Efecto antioxidante del extracto de Moringa oleifera en la maduración in vitro de oocitos bovinos

Ilustraciones, tablas

Autores:
Amaya Barragán, Lina Marcela
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80346
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80346
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas
Extractos de hoja
Extractos vegetales
Antioxidantes
Moringa
blastocisto
Biotecnología
Estrés oxidativo
Planta medicinal
Ganado vacuno
blastocyst
biotechnology
oxidative stress
medicinal plant
cattle
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_cdf11f16d6c5be7a63a7991ceb9bd40d
oai_identifier_str oai:repositorio.unal.edu.co:unal/80346
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Efecto antioxidante del extracto de Moringa oleifera en la maduración in vitro de oocitos bovinos
dc.title.translated.eng.fl_str_mv Antioxidant effect of Moringa oleifera extract in the in vitro maturation of bovine oocytes
title Efecto antioxidante del extracto de Moringa oleifera en la maduración in vitro de oocitos bovinos
spellingShingle Efecto antioxidante del extracto de Moringa oleifera en la maduración in vitro de oocitos bovinos
630 - Agricultura y tecnologías relacionadas
Extractos de hoja
Extractos vegetales
Antioxidantes
Moringa
blastocisto
Biotecnología
Estrés oxidativo
Planta medicinal
Ganado vacuno
blastocyst
biotechnology
oxidative stress
medicinal plant
cattle
title_short Efecto antioxidante del extracto de Moringa oleifera en la maduración in vitro de oocitos bovinos
title_full Efecto antioxidante del extracto de Moringa oleifera en la maduración in vitro de oocitos bovinos
title_fullStr Efecto antioxidante del extracto de Moringa oleifera en la maduración in vitro de oocitos bovinos
title_full_unstemmed Efecto antioxidante del extracto de Moringa oleifera en la maduración in vitro de oocitos bovinos
title_sort Efecto antioxidante del extracto de Moringa oleifera en la maduración in vitro de oocitos bovinos
dc.creator.fl_str_mv Amaya Barragán, Lina Marcela
dc.contributor.advisor.none.fl_str_mv Torres Osorio, Viviana
Campos Gaona, Rómulo
dc.contributor.author.none.fl_str_mv Amaya Barragán, Lina Marcela
dc.contributor.datacurator.none.fl_str_mv Vélez, Mauricio
dc.contributor.researchgroup.spa.fl_str_mv Conservación, Mejoramiento y Utilización del Ganado Criollo Hartón del Valle y Otros Recursos Genéticos Animales en el Sur Occidente Colombiano
dc.contributor.subjectmatterexpert.none.fl_str_mv Torres Castañeda, Harlen
Urrego, Rodrigo
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas
topic 630 - Agricultura y tecnologías relacionadas
Extractos de hoja
Extractos vegetales
Antioxidantes
Moringa
blastocisto
Biotecnología
Estrés oxidativo
Planta medicinal
Ganado vacuno
blastocyst
biotechnology
oxidative stress
medicinal plant
cattle
dc.subject.agrovoc.none.fl_str_mv Extractos de hoja
Extractos vegetales
Antioxidantes
Moringa
dc.subject.proposal.spa.fl_str_mv blastocisto
Biotecnología
Estrés oxidativo
Planta medicinal
Ganado vacuno
dc.subject.proposal.eng.fl_str_mv blastocyst
biotechnology
oxidative stress
medicinal plant
cattle
description Ilustraciones, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-09-30T20:11:57Z
dc.date.available.none.fl_str_mv 2021-09-30T20:11:57Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_e19f295774971610
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80346
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80346
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abdel Fattah, M. E., Sobhy, H. M., Reda, A., & Abdelrazek, H. M. A. (2020). Hepatoprotective effect of Moringa oleifera leaves aquatic extract against lead acetate–induced liver injury in male Wistar rats. Environmental Science and Pollution Research, 27(34), 43028–43043. https://doi.org/10.1007/s11356-020-10161-z
Adeoye, O., Olawumi, J., Opeyemi, A., & Christiania, O. (2018). Review on the role of glutathione on oxidative stress and infertility. Jornal Brasileiro de Reproducao Assistida, 22(1), 61–66. https://doi.org/10.5935/1518-0557.20180003
Agarwal, A., Durairajanayagam, D., & du Plessis, S. S. (2014). Utility of antioxidants during assisted reproductive techniques: An evidence based review. Reproductive Biology and Endocrinology, 12(1). https://doi.org/10.1186/1477-7827-12-112
Agarwal, A., Virk, G., Ong, C., & du Plessis, S. S. (2014). Effect of Oxidative Stress on Male Reproduction. The World Journal of Men’s Health, 32(1), 1. https://doi.org/10.5534/wjmh.2014.32.1.1
Aju, B. Y., Rajalakshmi, R., & Mini, S. (2019). Protective role of Moringa oleifera leaf extract on cardiac antioxidant status and lipid peroxidation in streptozotocin induced diabetic rats. Heliyon, 5(12), 2935. https://doi.org/10.1016/j.heliyon.2019.e02935
Akorede, G. J., Ambali, S. F., Hudu, M. G., Suleiman, M. M., Suleiman, K. Y., Abdulrahim, H. A., … AbdulMajeed, I. (2020). Carbamazepine evoked reproductive toxicity in male Wistar rats: protective properties of Moringa oleifera leaves methanolic extract. Comparative Clinical Pathology, 29(6), 1179–1187. https://doi.org/10.1007/s00580-020-03169-x
AL Juhaimi, F., Ghafoor, K., Ahmed, I. A. M., Babiker, E. E., & Özcan, M. M. (2017). Comparative study of mineral and oxidative status of Sonchus oleraceus, Moringa oleifera and Moringa peregrina leaves. Journal of Food Measurement and Characterization, 11(4), 1745–1751. https://doi.org/10.1007/s11694-017-9555-9
Alamgir, A. N. M. (2018). Therapeutic Use of Medicinal Plants and Their Extracts. In Progress in Drug Research (Vol. 74). Retrieved from http://dx.doi.org/10.1007/978-3-319-63862-1
Alvarez, G. M., Morado, S. A., Soto, M. P., Dalvit, G. C., & Cetica, P. D. (2015). The Control of Reactive Oxygen Species Influences Porcine Oocyte In Vitro Maturation. Reproduction in Domestic Animals, 50(2), 200–205. https://doi.org/10.1111/rda.12469
Anand, J., Upadhyaya, B., Rawat, P., & Rai, N. (2015). Biochemical characterization and pharmacognostic evaluation of purified catechins in green tea (Camellia sinensis) cultivars of India. 3 Biotech, 5(3), 285–294. https://doi.org/10.1007/s13205-014-0230-0
Aremu, A., Kingsley, E. I., Talha, B. K., Akeem, A. O., Ibrahim, R. A., Jimoh, A. G., & Yusuf, S. K. (2018). Methanolic leaf extract of Moringa oleifera improves the survivability rate, weight gain and histopathological changes of Wister rats infected with Trypanosoma brucei. International Journal of Veterinary Science and Medicine, 6(1), 39–44. https://doi.org/10.1016/j.ijvsm.2018.04.006
Assiene Agamou, J. A., Fombang, E. N., & Mbofung, C. M. F. (2015). Particular benefits can be attributed to Moringa oleifera lam leaves based on origin and stage of maturity. Journal of Experimental Biology and Agricultural Sciences, 3(6), 541–555. https://doi.org/10.18006/2015.3(6).541.555
Bajpai, V. K., Majumder, R., & Park, J. G. (2016). Isolation and purification of plant secondary metabolites using column-chromatographic technique. Bangladesh Journal of Pharmacology, 11(4), 844–848. https://doi.org/10.3329/bjp.v11i4.28185
Barakat, I. A. H., Khalil, W. K. B., & Al-Himaidi, A. R. (2015). Moringa oleifera extract modulates the expression of fertility related genes and elevation of calcium ions in sheep oocytes. Small Ruminant Research, 130, 67–75. https://doi.org/10.1016/j.smallrumres.2015.06.011
Barriera, S., Moutinho, C., Silva, A. M. N., Neves, J., Seo, E.-J., Hegazy, Mohamed-Elamir Efferthc, T., & Gomes, L. R. (2020). Phytochemical characterization and biological activities of green tea ( Camellia sinensis ) produced in the Azores , Portugal Department of Pharmaceutical Biology , Institute of Pharmacy and Biochemistry , Johannes. In Phytomedicine Plus. https://doi.org/10.1016/j.phyplu.2020.100001
Bennour, N., Mighri, H., Eljani, H., Zammouri, T., & Akrout, A. (2020). Effect of solvent evaporation method on phenolic compounds and the antioxidant activity of Moringa oleifera cultivated in Southern Tunisia. South African Journal of Botany, 129, 181–190. https://doi.org/10.1016/j.sajb.2019.05.005
Bharti, R., & Singh, B. (2020). Green tea (Camellia assamica) extract as an antioxidant additive to enhance the oxidation stability of biodiesel synthesized from waste cooking oil. Fuel, 262. https://doi.org/10.1016/j.fuel.2019.116658
Blanco, M. R., Demyda, S., Moreno Millán, M., & Genero, E. (2012). Developmental competence of in vivo and in vitro matured oocytes: A review. Animal Reproduction Science, 9(3), 281–289.
Bó, G. A., & Mapletoft, R. J. (2014). Historical perspectives and recent research on superovulation in cattle. Theriogenology, 81(1), 38–48. https://doi.org/10.1016/j.theriogenology.2013.09.020
Boots, A. W., Li, H., Schins, R. P. F., Duffin, R., Heemskerk, J. W. M., Bast, A., & Haenen, G. R. M. M. (2007). The quercetin paradox. Toxicology and Applied Pharmacology, 222(1), 89–96. https://doi.org/10.1016/j.taap.2007.04.004
Braham, F., Carvalho, D. O., Almeida, C. M. R., Zaidi, F., Magalhães, J. M. C. S., Guido, L. F., & Gonçalves, M. P. (2019). Online HPLC-DPPH screening method for evaluation of radical scavenging phenols extracted from Moringa oleifera leaves. South African Journal of Botany, 1–9. https://doi.org/10.1016/j.sajb.2019.04.001
Cadorin Oldoni, T. L., Merlin, N., Karling, M., Carpes, S. T., Alencar, S. M. de, Morales, R. G. F., … Pilau, E. J. (2019). Bioguided extraction of phenolic compounds and UHPLC-ESI-Q-TOF-MS/MS characterization of extracts of Moringa oleifera leaves collected in Brazil. Food Research International, 125(August), 108647. https://doi.org/10.1016/j.foodres.2019.108647
Cai, L. yun, Shi, F. xiang, & Gao, X. (2011). Preliminary phytochemical analysis of Acanthopanan trifoliatus ( L .) Merr. Journal of Medicinal Plants, 5(1097), 4059–4064.
Chen, J., Yang, J., Ma, L., Li, J., Shahzad, N., & Kim, C. K. (2020). Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-59451-z
Chowdhury, M. M. R., Choi, B. H., Khan, I., Lee, K. L., Mesalam, A., Song, S. H., … Kong, I. K. (2017). Supplementation of lycopene in maturation media improves bovine embryo quality in vitro. Theriogenology, 103, 173–184. https://doi.org/10.1016/j.theriogenology.2017.08.003
Combelles, C. M. H., Gupta, S., & Agarwal, A. (2009). Could oxidative stress influence the in-vitro maturation of oocytes? Reproductive BioMedicine Online, 18(6), 864–880. https://doi.org/10.1016/S1472-6483(10)60038-7
Conrad, M., Ingold, I., Buday, K., Kobayashi, S., & Angeli, J. P. F. (2015). ROS, thiols and thiol-regulating systems in male gametogenesis. Biochimica et Biophysica Acta - General Subjects, 1850(8), 1566–1574. https://doi.org/10.1016/j.bbagen.2014.10.020
Coy, P., Grullon, L., Canovas, S., Romar, R., Matas, C., & Aviles, M. (2008). Hardening of the zona pellucida of unfertilized eggs can reduce polyspermic fertilization in the pig and cow. Reproduction, 135(1), 19–27. https://doi.org/10.1530/REP-07-0280
du Plessis, S. S., Makker, K., Desai, N. R., & Agarwal, A. (2008). Impact of oxidative stress on IVF. Expert Review of Obstetrics & Gynecology, 3(4), 539–554. https://doi.org/10.1586/17474108.3.4.539
Fan, Z., Yang, M., Regouski, M., & Polejaeva, I. A. (2017). Effects of three different media on in vitro maturation and development, intracellular glutathione and reactive oxygen species levels, and maternal gene expression of abattoir-derived goat oocytes. Small Ruminant Research, 147, 106–114. https://doi.org/10.1016/j.smallrumres.2016.12.041
Farooq, B., & Koul, B. (2019). Comparative analysis of the antioxidant, antibacterial and plant growth promoting potential of five Indian varieties of Moringa oleifera L. South African Journal of Botany. https://doi.org/10.1016/j.sajb.2018.12.014
Ferré, L. B., Kjelland, M. E., Strøbech, L. B., Hyttel, P., Mermillod, P., & Ross, P. J. (2020). Review: Recent advances in bovine in vitro embryo production: Reproductive biotechnology history and methods. Animal, 14(5), 991–1004. https://doi.org/10.1017/S1751731119002775
Ferré, L., & Cattaneo, L. (2013). Biotecnologías reproductivas: producción in vitro de embriones y semen sexado. (¿La pareja perfecta?). Rev. Med. Vet., 94(2), 28–36.
