Evaluación de las condiciones de crecimiento y producción de hidrógeno de Afifella marina utilizando residuos industriales como sustrato por medio de fotofermentación

ilustraciones, fotografías , graficas

Autores:
Morales Cortés, Yenny Paola
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81366
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81366
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados
Equilibrio ácido-base
Biomasas
Afifella marina
Hidrógeno
Fotofermentación
Ácidos orgánicos
Bórax
KPI
Hydrogen
Photofermentation
Organic acids
KPI
Borax
Afifella marina
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_cda050b2f2dd4408f617bf3218e705f8
oai_identifier_str oai:repositorio.unal.edu.co:unal/81366
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de las condiciones de crecimiento y producción de hidrógeno de Afifella marina utilizando residuos industriales como sustrato por medio de fotofermentación
dc.title.translated.eng.fl_str_mv Evaluation of growth conditions and hydrogen production of Afifella marina using industrial waste as a substrate through photofermentation
dc.title.translated.fra.fl_str_mv Évaluation des conditions de croissance et de la production d'hydrogène d'Afifella marina en utilisant des déchets industriels comme substrat par photofermentation
title Evaluación de las condiciones de crecimiento y producción de hidrógeno de Afifella marina utilizando residuos industriales como sustrato por medio de fotofermentación
spellingShingle Evaluación de las condiciones de crecimiento y producción de hidrógeno de Afifella marina utilizando residuos industriales como sustrato por medio de fotofermentación
660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados
Equilibrio ácido-base
Biomasas
Afifella marina
Hidrógeno
Fotofermentación
Ácidos orgánicos
Bórax
KPI
Hydrogen
Photofermentation
Organic acids
KPI
Borax
Afifella marina
title_short Evaluación de las condiciones de crecimiento y producción de hidrógeno de Afifella marina utilizando residuos industriales como sustrato por medio de fotofermentación
title_full Evaluación de las condiciones de crecimiento y producción de hidrógeno de Afifella marina utilizando residuos industriales como sustrato por medio de fotofermentación
title_fullStr Evaluación de las condiciones de crecimiento y producción de hidrógeno de Afifella marina utilizando residuos industriales como sustrato por medio de fotofermentación
title_full_unstemmed Evaluación de las condiciones de crecimiento y producción de hidrógeno de Afifella marina utilizando residuos industriales como sustrato por medio de fotofermentación
title_sort Evaluación de las condiciones de crecimiento y producción de hidrógeno de Afifella marina utilizando residuos industriales como sustrato por medio de fotofermentación
dc.creator.fl_str_mv Morales Cortés, Yenny Paola
dc.contributor.advisor.none.fl_str_mv Serrato Bermúdez, Juan Carlos
Magnin, Jean Pierre
dc.contributor.author.none.fl_str_mv Morales Cortés, Yenny Paola
dc.contributor.other.none.fl_str_mv Castillo Moreno, Patricia
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Procesos Químicos y Bioquímicos
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados
topic 660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados
Equilibrio ácido-base
Biomasas
Afifella marina
Hidrógeno
Fotofermentación
Ácidos orgánicos
Bórax
KPI
Hydrogen
Photofermentation
Organic acids
KPI
Borax
Afifella marina
dc.subject.other.spa.fl_str_mv Equilibrio ácido-base
Biomasas
dc.subject.proposal.spa.fl_str_mv Afifella marina
Hidrógeno
Fotofermentación
Ácidos orgánicos
Bórax
KPI
dc.subject.proposal.eng.fl_str_mv Hydrogen
Photofermentation
Organic acids
KPI
Borax
Afifella marina
description ilustraciones, fotografías , graficas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-03-24T17:23:50Z
dc.date.available.none.fl_str_mv 2022-03-24T17:23:50Z
dc.date.issued.none.fl_str_mv 2022-03-23
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81366
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81366
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv EIA, “About 7% of fossil fuels are consumed for non-combustion use in the United States - Today in Energy - U.S. Energy Information Administration (EIA),” U.S Energy Information Administration, Apr. 06, 2018. https://www.eia.gov/todayinenergy/detail.php?id=35672 (accessed Sep. 13, 2021)
H. Shaftel, S. Callery, R. Jackson, D. Bailey, and S. Callery, “Causes | Facts – Climate Change: Vital Signs of the Planet,” Earth Science Communications Team at the NASA’s Jet Propulsion Laboratory, 2021. https://climate.nasa.gov/causes/ (accessed Sep. 11, 2021).
“Global Emissions | Center for Climate and Energy Solutions.” https://www.c2es.org/content/international-emissions/ (accessed Nov. 09, 2019).
Enerdata, “CO2 Emissions from fuel Combustion | World Statistics on CO2 Updated | Enerdata,” The Enerdata Yearbook, 2021. https://yearbook.enerdata.net/co2/emissions-co2-data-from-fuel-combustion.html (accessed Sep. 11, 2021).
Banco Mundial, “Cambio Climático,” 2021. https://www.bancomundial.org/es/topic/climatechange/overview (accessed Sep. 12, 2021).
Ministère de la Transition écologique et solidaire, “Baisse de 4,2 % des émissions de gaz à effet de serre de la France en 2018 | Ministère de la Transition écologique et solidaire,” 2019. https://www.ecologique-solidaire.gouv.fr/baisse-42-des-emissions-gaz-effet-serre-france-en-2018 (accessed Nov. 10, 2019).
Unidad de Planeación Minero Energética (UPME), Integración de las energías renovables no convencionales en Colombia. 2015.
UPME - Unidad de Planeación Minero-Energética, “Plan Energético Nacional 2020-2050,” p. 2015, 2020, [Online]. Available: https://www1.upme.gov.co/DemandaEnergetica/PEN_2020_2050/Plan_Energetico_Nacional_2020_2050.pdf.
UPME, Resolución N° 000463. 2018, pp. 1–3.
Royal Society of Chemistry- RSC, “Hydrogen - Element information, properties and uses | Periodic Table,” Royal Society of Chemistry 2021, 2021. https://www.rsc.org/periodic-table/element/1/hydrogen (accessed Sep. 12, 2021).
D. Mesa Puyo, “Transición energética: un legado para el presente y el futuro de Colombia Iván Duque Márquez Presidente de la República,” Accessed: Sep. 12, 2021. [Online]. Available: www.laimprentaeditores.com.
J. Ceballos et al., “Aprovechamiento de residuos industriales como combustibles,” Prospectiva, vol. 5, no. 1, pp. 61–68, 2007.
S. K. Khanal, M. Rasmussen, P. Shrestha, H. J. Van Leeuwen, C. Visvanathan, and H. Liu, “Bioenergy and Biofuel Production from Wastes/Residues of Emerging Biofuel Industries,” Water Environ. Res., vol. 80, no. 10, pp. 1625–1647, 2008, doi: 10.2175/106143008x328752.
Preethi, T. M. M. Usman, J. Rajesh Banu, M. Gunasekaran, and G. Kumar, “Biohydrogen production from industrial wastewater: An overview,” Bioresour. Technol. Reports, vol. 7, no. July, p. 100287, 2019, doi: 10.1016/j.biteb.2019.100287.
Y. Ueno, S. Otsuka, and M. Morimoto, “Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture,” J. Ferment. Bioeng., vol. 82, no. 2, pp. 194–197, 1996, doi: 10.1016/0922-338X(96)85050-1.
M. L. Chong, V. Sabaratnam, Y. Shirai, and M. A. Hassan, “Biohydrogen production from biomass and industrial wastes by dark fermentation,” Int. J. Hydrogen Energy, vol. 34, no. 8, pp. 3277–3287, 2009, doi: 10.1016/j.ijhydene.2009.02.010.
J. Rajesh Banu, S. Kavitha, R. Yukesh Kannah, R. R. Bhosale, and G. Kumar, “Industrial wastewater to biohydrogen: Possibilities towards successful biorefinery route,” Bioresour. Technol., vol. 298, p. 122378, 2020, doi: 10.1016/j.biortech.2019.122378.
R. Nandi and S. Sengupta, “Microbial Production of Hydrogen: An Overview,” Crit. Rev. Microbiol., vol. 24, no. 1, pp. 61–84, 1998, doi: 10.1080/10408419891294181.
Nusaibah, K. Syamsu, and D. Susilaningsih, “Biohydrogen Production in Substrates Combination of Vinasse and Tofu Whey Using Photosynthetic Bacteria Rhodobium marinum,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 10, no. 6, pp. 2451–2457, 2020, doi: 10.18517/ijaseit.10.6.9469.
P. K. Rai and S. P. Singh, “Integrated dark- and photo-fermentation: Recent advances and provisions for improvement,” Int. J. Hydrogen Energy, vol. 41, no. 44, pp. 19957–19971, 2016, doi: 10.1016/j.ijhydene.2016.08.084.
P. Y. Lin et al., “Biological hydrogen production of the genus Clostridium: Metabolic study and mathematical model simulation,” Int. J. Hydrogen Energy, vol. 32, no. 12, pp. 1728–1735, 2007, doi: 10.1016/j.ijhydene.2006.12.009.
K. Anam and D. Susilaningsih, “HYDROGEN PRODUCTION USING Rhodobium marinum IN MILK,” vol. 38, no. 1, pp. 1–8, 2015.
Y. H. P. Zhang, B. R. Evans, J. R. Mielenz, R. C. Hopkins, and M. W. W. Adams, “High-yield hydrogen production from starch and water by a synthetic enzymatic pathway,” PLoS One, vol. 2, no. 5, pp. 2–7, 2007, doi: 10.1371/journal.pone.0000456.
J. A. Rollin et al., “High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling,” Proc. Natl. Acad. Sci. U. S. A., vol. 112, no. 16, pp. 4964–4969, 2015, doi: 10.1073/pnas.1417719112.
Y. Du, W. Zou, K. Zhang, G. Ye, and J. Yang, “Advances and Applications of Clostridium Co-culture Systems in Biotechnology,” Front. Microbiol., vol. 11, no. November, pp. 1–22, 2020, doi: 10.3389/fmicb.2020.560223.
T. Maeda, V. Sanchez-Torres, and T. K. Wood, “Hydrogen production by recombinant Escherichia coli strains,” Microb. Biotechnol., vol. 5, no. 2, pp. 214–225, 2012, doi: 10.1111/j.1751-7915.2011.00282.x.
L. M. Rosales-Colunga and A. De León Rodríguez, “Escherichia coli and its application to biohydrogen production,” Rev. Environ. Sci. Biotechnol., vol. 14, no. 1, pp. 123–135, 2015, doi: 10.1007/s11157-014-9354-2.
K. T. Tran, T. Maeda, V. Sanchez-Torres, and T. K. Wood, “Beneficial knockouts in Escherichia coli for producing hydrogen from glycerol,” Appl. Microbiol. Biotechnol., vol. 99, no. 6, pp. 2573–2581, 2015, doi: 10.1007/s00253-014-6338-7.
S. K. S. Patel, M. Singh, and V. C. Kalia, “Hydrogen and Polyhydroxybutyrate Producing Abilities of Bacillus spp. From Glucose in Two Stage System,” Indian J. Microbiol., vol. 51, no. 4, pp. 418–423, 2011, doi: 10.1007/s12088-011-0236-9.
