A remark on exponential dichotomies
A proof of the existence of an exponential dichotomy for the linear system x'(t) = A(t)x(t) is given, based on the admissibility of the pair (B(∞), BA(∞)), where B(∞) is the space of continuous functions on the semiaxis J = [0,∞), values in Cn and having a limit as t →∞, and BA(∞) is the space...
- Autores:
-
Naulin, Raúl
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 1999
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/43722
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/43722
http://bdigital.unal.edu.co/33820/
- Palabra clave:
- Exponential dichotomies
admissibility
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | A proof of the existence of an exponential dichotomy for the linear system x'(t) = A(t)x(t) is given, based on the admissibility of the pair (B(∞), BA(∞)), where B(∞) is the space of continuous functions on the semiaxis J = [0,∞), values in Cn and having a limit as t →∞, and BA(∞) is the space of bounded functions f on J such that A -1 ∈ B(∞). |
---|