Foti, M. C. (2015). Use and Abuse of the DPPH• Radical. Journal of Agricultural and Food Chemistry, 63(40), 8765–8776. https://doi.org/10.1021/acs.jafc.5b03839
Fotio, A. L., Nguepi, M. S. D., Tonfack, L. B., Temdie, R. J. G., & Nguelefack, T. B. (2020). Acetaminophen induces liver injury and depletes glutathione in mice brain: Prevention by Moringa oleifera extract. South African Journal of Botany, 129, 317–323. https://doi.org/10.1016/j.sajb.2019.08.037
Furnus, C. C., de Matos, D. G., Picco, S., García, P. P., Inda, A. M., Mattioli, G., & Errecalde, A. L. (2008). Metabolic requirements associated with GSH synthesis during in vitro maturation of cattle oocytes. Animal Reproduction Science, 109(1–4), 88–99. https://doi.org/10.1016/j.anireprosci.2007.12.003
García, J. R., Romero, J., Astiz, S., & Ruiz, S. (2013). Adición de sustancias antioxidantes en los medios de cultivo empleados en la producción in vitro de embriones en mamíferos Addition of antioxidant substances to culture media used in the in vitro production of mammal. 35(1), 10–19.
Glasauer, A., & Chandel, N. S. (2013). Ros. Current Biology, 23(3), R100–R102. https://doi.org/10.1016/j.cub.2012.12.011
Gonçalves, D. R., Leroy, J. L. M. R., Van Hees, S., Xhonneux, I., Bols, P. E. J., Kiekens, F., & Marei, W. F. A. (2021). Cellular uptake of polymeric nanoparticles by bovine cumulus-oocyte complexes and their effect on in vitro developmental competence. European Journal of Pharmaceutics and Biopharmaceutics, 158(November 2020), 143–155. https://doi.org/10.1016/j.ejpb.2020.11.011
Guemra, S., Monzani, P. S., Santos, E. S., Zanin, R., Ohashi, O. M., Miranda, M. S., & Adona, P. R. (2013). Maturação in vitro de oócitos bovinos em meios suplementados com quercetina e seu efeito sobre o desenvolvimento embrionário. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 65, 1616–1624.
Guérin, P., El Mouatassim, S., & Ménézo, Y. (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Human Reproduction Update, 7(2), 175–189. https://doi.org/10.1093/humupd/7.2.175
Guimarães, A. C. G., Leivas, F. G., Santos, F. W., Schwengber, E. B., Giotto, A. B., Machado, C. I. U., … Brum, D. S. (2014). Reduction of centrifugation force in discontinuous percoll gradients increases in vitro fertilization rates without reducing bovine sperm recovery. Animal Reproduction Science, 146, 103–110. https://doi.org/10.1016/j.anireprosci.2014.02.016
Gutnisky, C., Morado, S., Gadze, T., Donato, A., Alvarez, G., Dalvit, G., & Cetica, P. (2020). Morphological, biochemical and functional studies to evaluate bovine oocyte vitrification. Theriogenology, 143, 18–26. https://doi.org/10.1016/j.theriogenology.2019.11.037
Hamed, Y. S., Abdin, M., Akhtar, H. M. S., Chen, D., Wan, P., Chen, G., & Zeng, X.(2019). Extraction, purification by macrospores resin and in vitro antioxidant activity of flavonoids from Moringa oliefera leaves. South African Journal of Botany, 124, 270–279. https://doi.org/10.1016/j.sajb.2019.05.006
Hansen, J. M., & Harris, C. (2015). Glutathione during embryonic development. Biochimica et Biophysica Acta - General Subjects, 1850(8), 1527–1542. https://doi.org/10.1016/j.bbagen.2014.12.001
Holguín, V., García, I., & Mora, J. (2018). Arboles y arbustos para silvopasturas: uso, calidad y alometría (Colors Edi). Retrieved from https://www.researchgate.net/profile/Jairo_Mora-Delgado/publication/326720362_Arboles_y_arbustos_para_silvopasturas/links/5b6090f6458515c4b256c0f3/Arboles-y-arbustos-para-silvopasturas.pdf#page=44
Hong, G., Wang, J., Zhang, Y., Hochstetter, D., Zhang, S., Pan, Y., … Wang, Y. (2014). Biosynthesis of catechin components is differentially regulated indark-treated tea (Camellia sinensis L.). Plant Physiology and Biochemistry, 78, 49–52. https://doi.org/10.1016/j.plaphy.2014.02.017
Huang, Z., Pang, Y., Hao, H., Du, W., Zhao, X., & Zhu, H. (2018). Effects of epigallocatechin-3-gallate on bovine oocytes matured in vitro. Asian-Australasian Journal of Animal Sciences, 31(9), 1420–1430. https://doi.org/10.5713/ajas.17.0880
Idoga, E. S., Ambali, S. F., Ayo, J. O., & Mohammed, A. (2018). Assessment of antioxidant and neuroprotective activities of methanol extract of Moringa oleifera Lam. leaves in subchronic chlorpyrifos-intoxicated rats. Comparative Clinical Pathology, 27(4), 917–925. https://doi.org/10.1007/s00580-018-2682-9
Ighodaro, O. M., & Akinloye, O. A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287–293. https://doi.org/10.1016/j.ajme.2017.09.001
Jaiswal, D., Rai, P. K., Mehta, S., Chatterji, S., Shukla, S., Rai, D. K., … Watal, G. (2013). Role of Moringa oleifera in regulation of diabetes-induced oxidative stress. Asian Pacific Journal of Tropical Medicine, 6(6), 426–432. https://doi.org/10.1016/S1995-7645(13)60068-1
Kang, J.-T., Kwon, D.-K., Park, S.-J., Kim, S.-J., Moon, J.-H., Kim, T., … Lee, B.-C. (2013). Quercetin improves the in vitro development of porcine oocytes by decreasing reactive oxygen species levels. Biology of Reproduction, 12(1), 15–20. https://doi.org/10.1093/biolreprod/87.s1.217
Kang, J. T., Moon, J. H., Choi, J. Y., Park, S. J., Kim, S. J., Saadeldin, I. M., & Lee, B. C. (2016). Effect of antioxidant flavonoids (Quercetin and Taxifolin) on in vitro maturation of porcine oocytes. Asian-Australasian Journal of Animal Sciences, 29(3), 352–358. https://doi.org/10.5713/ajas.15.0341
Karthivashan, G., Arulselvan, P., Tan, S. W., & Fakurazi, S. (2015). The molecular mechanism underlying the hepatoprotective potential of Moringa oleifera leaves extract against acetaminophen induced hepatotoxicity in mice. Journal of Functional Foods, 17, 115–126. https://doi.org/10.1016/j.jff.2015.05.007
Kashyap, D., Sharma, A., Tuli, H. S., Sak, K., Punia, S., & Mukherjee, T. K. (2017). Kaempferol – A dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements. Journal of Functional Foods, 30, 203–219. https://doi.org/10.1016/j.jff.2017.01.022
Kelley, R. L., & Gardner, D. K. (2019). Individual culture and atmospheric oxygen during culture affect mouse preimplantation embryo metabolism and postimplantation development. Reproductive BioMedicine Online, 1–16. https://doi.org/10.1016/j.rbmo.2019.03.102
Kere, M., Siriboon, C., Lo, N.-W., Nguyen, N. T., & Ju, J.-C. (2013). Ascorbic Acid Improves the Developmental Competence of Porcine Oocytes after Parthenogenetic Activation and Somatic Cell Nuclear Transplantation. Journal of Reproduction and Development, 59(1). https://doi.org/10.1262/jrd.2012-114
Khalafalla, M. M., Abdellatef, E., Dafalla, H. M., Nassrallah, A. A., Aboul-Enein, K. M., Lightfoot, D. A., … El-Shemy, H. A. (2010). Active principle from Moringa oleifera Lam leaves effective against two leukemias and a hepatocarcinoma. African Journal of Biotechnology, 9(49), 8467–8471. https://doi.org/10.4314/ajb.v9i49
Khalil, S. R., El Bohi, K. M., Khater, S., Abd El-fattah, A. H., Mahmoud, F. A., & Farag, M. R. (2020). Moringa oleifera leaves ethanolic extract influences DNA damage signaling pathways to protect liver tissue from cobalt -triggered apoptosis in rats. Ecotoxicology and Environmental Safety, 200(May), 110716. https://doi.org/10.1016/j.ecoenv.2020.110716
Kwak, S.-S., Cheong, S.-A. A., Jeon, Y., Lee, E., Choi, K.-C. C., Jeung, E.-B. B., & Hyun, S.-H. H. (2012). The effects of resveratrol on porcine oocyte in vitro maturation and subsequent embryonic development after parthenogenetic activation and in vitro fertilization. Theriogenology, 78(1), 86–101. https://doi.org/10.1016/j.theriogenology.2012.01.024
Lee, S., Jin, J. X., Taweechaipaisankul, A., Kim, G. A., & Lee, B. C. (2018). Synergistic effects of resveratrol and melatonin on in vitro maturation of porcine oocytes and subsequent embryo development. Theriogenology, 114, 191–198. https://doi.org/10.1016/j.theriogenology.2018.03.040
Li, H. J., Sutton-Mcdowall, M. L., Wang, X., Sugimura, S., Thompson, J. G., & Gilchrist, R. B. (2016). Extending prematuration with cAMP modulators enhances the cumulus contribution to oocyte antioxidant defence and oocyte quality via gap junctions. Human Reproduction, 31(4), 810–821. https://doi.org/10.1093/humrep/dew020
Li, W., Goossens, K., Van Poucke, M., Forier, K., Braeckmans, K., Van Soom, A., & Peelman, L. J. (2014). High oxygen tension increases global methylation in bovine 4-cell embryos and blastocysts but does not affect general retrotransposon expression. Reproduction, Fertility and Development, 28(7), 948–959. https://doi.org/10.1071/RD14133
Lim, T. K. (2011). Edible Medicinal and Non-Medicinal Plants. In D. Springer (Ed.), Edible Medicinal and Non-Medicinal Plants (Vol. 3, pp. 453–485). https://doi.org/10.1007/978-94-017-7276-1
Lin, M., Zhang, J., & Chen, X. (2018). Bioactive flavonoids in Moringa oleifera and their health-promoting properties. Journal of Functional Foods, 47(May), 469–479. https://doi.org/10.1016/j.jff.2018.06.011
Liu, M. J., Sun, A. G., Zhao, S. G., Liu, H., Ma, S. Y., Li, M., … Liu, H. Bin. (2018). Resveratrol improves in vitro maturation of oocytes in aged mice and humans. Fertility and Sterility, 109(5), 900–907. https://doi.org/10.1016/j.fertnstert.2018.01.020
Liu, Y., Wang, X., Wei, X., Gao, Z., & Han, J. (2018). Values, properties and utility of different parts of Moringa oleifera: An overview. Chinese Herbal Medicines, 1–8. https://doi.org/https://doi.org/10.1016/j.chmed.2018.09.002
Lonergan, P., Rizos, D., Ward, F., & Boland, M. P. (2001). Factors influencing oocyte and embryo quality in cattle. Reproduction Nutrition Development, 41(5), 427–437. https://doi.org/10.1051/rnd:2001142
Loren, P., Sánchez, R., Arias, M. E., Felmer, R., Risopatrón, J., & Cheuquemán, C. (2017). Melatonin scavenger properties against oxidative and nitrosative stress:Impact on gamete handling and in vitro embryo production in humans and other mammals. International Journal of Molecular Sciences, 18(6), 1–18. https://doi.org/10.3390/ijms18061119
Lushchak, V. I. (2014). Free radicals, reactive oxygen species, oxidative stress and its classification. Chemico-Biological Interactions, 224, 164–175. https://doi.org/10.1016/j.cbi.2014.10.016
Lv, L., Yue, W., Liu, W., Ren, Y., Li, F., Lee, K. B., & Smith, G. W. (2010). Effect of oocyte selection, estradiol and antioxidant treatment on in vitro maturation of oocytes collected from prepubertal Boer goats. Italian Journal of Animal Science, 9(1), 50–54. https://doi.org/10.4081/ijas.2010.e11
Madrid Gaviria, S., López Herrera, A., Restrepo Betancur, G., Urrego, R., & Echeverri Zuluaga, J. J. (2019). Supplementation with resveratrol during culture improves the quality of in vitro produced bovine embryos. Livestock Science, 221(September 2018), 139–143. https://doi.org/10.1016/j.livsci.2019.01.025