A. T. Shah et al., “Bacillus sp. strains to produce bio-hydrogen from the organic fraction of municipal solid waste,” Appl. Energy, vol. 176, pp. 116–124, 2016, doi:10.1016/j.apenergy.2016.05.054.
S. Lertsriwong and C. Glinwong, “Newly-isolated hydrogen-producing bacteria and biohydrogen production by Bacillus coagulans MO11 and Clostridium beijerinckii CN on molasses and agricultural wastewater,” Int. J. Hydrogen Energy, vol. 45, no. 51, pp. 26812–26821, 2020, doi: 10.1016/j.ijhydene.2020.07.032.
C. M. Lee, P. C. Chen, C. C. Wang, and Y. C. Tung, “Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent,” Int. J. Hydrogen Energy, vol. 27, no. 11–12, pp. 1309–1313, 2002, doi: 10.1016/S0360-3199(02)00102-7.
N. Basak, A. K. Jana, D. Das, and D. Saikia, “Photofermentative molecular biohydrogen production by purple-non-sulfur (PNS) bacteria in various modes: The present progress and future perspective,” Int. J. Hydrogen Energy, vol. 39, no. 13, pp. 6853–6871, 2014, doi: 10.1016/j.ijhydene.2014.02.093.
P. C. Hallenbeck and Y. Liu, “Recent advances in hydrogen production by photosynthetic bacteria,” Int. J. Hydrogen Energy, vol. 41, no. 7, pp. 4446–4454, 2016, doi: 10.1016/j.ijhydene.2015.11.090.
N. Basak and D. Das, “The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: The present state of the art,” World J. Microbiol. Biotechnol., vol. 23, no. 1, pp. 31–42, 2007, doi: 10.1007/s11274-006-9190-9.
G. Antonopoulou, I. Ntaikou, K. Stamatelatou, and G. Lyberatos, Biological and fermentative production of hydrogen. Woodhead Publishing Limited, 2011.
R. Łukajtis et al., “Hydrogen production from biomass using dark fermentation,” Renew. Sustain. Energy Rev., vol. 91, no. March, pp. 665–694, 2018, doi: 10.1016/j.rser.2018.04.043.
Q. Zhang and Z. Zhang, Biological Hydrogen Production From Renewable Resources by Photofermentation, 1st ed., vol. 3. Elsevier Inc., 2018.
T. Keskin, M. Abo-Hashesh, and P. C. Hallenbeck, “Photofermentative hydrogen production from wastes,” Bioresour. Technol., vol. 102, no. 18, pp. 8557–8568, 2011, doi: 10.1016/j.biortech.2011.04.004.
Fenalce, “Histórico de área, producción y rendimiento de cereales y leguminosas,” Oct. 13, 2021. https://app.powerbi.com/view?r=eyJrIjoiOTk3NDZhYTMtZjg5NC00OWIxLWE3NmItOTIzYjdlZmFmNmJhIiwidCI6IjU2MmQ1YjJlLTBmMzEtNDdmOC1iZTk4LThmMjI4Nzc4MDBhOCJ9 (accessed Oct. 15, 2021).
Government of Aragon, “La relación paja-grano en los cereales ( Una aproximación en condiciones de secano semiárido , en Aragón ),” Inf. técnicas, vol. 91, 2000.
T. Helin et al., “BIOCORE BIOCOmmodity REfinery Collaborative project Seventh framework programme BIOREFINERY,” 2012.
European Council of the European Union, “Climate change: what the EU is doing - Consilium,” General Secretariat of the Council EU, 2021. https://www.consilium.europa.eu/en/policies/climate-change/ (accessed Sep. 15, 2021).
J. M. Rincón, “Colombian Case Problems and Perspectives Renewable Energy Sugarcane in the Future Summary.”
U. de P. M. E. UPME, “Balance de Gas Natural en Colombia 2015-2023,” 2015. Accessed: Nov. 12, 2019. [Online]. Available: www.upme.gov.co.
U. de P. M. E. (UPME) Ministerio de Minas y Energía, “Invierta y Gane con Energía Guía práctica para la aplicación de los incentivos tributarios de la Ley 1715 de 2014,” 2017.
J. Ospina, C.-C. Espinosa Velásquez, ; William, J. Murcia, A.-R. E. De La, and R. Julio, “EL DESARROLLO DEL GLP EN COLOMBIA ¿AVIZORANDO UNA OPORTUNIDAD HACIA EL FUTURO?,” 2018.
EIA, “Production of hydrogen - U.S. Energy Information Administration (EIA),” U.S Energy Information Administration, Jan. 07, 2021. https://www.eia.gov/energyexplained/hydrogen/production-of-hydrogen.php (accessed Sep. 15, 2021).
R. M. Navarro, R. Guil, and J. L. G. Fierro, Introduction to hydrogen production. Elsevier Ltd, 2015.
NREL, “Hydrogen Production and Delivery | Hydrogen and Fuel Cells | Hydrogen and Fuel Cells | NREL,” The National Renewable Energy Laboratory, 2021. https://www.nrel.gov/hydrogen/hydrogen-production-delivery.html (accessed Sep. 15, 2021).
J. I. Linares Hurtado and B. Y. Moratilla Soria, El hidrógeno y la energía. 2007.
R. B. Gupta, HYDROGEN FUEL- Production, Transport ans Storage. CRC Press- Taylor & Francis Group, 2009.
G. I. CRYOGAS, “Ficha Técnica: Hidrógeno industrial,” pp. 1–1, 2018.
F. Dawood, M. Anda, and G. M. Shafiullah, “Hydrogen production for energy: An overview,” Int. J. Hydrogen Energy, vol. 45, no. 7, pp. 3847–3869, 2020, doi: 10.1016/j.ijhydene.2019.12.059.
Bruce S et al., “Pathways to an economically sustainable hydrogen industry in Australia National Hydrogen Roadmap ENERGY AND FUTURES www.csiro.au CITATION,” [Online]. Available: www.csiro.au.
IRENA, Hydrogen: a Renewable Energy Perspective, no. September. 2019.
V. S. Ke Liu, Chunshan Song and Ubramani, Hydrogen and Syngas Production and Purification Technologies. New Jersey: Wiley, 2010.
Staples and Jeff, “Focus on Blue Hydrogen (August 2020),” Gaffney Cline, pp. 1–4, Aug. 2020, Accessed: Sep. 16, 2021. [Online]. Available: www.gaffneycline.com.
K. Anam, M. S. Habibi, T. U. Harwati, and D. Susilaningsih, “Photofermentative hydrogen production using Rhodobium marinum from bagasse and soy sauce wastewater,” Int. J. Hydrogen Energy, vol. 37, no. 20, pp. 15436–15442, 2012, doi: 10.1016/j.ijhydene.2012.06.076.
N. Academy, Committee on Alternatives and Strategies for Future Hydrogen Production and Use Board on Energy and Environmental Systems Division on Engineering and Physical Sciences. 2005.
R. Ramachandran and R. K. Menon, “An overview of industrial uses of hydrogen,” Int. J. Hydrogen Energy, vol. 23, no. 7, pp. 593–598, 1998, doi: 10.1016/s0360-3199(97)00112-2.
MinEnergia, “HOJA DE RUTA DEL HIDRÓGENO EN COLOMBIA,” 2021.
C. Mansilla, C. Bourasseau, C. Cany, B. Guinot, A. Le Duigou, and P. Lucchese, Hydrogen applications: Overview of the key economic issues and perspectives. Elsevier Ltd., 2018.
U.S. Department of Energy, “Potential Roles of Ammonia in a Hydrogen Economy,” Energy, pp. 1–23, 2006, [Online]. Available: https://www.hydrogen.energy.gov/pdfs/nh3_paper.pdf.
I. Staffell et al., “The role of hydrogen and fuel cells in the global energy system,” Energy Environ. Sci., vol. 12, no. 2, pp. 463–491, 2019, doi: 10.1039/c8ee01157e.
Euronews, “Costa Rica trials hydrogen bus | Euronews,” 2017. https://www.euronews.com/2017/11/28/costa-rica-trials-hydrogen-bus (accessed Dec. 04, 2019).
Arirang News, “Seoul’s first hydrogen bus to operate from Wednesday - YouTube,” 2018. https://www.youtube.com/watch?v=6eKNWnJoq3s (accessed Dec. 04, 2019).
Alstom Coradia iLint, “Coradia iLint-The world’s 1st hydrogen powered train,” 2018. https://www.alstom.com/our-solutions/rolling-stock/coradia-ilint-worlds-1st-hydrogen-powered-train (accessed Dec. 04, 2019).
Transport for London, “World-first hydrogen double decker buses to help tackle London’s toxic air - Transport for London,” 2019. https://tfl.gov.uk/info-for/media/press-releases/2019/may/world-first-hydrogen-double-decker-buses-to-help-tackle-london-s-toxic-air (accessed Dec. 04, 2019).
K. Turoń, “Hydrogen-powered vehicles in urban transport systems-current state and development,” Transp. Res. Procedia, vol. 45, no. 2019, pp. 835–841, 2020, doi: 10.1016/j.trpro.2020.02.086.
ARIEMA, “Usos y Aplicaciones del Hidrógeno ,” 2020. http://www.ariema.com/usos-y-aplicaciones-del-hidrogeno (accessed Jul. 19, 2020).
O. Z. Sharaf and M. F. Orhan, “An overview of fuel cell technology: Fundamentals and applications,” Renew. Sustain. Energy Rev., vol. 32, pp. 810–853, 2014, doi: 10.1016/j.rser.2014.01.012.
R. H. Lin, X. N. Xi, P. N. Wang, B. D. Wu, and S. M. Tian, “Review on hydrogen fuel cell condition monitoring and prediction methods,” Int. J. Hydrogen Energy, pp. 5488–5498, 2019, doi: 10.1016/j.ijhydene.2018.09.085.
A. Arshad, H. M. Ali, A. Habib, M. A. Bashir, M. Jabbal, and Y. Yan, “Energy and exergy analysis of fuel cells: A review,” Therm. Sci. Eng. Prog., vol. 9, pp. 308–321, 2019, doi: 10.1016/j.tsep.2018.12.008.
R. M. Dell, P. T. Moseley, and D. A. J. Rand, Hydrogen, Fuel Cells and Fuel Cell Vehicles. 2014.
D. Hart, F. Lehner, R. Rose, and J. Lewis, “The Fuel Cell Industry Review 2019,” pp. 1–52, 2019, [Online]. Available: https://www.californiahydrogen.org/wp-content/uploads/2019/01/TheFuelCellIndustryReview2018.pdf.
Jon Hebditch, “World first for Aberdeen as city orders 15 double decker hydrogen buses | Press and Journal,” The Press and Journal, Jul. 18, 2019. https://www.pressandjournal.co.uk/fp/news/aberdeen/1799344/world-first-for-aberdeen-as-city-orders-15-double-decker-hydrogen-buses/ (accessed Jul. 19,2020).
Bertel Schmitt, “China Switches Over to Hydrogen Fuel Cells, and Toyota Delivers the Tech - The Drive,” The drive, Jul. 05, 2019. https://www.thedrive.com/tech/28837/china-switches-over-to-hydrogen-fuel-cells-and-toyota-delivers-the-tech (accessed Jul. 19, 2020).
