lam.). Pakistan Journal of Botany, 42(3), 2069–2075.Yeasmin, S., Samiul Islam, M., Sujon, T., Sultana, R., Shah Alam, M., Sikdar, B., Asadul Islam, M., & Khalekuzzaman, M. (2018). Molecular and microscopic identification of fungi in micropropagation of nodal and shoot tip culture of orange. International Journal of Pure and Applied Bioscience, 6(6), 6–19. https://doi.org/10.18782/2320-7051.7081Yzarra, W. J., & López, F. M. (2011). Manual de observaciones fenológicas. https://www.senamhi.gob.pe/load/file/01401SENA-11.pdfZamecnik, J., Faltus, M., Bilavcik, A., Benelli, C., Carillo, P., & Amoo, S. O. (2021). Vitrification Solutions for Plant Cryopreservation: Modification and Properties. Plants 2021, Vol. 10, Page 2623, 10(12), 2623. https://doi.org/10.3390/PLANTS10122623Zhang, H., Tang, J., Liu, X. P., Wang, Y., Yu, W., Peng, W. Y., Fang, F., Ma, D. F., Wei, Z. J., & Hu, L. Y. (2009). Hydrogen sulfide promotes root organogenesis in Ipomoea batatas, Salix matsudana and Glycine max. Journal of Integrative Plant Biology, 51(12), 1086–1094. https://doi.org/10.1111/J.1744-7909.2009.00885.XZhang, K., Lu, H., Wan, C., Tang, D., Zhao, Y., Luo, K., Li, S., & Wang, J. (2020). The Spread and Transmission of Sweet Potato Virus Disease (SPVD) and Its Effect on the Gene Expression Profile in Sweet Potato. Plants, 9(4), 492. https://doi.org/10.3390/plants9040492Zhang, Y., Jiang, G., Ding, Y., & Loria, R. (2018). Genetic background affects pathogenicity island function and pathogen emergence in Streptomyces. Molecular Plant Pathology, 19(7), 1733–1741. https://doi.org/10.1111/mpp.12656Zhao, F., Wang, L., Zhang, Z., Qiao, Q., Qin, Y., Wang, Y., Wang, S., Tian, Y., Zhang, D., & Zhao, X. (2020). Seed transmission of sweet potato pakakuy virus in sweet potato (Ipomoea batatas). Journal of General Plant Pathology, 86(3), 205–210. https://doi.org/10.1007/S10327-020-00915-5Zhou, X., Ren, X., Luo, H., Huang, L., Liu, N., Chen, W., Lei, Y., Liao, B., & Jiang, H. (2022). Safe conservation and utilization of peanut germplasm resources in the Oil Crops Middle-term Genebank of China. Oil Crop Science, 7(1), 9–13. https://doi.org/10.1016/J.OCSCI.2021.12.001Ziv, M. (1995). In vitro acclimatization. In Jenny Aitken-Christie, T. Kozai, & M.A.L Smith (Eds.), Automation and environmental control in plant tissue culture (1st ed., Vol. 41, Issue 3, pp. 493–516). Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8461-6_20Desarrollo de estrategias de manejo integrado del cultivo, postcosecha y aprovechamiento integral del cultivo de batata en Colombia.Ministerio de Agricultura y Desarrollo RuralEstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82447/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1085282821.2022.pdf1085282821.2022.pdfTesis de Maestría en Ciencias - Biotecnologíaapplication/pdf5539329https://repositorio.unal.edu.co/bitstream/unal/82447/2/1085282821.2022.pdfb412efbee591aacc4e7cb2645a5a16feMD52THUMBNAIL1085282821.2022.pdf.jpg1085282821.2022.pdf.jpgGenerated Thumbnailimage/jpeg5856https://repositorio.unal.edu.co/bitstream/unal/82447/3/1085282821.2022.pdf.jpg2d76eb2a8861d6c0ce209b3ef4ce04b7MD53unal/82447oai:repositorio.unal.edu.co:unal/824472023-08-10 23:03:49.204Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=