Madrid Gaviria, S., López Herrera, A., Urrego, R., Restrepo Betancur, G., & Echeverri Zuluaga, J. J. (2019). Effect of resveratrol on vitrified in vitro produced bovine embryos: Recovering the initial quality. Cryobiology, 89(63), 42–50. https://doi.org/10.1016/j.cryobiol.2019.05.008
Magata, F., Ideta, A., Okubo, H., Matsuda, F., Urakawa, M., & Oono, Y. (2019). Growth potential of bovine embryos presenting abnormal cleavage observed through time lapse cinematography. Theriogenology, 133, 119–124. https://doi.org/10.1016/j.theriogenology.2019.04.031
Mahmoud, K. G. M., El-Sokary, M. M. M., Kandiel, M. M. M., Abou El-Roos, M. E. A., & Sosa, G. M. S. (2016). Effects of cysteamine during in vitro maturation on viability and meiotic competence of vitrified buffalo oocytes. Iranian Journal of Veterinary Research, 17(3), 165–170. https://doi.org/10.22099/ijvr.2016.3810
Maillo, V., Lopera-Vasquez, R., Hamdi, M., Gutierrez-Adan, A., Lonergan, P., & Rizos, D. (2016). Maternal-embryo interaction in the bovine oviduct: Evidence from in vivo and in vitro studies. Theriogenology, 86(1), 443–450. https://doi.org/10.1016/j.theriogenology.2016.04.060
Mandawala, A. A., Harvey, S. C., Roy, T. K., & Fowler, K. E. (2016). Cryopreservation of animal oocytes and embryos: Current progress and future prospects. Theriogenology, 86(7), 1637–1644.https://doi.org/10.1016/j.theriogenology.2016.07.018
Marí, M., Morales, A., Colell, A., García-Ruiz, C., Kaplowitz, N., & Fernández-Checa, J. C. (2013). Mitochondrial glutathione: Features, regulation and role in disease. Biochimica et Biophysica Acta - General Subjects, 1830(5), 3317–3328. https://doi.org/10.1016/j.bbagen.2012.10.018
Martinez, C. A., Nohalez, A., Ceron, J. J., Rubio, C. P., Roca, J., Cuello, C., … Gil, M. A. (2017). Peroxidized mineral oil increases the oxidant status of culture media and inhibits in vitro porcine embryo development. Theriogenology, 103, 17–23. https://doi.org/10.1016/j.theriogenology.2017.07.028
Mateo-Otero, Y., Yeste, M., Damato, A., & Giaretta, E. (2021). Cryopreservation and oxidative stress in porcine oocytes. Research in Veterinary Science, 135(January), 20–26. https://doi.org/10.1016/j.rvsc.2020.12.024
Mbemya, G. T., Vieira, L. A., Canafistula, F. G., Pessoa, O. D. L., & Rodrigues, A. P. R. (2017). Reports on in vivo and in vitro contribution of medicinal plants to improve the female reproductive function. Reproducao e Climaterio, 32(2), 109–119. https://doi.org/10.1016/j.recli.2016.11.002
Mckee, T., & Mckee, J. R. (2014). Bioquímica: Las bases moleculares de la vida. (McGRAW-HI). México D. F.
Menezo, Y. J. R., Silvestris, E., Dale, B., & Elder, K. (2016). Oxidative stress and alterations in DNA methylation: two sides of the same coin in reproduction. Reproductive BioMedicine Online, 33(6), 668–683. https://doi.org/10.1016/j.rbmo.2016.09.006
Morado, S. A., Cetica, P. D., Beconi, M. T., & Dalvit, G. C. (2009). Reactive oxygen species in bovine oocyte maturation in vitro. Reproduction, Fertility and Development, 21(4), 608–614. https://doi.org/10.1071/RD08198
Morin, S. J. (2017). Oxygen tension in embryo culture: does a shift to 2% O2 in extended culture represent the most physiologic system? Journal of Assisted Reproduction and Genetics, 34, 309–314. https://doi.org/10.1007/s10815-017-0880-z
Moyo, B., Oyedemi, S., Masika, P. J., & Muchenje, V. (2012). Polyphenolic content and antioxidant properties of Moringa oleifera leaf extracts and enzymatic activity of liver from goats supplemented with Moringa oleifera leaves/sunflower seed cake. Meat Science, 91, 441–447. https://doi.org/10.1016/j.meatsci.2012.02.029
Mukherjee, A., Malik, H., Saha, A. P., Dubey, A., Singhal, D. K., Boateng, S., … Malakar, D. (2014). Resveratrol treatment during goat oocytes maturation enhances developmental competence of parthenogenetic and hand-made cloned blastocysts by modulating intracellular glutathione level and embryonic gene expression. Journal of Assisted Reproduction and Genetics, 31(2), 229–239. https://doi.org/10.1007/s10815-013-0116-9
Muratori, M., Tarozzi, N., Carpentiero, F., Danti, S., Perrone, F. M., Cambi, M., … Baldi, E. (2019). Sperm selection with density gradient centrifugation and swim up: effect on DNA fragmentation in viable spermatozoa. Scientific Reports, 9. https://doi.org/10.1038/s41598-019-43981-2
Mwamatope, B., Tembo, D., Chikowe, I., Kampira, E., & Nyirenda, C. (2020). Total phenolic contents and antioxidant activity of Senna singueana, Melia azedarach, Moringa oleifera and Lannea discolor herbal plants. Scientific African, 9. https://doi.org/10.1016/j.sciaf.2020.e00481
Nascimento, J. A., Araújo, K. L. G. V., Epaminondas, P. S., Souza, A. S., Magnani, M., Souza, A. L., … Souza, A. G. (2013). Ethanolic extracts of Moringa oleifera Lam.: Evaluation of its potential as an antioxidant additive for fish oil. Journal of Thermal Analysis and Calorimetry, 114(2), 833–838. https://doi.org/10.1007/s10973-013-3045-z
Nohalez, A., Martinez, C. A., Parrilla, I., Roca, J., Gil, M. A., Rodriguez-Martinez, H., … Cuello, C. (2018). Exogenous ascorbic acid enhances vitrification survival of porcine in vitro-developed blastocysts but fails to improve the in vitro embryo production outcomes. Theriogenology, 113, 113–119. https://doi.org/10.1016/j.theriogenology.2018.02.014
Nolfi Donegan, D., Braganza, A., & Shiva, S. (2020). Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biology, 37, 101674. https://doi.org/10.1016/j.redox.2020.101674
Nouman, W., Anwar, F., Gull, T., Newton, A., Rosa, E., & Domínguez-Perles, R. (2016). Profiling of polyphenolics, nutrients and antioxidant potential of germplasm’s leaves from seven cultivars of Moringa oleifera Lam. Industrial Crops and Products, 83, 166–176. https://doi.org/10.1016/j.indcrop.2015.12.032
Oguntibeju, O. O., Aboua, G. Y., & Omodanisi, E. I. (2020). Effects of Moringa oleifera on oxidative stress, apoptotic and inflammatory biomarkers in streptozotocin-induced diabetic animal model. South African Journal of Botany, 129, 354–365. https://doi.org/10.1016/j.sajb.2019.08.039
Oladeji, O. S., Odelade, K. A., & Oloke, J. K. (2019). Phytochemical screening and antimicrobial investigation of Moringa oleifera leaf extracts. African Journal of Science, Technology, Innovation and Development, 1–6. https://doi.org/10.1080/20421338.2019.1589082
Olson, M. E., & Fahey, J. W. (2011). Moringa oleifera : un árbol multiusos para las zonas tropicales secas. Revista Mexicana De Biodiversidad, 82, 1071–1082. https://doi.org/http://dx.doi.org/10.7550/rmb.28737
Oseikria, M., Elis, S., Maillard, V., Corbin, E., & Uzbekova, S. (2016). N-3 polyunsaturated fatty acid DHA during IVM affected oocyte developmental competence in cattle. Theriogenology, 85(9), 1625–1634. https://doi.org/10.1016/j.theriogenology.2016.01.019
Pachuau, L., Laldinchhana, Roy, P. K., Zothantluanga, J. H., Supratim, R., & Sanjib, D. (2021). Encapsulation of Bioactive Compound and Its Therapeutic Potential. https://doi.org/https://doi-org.ezproxy.unal.edu.co/10.1007/978-3-030-54027-2_20
Poprac, P., Jomova, K., Simunkova, M., Kollar, V., Rhodes, C. J., & Valko, M. (2017). Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends in Pharmacological Sciences, 38(7), 592–607. https://doi.org/10.1016/j.tips.2017.04.005
Prabakaran, M., Kim, S. H., Sasireka, A., Chandrasekaran, M., & Chung, I. M. (2018). Polyphenol composition and antimicrobial activity of various solvent extracts from different plant parts of Moringa oleifera. Food Bioscience, 26(February), 23–29. https://doi.org/10.1016/j.fbio.2018.09.003
Remião, M. H., Lucas, C. G., Domingues, W. B., Silveira, T., Barther, N. N., Komninou, E. R., … Collares, T. (2016). Melatonin delivery by nanocapsules during in vitro bovine oocyte maturation decreased the reactive oxygen species of oocytes and embryos. Reproductive Toxicology, 63, 70–81. https://doi.org/10.1016/j.reprotox.2016.05.016
Rizos, D., Clemente, M., Bermejo-Alvarez, P., De La Fuente, J., Lonergan, P., & Gutiérrez-Adán, A. (2008). Consequences of in vitro culture conditions on embryo development and quality. Reproduction in Domestic Animals, 43(SUPPL.4), 44–50. https://doi.org/10.1111/j.1439-0531.2008.01230.x
Rocha-Frigoni, N. A. S., Leão, B. C. S., Dall’Acqua, P. C., & Mingoti, G. Z. (2016). Improving the cytoplasmic maturation of bovine oocytes matured in vitro with intracellular and/or extracellular antioxidants is not associated with increased rates of embryo development. Theriogenology, 86(8), 1897–1905. https://doi.org/10.1016/j.theriogenology.2016.06.009
Rodrigues-Cunha, M. C., Mesquita, L. G., Bressan, F., Collado, M. del, Balieiro, J. C. C., Schwarz, K. R. L., … Leal, C. L. V. (2016). Effects of melatonin during IVM in defined medium on oocyte meiosis, oxidative stress, and subsequent embryo development. Theriogenology, 86(7), 1685–1694. https://doi.org/10.1016/j.theriogenology.2016.05.026
Rodrigues, B. A., Rodrigues, C. A., Salviano, M. B., Willhelm, B. R., Collares, F. J. F., & Rodrigues, J. L. (2013). Similar patterns of embryo development in canine oocytes cultured in vitro at oxygen tensions of 5 and 20%. Theriogenology, 79, 1224–1228. https://doi.org/10.1016/j.theriogenology.2013.02.022
Rodríguez Pérez, C., Quirantes Piné, R., Fernández Gutiérrez, A., & Segura Carretero, A. (2015). Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Industrial Crops and Products, 66, 246–254. https://doi.org/10.1016/j.indcrop.2015.01.002
Roleira, F. M. F., Tavares-Da-Silva, E. J., Varela, C. L., Costa, S. C., Silva, T., Garrido, J., & Borges, F. (2015). Plant derived and dietary phenolic antioxidants: Anticancer properties. Food Chemistry, 183, 235–258. https://doi.org/10.1016/j.foodchem.2015.03.039
Romek, M., Gajda, B., Krzysztofowicz, E., Kucia, M., Uzarowska, A., & Smorag, Z. (2017). Improved quality of porcine embryos cultured with hyaluronan due to the modification of the mitochondrial membrane potential and reactive oxygen species level. Theriogenology, 102, 1–9. https://doi.org/10.1016/j.theriogenology.2017.06.026
Roychoudhury, S., Agarwal, A., Virk, G., & Cho, C. L. (2017). Potential role of green tea catechins in the management of oxidative stress-associated infertility. Reproductive BioMedicine Online, 34(5), 487–498. https://doi.org/10.1016/j.rbmo.2017.02.006
Salzano, A., Albero, G., Zullo, G., Neglia, G., Abdel-Wahab, A., Bifulco, G., … Gasparrini, B. (2014). Effect of resveratrol supplementation during culture on the quality and cryotolerance of bovine in vitro produced embryos. Animal Reproduction Science, 151, 91–96. https://doi.org/10.1016/j.anireprosci.2014.09.018
Sen, S., Chakraborty, R., Sridhar, C., Reddy, Y. S. R., & De, B. (2010). Free radicals, antioxidants, diseases and phytomedicines: Current status and future prospect. International Journal of Pharmaceutical Sciences Review and Research, 3(1), 91–100.
Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review. Journal of Functional Foods, 18, 820–897. https://doi.org/10.1016/j.jff.2015.06.018
Soto-Heras, S., & Paramio, M. T. (2020). Impact of oxidative stress on oocyte competence for in vitro embryo production programs. Research in Veterinary Science, 132, 342–350. https://doi.org/10.1016/j.rvsc.2020.07.013
Souza, N. C., de Oliveira Nascimento, E. N., de Oliveira, I. B., Oliveira, H. M. L., Santos, E. G. P., Moreira Cavalcanti Mata, M. E. R., … de Bittencourt Pasquali, M. A. (2020). Anti-inflammatory and antixidant properties of blend formulated with compounds of Malpighia emarginata D.C (acerola) and Camellia sinensis L. (green tea) in lipopolysaccharide-stimulated RAW 264.7 macrophages. Biomedicine and Pharmacotherapy, 128(May), 110–277. https://doi.org/10.1016/j.biopha.2020.110277
Sovernigo, T. C., Adona, P. R., Monzani, P. S., Guemra, S., Barros, F. D. A., Lopes, F. G., & Leal, C. L. V. (2017). Effects of supplementation of medium with different antioxidants during in vitro maturation of bovine oocytes on subsequent embryo production. Reproduction in Domestic Animals, 52(4), 561–569. https://doi.org/10.1111/rda.12946
Spinaci, M., Bucci, D., Muccilli, V., Cardullo, N., Nerozzi, C., & Galeati, G. (2019). A polyphenol-rich extract from an oenological oak-derived tannin influences in vitro maturation of porcine oocytes. Theriogenology, 129, 82–89. https://doi.org/10.1016/j.theriogenology.2019.02.017
Sreelatha, S., & Padma, P. R. (2009). Antioxidant Activity and Total Phenolic Content of Moringa oleifera Leaves in Two Stages of Maturity. Plant Foods for Human Nutrition, 64(303).
Sun, B., Ricardo-da-Silva, J. M., & Spranger, I. (1998). Critical Factors of Vanillin Assay for Catechins and Proanthocyanidins. Journal of Agricultural and Food Chemistry, 46(10), 4267–4274. https://doi.org/10.1021/jf980366j
Tarazona, M., Olivera, M., & Lenis, Y. (2010). Mitochondrial rol and oxidative stress in the developmental blockade of in vitro produced bovine embryos. Archivos de Medicina Veterinaria, 133(3), 125–133. https://doi.org/10.4067/S0301-732X2010000300003
Tiloke, C., Anand, K., Gengan, R. M., & Chuturgoon, A. A. (2018). Moringa oleifera and their phytonanoparticles: Potential antiproliferative agents against cancer. Biomedicine and PharmTiloke, 108(April), 457–466. https://doi.org/10.1016/j.biopha.2018.09.060
Timme, A. R., Hahn, M. E., Hansen, J. M., Rastogi, A., & Roy, M. A. (2018). Redox stress and signaling during vertebrate embryonic development: Regulation and responses. Seminars in Cell and Developmental Biology, 80, 17–28. https://doi.org/10.1016/j.semcdb.2017.09.019
Toit, E. S. d., Sithole, J., & Vorster, J. (2020). Leaf harvesting severity affects total phenolic and tannin content of fresh and dry leaves of Moringa oleifera Lam. trees growing in Gauteng, South Africa. South African Journal of Botany, 129, 336–340. https://doi.org/10.1016/j.sajb.2019.08.035
Torres C., H., Colmenares D., A. J., & Isaza M., J. H. (2013). Total Phenolics Antioxidant Activity and Phytochemical Profile of Some Plants From the Yotoco National Protected Forest. Revista de Ciencias, 17, 35–44.
Torres, V., Muñoz B, L., Urrego B, R., Echeverry, J. J., & Lopez, A. (2016). 81 RESVERATROL DURING IN VITRO MATURATION IMPROVES THE QUALITY OF BOVINE OOCYTE AND ENHANCES EMBRYONIC DEVELOPMENT IN VITRO. Reproduction, Fertility and Development, 29(1), 199–199. https://doi.org/10.1071/RDv29n1Ab181
Varghese, A., Ly, K., Corbin, C., Mendiola, J., & Agarwal, A. (2011). Oocyte developmental competence and embryo development: impact of lifestyle and enviromental risk factors. Reproductive BioMedicine, 22, 410–420.
Vásquez, N., Torres, V., & Rojano, B. (2014). Efecto del Ácido Ascórbico durante Maduración In Vitro de Oocitos Bovinos en la Producción de Especies Reactivas de Oxígeno (ERO) y Competencia para el Desarrollo Embrionario. Información Tecnológica, 25(2), 141–150. https://doi.org/10.4067/S0718-07642014000200016
Vats, S., & Gupta, T. (2017). Evaluation of bioactive compounds and antioxidant potential of hydroethanolic extract of Moringa oleifera Lam. from Rajasthan, India. Physiology and Molecular Biology of Plants, 23(1), 239–248. https://doi.org/10.1007/s12298-016-0407-6
Vázquez-León, L. A., Páramo-Calderón, D. E., Robles-Olvera, V. J., Valdés-Rodríguez, O. A., Pérez-Vázquez, A., García-Alvarado, M. A., & Rodríguez-Jimenes, G. C. (2017). Variation in bioactive compounds and antiradical activity of Moringa oleifera leaves: influence of climatic factors, tree age, and soil parameters. European Food Research and Technology, 243(9), 1593–1608. https://doi.org/10.1007/s00217-017-2868-4
Velez, I. C., Chica, A., Urrego, R., Torres, V., Jimenez-Escobar, C., & Zambrano-Varon, J. (2017). Producción in vitro de embriones a partir de complejos cúmulos oocitos tipo II en bovinos Bos indicus. CES Medicina Veterinaria y Zootecnia, 12(2), 76–87. https://doi.org/10.21615/cesmvz.12.2.1
Verma, A. R., Vijayakumar, M., Mathela, C. S., & Rao, C. V. (2009). In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves. Food and Chemical Toxicology, 47(9), 2196–2201. https://doi.org/10.1016/j.fct.2009.06.005
Viana, J. (2020). 2019 Statistics of Embryo Collection and Transfer in Domestic Farm Animals. Embryo Transfer Newletter, 38(4), 14–26.
Vyas, S., Kachhwaha, S., & Kothari, S. L. (2015). Comparative analysis of phenolic contents and total antioxidant capacity of Moringa oleifera Lam. Pharmacognosy Journal, 7(1), 44–51. https://doi.org/10.5530/pj.2015.7.5
Wang, Fang, Long, S., Zhang, J., Yu, J., Xiong, Y., Zhou, W., … Jiang, H. (2020). Antioxidant activities and anti-proliferative effects of Moringa oleifera L. extracts with head and neck cancer. Food Bioscience, 37(July), 100691. https://doi.org/10.1016/j.fbio.2020.100691
Wang, Feng, Tan, D., He, C., Tian, X., Liu, GuoShiLi, Y., Ji, P., & Zhang, L. (2013). Beneficial effect of resveratrol on bovine oocyte maturation and subsequent embryonic development after in vitro fertilization. Fertility and Sterility, 101(2), 577-586.e1. https://doi.org/10.1016/j.fertnstert.2013.10.041
Will, M. A., Clark, N. A., & Swain, J. E. (2011). Biological pH buffers in IVF: Help or hindrance to success. Journal of Assisted Reproduction and Genetics, 28(8), 711–724. https://doi.org/10.1007/s10815-011-9582-0
Wrenzycki, C. (2016). In vitro culture systems: How far are we from optimal conditions? Animal Reproduction, 13(3), 279–282. https://doi.org/10.21451/1984-3143-AR869
Wu, L., Li, L., Chen, S., Wang, L., & Lin, X. (2020). Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves: Optimization, comparison and antioxidant activity. Separation and Purification Technology, 247. https://doi.org/10.1016/j.seppur.2020.117014
Wulandari, L. R., Umiati, S., & Sujuti, H. (2019). Protective effect of methanol extract of kelor (Moringa oleifera) leaves on glutathione peroxidase (gpx) levels in trabecular meshwork cell culture of primary congenital glaucoma patients. EurAsian Journal of BioSciences, 13(2), 839–844.