World Economic Forum, “Grey, blue, green – the many colours of hydrogen explained | World Economic Forum,” 2021, 7AD. https://www.weforum.org/agenda/2021/07/clean-energy-green-hydrogen/ (accessed Sep. 15, 2021).
Ocean Based Perpetual Energy, “All About OceanBased Perpetual Energy’s Clean ‘Green Hydrogen’ | OceanBased,” Ocean Based, 2021. https://oceanbased.energy/all-about-oceanbased-perpetual-energys-clean-green-hydrogen/ (accessed Sep. 15, 2021).
O. Tlili, C. Mansilla, D. Frimat, and Y. Perez, “Hydrogen market penetration feasibility assessment: Mobility and natural gas markets in the US, Europe, China and Japan,” Int. J. Hydrogen Energy, vol. 44, no. 31, pp. 16048–16068, 2019, doi: 10.1016/j.ijhydene.2019.04.226.
G. Maggio, A. Nicita, and G. Squadrito, “How the hydrogen production from RES could change energy and fuel markets: A review of recent literature,” Int. J. Hydrogen Energy, vol. 44, no. 23, pp. 11371–11384, 2019, doi: 10.1016/j.ijhydene.2019.03.121.
IEA, “The clean hydrogen future has already begun,” 2019. .
IEA, “Renewable Energy Outlook,” 2013.
C. Fernandez, “Sistema de Energía del Hidrogeno,” Energética del Hidrogeno. Context. Estado aActual y Perspect. Futur., pp. 91–126, 2005.
R. H. Wijffels, H. Barten, and R. H. Reith, Bio_methane & Bio-hydrogen. 2003.
N. E. W. Hydrogen and H. O. R. Hype, “Innovation Insights Brief NEW HYDROGEN ECONOMY -,” 2019.
IEA, “The Future of Hydrogen,” Futur. Hydrog., no. June, 2019, doi: 10.1787/1e0514c4-en.
A. Pino Priego, “Producción de Hidrógeno,” pp. 8–25, 2009, [Online]. Available: http://bibing.us.es/proyectos/abreproy/30127/fichero/Capítulo+2+-+Producción+de+Hidrógeno.pdf.
A. G. García Conde, “Producción , almacenamiento y distribución de hidrógeno,” Asoc. Española del Hidrógeno, pp. 1–16, 2008.
L. van Cappellen, H. Croezen, and F. Rooijers, “Feasibility study into blue hydrogen,” pp. 0–46, 2018, [Online]. Available: https://greet.es.anl.gov/publication-smr_h2_2019.
H. Kurokawa, Y. Shirasaki, and I. Yasuda, “Energy-efficient distributed carbon capture in hydrogen production from natural gas,” Energy Procedia, vol. 4, pp. 674–680, 2011, doi: 10.1016/j.egypro.2011.01.104.
N. Muradov, Low-carbon production of hydrogen from fossil fuels, no. 2013. Elsevier Ltd, 2015
I. Dincer, “Green methods for hydrogen production,” Int. J. Hydrogen Energy, vol. 37, no. 2, pp. 1954–1971, 2012, doi: 10.1016/j.ijhydene.2011.03.173.
ARIEMA, “Producción de Hidrógeno Verde a partir de Agua ,” 2019. http://www.ariema.com/produccion-de-hidrogeno-verde-a-partir-de-agua (accessed Jul. 19, 2020).
J. Benemann, “Hydrogen Production:Progress and prospects,” Nat. Biotechnol., vol. 14, pp. 1101–1103, 1996.
V. Martínez-Merino, M. J. Gil, and A. Cornejo, “Biological Hydrogen Production,” Renew. Hydrog. Technol. Prod. Purification, Storage, Appl. Saf., pp. 171–199, 2013, doi: 10.1016/B978-0-444-56352-1.00008-8.
L. C. Fuentes-Casullo, “Producción de hidrógeno por fermentación oscura y producción de electricidad a partir de suero de queso y otros subproductos industriales,” 2020.
D. Das and T. N. Veziroglu, “Advances in biological hydrogen production processes,” Int. J. Hydrogen Energy, vol. 33, no. 21, pp. 6046–6057, 2008, doi: 10.1016/j.ijhydene.2008.07.098.
D. J. Lee, K. Y. Show, and A. Su, “Dark fermentation on biohydrogen production: Pure culture,” Bioresour. Technol., vol. 102, no. 18, pp. 8393–8402, 2011, doi: 10.1016/j.biortech.2011.03.041.
V. T. Mota, A. D. N. F. Júnior, E. Trably, and M. Zaiat, “Biohydrogen production at pH below 3 . 0 : Is it possible ?,” Water Res., vol. 128, pp. 350–361, 2018, doi: 10.1016/j.watres.2017.10.060.
F. R. Hawkes, I. Hussy, G. Kyazze, R. Dinsdale, and D. L. Hawkes, “Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress,” Int. J. Hydrogen Energy, vol. 32, no. 2, pp. 172–184, 2007, doi: 10.1016/j.ijhydene.2006.08.014.
I. Akiko, T. Murakawa, H. Kawaguchi, K. Hirata, and K. Miyamoto, “Photoproduction of hydrogen from raw starch using a halophilic bacterial community,” J. Biosci. Bioeng., vol. 88, no. 1, pp. 72–77, 1999, doi: 10.1016/S1389-1723(99)80179-0.
D. Akroum-Amrouche, N. Abdi, H. Lounici, and N. Mameri, “Biohydrogen production by dark and photo-fermentation processes,” Proc. 2013 Int. Renew. Sustain. Energy Conf. IRSEC 2013, no. October 2014, pp. 499–503, 2013, doi: 10.1109/IRSEC.2013.6529679.
K. Y. Show, D. J. Lee, J. H. Tay, C. Y. Lin, and J. S. Chang, “Biohydrogen production: Current perspectives and the way forward,” Int. J. Hydrogen Energy, vol. 37, no. 20, pp. 15616–15631, 2012, doi: 10.1016/j.ijhydene.2012.04.109.
D. B. Levin, L. Pitt, and M. Love, “Biohydrogen production: Prospects and limitations to practical application,” Int. J. Hydrogen Energy, vol. 29, no. 2, pp. 173–185, 2004, doi: 10.1016/S0360-3199(03)00094-6.
M. J. Barbosa, J. M. S. Rocha, J. Tramper, and R. H. Wijffels, “Acetate as a carbon source for hydrogen production by photosynthetic bacteria,” J. Biotechnol., vol. 85, no. 1, pp. 25–33, 2001, doi: 10.1016/S0168-1656(00)00368-0.
D. N. Tekucheva and A. A. Tsygankov, “Combined biological hydrogen-producing systems: A review,” Appl. Biochem. Microbiol., vol. 48, no. 4, pp. 319–337, 2012, doi: 10.1134/S0003683812040114.
Fedegán, “Producción | Fedegan,” Oct. 04, 2021. https://www.fedegan.org.co/estadisticas/produccion-0 (accessed Oct. 04, 2021).
Proexport, “Sector lácteo en Colombia.” Proexport, Bogotá, p. 18, 2011, [Online]. Available: http://portugalcolombia.com/media/Perfil-Lacteo-Colombia.pdf.
FEDEGAN, “FEDEGAN [Federación Colombiana de Ganaderos] (2018). Cifras de Referencia del Sector Ganadero Colombiano,” 2018.
I. (Universidad L. Burbano, “Utilización Actual Del Lactosuero En Colombia,” 1 ° Semin. Int. sobre Valorización del Suero Quesería, p. 15, [Online]. Available: https://www.inti.gob.ar/lacteos/pdf/4colombia.pdf.
A. R. Prazeres, F. Carvalho, and J. Rivas, “Cheese whey management: a review.,” J. Environ. Manage., vol. 110, pp. 48–68, Nov. 2012, doi: 10.1016/j.jenvman.2012.05.018.
FranceAgriMer, “Fichas de FranceAgriMer SECTOR - Grandes cultivos- Cereales,” 2015. Accessed: Jan. 28, 2020. [Online]. Available: www.franceagrimer.fr.
Á. Martínez-Alcalá García, “Producción de bioetanol: mejora del proceso a partir de grano de cereal y de biomasa lignocelulósica tratada con steam explosion,” pp. 1–263, 2012.
K. Rajeshwar, R. McConnell, and S. Licht, Solar hydrogen generation: Toward a renewable energy future. 2008.
R. ( Blankenship, Molecular Mechanisms of Photosynthesis. Arizona, 1997.
D. D. Kunkel, “Thylakoid centers: Structures associated with the cyanobacterial photosynthetic membrane system,” Arch. Microbiol., vol. 133, no. 2, pp. 97–99, 1982, doi: 10.1007/BF00413518.
E. Zak, B. Norling, R. Maitra, F. Huang, B. Andersson, and H. B. Pakrasi, “The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes,” Proc. Natl. Acad. Sci. U. S. A., vol. 98, no. 23, pp. 13443–13448, 2001, doi: 10.1073/pnas.241503898.
A. Pirson and M. H. Zimmermann, Photosynthesis III. 1986.
M. K. Ashby and C. W. Mullineaux, “Cyanobacterial ycf27 gene products regulate energy transfer from phycobilisomes to photosystems I and II,” FEMS Microbiol. Lett., vol. 181, no. 2, pp. 253–260, 1999, doi: 10.1016/S0378-1097(99)00547-9.
K. Schütz et al., “Cyanobacterial H2 production - A comparative analysis,” Planta, vol. 218, no. 3, pp. 350–359, 2004, doi: 10.1007/s00425-003-1113-5.
J. F. Imhoff, “Taxonomy and Physiology of Phototrophic Purple Bacteria and Green Sulfur Bacteria,” Anoxygenic Photosynth. Bact., pp. 1–15, 2006, doi: 10.1007/0-306-47954-0_1.
J. H. Kim, “Effect of Light Intensity on Nutrient Removal and Pigment Production by Purple Non-Sulfur Bacteria,” Delft Univ. Technol., p. 82, 2018.
R. A. Masters and M. Madigan, “Nitrogen metabolism in the phototrophic bacteria Rhodocyclus purpureus and Rhodospirillum tenue,” J. Bacteriol., vol. 155, no. 1, pp. 222–227, 1983.
P. C. Hallenbeck, C. M. Meyer, and P. M. Vignais, “Nitrogenase from the photosynthetic bacterium Rhodopseudomonas capsulata: Purification and molecular properties,” J. Bacteriol., vol. 149, no. 2, pp. 708–717, 1982.
I. Akkerman, M. Janssen, J. Rocha, and H. Wij, “Photobiological hydrogen production : photochemical e ciency and bioreactor design,” vol. 27, pp. 1195–1208, 2002.
H. Koku, I. Erolu, U. Gündüz, M. Yücel, and L. Türker, “Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides,” Int. J. Hydrogen Energy, vol. 27, no. 11–12, pp. 1315–1329, 2002, doi: 10.1016/S0360-3199(02)00127-1.
H. Ooshima et al., “Production of hydrogen by a hydrogenase-deficient mutant of Rhodobacter capsulatus,” J. Ferment. Bioeng., vol. 85, no. 5, pp. 470–475, 1998, doi: 10.1016/S0922-338X(98)80064-0.
H. Zürrer and R. Bachofen, “Aspects of growth and hydrogen production of the photosynthetic bacterium Rhodospirillum rubrum in continuous culture,” Biomass, vol. 2, no. 3, pp. 165–174, 1982, doi: 10.1016/0144-4565(82)90027-0.
