A remark on exponential dichotomies

A proof of the existence of an exponential dichotomy for the linear system x'(t) = A(t)x(t) is given, based on the admissibility of the pair (B(∞), BA(∞)), where B(∞) is the space of continuous functions on the semiaxis J = [0,∞), values in Cn and having a limit as t →∞, and BA(∞) is the space...

Full description

Autores:
Naulin, Raúl
Tipo de recurso:
Article of journal
Fecha de publicación:
1999
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/43722
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/43722
http://bdigital.unal.edu.co/33820/
Palabra clave:
Exponential dichotomies
admissibility
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:A proof of the existence of an exponential dichotomy for the linear system x'(t) = A(t)x(t) is given, based on the admissibility of the pair (B(∞), BA(∞)), where B(∞) is the space of continuous functions on the semiaxis J = [0,∞), values in Cn and having a limit as t →∞, and BA(∞) is the space of bounded functions f on J such that A -1 ∈ B(∞).