Metodología para el modelado y predicción del comportamiento de las barras de arena

Resumen: Las barras de arena son características naturales generadas en las zonas costeras por la interacción entre el mar y la costa. Los procesos de corto plazo que determinan el comportamiento de las barras son las olas y el transporte de sedimentos. La interacción entre el oleaje y la costa es a...

Full description

Autores:
Múnera Álvarez, Sebastián Fernando
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/51269
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/51269
http://bdigital.unal.edu.co/45343/
Palabra clave:
0 Generalidades / Computer science, information and general works
Series de tiempo no lineales
Modelado no lineal
Identificación de modelos
Barras de arena
Descomposición empírica en modos
Zonas costeras
Modelos basados en datos
Nonlinear time series
Empirical mode decomposition
Nonlinear modelling
Model identification
Sandbars
Nearshore zones
Data-driven models
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Resumen: Las barras de arena son características naturales generadas en las zonas costeras por la interacción entre el mar y la costa. Los procesos de corto plazo que determinan el comportamiento de las barras son las olas y el transporte de sedimentos. La interacción entre el oleaje y la costa es altamente no lineal y, tradicionalmente, los modelos basados en procesos (es decir, modelos de evolución) han sido utilizados para modelar y analizar el comportamiento de las barras en el corto plazo. Sin embargo, las predicciones a mediano y largo plazo no siempre son posibles con estos modelos por las siguientes razones: i) imprecisiones en los datos usados para calibrar o validar los modelos y límites en la capacidad computacional ocasionando acumulación exponencial de errores, ii) poco entendimiento del sistema estudiado, y iii) esfuerzo computacional al simular en el mediano a largo plazo. Los modelos basados en datos surgen como una alternativa a los modelos basados en procesos, pues no se requiere el conocimiento físico para el modelo, sino que extraen el conocimiento únicamente a partir de los patrones encontrados en los datos. Las técnicas basadas en datos: descomposición empírica en modos (EMD, por su sigla en inglés) y redes neuronales autorregresivas (ARNN, por su sigla en inglés) se aplicaron a las series de tiempo de las barras y oleaje de la costa de Cartagena de Indias, Colombia para encontrar la dependencia no lineal entre ellas. El primer método se usa para analizar la relación entre las barras y las condiciones de oleaje de forma gráfica; mientras que el segundo método se usa para derivar los coeficientes de autocorrelación/correlación cruzada simple/parcial entre ellas. Se detecta evidencia de dependencias no lineales entre el estado presente de la posición de las barras y el oleaje, y el estado pasado de las barras. El principal objetivo de esta tesis es desarrollar una metodología para modelar las series de tiempo no lineales de la posición de las barras con la altura significante de ola y el período pico como variables exógenas. La metodología se basa en la clásica metodología Box - Jenkins para identificación de sistemas dinámicos lineales, pero extendiéndolo al caso no lineal. Los modelos utilizados en este enfoque están basados en redes neuronales artificiales y unos híbridos entre modelos lineales y no lineales, los cuales demuestran tener una buena capacidad de predicción.