K. Sasikala, C. V. Ramana, P. Raghuveer Rao, and M. Subrahmanyam, “Effect of gas phase on the photoproduction of hydrogen and substrate conversion efficiency in the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001,” Int. J. Hydrogen Energy, vol. 15, no. 11, pp. 795–797, 1990, doi: 10.1016/0360-3199(90)90015-Q.
O. Hädicke, H. Grammel, and S. Klamt, “Metabolic network modeling of redox balancing and biohydrogen production in purple nonsulfur bacteria,” BMC Syst. Biol., vol. 5, 2011, doi: 10.1186/1752-0509-5-150.
M. Abo-Hashesh and P. C. Hallenbeck, “Microaerobic dark fermentative hydrogen production by the photosynthetic bacterium, Rhodobacter capsulatus JP91,” Int. J. Low-Carbon Technol., vol. 7, no. 2, pp. 97–103, 2012, doi: 10.1093/ijlct/cts011.
M. Abo-Hashesh, D. Ghosh, A. Tourigny, A. Taous, and P. C. Hallenbeck, “Single stage photofermentative hydrogen production from glucose: An attractive alternative to two stage photofermentation or co-culture approaches,” Int. J. Hydrogen Energy, vol. 36, no. 21, pp. 13889–13895, 2011, doi: 10.1016/j.ijhydene.2011.02.122.
D. Ghosh, I. F. Sobro, and P. C. Hallenbeck, “Optimization of the hydrogen yield from single-stage photofermentation of glucose by Rhodobacter capsulatus JP91 using response surface methodology,” Bioresour. Technol., vol. 123, pp. 199–206, 2012, doi: 10.1016/j.biortech.2012.07.061.
P. Castillo-Moreno, “Desarrollo de un proceso de producción fotofermentativa de hidrógeno a partir de suero de leche,” p. 155, 2018.
BacDive, “Afifella marina BN 126 | Type strain | DSM 2698, ATCC 35675, CIP 104405, NBRC 100434 | BacDiveID:13874,” 2020. https://bacdive.dsmz.de/strain/13874 (accessed Jan. 29, 2020).
S. Al Azad, W. H. Jie, and M. T. B. M. Lal, “Utilization of Vegetable Waste Juice by Purple Non-Sulfur Bacterium (<i>Afifella marina</i> Strain ME) for Biomass Production,” J. Geosci. Environ. Prot., 2018, doi: 10.4236/gep.2018.65017.
A. Ike, N. Toda, N. Tsuji, K. Hirata, and K. Miyamoto, “Hydrogen photoproduction from co2-fixing microalgal biomass: application of halotolerant photo synthetic bacteria,” J. Ferment. Bioeng., vol. 84, no. 6, pp. 606–609, 1997, doi: 10.1016/S0922-338X(97)81921-6.
H. Kawaguchi, K. Hashimoto, K. Hirata, and K. Miyamoto, “H2 production from algal biomass by a mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus,” J. Biosci. Bioeng., vol. 91, no. 3, pp. 277–282, 2001, doi: 10.1016/S1389-1723(01)80134-1.
D. Susilaningsih, L. S. Sirait, K. Anam, M. S. Habibi, and B. Prasetya, “Possible application of biohydrogen technologies as electricity sources in Indonesian remote areas,” Int. J. Hydrogen Energy, vol. 39, no. 33, pp. 19400–19405, 2014, doi: 10.1016/j.ijhydene.2014.08.073.
J. F. Imhoff, “Rhodopseudomonas marina sp. nov., a New Marine Phototrophic Purple Bacterium,” Syst. Appl. Microbiol., vol. 4, no. 4, pp. 512–521, 1983, doi: 10.1016/S0723-2020(83)80009-5.
P. G. Roessler and S. Lien, “ Purification of Hydrogenase from Chlamydomonas reinhardtii ,” Plant Physiol., vol. 75, no. 3, pp. 705–709, 1984, doi: 10.1104/pp.75.3.705.
T. HAPPE and J. D. NABER, “Isolation, characterization and N‐terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii,” Eur. J. Biochem., vol. 214, no. 2, pp. 475–481, 1993, doi: 10.1111/j.1432-1033.1993.tb17944.x.
J. Cohen, K. Kim, P. King, M. Seibert, and K. Schulten, “Finding gas diffusion pathways in proteins: Application to O2 and H2 transport in CpI [FeFe]-hydrogenase and the role of packing defects,” Structure, vol. 13, no. 9, pp. 1321–1329, 2005, doi: 10.1016/j.str.2005.05.013.
M. Seibert, “Oxygen Sensitivity of Algal H 2 -Production,” vol. 63, pp. 141–142,1997.
P. Tamagnini, R. Axelsson, P. Lindberg, F. Oxelfelt, R. Wunschiers, and P. Lindblad, “Hydrogenases and Hydrogen Metabolism of Cyanobacteria,” Microbiol. Mol. Biol. Rev., vol. 66, no. 1, pp. 1–20, 2002, doi: 10.1128/mmbr.66.1.1-20.2002.
G. Boison, O. Schmitz, L. Mikheeva, S. Shestakov, and H. Bothe, “Cloning, molecular analysis and insertional mutagenesis of the bidirectional hydrogenase genes from the cyanobacterium Anacystis nidulans,” FEBS Lett., vol. 394, no. 2, pp. 153–158, 1996, doi: 10.1016/0014-5793(96)00936-2.
J. P. Houchins, “The physiology and biochemistry of hydrogen metabolism in cyanobacteria,” BBA Rev. Bioenerg., vol. 768, no. 3–4, pp. 227–255, 1984, doi: 10.1016/0304-4173(84)90018-1.
Y. Zhang and V. N. Gladyshev, “Molybdoproteomes and Evolution of Molybdenum Utilization,” J. Mol. Biol., vol. 379, no. 4, pp. 881–899, 2008, doi: 10.1016/j.jmb.2008.03.051.
V. K. Shah and W. J. Brill, “Isolation of an iron-molybdenum cofactor from nitrogenase,” Proc. Natl. Acad. Sci. U. S. A., vol. 74, no. 8, pp. 3249–3253, 1977, doi: 10.1073/pnas.74.8.3249.
R. V. Hageman and R. H. Burris, “Nitrogenase and nitrogenase reductase associate and dissociate with each catalytic cycle,” Proc. Natl. Acad. Sci. U. S. A., vol. 75, no. 6, pp. 2699–2702, 1978, doi: 10.1073/pnas.75.6.2699.
J. W. Peters, K. Fisher, and D. R. Dean, “Nitrogenase structure and function: A biochemical-genetic perspective,” Annu. Rev. Microbiol., vol. 49, pp. 335–366, 1995, doi: 10.1146/annurev.mi.49.100195.002003.
B. M. Hoffman, D. Lukoyanov, Z. Y. Yang, D. R. Dean, and L. C. Seefeldt, “Mechanism of nitrogen fixation by nitrogenase: The next stage,” Chem. Rev., vol. 114, no. 8, pp. 4041–4062, 2014, doi: 10.1021/cr400641x.
F. W. Larimer et al., “Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris,” Nat. Biotechnol., vol. 22, no. 1, pp. 55–61, 2004, doi: 10.1038/nbt923.
P. Castillo Moreno, “Evaluación experimental de la producciónn de hidrógeno a partir de suero de leche como sustrato en la fotosíntesis de microorganismos recombinados de Rhodobacter Capsulatus,” Universidad Nacional de Colombia, 2012. [Online]. Available: http://www.bdigital.unal.edu.co/8156/.
K. R. Khalilpour, R. Pace, and F. Karimi, “Retrospective and prospective of the hydrogen supply chain: A longitudinal techno-historical analysis,” Int. J. Hydrogen Energy, no. xxxx, 2020, doi: 10.1016/j.ijhydene.2020.02.099.
A. M. Ela Eroglu a, “Photobiological hydrogen production: recent advances and state of the art,” Bioresour. Technol., no. 102, pp. 8403–8413, 2011, doi: 10.1016/j.biortech.2011.03.026.
S. Al-Azad, T. K. Soon, and J. Ransangan, “Effects of light intensities and photoperiods on growth and proteolytic activity in purple non-sulfur marine bacterium, <i>Afifella marina</i> strain ME (KC205142),” Adv. Biosci. Biotechnol., 2013, doi: 10.4236/abb.2013.410120.
R. Munir and D. B. Levin, “Enzyme systems of anaerobes for biomass conversion,” Adv. Biochem. Eng. Biotechnol., vol. 156, pp. 113–138, 2016, doi: 10.1007/10_2015_5002.
E. B. Sydney et al., “Economic process to produce biohydrogen and volatile fatty acids by a mixed culture using vinasse from sugarcane ethanol industry as nutrient source,” Bioresour. Technol., vol. 159, pp. 380–386, 2014, doi: 10.1016/j.biortech.2014.02.042.
X. M. Guo, E. Trably, E. Latrille, H. Carrre, and J. P. Steyer, “Hydrogen production from agricultural waste by dark fermentation: A review,” Int. J. Hydrogen Energy, vol. 35, no. 19, pp. 10660–10673, 2010, doi: 10.1016/j.ijhydene.2010.03.008.
C. Hamilton et al., “Effect of the nitrogen source on the hydrogen production metabolism and hydrogenases of Clostridium butyricum CWBI1009,” Int. J. Hydrogen Energy, vol. 43, no. 11, pp. 5451–5462, 2018, doi: 10.1016/j.ijhydene.2017.12.162.
C. D. Boiangiu et al., “Sodium ion pumps and hydrogen production in glutamate fermenting anaerobic bacteria,” J. Mol. Microbiol. Biotechnol., vol. 10, no. 2–4, pp. 105–119, 2006, doi: 10.1159/000091558.
A. Kanazawa and D. M. Kramer, “In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase,” Proc. Natl. Acad. Sci. U. S. A., vol. 99, no. 20, pp. 12789–12794, 2002, doi: 10.1073/pnas.182427499.
P. Hillmer and H. Gest, “H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures,” J. Bacteriol., vol. 129, no. 2, pp. 724–731, 1977.
T. Happe, A. Hemschemeier, M. Winkler, and A. Kaminski, “Hydrogenases in green algae: Do they save the algae’s life and solve our energy problems?,” Trends Plant Sci., vol. 7, no. 6, pp. 246–250, 2002, doi: 10.1016/S1360-1385(02)02274-4.
M. Sakarika et al., “Purple non-sulphur bacteria and plant production: benefits for fertilization, stress resistance and the environment,” Microb. Biotechnol., vol. 13, no. 5, pp. 1336–1365, 2020, doi: 10.1111/1751-7915.13474.
T. K. Soon, S. Al-Azad, and J. Ransangan, “Isolation and characterization of purple non-sulfur bacteria, Afifella marina, producing large amount of carotenoids from mangrove microhabitats,” J. Microbiol. Biotechnol., vol. 24, no. 8, pp. 1034–1043, 2014, doi: 10.4014/jmb.1308.08072.
Merck, “Microbiology Introduction,” 2021. https://www.sigmaaldrich.com/CO/es/technical-documents/technical-article/microbiological-testing/microbial-culture-media-preparation/microbiology-introduction (accessed Oct. 06, 2021).