Yang, J., & Liu, R. H. (2013). The phenolic profiles and antioxidant activity in different types of tea. International Journal of Food Science and Technology, 48(1), 163–171. https://doi.org/10.1111/j.1365-2621.2012.03173.x
Zabihi, A., Shabankareh, H. K., Hajarian, H., & Foroutanifar, S. (2019). Resveratrol addition to in vitro maturation and in vitro culture media enhances developmental competence of sheep embryos. Domestic Animal Endocrinology, 68, 25–31. https://doi.org/10.1016/j.domaniend.2018.12.010
Zabihi, Adeleh, Shabankareh, H. K., Hajarian, H., & Foroutanifar, S. (2021). In vitro maturation medium supplementation with resveratrol improves cumulus cell expansion and developmental competence of Sanjabi sheep oocytes. Livestock Science, 243(December 2020), 104378. https://doi.org/10.1016/j.livsci.2020.104378
Zhang, Y., Lin, H., Liu, C., Huang, J., & Liu, Z. (2020). A review for physiological activities of EGCG and the role in improving fertility in humans/mammals. Biomedicine and Pharmacotherapy, 127(April), 110186. https://doi.org/10.1016/j.biopha.2020.110186
Zhao, X. ‐ M., Wang, N., Hao, H. ‐ S., Li, C.-Y., Zhao, Y. ‐ H., Yan, C. ‐ L., … Hua-Bin. (2018). Melatonin improves the fertilization capacity and developmental ability of bovine oocytes by regulating cytoplasmic maturation events. Journal of Pineal, 64(1), 42–49. https://doi.org/10.1111/ijlh.12426
Zhong, R. zhen, & Zhou, D. wei. (2013). Oxidative stress and role of natural plant derived antioxidants in animal reproduction. Journal of Integrative Agriculture, 12(10), 1826–1838. https://doi.org/10.1016/S2095-3119(13)60412-8
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 85 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Palmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agropecuarias
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Palmira
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80346/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80346/3/1113669612.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80346/4/1113669612.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
9ee18390abc47400c70b656f9d66e8c8
7d115b47719c76ea4e91341b4ce68ac2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886599722532864
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Torres Osorio, Viviana8a0c9bca367e01ac8a0ea640c8eb7685Campos Gaona, Rómulof8816487732e56dd010acaeeb7d6bfdaAmaya Barragán, Lina Marcela148fb455d0420929b8e361a76be7d24dVélez, MauricioConservación, Mejoramiento y Utilización del Ganado Criollo Hartón del Valle y Otros Recursos Genéticos Animales en el Sur Occidente ColombianoTorres Castañeda, HarlenUrrego, Rodrigo2021-09-30T20:11:57Z2021-09-30T20:11:57Z2021https://repositorio.unal.edu.co/handle/unal/80346Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, tablasLas hojas de Moringa oleifera tienen compuestos como vitaminas, minerales y metabolitos secundarios que le confieren propiedades antioxidantes. Sin embargo, el extracto de esta planta no ha sido estudiado como suplemento en los medios de cultivo en la producción in vitro de embriones bovinos. Por tanto, el objetivo fue evaluar si el medio de maduración in vitro con extracto de Moringa oleifera mejora la competencia del oocito y la calidad del blastocisto, a través de la tasa de maduración nuclear, tasa de blastocistos totales, niveles de especies reactivas de oxígeno (EROs), niveles de glutatión (GSH) intracelular y número de células totales. La extracción fitoquímica se realizó a partir de hojas maduras de Moringa oleifera. Los oocitos provenientes de ovarios de una planta de beneficio (1446) se maduraron en medio TCM 199 suplementado con 0 (control- , C), 50, 100 y 150 μg mL1 de extracto de Moringa oleifera y 50 μg mL-1 de ácido ascórbico (Control+ , AA). Pasadas 24 horas, se fertilizaron y cultivaron de acuerdo con el procedimiento estándar. Los datos obtenidos fueron analizados con la prueba Kruskal-Wallis. No se observaron diferencias significativas entre tratamientos (P>0,05), a excepción de los niveles de GSH y EROs, que se redujeron un 59% y 57%, respectivamente, con el uso de 150 μg mL-1 de extracto. En conclusión, el extracto de Moringa oleifera redujo las EROs, sin embargo las concentraciones de GSH intracelular también se redujeron y no hubo un efecto significativo en la maduración in vitro de oocitos bovinos ni en el desarrollo embrionario temprano. (Texto tomado de la fuente)Moringa oleifera leaves have compounds such as vitamins, minerals and secondary metabolites that give it antioxidant properties. However, the extract of this plant has not been studied as a supplement in culture media in the in vitro production of bovine embryos. Therefore, the objective was to evaluate whether the in vitro maturation medium with Moringa oleifera extract improves oocyte competence and blastocyst quality, through the nuclear maturation rate, total blastocyst rate, levels of reactive oxygen species. (ROS), intracellular glutathione (GSH) levels and total cell number. The phytochemical extraction was carried out from mature leaves of Moringa oleifera. The oocytes from ovaries of a beneficiation plant (1446) were matured in TCM 199 medium supplemented with 0 (control- , C), 50, 100 and 150 μg mL-1 of Moringa oleifera extract and 50 μg mL-1 of ascorbic acid (Control + , AA). After 24 hours, they were fertilized and cultivated according to the standard procedure. The data obtained were analyzed with the Kruskal-Wallis test. No significant differences were observed between treatments (P> 0.05), with the exception of GSH and ROS levels, which were reduced by 59% and 57%, respectively, with the use of 150 μg mL-1 of extract. In conclusion, Moringa oleifera extract reduced ROS, however intracellular GSH concentrations were also reduced and there was no significant effect on in vitro maturation of bovine oocytes or early embryonic developmentMaestríaMagíster en Ciencias Agrarias1. Obtención del extracto de hojas de Moringa oleifera 2. Fraccionamiento del extracto 3. Análisis fitoquímico preliminar 4. Determinación colorimétrica a microescala de compuestos fenólicos 5. Contenido total de fenoles (CTF) 6. Contenido de Flavonoides Totales (CFT) 7.Contenido total de catequinas (CTC) 8. Determinación de la actividad antioxidante (DPPH, FRAP, ABTS) 9. Recolección de ovarios 10. Aspiración folicular y obtención de oocitos 11. Maduración in vitro (MIV) 12. Fertilización in vitro (FIV) 13. Cultivo in vitro (CIV) 14. Evaluación de la maduración nuclear 15. Evaluación de los niveles de EROs y GSH intracelulares 16. Evaluación de la calidad embrionariaProducción animal tropical85 páginasapplication/pdfspaUniversidad Nacional de ColombiaPalmira - Ciencias Agropecuarias - Maestría en Ciencias AgrariasFacultad de Ciencias AgropecuariasUniversidad Nacional de Colombia - Sede Palmira630 - Agricultura y tecnologías relacionadasExtractos de hojaExtractos vegetalesAntioxidantesMoringablastocistoBiotecnologíaEstrés oxidativoPlanta medicinalGanado vacunoblastocystbiotechnologyoxidative stressmedicinal plantcattleEfecto antioxidante del extracto de Moringa oleifera en la maduración in vitro de oocitos bovinosAntioxidant effect of Moringa oleifera extract in the in vitro maturation of bovine oocytesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_e19f295774971610http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMAbdel Fattah, M. E., Sobhy, H. M., Reda, A., & Abdelrazek, H. M. A. (2020). Hepatoprotective effect of Moringa oleifera leaves aquatic extract against lead acetate–induced liver injury in male Wistar rats. Environmental Science and Pollution Research, 27(34), 43028–43043. https://doi.org/10.1007/s11356-020-10161-zAdeoye, O., Olawumi, J., Opeyemi, A., & Christiania, O. (2018). Review on the role of glutathione on oxidative stress and infertility. Jornal Brasileiro de Reproducao Assistida, 22(1), 61–66. https://doi.org/10.5935/1518-0557.20180003Agarwal, A., Durairajanayagam, D., & du Plessis, S. S. (2014). Utility of antioxidants during assisted reproductive techniques: An evidence based review. Reproductive Biology and Endocrinology, 12(1). https://doi.org/10.1186/1477-7827-12-112Agarwal, A., Virk, G., Ong, C., & du Plessis, S. S. (2014). Effect of Oxidative Stress on Male Reproduction. The World Journal of Men’s Health, 32(1), 1. https://doi.org/10.5534/wjmh.2014.32.1.1Aju, B. Y., Rajalakshmi, R., & Mini, S. (2019). Protective role of Moringa oleifera leaf extract on cardiac antioxidant status and lipid peroxidation in streptozotocin induced diabetic rats. Heliyon, 5(12), 2935. https://doi.org/10.1016/j.heliyon.2019.e02935Akorede, G. J., Ambali, S. F., Hudu, M. G., Suleiman, M. M., Suleiman, K. Y., Abdulrahim, H. A., … AbdulMajeed, I. (2020). Carbamazepine evoked reproductive toxicity in male Wistar rats: protective properties of Moringa oleifera leaves methanolic extract. Comparative Clinical Pathology, 29(6), 1179–1187. https://doi.org/10.1007/s00580-020-03169-xAL Juhaimi, F., Ghafoor, K., Ahmed, I. A. M., Babiker, E. E., & Özcan, M. M. (2017). Comparative study of mineral and oxidative status of Sonchus oleraceus, Moringa oleifera and Moringa peregrina leaves. Journal of Food Measurement and Characterization, 11(4), 1745–1751. https://doi.org/10.1007/s11694-017-9555-9Alamgir, A. N. M. (2018). Therapeutic Use of Medicinal Plants and Their Extracts. In Progress in Drug Research (Vol. 74). Retrieved from http://dx.doi.org/10.1007/978-3-319-63862-1Alvarez, G. M., Morado, S. A., Soto, M. P., Dalvit, G. C., & Cetica, P. D. (2015). The Control of Reactive Oxygen Species Influences Porcine Oocyte In Vitro Maturation. Reproduction in Domestic Animals, 50(2), 200–205. https://doi.org/10.1111/rda.12469Anand, J., Upadhyaya, B., Rawat, P., & Rai, N. (2015). Biochemical characterization and pharmacognostic evaluation of purified catechins in green tea (Camellia sinensis) cultivars of India. 3 Biotech, 5(3), 285–294. https://doi.org/10.1007/s13205-014-0230-0Aremu, A., Kingsley, E. I., Talha, B. K., Akeem, A. O., Ibrahim, R. A., Jimoh, A. G., & Yusuf, S. K. (2018). Methanolic leaf extract of Moringa oleifera improves the survivability rate, weight gain and histopathological changes of Wister rats infected with Trypanosoma brucei. International Journal of Veterinary Science and Medicine, 6(1), 39–44. https://doi.org/10.1016/j.ijvsm.2018.04.006Assiene Agamou, J. A., Fombang, E. N., & Mbofung, C. M. F. (2015). Particular benefits can be attributed to Moringa oleifera lam leaves based on origin and stage of maturity. Journal of Experimental Biology and Agricultural Sciences, 3(6), 541–555. https://doi.org/10.18006/2015.3(6).541.555Bajpai, V. K., Majumder, R., & Park, J. G. (2016). Isolation and purification of plant secondary metabolites using column-chromatographic technique. Bangladesh Journal of Pharmacology, 11(4), 844–848. https://doi.org/10.3329/bjp.v11i4.28185Barakat, I. A. H., Khalil, W. K. B., & Al-Himaidi, A. R. (2015). Moringa oleifera extract modulates the expression of fertility related genes and elevation of calcium ions in sheep oocytes. Small Ruminant Research, 130, 67–75. https://doi.org/10.1016/j.smallrumres.2015.06.011Barriera, S., Moutinho, C., Silva, A. M. N., Neves, J., Seo, E.