R. Gutiérrez Pulido, Humberto; De la Vara Salazar, Análisis y diseño de experimentos. Mc GrawHill, 2005.
P. Moreno, “Evaluación experimental de la producción de hidrógeno a partir de suero de leche como sustrato en la fotosíntesis de microorganismos recombinados de Rhodobacter capsulatus,” Universidad Nacional de Colombia, 2012.
F. R. Ortiz Rodriguez, “Evaluación de la producción de hidrógeno en reactores bioelectroquímicos de asistencia microbial (beamr),” 2019.
M. S. Kim, D. H. Kim, and J. Cha, “Culture conditions affecting H2 production by phototrophic bacterium Rhodobacter sphaeroides KD131,” Int. J. Hydrogen Energy, vol. 37, no. 19, pp. 14055–14061, 2012, doi: 10.1016/j.ijhydene.2012.06.085.
Y. E. Martínez Saldaña, “Determinación de biomasa-Labo2. PESO HÚMEDO, PESO SECO, TURBIDIMETRÍA- Laboratorio de biotecnología de los productos agroindustriales,” Trujillo, Dec. 2012. Accessed: Oct. 10, 2021. [Online]. Available: https://es.slideshare.net/yuricomartinez/labo2-peso-hmedo-peso-seco-turbidimetra.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxii, 152 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Química y Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81366/3/1014238643.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81366/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81366/5/1014238643.2022.pdf.jpg
bitstream.checksum.fl_str_mv f3a95af91eac62fc2ea961229a577303
8153f7789df02f0a4c9e079953658ab2
4185644305e9b8e3d96a8ce2378c94de
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090132835270656
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Serrato Bermúdez, Juan Carlos2cec2f7270f1d605a516d2e2beace5a2Magnin, Jean Pierre2699250f9f19a79e37e300c43b532ea0Morales Cortés, Yenny Paolad69f417ba3de8cb2a7ec8c7a942f4516Castillo Moreno, PatriciaGrupo de Investigación en Procesos Químicos y Bioquímicos2022-03-24T17:23:50Z2022-03-24T17:23:50Z2022-03-23https://repositorio.unal.edu.co/handle/unal/81366Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías , graficasEn el presente trabajo se evaluó la producción de hidrógeno a partir de la bacteria Afifella marina utilizando un medio sintético con composición similar a un residuo de fermentación oscura de la paja de trigo con una concentración total de ácidos de 112 mM. Este medio contenía ácidos orgánicos tales como ácido láctico y ácido acético los cuales fueron utilizados por la bacteria como principal fuente de carbono en un proceso de fotofermentación. Para establecer las condiciones óptimas de crecimiento de la bacteria y producción de hidrógeno, se estudiaron en medios sintéticos algunas variables significativas para el proceso: concentración y relación de ácidos orgánicos, fuente de nitrógeno, intensidad lumínica, agitación, concentración de sal y solución amortiguadora en botellas de 120 mL. La verificación de la presencia de hidrógeno en el biogás producido se realizó por medio de un cromatógrafo de gases de la serie 5890 de Hewlett Packard (serie A), con detector de conductividad térmica (TCD) obteniendo un 95% de hidrógeno (H2) en las muestras procesadas, el 5% restante se caracterizó como dióxido de carbono (CO2). Inicialmente se empleó un diseño de mezcla simplex lattice para escoger la mejor relación de los ácidos estudiados y posteriormente un diseño central compuesto rotable para evaluar el efecto sobre la producción de hidrógeno de tres variables continuas: relación de la concentración de la fuente de carbono (ácido láctico y ácido acético, concentración total 112 mM), concentración de fuente de nitrógeno (glutamato entre 3.5 y 13 mM) e intensidad lumínica (entre 6,000 y 18,000 lux); y una variable discreta (solución amortiguadora (medio LGK y medio LGB). La relación de ácidos orgánicos con la que se presentó la mejor producción de biogás para la solución amortiguadora LGK fue: 60 mM ácido acético, 60 mM ácido láctico con una producción total de 169 mL de biogás, mientras que para la solución amortiguadora LGB la mejor relación de ácidos orgánicos fue: 20 mM ácido acético, 80 mM ácido láctico, 20 mM de ácido butírico con una producción total de 200 mL de biogás. Además, se determinó que las mejores condiciones para la producción de biogás en la solución amortiguadora LGK fueron: una concentración de ácidos totales de 76 mM, una concentración de glutamato de 0.26 mM y una intensidad lumínica de 12.000 lux con un rendimiento de 19.08% respecto al ácido láctico y ácido acético. Para la solución amortiguadora LGB las condiciones que presentaron la mejor producción de biogás fueron: una concentración de ácidos totales de 76 mM, una concentración de glutamato de 8.25 mM y una intensidad lumínica de 12.000 lux con un rendimiento de 44.13% respecto al ácido láctico y ácido acético. Por último, se realizó un escalado de los experimentos con las dos soluciones amortiguadoras LGK y LGB en reactores de 1 L. Por cada solución amortiguadora se evaluaron dos reactores en los cuales se probaron las mejores condiciones obtenidas previamente: concentración total de ácidos 76 y 112 mM, concentración de glutamato 3.5 y 8.25 mM, intensidad lumínica 4,000 lux, obteniendo que la solución amortiguadora LGB presentó la mayor producción de biogás (concentración total de ácidos 112 mM, concentración de glutamato 3.50 mM) con una producción máxima de 4,139 mL de biogás/L. (Texto tomado de la fuente)In the present study, the hydrogen production by the photosynthetic bacterium Afifella marina was evaluated using a synthetic medium with a similar composition to a residue dark fermentation of wheat straw. This medium contained organic acids such as lactic acid acetic and butyric acid with a total acid organic concentration of 112 mM which were used by the bacteria as the main carbon source in a photofermentation process. Optimal conditions for growth and hydrogen production were established by DOE methodology. Continuous and discontinuous variables were studied in synthetic media: concentration and ratio of organic acids, nitrogen source, light intensity, stirring, salt concentration, and buffer solution. Produced hydrogen contained 95% hydrogen (H2) and 5% of carbon dioxide (CO2). A two-step procedure was carried out with the statistical software Design-Expert a simplex lattice mixture design for the selection of the best acids ratio studied and a central composite sphere-type design to evaluate the effect on hydrogen production of three continuous variables: concentration ratio of lactic acid and acetic acid (total concentration 112 mM), nitrogen source concentration as Na Glutamate (3.50 and 13 mM) and light intensity (range 6,000 -18,000 lux); and one discrete variable as: buffer solution (LGK and LGB medium). The best ratio of organic acid in LGK (KPI buffer) and LGB (Borax buffer) for maximal H2 production was 60 mM acetic acid, 60 mM lactic acid with a total production of 161 mL H2 and 20 mM acetic acid, 80 mM lactic acid, 20 mM butyric acid with a total production of 190 mL H2 respectively. Maximal H2 production, in the second part of the study was determined. The best conditions to produce biogas in the solution LGK buffer were: a total acid concentration of 76 mM, a glutamate concentration of 0.26 mM and a light intensity of 12.000 lux with a yield of 19.08% for lactic acid and acetic acid. For the LGB buffer solution, the conditions that presented the best biogas production were a total acid concentration of 76 mM, a glutamate concentration of 8.25 mM, and a light intensity of 12.000 lux with a yield of 44.13% concerning lactic acid and acetic acid. At the end of the project, the experiments were scaled up with the two buffer solutions LGK and LGB in 1 L reactors. For each buffer solution, two reactors were evaluated in which the best conditions obtained in the previous experiment designs were tested, the conditions in The ones in which these experiments were carried out were: total acid concentration 76 and 112 mM, glutamate concentration 3.50 and 8.25 mM, light intensity 4,000 lux, obtaining that the LGB buffer solution presented the highest biogas production (total acid concentration 112 mM, glutamate concentration 3.50 mM) with a total volume of 4,139 mL of biogas.MaestríaMagíster en Ingeniería - Ingeniería QuímicaquímBioprocesosxxii, 152 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería QuímicaDepartamento de Ingeniería Química y AmbientalFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionadosEquilibrio ácido-baseBiomasasAfifella marinaHidrógenoFotofermentaciónÁcidos orgánicosBóraxKPIHydrogenPhotofermentationOrganic acidsKPIBoraxAfifella marinaEvaluación de las condiciones de crecimiento y producción de hidrógeno de Afifella marina utilizando residuos industriales como sustrato por medio de fotofermentaciónEvaluation of growth conditions and hydrogen production of Afifella marina using industrial waste as a substrate through photofermentationÉvaluation des conditions de croissance et de la production d'hydrogène d'Afifella marina en utilisant des déchets industriels comme substrat par photofermentationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMEIA, “About 7% of fossil fuels are consumed for non-combustion use in the United States - Today in Energy - U.S. Energy Information Administration (EIA),” U.S Energy Information Administration, Apr. 06, 2018. https://www.eia.gov/todayinenergy/detail.php?id=35672 (accessed Sep. 13, 2021)H. Shaftel, S. Callery, R. Jackson, D. Bailey, and S. Callery, “Causes | Facts – Climate Change: Vital Signs of the Planet,” Earth Science Communications Team at the NASA’s Jet Propulsion Laboratory, 2021. https://climate.nasa.gov/causes/ (accessed Sep. 11, 2021).“Global Emissions | Center for Climate and Energy Solutions.” https://www.c2es.org/content/international-emissions/ (accessed Nov. 09, 2019).Enerdata, “CO2 Emissions from fuel Combustion | World Statistics on CO2 Updated | Enerdata,” The Enerdata Yearbook, 2021. https://yearbook.enerdata.net/co2/emissions-co2-data-from-fuel-combustion.html (accessed Sep. 11, 2021).Banco Mundial, “Cambio Climático,” 2021. https://www.bancomundial.org/es/topic/climatechange/overview (accessed Sep. 12, 2021).Ministère de la Transition écologique et solidaire, “Baisse de 4,2 % des émissions de gaz à effet de serre de la France en 2018 | Ministère de la Transition écologique et solidaire,” 2019. https://www.ecologique-solidaire.gouv.fr/baisse-42-des-emissions-gaz-effet-serre-france-en-2018 (accessed Nov. 10, 2019).Unidad de Planeación Minero Energética (UPME), Integración de las energías renovables no convencionales en Colombia. 2015.UPME - Unidad de Planeación Minero-Energética, “Plan Energético Nacional 2020-2050,” p. 2015, 2020, [Online]. Available: https://www1.upme.gov.co/DemandaEnergetica/PEN_2020_2050/Plan_Energetico_Nacional_2020_2050.pdf.UPME, Resolución N° 000463. 2018, pp. 1–3.Royal Society of Chemistry- RSC, “Hydrogen - Element information, properties and uses | Periodic Table,” Royal Society of Chemistry 2021, 2021. https://www.rsc.org/periodic-table/element/1/hydrogen (accessed Sep. 12, 2021).D. Mesa Puyo, “Transición energética: un legado para el presente y el futuro de Colombia Iván Duque Márquez Presidente de la República,” Accessed: Sep. 12, 2021. [Online]. Available: www.laimprentaeditores.com.J. Ceballos et al., “Aprovechamiento de residuos industriales como combustibles,” Prospectiva, vol. 5, no. 1, pp. 61–68, 2007.S. K. Khanal, M. Rasmussen, P. Shrestha, H. J. Van Leeuwen, C. Visvanathan, and H. Liu, “Bioenergy and Biofuel Production from Wastes/Residues of Emerging Biofuel Industries,” Water Environ. Res., vol. 80, no. 10, pp. 1625–1647, 2008, doi: 10.2175/106143008x328752.Preethi, T. M. M. Usman, J. Rajesh Banu, M. Gunasekaran, and G. Kumar, “Biohydrogen production from industrial wastewater: An overview,” Bioresour. Technol. Reports, vol. 7, no. July, p. 100287, 2019, doi: 10.1016/j.biteb.2019.100287.Y. Ueno, S. Otsuka, and M. Morimoto, “Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture,” J. Ferment. Bioeng., vol. 82, no. 2, pp. 194–197, 1996, doi: 10.1016/0922-338X(96)85050-1.M. L. Chong, V. Sabaratnam, Y. Shirai, and M. A. Hassan, “Biohydrogen production from biomass and industrial wastes by dark fermentation,” Int. J. Hydrogen Energy, vol. 34, no. 8, pp. 3277–3287, 2009, doi: 10.1016/j.ijhydene.2009.02.010.J. Rajesh Banu, S. Kavitha, R. Yukesh Kannah, R. R. Bhosale, and G. Kumar, “Industrial wastewater to biohydrogen: Possibilities towards successful biorefinery route,” Bioresour. Technol., vol. 298, p. 122378, 2020, doi: 10.1016/j.biortech.2019.122378.R. Nandi and S. Sengupta, “Microbial Production of Hydrogen: An Overview,” Crit. Rev. Microbiol., vol. 24, no. 1, pp. 61–84, 1998, doi: 10.1080/10408419891294181.Nusaibah, K. Syamsu, and D. Susilaningsih, “Biohydrogen Production in Substrates Combination of Vinasse and Tofu Whey Using Photosynthetic Bacteria Rhodobium marinum,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 10, no. 6, pp. 2451–2457, 2020, doi: 10.18517/ijaseit.10.6.9469.P. K. Rai and S. P. Singh, “Integrated dark- and photo-fermentation: Recent advances and provisions for improvement,” Int. J. Hydrogen Energy, vol. 41, no. 44, pp. 19957–19971, 2016, doi: 10.1016/j.ijhydene.2016.08.084.P. Y. Lin et al., “Biological hydrogen production of the genus Clostridium: Metabolic study and mathematical model simulation,” Int. J. Hydrogen Energy, vol. 32, no. 12, pp. 1728–1735, 2007, doi: 10.1016/j.ijhydene.2006.12.009.K. Anam and D. Susilaningsih, “HYDROGEN PRODUCTION USING Rhodobium marinum IN MILK,” vol. 38, no. 1, pp. 1–8, 2015.Y. H. P. Zhang, B. R. Evans, J. R. Mielenz, R. C. Hopkins, and M. W. W. Adams, “High-yield hydrogen production from starch and water by a synthetic enzymatic pathway,” PLoS One, vol. 2, no. 5, pp. 2–7, 2007, doi: 10.1371/journal.pone.0000456.J. A. Rollin et al., “High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling,” Proc. Natl. Acad. Sci. U. S. A., vol. 112, no. 16, pp. 4964–4969, 2015, doi: 10.1073/pnas.1417719112.Y. Du, W. Zou, K. Zhang, G. Ye, and J. Yang, “Advances and Applications of Clostridium Co-culture Systems in Biotechnology,” Front. Microbiol., vol. 11, no. November, pp. 1–22, 2020, doi: 10.3389/fmicb.2020.560223.T. Maeda, V. Sanchez-Torres, and T. K. Wood, “Hydrogen production by recombinant Escherichia coli strains,” Microb. Biotechnol., vol. 5, no. 2, pp. 214–225, 2012, doi: 10.1111/j.1751-7915.2011.00282.x.L. M. Rosales-Colunga and A. De León Rodríguez, “Escherichia coli and its application to biohydrogen production,” Rev. Environ. Sci. Biotechnol., vol. 14, no. 1, pp. 123–135, 2015, doi: 10.1007/s11157-014-9354-2.K. T. Tran, T. Maeda, V. Sanchez-Torres, and T. K. Wood, “Beneficial knockouts in Escherichia coli for producing hydrogen from glycerol,” Appl. Microbiol. Biotechnol., vol. 99, no. 6, pp. 2573–2581, 2015, doi: 10.1007/s00253-014-6338-7.S. K. S. Patel, M. Singh, and V. C. Kalia, “Hydrogen and Polyhydroxybutyrate Producing Abilities of Bacillus spp. From Glucose in Two Stage System,” Indian J. Microbiol., vol. 51, no. 4, pp. 418–423, 2011, doi: 10.1007/s12088-011-0236-9.A. T. Shah et al., “Bacillus sp. strains to produce bio-hydrogen from the organic fraction of municipal solid waste,” Appl. Energy, vol. 176, pp. 116–124, 2016, doi:10.1016/j.apenergy.2016.05.054.S. Lertsriwong and C. Glinwong, “Newly-isolated hydrogen-producing bacteria and biohydrogen production by Bacillus coagulans MO11 and Clostridium beijerinckii CN on molasses and agricultural wastewater,” Int. J. Hydrogen Energy, vol. 45, no. 51, pp. 26812–26821, 2020, doi: 10.1016/j.ijhydene.2020.07.032.C. M. Lee, P. C. Chen, C. C. Wang, and Y. C. Tung, “Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent,” Int. J. Hydrogen Energy, vol. 27, no. 11–12, pp. 1309–1313, 2002, doi: 10.1016/S0360-3199(02)00102-7.N. Basak, A. K. Jana, D. Das, and D. Saikia, “Photofermentative molecular biohydrogen production by purple-non-sulfur (PNS) bacteria in various modes: The present progress and future perspective,” Int. J. Hydrogen Energy, vol. 39, no. 13, pp. 6853–6871, 2014, doi: 10.1016/j.ijhydene.2014.02.093.P. C. Hallenbeck and Y. Liu, “Recent advances in hydrogen production by photosynthetic bacteria,” Int. J. Hydrogen Energy, vol. 41, no. 7, pp. 4446–4454, 2016, doi: 10.1016/j.ijhydene.2015.11.090.N. Basak and D. Das, “The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: The present state of the art,” World J. Microbiol. Biotechnol., vol. 23, no. 1, pp. 31–42, 2007, doi: 10.1007/s11274-006-9190-9.G. Antonopoulou, I. Ntaikou, K. Stamatelatou, and G. Lyberatos, Biological and fermentative production of hydrogen. Woodhead Publishing Limited, 2011.R. Łukajtis et al., “Hydrogen production from biomass using dark fermentation,” Renew. Sustain. Energy Rev., vol. 91, no. March, pp. 665–694, 2018, doi: 10.1016/j.rser.2018.04.043.Q. Zhang and Z. Zhang, Biological Hydrogen Production From Renewable Resources by Photofermentation, 1st ed., vol. 3. Elsevier Inc., 2018.T. Keskin, M. Abo-Hashesh, and P. C. Hallenbeck, “Photofermentative hydrogen production from wastes,” Bioresour. Technol., vol. 102, no. 18, pp. 8557–8568, 2011, doi: 10.1016/j.biortech.2011.04.004.Fenalce, “Histórico de área, producción y rendimiento de cereales y leguminosas,” Oct. 13, 2021. https://app.powerbi.com/view?r=eyJrIjoiOTk3NDZhYTMtZjg5NC00OWIxLWE3NmItOTIzYjdlZmFmNmJhIiwidCI6IjU2MmQ1YjJlLTBmMzEtNDdmOC1iZTk4LThmMjI4Nzc4MDBhOCJ9 (accessed Oct. 15, 2021).Government of Aragon, “La relación paja-grano en los cereales ( Una aproximación en condiciones de secano semiárido , en Aragón ),” Inf. técnicas, vol. 91, 2000.T. Helin et al., “BIOCORE BIOCOmmodity REfinery Collaborative project Seventh framework programme BIOREFINERY,” 2012.European Council of the European Union, “Climate change: what the EU is doing - Consilium,” General Secretariat of the Council EU, 2021. https://www.consilium.europa.eu/en/policies/climate-change/ (accessed Sep. 15, 2021).J. M. Rincón, “Colombian Case Problems and Perspectives Renewable Energy Sugarcane in the Future Summary.”U. de P. M. E. UPME, “Balance de Gas Natural en Colombia 2015-2023,” 2015. Accessed: Nov. 12, 2019. [Online]. Available: www.upme.gov.co.U. de P. M. E. (UPME) Ministerio de Minas y Energía, “Invierta y Gane con Energía Guía práctica para la aplicación de los incentivos tributarios de la Ley 1715 de 2014,” 2017.J. Ospina, C.-C. Espinosa Velásquez, ; William, J. Murcia, A.-R. E. De La, and R. Julio, “EL DESARROLLO DEL GLP EN COLOMBIA ¿AVIZORANDO UNA OPORTUNIDAD HACIA EL FUTURO?,” 2018.EIA, “Production of hydrogen - U.S. Energy Information Administration (EIA),” U.S Energy Information Administration, Jan. 07, 2021. https://www.eia.gov/energyexplained/hydrogen/production-of-hydrogen.php (accessed Sep. 15, 2021).R. M. Navarro, R. Guil, and J. L. G. Fierro, Introduction to hydrogen production. Elsevier Ltd, 2015.NREL, “Hydrogen Production and Delivery | Hydrogen and Fuel Cells | Hydrogen and Fuel Cells | NREL,” The National Renewable Energy Laboratory, 2021. https://www.nrel.gov/hydrogen/hydrogen-production-delivery.html (accessed Sep. 15, 2021).J. I. Linares Hurtado and B. Y. Moratilla Soria, El hidrógeno y la energía. 