-J., Hegazy, Mohamed-Elamir Efferthc, T., & Gomes, L. R. (2020). Phytochemical characterization and biological activities of green tea ( Camellia sinensis ) produced in the Azores , Portugal Department of Pharmaceutical Biology , Institute of Pharmacy and Biochemistry , Johannes. In Phytomedicine Plus. https://doi.org/10.1016/j.phyplu.2020.100001Bennour, N., Mighri, H., Eljani, H., Zammouri, T., & Akrout, A. (2020). Effect of solvent evaporation method on phenolic compounds and the antioxidant activity of Moringa oleifera cultivated in Southern Tunisia. South African Journal of Botany, 129, 181–190. https://doi.org/10.1016/j.sajb.2019.05.005Bharti, R., & Singh, B. (2020). Green tea (Camellia assamica) extract as an antioxidant additive to enhance the oxidation stability of biodiesel synthesized from waste cooking oil. Fuel, 262. https://doi.org/10.1016/j.fuel.2019.116658Blanco, M. R., Demyda, S., Moreno Millán, M., & Genero, E. (2012). Developmental competence of in vivo and in vitro matured oocytes: A review. Animal Reproduction Science, 9(3), 281–289.Bó, G. A., & Mapletoft, R. J. (2014). Historical perspectives and recent research on superovulation in cattle. Theriogenology, 81(1), 38–48. https://doi.org/10.1016/j.theriogenology.2013.09.020Boots, A. W., Li, H., Schins, R. P. F., Duffin, R., Heemskerk, J. W. M., Bast, A., & Haenen, G. R. M. M. (2007). The quercetin paradox. Toxicology and Applied Pharmacology, 222(1), 89–96. https://doi.org/10.1016/j.taap.2007.04.004Braham, F., Carvalho, D. O., Almeida, C. M. R., Zaidi, F., Magalhães, J. M. C. S., Guido, L. F., & Gonçalves, M. P. (2019). Online HPLC-DPPH screening method for evaluation of radical scavenging phenols extracted from Moringa oleifera leaves. South African Journal of Botany, 1–9. https://doi.org/10.1016/j.sajb.2019.04.001Cadorin Oldoni, T. L., Merlin, N., Karling, M., Carpes, S. T., Alencar, S. M. de, Morales, R. G. F., … Pilau, E. J. (2019). Bioguided extraction of phenolic compounds and UHPLC-ESI-Q-TOF-MS/MS characterization of extracts of Moringa oleifera leaves collected in Brazil. Food Research International, 125(August), 108647. https://doi.org/10.1016/j.foodres.2019.108647Cai, L. yun, Shi, F. xiang, & Gao, X. (2011). Preliminary phytochemical analysis of Acanthopanan trifoliatus ( L .) Merr. Journal of Medicinal Plants, 5(1097), 4059–4064.Chen, J., Yang, J., Ma, L., Li, J., Shahzad, N., & Kim, C. K. (2020). Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-59451-zChowdhury, M. M. R., Choi, B. H., Khan, I., Lee, K. L., Mesalam, A., Song, S. H., … Kong, I. K. (2017). Supplementation of lycopene in maturation media improves bovine embryo quality in vitro. Theriogenology, 103, 173–184. https://doi.org/10.1016/j.theriogenology.2017.08.003Combelles, C. M. H., Gupta, S., & Agarwal, A. (2009). Could oxidative stress influence the in-vitro maturation of oocytes? Reproductive BioMedicine Online, 18(6), 864–880. https://doi.org/10.1016/S1472-6483(10)60038-7Conrad, M., Ingold, I., Buday, K., Kobayashi, S., & Angeli, J. P. F. (2015). ROS, thiols and thiol-regulating systems in male gametogenesis. Biochimica et Biophysica Acta - General Subjects, 1850(8), 1566–1574. https://doi.org/10.1016/j.bbagen.2014.10.020Coy, P., Grullon, L., Canovas, S., Romar, R., Matas, C., & Aviles, M. (2008). Hardening of the zona pellucida of unfertilized eggs can reduce polyspermic fertilization in the pig and cow. Reproduction, 135(1), 19–27. https://doi.org/10.1530/REP-07-0280du Plessis, S. S., Makker, K., Desai, N. R., & Agarwal, A. (2008). Impact of oxidative stress on IVF. Expert Review of Obstetrics & Gynecology, 3(4), 539–554. https://doi.org/10.1586/17474108.3.4.539Fan, Z., Yang, M., Regouski, M., & Polejaeva, I. A. (2017). Effects of three different media on in vitro maturation and development, intracellular glutathione and reactive oxygen species levels, and maternal gene expression of abattoir-derived goat oocytes. Small Ruminant Research, 147, 106–114. https://doi.org/10.1016/j.smallrumres.2016.12.041Farooq, B., & Koul, B. (2019). Comparative analysis of the antioxidant, antibacterial and plant growth promoting potential of five Indian varieties of Moringa oleifera L. South African Journal of Botany. https://doi.org/10.1016/j.sajb.2018.12.014Ferré, L. B., Kjelland, M. E., Strøbech, L. B., Hyttel, P., Mermillod, P., & Ross, P. J. (2020). Review: Recent advances in bovine in vitro embryo production: Reproductive biotechnology history and methods. Animal, 14(5), 991–1004. https://doi.org/10.1017/S1751731119002775Ferré, L., & Cattaneo, L. (2013). Biotecnologías reproductivas: producción in vitro de embriones y semen sexado. (¿La pareja perfecta?). Rev. Med. Vet., 94(2), 28–36.Foti, M. C. (2015). Use and Abuse of the DPPH• Radical. Journal of Agricultural and Food Chemistry, 63(40), 8765–8776. https://doi.org/10.1021/acs.jafc.5b03839Fotio, A. L., Nguepi, M. S. D., Tonfack, L. B., Temdie, R. J. G., & Nguelefack, T. B. (2020). Acetaminophen induces liver injury and depletes glutathione in mice brain: Prevention by Moringa oleifera extract. South African Journal of Botany, 129, 317–323. https://doi.org/10.1016/j.sajb.2019.08.037Furnus, C. C., de Matos, D. G., Picco, S., García, P. P., Inda, A. M., Mattioli, G., & Errecalde, A. L. (2008). Metabolic requirements associated with GSH synthesis during in vitro maturation of cattle oocytes. Animal Reproduction Science, 109(1–4), 88–99. https://doi.org/10.1016/j.anireprosci.2007.12.003García, J. R., Romero, J., Astiz, S., & Ruiz, S. (2013). Adición de sustancias antioxidantes en los medios de cultivo empleados en la producción in vitro de embriones en mamíferos Addition of antioxidant substances to culture media used in the in vitro production of mammal. 35(1), 10–19.Glasauer, A., & Chandel, N. S. (2013). Ros. Current Biology, 23(3), R100–R102. https://doi.org/10.1016/j.cub.2012.12.011Gonçalves, D. R., Leroy, J. L. M. R., Van Hees, S., Xhonneux, I., Bols, P. E. J., Kiekens, F., & Marei, W. F. A. (2021). Cellular uptake of polymeric nanoparticles by bovine cumulus-oocyte complexes and their effect on in vitro developmental competence. European Journal of Pharmaceutics and Biopharmaceutics, 158(November 2020), 143–155. https://doi.org/10.1016/j.ejpb.2020.11.011Guemra, S., Monzani, P. S., Santos, E. S., Zanin, R., Ohashi, O. M., Miranda, M. S., & Adona, P. R. (2013). Maturação in vitro de oócitos bovinos em meios suplementados com quercetina e seu efeito sobre o desenvolvimento embrionário. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 65, 1616–1624.Guérin, P., El Mouatassim, S., & Ménézo, Y. (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Human Reproduction Update, 7(2), 175–189. https://doi.org/10.1093/humupd/7.2.175Guimarães, A. C. G., Leivas, F. G., Santos, F. W., Schwengber, E. B., Giotto, A. B., Machado, C. I. U., … Brum, D. S. (2014). Reduction of centrifugation force in discontinuous percoll gradients increases in vitro fertilization rates without reducing bovine sperm recovery. Animal Reproduction Science, 146, 103–110. https://doi.org/10.1016/j.anireprosci.2014.02.016Gutnisky, C., Morado, S., Gadze, T., Donato, A., Alvarez, G., Dalvit, G., & Cetica, P. (2020). Morphological, biochemical and functional studies to evaluate bovine oocyte vitrification. Theriogenology, 143, 18–26. https://doi.org/10.1016/j.theriogenology.2019.11.037Hamed, Y. S., Abdin, M., Akhtar, H. M. S., Chen, D., Wan, P., Chen, G., & Zeng, X.(2019). Extraction, purification by macrospores resin and in vitro antioxidant activity of flavonoids from Moringa oliefera leaves. South African Journal of Botany, 124, 270–279. https://doi.org/10.1016/j.sajb.2019.05.006Hansen, J. M., & Harris, C. (2015). Glutathione during embryonic development. Biochimica et Biophysica Acta - General Subjects, 1850(8), 1527–1542. https://doi.org/10.1016/j.bbagen.2014.12.001Holguín, V., García, I., & Mora, J. (2018). Arboles y arbustos para silvopasturas: uso, calidad y alometría (Colors Edi). Retrieved from https://www.researchgate.net/profile/Jairo_Mora-Delgado/publication/326720362_Arboles_y_arbustos_para_silvopasturas/links/5b6090f6458515c4b256c0f3/Arboles-y-arbustos-para-silvopasturas.pdf#page=44Hong, G., Wang, J., Zhang, Y., Hochstetter, D., Zhang, S., Pan, Y., … Wang, Y. (2014). Biosynthesis of catechin components is differentially regulated indark-treated tea (Camellia sinensis L.). Plant Physiology and Biochemistry, 78, 49–52. https://doi.org/10.1016/j.plaphy.2014.02.017Huang, Z., Pang, Y., Hao, H., Du, W., Zhao, X., & Zhu, H. (2018). Effects of epigallocatechin-3-gallate on bovine oocytes matured in vitro. Asian-Australasian Journal of Animal Sciences, 31(9), 1420–1430. https://doi.org/10.5713/ajas.17.0880Idoga, E. S., Ambali, S. F., Ayo, J. O., & Mohammed, A. (2018). Assessment of antioxidant and neuroprotective activities of methanol extract of Moringa oleifera Lam. leaves in subchronic chlorpyrifos-intoxicated rats. Comparative Clinical Pathology, 27(4), 917–925. https://doi.org/10.1007/s00580-018-2682-9Ighodaro, O. M., & Akinloye, O. A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287–293. https://doi.org/10.1016/j.ajme.2017.09.001Jaiswal, D., Rai, P. K., Mehta, S., Chatterji, S., Shukla, S., Rai, D. K., … Watal, G. (2013). Role of Moringa oleifera in regulation of diabetes-induced oxidative stress. Asian Pacific Journal of Tropical Medicine, 6(6), 426–432. https://doi.org/10.1016/S1995-7645(13)60068-1Kang, J.-T., Kwon, D.-K., Park, S.-J., Kim, S.-J., Moon, J.-H., Kim, T., … Lee, B.-C. (2013). Quercetin improves the in vitro development of porcine oocytes by decreasing reactive oxygen species levels. Biology of Reproduction, 12(1), 15–20. https://doi.org/10.1093/biolreprod/87.s1.217Kang, J. T., Moon, J. H., Choi, J. Y., Park, S. J., Kim, S. J., Saadeldin, I. M., & Lee, B. C. (2016). Effect of antioxidant flavonoids (Quercetin and Taxifolin) on in vitro maturation of porcine oocytes. Asian-Australasian Journal of Animal Sciences, 29(3), 352–358. https://doi.org/10.5713/ajas.15.0341Karthivashan, G., Arulselvan, P., Tan, S. W., & Fakurazi, S. (2015). The molecular mechanism underlying the hepatoprotective potential of Moringa oleifera leaves extract against acetaminophen induced hepatotoxicity in mice. Journal of Functional Foods, 17, 115–126. https://doi.org/10.1016/j.jff.2015.05.007Kashyap, D., Sharma, A., Tuli, H. S., Sak, K., Punia, S., & Mukherjee, T. K. (2017). Kaempferol – A dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements. Journal of Functional Foods, 30, 203–219. https://doi.org/10.1016/j.jff.2017.01.022Kelley, R. L., & Gardner, D. K. (2019). Individual culture and atmospheric oxygen during culture affect mouse preimplantation embryo metabolism and postimplantation development. Reproductive BioMedicine Online, 1–16. https://doi.org/10.1016/j.rbmo.2019.03.102Kere, M., Siriboon, C., Lo, N.-W., Nguyen, N. T., & Ju, J.-C. (2013). Ascorbic Acid Improves the Developmental Competence of Porcine Oocytes after Parthenogenetic Activation and Somatic Cell Nuclear Transplantation. Journal of Reproduction and Development, 59(1). https://doi.org/10.1262/jrd.2012-114Khalafalla, M. M., Abdellatef, E., Dafalla, H. M., Nassrallah, A. A., Aboul-Enein, K. M., Lightfoot, D. A., … El-Shemy, H. A. (2010). Active principle from Moringa oleifera Lam leaves effective against two leukemias and a hepatocarcinoma. African Journal of Biotechnology, 9(49), 8467–8471. https://doi.org/10.4314/ajb.v9i49Khalil, S. R., El Bohi, K. M., Khater, S., Abd El-fattah, A. H., Mahmoud, F. A., & Farag, M. R. (2020). Moringa oleifera leaves ethanolic extract influences DNA damage signaling pathways to protect liver tissue from cobalt -triggered apoptosis in rats. Ecotoxicology and Environmental Safety, 200(May), 110716. https://doi.org/10.1016/j.ecoenv.2020.110716Kwak, S.-S., Cheong, S.-A. A., Jeon, Y., Lee, E., Choi, K.-C. C., Jeung, E.-B. B., & Hyun, S.