2007.R. B. Gupta, HYDROGEN FUEL- Production, Transport ans Storage. CRC Press- Taylor & Francis Group, 2009.G. I. CRYOGAS, “Ficha Técnica: Hidrógeno industrial,” pp. 1–1, 2018.F. Dawood, M. Anda, and G. M. Shafiullah, “Hydrogen production for energy: An overview,” Int. J. Hydrogen Energy, vol. 45, no. 7, pp. 3847–3869, 2020, doi: 10.1016/j.ijhydene.2019.12.059.Bruce S et al., “Pathways to an economically sustainable hydrogen industry in Australia National Hydrogen Roadmap ENERGY AND FUTURES www.csiro.au CITATION,” [Online]. Available: www.csiro.au.IRENA, Hydrogen: a Renewable Energy Perspective, no. September. 2019.V. S. Ke Liu, Chunshan Song and Ubramani, Hydrogen and Syngas Production and Purification Technologies. New Jersey: Wiley, 2010.Staples and Jeff, “Focus on Blue Hydrogen (August 2020),” Gaffney Cline, pp. 1–4, Aug. 2020, Accessed: Sep. 16, 2021. [Online]. Available: www.gaffneycline.com.K. Anam, M. S. Habibi, T. U. Harwati, and D. Susilaningsih, “Photofermentative hydrogen production using Rhodobium marinum from bagasse and soy sauce wastewater,” Int. J. Hydrogen Energy, vol. 37, no. 20, pp. 15436–15442, 2012, doi: 10.1016/j.ijhydene.2012.06.076.N. Academy, Committee on Alternatives and Strategies for Future Hydrogen Production and Use Board on Energy and Environmental Systems Division on Engineering and Physical Sciences. 2005.R. Ramachandran and R. K. Menon, “An overview of industrial uses of hydrogen,” Int. J. Hydrogen Energy, vol. 23, no. 7, pp. 593–598, 1998, doi: 10.1016/s0360-3199(97)00112-2.MinEnergia, “HOJA DE RUTA DEL HIDRÓGENO EN COLOMBIA,” 2021.C. Mansilla, C. Bourasseau, C. Cany, B. Guinot, A. Le Duigou, and P. Lucchese, Hydrogen applications: Overview of the key economic issues and perspectives. Elsevier Ltd., 2018.U.S. Department of Energy, “Potential Roles of Ammonia in a Hydrogen Economy,” Energy, pp. 1–23, 2006, [Online]. Available: https://www.hydrogen.energy.gov/pdfs/nh3_paper.pdf.I. Staffell et al., “The role of hydrogen and fuel cells in the global energy system,” Energy Environ. Sci., vol. 12, no. 2, pp. 463–491, 2019, doi: 10.1039/c8ee01157e.Euronews, “Costa Rica trials hydrogen bus | Euronews,” 2017. https://www.euronews.com/2017/11/28/costa-rica-trials-hydrogen-bus (accessed Dec. 04, 2019).Arirang News, “Seoul’s first hydrogen bus to operate from Wednesday - YouTube,” 2018. https://www.youtube.com/watch?v=6eKNWnJoq3s (accessed Dec. 04, 2019).Alstom Coradia iLint, “Coradia iLint-The world’s 1st hydrogen powered train,” 2018. https://www.alstom.com/our-solutions/rolling-stock/coradia-ilint-worlds-1st-hydrogen-powered-train (accessed Dec. 04, 2019).Transport for London, “World-first hydrogen double decker buses to help tackle London’s toxic air - Transport for London,” 2019. https://tfl.gov.uk/info-for/media/press-releases/2019/may/world-first-hydrogen-double-decker-buses-to-help-tackle-london-s-toxic-air (accessed Dec. 04, 2019).K. Turoń, “Hydrogen-powered vehicles in urban transport systems-current state and development,” Transp. Res. Procedia, vol. 45, no. 2019, pp. 835–841, 2020, doi: 10.1016/j.trpro.2020.02.086.ARIEMA, “Usos y Aplicaciones del Hidrógeno ,” 2020. http://www.ariema.com/usos-y-aplicaciones-del-hidrogeno (accessed Jul. 19, 2020).O. Z. Sharaf and M. F. Orhan, “An overview of fuel cell technology: Fundamentals and applications,” Renew. Sustain. Energy Rev., vol. 32, pp. 810–853, 2014, doi: 10.1016/j.rser.2014.01.012.R. H. Lin, X. N. Xi, P. N. Wang, B. D. Wu, and S. M. Tian, “Review on hydrogen fuel cell condition monitoring and prediction methods,” Int. J. Hydrogen Energy, pp. 5488–5498, 2019, doi: 10.1016/j.ijhydene.2018.09.085.A. Arshad, H. M. Ali, A. Habib, M. A. Bashir, M. Jabbal, and Y. Yan, “Energy and exergy analysis of fuel cells: A review,” Therm. Sci. Eng. Prog., vol. 9, pp. 308–321, 2019, doi: 10.1016/j.tsep.2018.12.008.R. M. Dell, P. T. Moseley, and D. A. J. Rand, Hydrogen, Fuel Cells and Fuel Cell Vehicles. 2014.D. Hart, F. Lehner, R. Rose, and J. Lewis, “The Fuel Cell Industry Review 2019,” pp. 1–52, 2019, [Online]. Available: https://www.californiahydrogen.org/wp-content/uploads/2019/01/TheFuelCellIndustryReview2018.pdf.Jon Hebditch, “World first for Aberdeen as city orders 15 double decker hydrogen buses | Press and Journal,” The Press and Journal, Jul. 18, 2019. https://www.pressandjournal.co.uk/fp/news/aberdeen/1799344/world-first-for-aberdeen-as-city-orders-15-double-decker-hydrogen-buses/ (accessed Jul. 19,2020).Bertel Schmitt, “China Switches Over to Hydrogen Fuel Cells, and Toyota Delivers the Tech - The Drive,” The drive, Jul. 05, 2019. https://www.thedrive.com/tech/28837/china-switches-over-to-hydrogen-fuel-cells-and-toyota-delivers-the-tech (accessed Jul. 19, 2020).World Economic Forum, “Grey, blue, green – the many colours of hydrogen explained | World Economic Forum,” 2021, 7AD. https://www.weforum.org/agenda/2021/07/clean-energy-green-hydrogen/ (accessed Sep. 15, 2021).Ocean Based Perpetual Energy, “All About OceanBased Perpetual Energy’s Clean ‘Green Hydrogen’ | OceanBased,” Ocean Based, 2021. https://oceanbased.energy/all-about-oceanbased-perpetual-energys-clean-green-hydrogen/ (accessed Sep. 15, 2021).O. Tlili, C. Mansilla, D. Frimat, and Y. Perez, “Hydrogen market penetration feasibility assessment: Mobility and natural gas markets in the US, Europe, China and Japan,” Int. J. Hydrogen Energy, vol. 44, no. 31, pp. 16048–16068, 2019, doi: 10.1016/j.ijhydene.2019.04.226.G. Maggio, A. Nicita, and G. Squadrito, “How the hydrogen production from RES could change energy and fuel markets: A review of recent literature,” Int. J. Hydrogen Energy, vol. 44, no. 23, pp. 11371–11384, 2019, doi: 10.1016/j.ijhydene.2019.03.121.IEA, “The clean hydrogen future has already begun,” 2019. .IEA, “Renewable Energy Outlook,” 2013.C. Fernandez, “Sistema de Energía del Hidrogeno,” Energética del Hidrogeno. Context. Estado aActual y Perspect. Futur., pp. 91–126, 2005.R. H. Wijffels, H. Barten, and R. H. Reith, Bio_methane & Bio-hydrogen. 2003.N. E. W. Hydrogen and H. O. R. Hype, “Innovation Insights Brief NEW HYDROGEN ECONOMY -,” 2019.IEA, “The Future of Hydrogen,” Futur. Hydrog., no. June, 2019, doi: 10.1787/1e0514c4-en.A. Pino Priego, “Producción de Hidrógeno,” pp. 8–25, 2009, [Online]. Available: http://bibing.us.es/proyectos/abreproy/30127/fichero/Capítulo+2+-+Producción+de+Hidrógeno.pdf.A. G. García Conde, “Producción , almacenamiento y distribución de hidrógeno,” Asoc. Española del Hidrógeno, pp. 1–16, 2008.L. van Cappellen, H. Croezen, and F. Rooijers, “Feasibility study into blue hydrogen,” pp. 0–46, 2018, [Online]. Available: https://greet.es.anl.gov/publication-smr_h2_2019.H. Kurokawa, Y. Shirasaki, and I. Yasuda, “Energy-efficient distributed carbon capture in hydrogen production from natural gas,” Energy Procedia, vol. 4, pp. 674–680, 2011, doi: 10.1016/j.egypro.2011.01.104.N. Muradov, Low-carbon production of hydrogen from fossil fuels, no. 2013. Elsevier Ltd, 2015I. Dincer, “Green methods for hydrogen production,” Int. J. Hydrogen Energy, vol. 37, no. 2, pp. 1954–1971, 2012, doi: 10.1016/j.ijhydene.2011.03.173.ARIEMA, “Producción de Hidrógeno Verde a partir de Agua ,” 2019. http://www.ariema.com/produccion-de-hidrogeno-verde-a-partir-de-agua (accessed Jul. 19, 2020).J. Benemann, “Hydrogen Production:Progress and prospects,” Nat. Biotechnol., vol. 14, pp. 1101–1103, 1996.V. Martínez-Merino, M. J. Gil, and A. Cornejo, “Biological Hydrogen Production,” Renew. Hydrog. Technol. Prod. Purification, Storage, Appl. Saf., pp. 171–199, 2013, doi: 10.1016/B978-0-444-56352-1.00008-8.L. C. Fuentes-Casullo, “Producción de hidrógeno por fermentación oscura y producción de electricidad a partir de suero de queso y otros subproductos industriales,” 2020.D. Das and T. N. Veziroglu, “Advances in biological hydrogen production processes,” Int. J. Hydrogen Energy, vol. 33, no. 21, pp. 6046–6057, 2008, doi: 10.1016/j.ijhydene.2008.07.098.D. J. Lee, K. Y. Show, and A. Su, “Dark fermentation on biohydrogen production: Pure culture,” Bioresour. Technol., vol. 102, no. 18, pp. 8393–8402, 2011, doi: 10.1016/j.biortech.2011.03.041.V. T. Mota, A. D. N. F. Júnior, E. Trably, and M. Zaiat, “Biohydrogen production at pH below 3 . 