-H. H. (2012). The effects of resveratrol on porcine oocyte in vitro maturation and subsequent embryonic development after parthenogenetic activation and in vitro fertilization. Theriogenology, 78(1), 86–101. https://doi.org/10.1016/j.theriogenology.2012.01.024Lee, S., Jin, J. X., Taweechaipaisankul, A., Kim, G. A., & Lee, B. C. (2018). Synergistic effects of resveratrol and melatonin on in vitro maturation of porcine oocytes and subsequent embryo development. Theriogenology, 114, 191–198. https://doi.org/10.1016/j.theriogenology.2018.03.040Li, H. J., Sutton-Mcdowall, M. L., Wang, X., Sugimura, S., Thompson, J. G., & Gilchrist, R. B. (2016). Extending prematuration with cAMP modulators enhances the cumulus contribution to oocyte antioxidant defence and oocyte quality via gap junctions. Human Reproduction, 31(4), 810–821. https://doi.org/10.1093/humrep/dew020Li, W., Goossens, K., Van Poucke, M., Forier, K., Braeckmans, K., Van Soom, A., & Peelman, L. J. (2014). High oxygen tension increases global methylation in bovine 4-cell embryos and blastocysts but does not affect general retrotransposon expression. Reproduction, Fertility and Development, 28(7), 948–959. https://doi.org/10.1071/RD14133Lim, T. K. (2011). Edible Medicinal and Non-Medicinal Plants. In D. Springer (Ed.), Edible Medicinal and Non-Medicinal Plants (Vol. 3, pp. 453–485). https://doi.org/10.1007/978-94-017-7276-1Lin, M., Zhang, J., & Chen, X. (2018). Bioactive flavonoids in Moringa oleifera and their health-promoting properties. Journal of Functional Foods, 47(May), 469–479. https://doi.org/10.1016/j.jff.2018.06.011Liu, M. J., Sun, A. G., Zhao, S. G., Liu, H., Ma, S. Y., Li, M., … Liu, H. Bin. (2018). Resveratrol improves in vitro maturation of oocytes in aged mice and humans. Fertility and Sterility, 109(5), 900–907. https://doi.org/10.1016/j.fertnstert.2018.01.020Liu, Y., Wang, X., Wei, X., Gao, Z., & Han, J. (2018). Values, properties and utility of different parts of Moringa oleifera: An overview. Chinese Herbal Medicines, 1–8. https://doi.org/https://doi.org/10.1016/j.chmed.2018.09.002Lonergan, P., Rizos, D., Ward, F., & Boland, M. P. (2001). Factors influencing oocyte and embryo quality in cattle. Reproduction Nutrition Development, 41(5), 427–437. https://doi.org/10.1051/rnd:2001142Loren, P., Sánchez, R., Arias, M. E., Felmer, R., Risopatrón, J., & Cheuquemán, C. (2017). Melatonin scavenger properties against oxidative and nitrosative stress:Impact on gamete handling and in vitro embryo production in humans and other mammals. International Journal of Molecular Sciences, 18(6), 1–18. https://doi.org/10.3390/ijms18061119Lushchak, V. I. (2014). Free radicals, reactive oxygen species, oxidative stress and its classification. Chemico-Biological Interactions, 224, 164–175. https://doi.org/10.1016/j.cbi.2014.10.016Lv, L., Yue, W., Liu, W., Ren, Y., Li, F., Lee, K. B., & Smith, G. W. (2010). Effect of oocyte selection, estradiol and antioxidant treatment on in vitro maturation of oocytes collected from prepubertal Boer goats. Italian Journal of Animal Science, 9(1), 50–54. https://doi.org/10.4081/ijas.2010.e11Madrid Gaviria, S., López Herrera, A., Restrepo Betancur, G., Urrego, R., & Echeverri Zuluaga, J. J. (2019). Supplementation with resveratrol during culture improves the quality of in vitro produced bovine embryos. Livestock Science, 221(September 2018), 139–143. https://doi.org/10.1016/j.livsci.2019.01.025Madrid Gaviria, S., López Herrera, A., Urrego, R., Restrepo Betancur, G., & Echeverri Zuluaga, J. J. (2019). Effect of resveratrol on vitrified in vitro produced bovine embryos: Recovering the initial quality. Cryobiology, 89(63), 42–50. https://doi.org/10.1016/j.cryobiol.2019.05.008Magata, F., Ideta, A., Okubo, H., Matsuda, F., Urakawa, M., & Oono, Y. (2019). Growth potential of bovine embryos presenting abnormal cleavage observed through time lapse cinematography. Theriogenology, 133, 119–124. https://doi.org/10.1016/j.theriogenology.2019.04.031Mahmoud, K. G. M., El-Sokary, M. M. M., Kandiel, M. M. M., Abou El-Roos, M. E. A., & Sosa, G. M. S. (2016). Effects of cysteamine during in vitro maturation on viability and meiotic competence of vitrified buffalo oocytes. Iranian Journal of Veterinary Research, 17(3), 165–170. https://doi.org/10.22099/ijvr.2016.3810Maillo, V., Lopera-Vasquez, R., Hamdi, M., Gutierrez-Adan, A., Lonergan, P., & Rizos, D. (2016). Maternal-embryo interaction in the bovine oviduct: Evidence from in vivo and in vitro studies. Theriogenology, 86(1), 443–450. https://doi.org/10.1016/j.theriogenology.2016.04.060Mandawala, A. A., Harvey, S. C., Roy, T. K., & Fowler, K. E. (2016). Cryopreservation of animal oocytes and embryos: Current progress and future prospects. Theriogenology, 86(7), 1637–1644.https://doi.org/10.1016/j.theriogenology.2016.07.018Marí, M., Morales, A., Colell, A., García-Ruiz, C., Kaplowitz, N., & Fernández-Checa, J. C. (2013). Mitochondrial glutathione: Features, regulation and role in disease. Biochimica et Biophysica Acta - General Subjects, 1830(5), 3317–3328. https://doi.org/10.1016/j.bbagen.2012.10.018Martinez, C. A., Nohalez, A., Ceron, J. J., Rubio, C. P., Roca, J., Cuello, C., … Gil, M. A. (2017). Peroxidized mineral oil increases the oxidant status of culture media and inhibits in vitro porcine embryo development. Theriogenology, 103, 17–23. https://doi.org/10.1016/j.theriogenology.2017.07.028Mateo-Otero, Y., Yeste, M., Damato, A., & Giaretta, E. (2021). Cryopreservation and oxidative stress in porcine oocytes. Research in Veterinary Science, 135(January), 20–26. https://doi.org/10.1016/j.rvsc.2020.12.024Mbemya, G. T., Vieira, L. A., Canafistula, F. G., Pessoa, O. D. L., & Rodrigues, A. P. R. (2017). Reports on in vivo and in vitro contribution of medicinal plants to improve the female reproductive function. Reproducao e Climaterio, 32(2), 109–119. https://doi.org/10.1016/j.recli.2016.11.002Mckee, T., & Mckee, J. R. (2014). Bioquímica: Las bases moleculares de la vida. (McGRAW-HI). México D. F.Menezo, Y. J. R., Silvestris, E., Dale, B., & Elder, K. (2016). Oxidative stress and alterations in DNA methylation: two sides of the same coin in reproduction. Reproductive BioMedicine Online, 33(6), 668–683. https://doi.org/10.1016/j.rbmo.2016.09.006Morado, S. A., Cetica, P. D., Beconi, M. T., & Dalvit, G. C. (2009). Reactive oxygen species in bovine oocyte maturation in vitro. Reproduction, Fertility and Development, 21(4), 608–614. https://doi.org/10.1071/RD08198Morin, S. J. (2017). Oxygen tension in embryo culture: does a shift to 2% O2 in extended culture represent the most physiologic system? Journal of Assisted Reproduction and Genetics, 34, 309–314. https://doi.org/10.1007/s10815-017-0880-zMoyo, B., Oyedemi, S., Masika, P. J., & Muchenje, V. (2012). Polyphenolic content and antioxidant properties of Moringa oleifera leaf extracts and enzymatic activity of liver from goats supplemented with Moringa oleifera leaves/sunflower seed cake. Meat Science, 91, 441–447. https://doi.org/10.1016/j.meatsci.2012.02.029Mukherjee, A., Malik, H., Saha, A. P., Dubey, A., Singhal, D. K., Boateng, S., … Malakar, D. (2014). Resveratrol treatment during goat oocytes maturation enhances developmental competence of parthenogenetic and hand-made cloned blastocysts by modulating intracellular glutathione level and embryonic gene expression. Journal of Assisted Reproduction and Genetics, 31(2), 229–239. https://doi.org/10.1007/s10815-013-0116-9Muratori, M., Tarozzi, N., Carpentiero, F., Danti, S., Perrone, F. M., Cambi, M., … Baldi, E. (2019). Sperm selection with density gradient centrifugation and swim up: effect on DNA fragmentation in viable spermatozoa. Scientific Reports, 9. https://doi.org/10.1038/s41598-019-43981-2Mwamatope, B., Tembo, D., Chikowe, I., Kampira, E., & Nyirenda, C. (2020). Total phenolic contents and antioxidant activity of Senna singueana, Melia azedarach, Moringa oleifera and Lannea discolor herbal plants. Scientific African, 9. https://doi.org/10.1016/j.sciaf.2020.e00481Nascimento, J. A., Araújo, K. L. G. V., Epaminondas, P. S., Souza, A. S., Magnani, M., Souza, A. L., … Souza, A. G. (2013). Ethanolic extracts of Moringa oleifera Lam.: Evaluation of its potential as an antioxidant additive for fish oil. Journal of Thermal Analysis and Calorimetry, 114(2), 833–838. https://doi.org/10.1007/s10973-013-3045-zNohalez, A., Martinez, C. A., Parrilla, I., Roca, J., Gil, M. A., Rodriguez-Martinez, H., … Cuello, C. (2018). Exogenous ascorbic acid enhances vitrification survival of porcine in vitro-developed blastocysts but fails to improve the in vitro embryo production outcomes. Theriogenology, 113, 113–119. https://doi.org/10.1016/j.theriogenology.2018.02.014Nolfi Donegan, D., Braganza, A., & Shiva, S. (2020). Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biology, 37, 101674. https://doi.org/10.1016/j.redox.2020.101674Nouman, W., Anwar, F., Gull, T., Newton, A., Rosa, E., & Domínguez-Perles, R. (2016). Profiling of polyphenolics, nutrients and antioxidant potential of germplasm’s leaves from seven cultivars of Moringa oleifera Lam. Industrial Crops and Products, 83, 166–176. https://doi.org/10.1016/j.indcrop.2015.12.032Oguntibeju, O. O., Aboua, G. Y., & Omodanisi, E. I. (2020). Effects of Moringa oleifera on oxidative stress, apoptotic and inflammatory biomarkers in streptozotocin-induced diabetic animal model. South African Journal of Botany, 129, 354–365. https://doi.org/10.1016/j.sajb.2019.08.039Oladeji, O. S., Odelade, K. A., & Oloke, J. K. (2019). Phytochemical screening and antimicrobial investigation of Moringa oleifera leaf extracts. African Journal of Science, Technology, Innovation and Development, 1–6. https://doi.org/10.1080/20421338.2019.1589082Olson, M. E., & Fahey, J. W. (2011). Moringa oleifera : un árbol multiusos para las zonas tropicales secas. Revista Mexicana De Biodiversidad, 82, 1071–1082. https://doi.org/http://dx.doi.org/10.7550/rmb.28737Oseikria, M., Elis, S., Maillard, V., Corbin, E., & Uzbekova, S. (2016). N-3 polyunsaturated fatty acid DHA during IVM affected oocyte developmental competence in cattle. Theriogenology, 85(9), 1625–1634. https://doi.org/10.1016/j.theriogenology.2016.01.019Pachuau, L., Laldinchhana, Roy, P. K., Zothantluanga, J. H., Supratim, R., & Sanjib, D. (2021). Encapsulation of Bioactive Compound and Its Therapeutic Potential. https://doi.org/https://doi-org.ezproxy.unal.edu.co/10.1007/978-3-030-54027-2_20Poprac, P., Jomova, K., Simunkova, M., Kollar, V., Rhodes, C. J., & Valko, M. (2017). Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends in Pharmacological Sciences, 38(7), 592–607. https://doi.org/10.1016/j.tips.2017.04.005Prabakaran, M., Kim, S. H., Sasireka, A., Chandrasekaran, M., & Chung, I. M. (2018). Polyphenol composition and antimicrobial activity of various solvent extracts from different plant parts of Moringa oleifera. Food Bioscience, 26(February), 23–29. https://doi.org/10.1016/j.fbio.2018.09.003Remião, M. H., Lucas, C. G., Domingues, W. B., Silveira, T., Barther, N. N., Komninou, E. R., … Collares, T. (2016). Melatonin delivery by nanocapsules during in vitro bovine oocyte maturation decreased the reactive oxygen species of oocytes and embryos. Reproductive Toxicology, 63, 70–81. https://doi.org/10.1016/j.reprotox.2016.05.016Rizos, D., Clemente, M., Bermejo-Alvarez, P., De La Fuente, J., Lonergan, P., & Gutiérrez-Adán, A. (2008). Consequences of in vitro culture conditions on embryo development and quality. Reproduction in Domestic Animals, 43(SUPPL.4), 44–50. https://doi.org/10.1111/j.1439-0531.2008.01230.xRocha-Frigoni, N. A. S., Leão, B. C. S., Dall’Acqua, P. C., & Mingoti, G. Z. (2016). Improving the cytoplasmic maturation of bovine oocytes matured in vitro with intracellular and/or extracellular antioxidants is not associated with increased rates of embryo development. Theriogenology, 86(8), 1897–1905. https://doi.org/10.1016/j.theriogenology.2016.06.009Rodrigues-Cunha, M. C., Mesquita, L. G., Bressan, F., Collado, M. del, Balieiro, J. C. C., Schwarz, K. R. L., … Leal, C. L. V. (2016). Effects of melatonin during IVM in defined medium on oocyte meiosis, oxidative stress, and subsequent embryo development. Theriogenology, 86(7), 1685–1694. https://doi.org/10.1016/j.theriogenology.2016.05.026Rodrigues, B. A., Rodrigues, C. A., Salviano, M. B., Willhelm, B. R., Collares, F. J. F., & Rodrigues, J. L. (2013). Similar patterns of embryo development in canine oocytes cultured in vitro at oxygen tensions of 5 and 20%. Theriogenology, 79, 1224–1228. https://doi.org/10.1016/j.theriogenology.2013.02.022Rodríguez Pérez, C., Quirantes Piné, R., Fernández Gutiérrez, A., & Segura Carretero, A. (2015). Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Industrial Crops and Products, 66, 246–254. https://doi.org/10.1016/j.indcrop.2015.01.002Roleira, F. M. F., Tavares-Da-Silva, E. J., Varela, C. L., Costa, S. C., Silva, T., Garrido, J., & Borges, F. (2015). Plant derived and dietary phenolic antioxidants: Anticancer properties. Food Chemistry, 183, 235–258. https://doi.org/10.1016/j.foodchem.2015.03.039Romek, M., Gajda, B., Krzysztofowicz, E., Kucia, M., Uzarowska, A., & Smorag, Z. (2017). Improved quality of porcine embryos cultured with hyaluronan due to the modification of the mitochondrial membrane potential and reactive oxygen species level. Theriogenology, 102, 1–9. https://doi.org/10.1016/j.theriogenology.2017.06.026Roychoudhury, S., Agarwal, A., Virk, G., & Cho, C. L. (2017). Potential role of green tea catechins in the management of oxidative stress-associated infertility. Reproductive BioMedicine Online, 34(5), 487–498. https://doi.org/10.1016/j.rbmo.2017.02.006Salzano, A., Albero, G., Zullo, G., Neglia, G., Abdel-Wahab, A., Bifulco, G., … Gasparrini, B. (2014). Effect of resveratrol supplementation during culture on the quality and cryotolerance of bovine in vitro produced embryos. Animal Reproduction Science, 151, 91–96. https://doi.org/10.1016/j.anireprosci.2014.09.018Sen, S., Chakraborty, R., Sridhar, C., Reddy, Y. S. R., & De, B. (2010). Free radicals, antioxidants, diseases and phytomedicines: Current status and future prospect. International Journal of Pharmaceutical Sciences Review and Research, 3(1), 91–100.Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review. Journal of Functional Foods, 18, 820–897. https://doi.org/10.1016/j.jff.2015.06.018Soto-Heras, S., & Paramio, M. T. (2020). Impact of oxidative stress on oocyte competence for in vitro embryo production programs. Research in Veterinary Science, 132, 342–350. https://doi.org/10.1016/j.rvsc.2020.07.013Souza, N. C., de Oliveira Nascimento, E. N., de Oliveira, I. B., Oliveira, H. M. L., Santos, E. G. P., Moreira Cavalcanti Mata, M. E. R., … de Bittencourt Pasquali, M. A. (2020). Anti-inflammatory and antixidant properties of blend formulated with compounds of Malpighia emarginata D.C (acerola) and Camellia sinensis L. (green tea) in lipopolysaccharide-stimulated RAW 264.7 macrophages. Biomedicine and Pharmacotherapy, 128(May), 110–277. https://doi.org/10.1016/j.biopha.2020.110277Sovernigo, T. C., Adona, P. R., Monzani, P. S., Guemra, S., Barros, F. D. A., Lopes, F. G., & Leal, C. L. V. (2017). Effects of supplementation of medium with different antioxidants during in vitro maturation of bovine oocytes on subsequent embryo production. Reproduction in Domestic Animals, 52(4), 561–569. https://doi.org/10.1111/rda.12946Spinaci, M., Bucci, D., Muccilli, V., Cardullo, N., Nerozzi, C., & Galeati, G. (2019). A polyphenol-rich extract from an oenological oak-derived tannin influences in vitro maturation of porcine oocytes. Theriogenology, 129, 82–89. https://doi.org/10.1016/j.theriogenology.2019.02.017Sreelatha, S., & Padma, P. R. (2009). Antioxidant Activity and Total Phenolic Content of Moringa oleifera Leaves in Two Stages of Maturity. Plant Foods for Human Nutrition, 64(303).Sun, B., Ricardo-da-Silva, J. M., & Spranger, I. (1998). Critical Factors of Vanillin Assay for Catechins and Proanthocyanidins. Journal of Agricultural and Food Chemistry, 46(10), 4267–4274. https://doi.org/10.1021/jf980366jTarazona, M., Olivera, M., & Lenis, Y. (2010). Mitochondrial rol and oxidative stress in the developmental blockade of in vitro produced bovine embryos. Archivos de Medicina Veterinaria, 133(3), 125–133. https://doi.org/10.4067/S0301-732X2010000300003Tiloke, C., Anand, K., Gengan, R. M., & Chuturgoon, A. A. (2018). Moringa oleifera and their phytonanoparticles: Potential antiproliferative agents against cancer. Biomedicine and PharmTiloke, 108(April), 457–466. https://doi.org/10.1016/j.biopha.2018.09.060Timme, A. R., Hahn, M. E., Hansen, J. M., Rastogi, A., & Roy, M. A. (2018). Redox stress and signaling during vertebrate embryonic development: Regulation and responses. Seminars in Cell and Developmental Biology, 80, 17–28. https://doi.org/10.1016/j.semcdb.2017.09.019Toit, E. S. d., Sithole, J., & Vorster, J. (2020). Leaf harvesting severity affects total phenolic and tannin content of fresh and dry leaves of Moringa oleifera Lam. trees growing in Gauteng, South Africa. South African Journal of Botany, 129, 336–340. https://doi.org/10.1016/j.sajb.2019.08.035Torres C., H., Colmenares D., A. J., & Isaza M., J. H. (2013). Total Phenolics Antioxidant Activity and Phytochemical Profile of Some Plants From the Yotoco National Protected Forest. Revista de Ciencias, 17, 35–44.Torres, V., Muñoz B, L., Urrego B, R., Echeverry, J. J., & Lopez, A. (2016). 81 RESVERATROL DURING IN VITRO MATURATION IMPROVES THE QUALITY OF BOVINE OOCYTE AND ENHANCES EMBRYONIC DEVELOPMENT IN VITRO. Reproduction, Fertility and Development, 29(1), 199–199. https://doi.org/10.1071/RDv29n1Ab181Varghese, A., Ly, K., Corbin, C., Mendiola, J., & Agarwal, A. (2011). Oocyte developmental competence and embryo development: impact of lifestyle and enviromental risk factors. Reproductive BioMedicine, 22, 410–420.Vásquez, N., Torres, V., & Rojano, B. (2014). Efecto del Ácido Ascórbico durante Maduración In Vitro de Oocitos Bovinos en la Producción de Especies Reactivas de Oxígeno (ERO) y Competencia para el Desarrollo Embrionario. Información Tecnológica, 25(2), 141–150. https://doi.org/10.4067/S0718-07642014000200016Vats, S., & Gupta, T. (2017). Evaluation of bioactive compounds and antioxidant potential of hydroethanolic extract of Moringa oleifera Lam. from Rajasthan, India. Physiology and Molecular Biology of Plants, 23(1), 239–248. https://doi.org/10.1007/s12298-016-0407-6Vázquez-León, L. A., Páramo-Calderón, D. E., Robles-Olvera, V. J., Valdés-Rodríguez, O. A., Pérez-Vázquez, A., García-Alvarado, M. A., & Rodríguez-Jimenes, G. C. (2017). Variation in bioactive compounds and antiradical activity of Moringa oleifera leaves: influence of climatic factors, tree age, and soil parameters. European Food Research and Technology, 243(9), 1593–1608. https://doi.org/10.1007/s00217-017-2868-4Velez, I. C., Chica, A., Urrego, R., Torres, V., Jimenez-Escobar, C., & Zambrano-Varon, J. (2017). Producción in vitro de embriones a partir de complejos cúmulos oocitos tipo II en bovinos Bos indicus. CES Medicina Veterinaria y Zootecnia, 12(2), 76–87. https://doi.org/10.21615/cesmvz.12.2.1Verma, A. R., Vijayakumar, M., Mathela, C. S., & Rao, C. V. (2009). In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves. Food and Chemical Toxicology, 47(9), 2196–2201. https://doi.org/10.1016/j.fct.2009.06.005Viana, J. (2020). 2019 Statistics of Embryo Collection and Transfer in Domestic Farm Animals. Embryo Transfer Newletter, 38(4), 14–26.Vyas, S., Kachhwaha, S., & Kothari, S. L. (2015). Comparative analysis of phenolic contents and total antioxidant capacity of Moringa oleifera Lam. Pharmacognosy Journal, 7(1), 44–51. https://doi.org/10.5530/pj.2015.7.5Wang, Fang, Long, S., Zhang, J., Yu, J., Xiong, Y., Zhou, W., … Jiang, H. (2020). Antioxidant activities and anti-proliferative effects of Moringa oleifera L. extracts with head and neck cancer. Food Bioscience, 37(July), 100691. https://doi.org/10.1016/j.fbio.2020.100691Wang, Feng, Tan, D., He, C., Tian, X., Liu, GuoShiLi, Y., Ji, P., & Zhang, L. (2013). Beneficial effect of resveratrol on bovine oocyte maturation and subsequent embryonic development after in vitro fertilization. Fertility and Sterility, 101(2), 577-586.e1. https://doi.org/10.1016/j.fertnstert.2013.10.041Will, M. A., Clark, N. A., & Swain, J. E. (2011). Biological pH buffers in IVF: Help or hindrance to success. Journal of Assisted Reproduction and Genetics, 28(8), 711–724. https://doi.org/10.1007/s10815-011-9582-0Wrenzycki, C. (2016). In vitro culture systems: How far are we from optimal conditions? Animal Reproduction, 13(3), 279–282. https://doi.org/10.21451/1984-3143-AR869Wu, L., Li, L., Chen, S., Wang, L., & Lin, X. (2020). Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves: Optimization, comparison and antioxidant activity. Separation and Purification Technology, 247. https://doi.org/10.1016/j.seppur.2020.117014Wulandari, L. R., Umiati, S., & Sujuti, H. (2019). Protective effect of methanol extract of kelor (Moringa oleifera) leaves on glutathione peroxidase (gpx) levels in trabecular meshwork cell culture of primary congenital glaucoma patients. EurAsian Journal of BioSciences, 13(2), 839–844.Yang, J., & Liu, R. H. (2013). The phenolic profiles and antioxidant activity in different types of tea. International Journal of Food Science and Technology, 48(1), 163–171. https://doi.org/10.1111/j.1365-2621.2012.03173.xZabihi, A., Shabankareh, H. K., Hajarian, H., & Foroutanifar, S. (2019). Resveratrol addition to in vitro maturation and in vitro culture media enhances developmental competence of sheep embryos. Domestic Animal Endocrinology, 68, 25–31. https://doi.org/10.1016/j.domaniend.2018.12.010Zabihi, Adeleh, Shabankareh, H. K., Hajarian, H., & Foroutanifar, S. (2021). In vitro maturation medium supplementation with resveratrol improves cumulus cell expansion and developmental competence of Sanjabi sheep oocytes. Livestock Science, 243(December 2020), 104378. https://doi.org/10.1016/j.livsci.2020.104378Zhang, Y., Lin, H., Liu, C., Huang, J., & Liu, Z. (2020). A review for physiological activities of EGCG and the role in improving fertility in humans/mammals. Biomedicine and Pharmacotherapy, 127(April), 110186. https://doi.org/10.1016/j.biopha.2020.110186Zhao, X. ‐ M., Wang, N., Hao, H. ‐ S., Li, C.-Y., Zhao, Y. ‐ H., Yan, C. ‐ L., … Hua-Bin. (2018). Melatonin improves the fertilization capacity and developmental ability of bovine oocytes by regulating cytoplasmic maturation events. Journal of Pineal, 64(1), 42–49. https://doi.org/10.1111/ijlh.12426Zhong, R. zhen, & Zhou, D. wei. (2013). Oxidative stress and role of natural plant derived antioxidants in animal reproduction. Journal of Integrative Agriculture, 12(10), 1826–1838. https://doi.org/10.1016/S2095-3119(13)60412-8Universidad Nacional de ColombiaEstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80346/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1113669612.2021.pdf1113669612.2021.pdfTesis de Maestría en Ciencias Agrariasapplication/pdf1497104https://repositorio.unal.edu.co/bitstream/unal/80346/3/1113669612.2021.pdf9ee18390abc47400c70b656f9d66e8c8MD53THUMBNAIL1113669612.2021.pdf.jpg1113669612.2021.pdf.jpgGenerated Thumbnailimage/jpeg4981https://repositorio.unal.edu.co/bitstream/unal/80346/4/1113669612.2021.pdf.jpg7d115b47719c76ea4e91341b4ce68ac2MD54unal/80346oai:repositorio.unal.edu.co:unal/803462024-07-30 23:10:42.669Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==