0 : Is it possible ?,” Water Res., vol. 128, pp. 350–361, 2018, doi: 10.1016/j.watres.2017.10.060.F. R. Hawkes, I. Hussy, G. Kyazze, R. Dinsdale, and D. L. Hawkes, “Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress,” Int. J. Hydrogen Energy, vol. 32, no. 2, pp. 172–184, 2007, doi: 10.1016/j.ijhydene.2006.08.014.I. Akiko, T. Murakawa, H. Kawaguchi, K. Hirata, and K. Miyamoto, “Photoproduction of hydrogen from raw starch using a halophilic bacterial community,” J. Biosci. Bioeng., vol. 88, no. 1, pp. 72–77, 1999, doi: 10.1016/S1389-1723(99)80179-0.D. Akroum-Amrouche, N. Abdi, H. Lounici, and N. Mameri, “Biohydrogen production by dark and photo-fermentation processes,” Proc. 2013 Int. Renew. Sustain. Energy Conf. IRSEC 2013, no. October 2014, pp. 499–503, 2013, doi: 10.1109/IRSEC.2013.6529679.K. Y. Show, D. J. Lee, J. H. Tay, C. Y. Lin, and J. S. Chang, “Biohydrogen production: Current perspectives and the way forward,” Int. J. Hydrogen Energy, vol. 37, no. 20, pp. 15616–15631, 2012, doi: 10.1016/j.ijhydene.2012.04.109.D. B. Levin, L. Pitt, and M. Love, “Biohydrogen production: Prospects and limitations to practical application,” Int. J. Hydrogen Energy, vol. 29, no. 2, pp. 173–185, 2004, doi: 10.1016/S0360-3199(03)00094-6.M. J. Barbosa, J. M. S. Rocha, J. Tramper, and R. H. Wijffels, “Acetate as a carbon source for hydrogen production by photosynthetic bacteria,” J. Biotechnol., vol. 85, no. 1, pp. 25–33, 2001, doi: 10.1016/S0168-1656(00)00368-0.D. N. Tekucheva and A. A. Tsygankov, “Combined biological hydrogen-producing systems: A review,” Appl. Biochem. Microbiol., vol. 48, no. 4, pp. 319–337, 2012, doi: 10.1134/S0003683812040114.Fedegán, “Producción | Fedegan,” Oct. 04, 2021. https://www.fedegan.org.co/estadisticas/produccion-0 (accessed Oct. 04, 2021).Proexport, “Sector lácteo en Colombia.” Proexport, Bogotá, p. 18, 2011, [Online]. Available: http://portugalcolombia.com/media/Perfil-Lacteo-Colombia.pdf.FEDEGAN, “FEDEGAN [Federación Colombiana de Ganaderos] (2018). Cifras de Referencia del Sector Ganadero Colombiano,” 2018.I. (Universidad L. Burbano, “Utilización Actual Del Lactosuero En Colombia,” 1 ° Semin. Int. sobre Valorización del Suero Quesería, p. 15, [Online]. Available: https://www.inti.gob.ar/lacteos/pdf/4colombia.pdf.A. R. Prazeres, F. Carvalho, and J. Rivas, “Cheese whey management: a review.,” J. Environ. Manage., vol. 110, pp. 48–68, Nov. 2012, doi: 10.1016/j.jenvman.2012.05.018.FranceAgriMer, “Fichas de FranceAgriMer SECTOR - Grandes cultivos- Cereales,” 2015. Accessed: Jan. 28, 2020. [Online]. Available: www.franceagrimer.fr.Á. Martínez-Alcalá García, “Producción de bioetanol: mejora del proceso a partir de grano de cereal y de biomasa lignocelulósica tratada con steam explosion,” pp. 1–263, 2012.K. Rajeshwar, R. McConnell, and S. Licht, Solar hydrogen generation: Toward a renewable energy future. 2008.R. ( Blankenship, Molecular Mechanisms of Photosynthesis. Arizona, 1997.D. D. Kunkel, “Thylakoid centers: Structures associated with the cyanobacterial photosynthetic membrane system,” Arch. Microbiol., vol. 133, no. 2, pp. 97–99, 1982, doi: 10.1007/BF00413518.E. Zak, B. Norling, R. Maitra, F. Huang, B. Andersson, and H. B. Pakrasi, “The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes,” Proc. Natl. Acad. Sci. U. S. A., vol. 98, no. 23, pp. 13443–13448, 2001, doi: 10.1073/pnas.241503898.A. Pirson and M. H. Zimmermann, Photosynthesis III. 1986.M. K. Ashby and C. W. Mullineaux, “Cyanobacterial ycf27 gene products regulate energy transfer from phycobilisomes to photosystems I and II,” FEMS Microbiol. Lett., vol. 181, no. 2, pp. 253–260, 1999, doi: 10.1016/S0378-1097(99)00547-9.K. Schütz et al., “Cyanobacterial H2 production - A comparative analysis,” Planta, vol. 218, no. 3, pp. 350–359, 2004, doi: 10.1007/s00425-003-1113-5.J. F. Imhoff, “Taxonomy and Physiology of Phototrophic Purple Bacteria and Green Sulfur Bacteria,” Anoxygenic Photosynth. Bact., pp. 1–15, 2006, doi: 10.1007/0-306-47954-0_1.J. H. Kim, “Effect of Light Intensity on Nutrient Removal and Pigment Production by Purple Non-Sulfur Bacteria,” Delft Univ. Technol., p. 82, 2018.R. A. Masters and M. Madigan, “Nitrogen metabolism in the phototrophic bacteria Rhodocyclus purpureus and Rhodospirillum tenue,” J. Bacteriol., vol. 155, no. 1, pp. 222–227, 1983.P. C. Hallenbeck, C. M. Meyer, and P. M. Vignais, “Nitrogenase from the photosynthetic bacterium Rhodopseudomonas capsulata: Purification and molecular properties,” J. Bacteriol., vol. 149, no. 2, pp. 708–717, 1982.I. Akkerman, M. Janssen, J. Rocha, and H. Wij, “Photobiological hydrogen production : photochemical e ciency and bioreactor design,” vol. 27, pp. 1195–1208, 2002.H. Koku, I. Erolu, U. Gündüz, M. Yücel, and L. Türker, “Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides,” Int. J. Hydrogen Energy, vol. 27, no. 11–12, pp. 1315–1329, 2002, doi: 10.1016/S0360-3199(02)00127-1.H. Ooshima et al., “Production of hydrogen by a hydrogenase-deficient mutant of Rhodobacter capsulatus,” J. Ferment. Bioeng., vol. 85, no. 5, pp. 470–475, 1998, doi: 10.1016/S0922-338X(98)80064-0.H. Zürrer and R. Bachofen, “Aspects of growth and hydrogen production of the photosynthetic bacterium Rhodospirillum rubrum in continuous culture,” Biomass, vol. 2, no. 3, pp. 165–174, 1982, doi: 10.1016/0144-4565(82)90027-0.K. Sasikala, C. V. Ramana, P. Raghuveer Rao, and M. Subrahmanyam, “Effect of gas phase on the photoproduction of hydrogen and substrate conversion efficiency in the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001,” Int. J. Hydrogen Energy, vol. 15, no. 11, pp. 795–797, 1990, doi: 10.1016/0360-3199(90)90015-Q.O. Hädicke, H. Grammel, and S. Klamt, “Metabolic network modeling of redox balancing and biohydrogen production in purple nonsulfur bacteria,” BMC Syst. Biol., vol. 5, 2011, doi: 10.1186/1752-0509-5-150.M. Abo-Hashesh and P. C. Hallenbeck, “Microaerobic dark fermentative hydrogen production by the photosynthetic bacterium, Rhodobacter capsulatus JP91,” Int. J. Low-Carbon Technol., vol. 7, no. 2, pp. 97–103, 2012, doi: 10.1093/ijlct/cts011.M. Abo-Hashesh, D. Ghosh, A. Tourigny, A. Taous, and P. C. Hallenbeck, “Single stage photofermentative hydrogen production from glucose: An attractive alternative to two stage photofermentation or co-culture approaches,” Int. J. Hydrogen Energy, vol. 36, no. 21, pp. 13889–13895, 2011, doi: 10.1016/j.ijhydene.2011.02.122.D. Ghosh, I. F. Sobro, and P. C. Hallenbeck, “Optimization of the hydrogen yield from single-stage photofermentation of glucose by Rhodobacter capsulatus JP91 using response surface methodology,” Bioresour. Technol., vol. 123, pp. 199–206, 2012, doi: 10.1016/j.biortech.2012.07.061.P. Castillo-Moreno, “Desarrollo de un proceso de producción fotofermentativa de hidrógeno a partir de suero de leche,” p. 155, 2018.BacDive, “Afifella marina BN 126 | Type strain | DSM 2698, ATCC 35675, CIP 104405, NBRC 100434 | BacDiveID:13874,” 2020. https://bacdive.dsmz.de/strain/13874 (accessed Jan. 29, 2020).S. Al Azad, W. H. Jie, and M. T. B. M. Lal, “Utilization of Vegetable Waste Juice by Purple Non-Sulfur Bacterium (<i>Afifella marina</i> Strain ME) for Biomass Production,” J. Geosci. Environ. Prot., 2018, doi: 10.4236/gep.2018.65017.A. Ike, N. Toda, N. Tsuji, K. Hirata, and K. Miyamoto, “Hydrogen photoproduction from co2-fixing microalgal biomass: application of halotolerant photo synthetic bacteria,” J. Ferment. Bioeng., vol. 84, no. 6, pp. 606–609, 1997, doi: 10.1016/S0922-338X(97)81921-6.H. Kawaguchi, K. Hashimoto, K. Hirata, and K. Miyamoto, “H2 production from algal biomass by a mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus,” J. Biosci. Bioeng., vol. 91, no. 3, pp. 277–282, 2001, doi: 10.1016/S1389-1723(01)80134-1.D. Susilaningsih, L. S. Sirait, K. Anam, M. S. Habibi, and B. Prasetya, “Possible application of biohydrogen technologies as electricity sources in Indonesian remote areas,” Int. J. Hydrogen Energy, vol. 39, no. 33, pp. 19400–19405, 2014, doi: 10.1016/j.ijhydene.2014.08.073.J. F. Imhoff, “Rhodopseudomonas marina sp. nov., a New Marine Phototrophic Purple Bacterium,” Syst. Appl. Microbiol., vol. 4, no. 4, pp. 512–521, 1983, doi: 10.1016/S0723-2020(83)80009-5.P. G. Roessler and S. Lien, “ Purification of Hydrogenase from Chlamydomonas reinhardtii ,” Plant Physiol., vol. 75, no. 3, pp. 705–709, 1984, doi: 10.1104/pp.75.3.705.T. HAPPE and J. D. NABER, “Isolation, characterization and N‐terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii,” Eur. J. Biochem., vol. 214, no. 2, pp. 475–481, 1993, doi: 10.1111/j.1432-1033.1993.tb17944.x.J. Cohen, K. Kim, P. King, M. Seibert, and K. Schulten, “Finding gas diffusion pathways in proteins: Application to O2 and H2 transport in CpI [FeFe]-hydrogenase and the role of packing defects,” Structure, vol. 13, no. 9, pp. 1321–1329, 2005, doi: 10.1016/j.str.2005.05.013.M. Seibert, “Oxygen Sensitivity of Algal H 2 -Production,” vol. 63, pp. 141–142,1997.P. Tamagnini, R. Axelsson, P. Lindberg, F. Oxelfelt, R. Wunschiers, and P. Lindblad, “Hydrogenases and Hydrogen Metabolism of Cyanobacteria,” Microbiol. Mol. Biol. Rev., vol. 66, no. 1, pp. 1–20, 2002, doi: 10.1128/mmbr.66.1.1-20.2002.G. Boison, O. Schmitz, L. Mikheeva, S. Shestakov, and H. Bothe, “Cloning, molecular analysis and insertional mutagenesis of the bidirectional hydrogenase genes from the cyanobacterium Anacystis nidulans,” FEBS Lett., vol. 394, no. 2, pp. 153–158, 1996, doi: 10.1016/0014-5793(96)00936-2.J. P. Houchins, “The physiology and biochemistry of hydrogen metabolism in cyanobacteria,” BBA Rev. Bioenerg., vol. 768, no. 3–4, pp. 227–255, 1984, doi: 10.1016/0304-4173(84)90018-1.Y. Zhang and V. N. Gladyshev, “Molybdoproteomes and Evolution of Molybdenum Utilization,” J. Mol. Biol., vol. 379, no. 4, pp. 881–899, 2008, doi: 10.1016/j.jmb.2008.03.051.V. K. Shah and W. J. Brill, “Isolation of an iron-molybdenum cofactor from nitrogenase,” Proc. Natl. Acad. Sci. U. S. A., vol. 74, no. 8, pp. 3249–3253, 1977, doi: 10.1073/pnas.74.8.3249.R. V. Hageman and R. H. Burris, “Nitrogenase and nitrogenase reductase associate and dissociate with each catalytic cycle,” Proc. Natl. Acad. Sci. U. S. A., vol. 75, no. 6, pp. 2699–2702, 1978, doi: 10.1073/pnas.75.6.2699.J. W. Peters, K. Fisher, and D. R. Dean, “Nitrogenase structure and function: A biochemical-genetic perspective,” Annu. Rev. Microbiol., vol. 49, pp. 335–366, 1995, doi: 10.1146/annurev.mi.49.100195.002003.B. M. Hoffman, D. Lukoyanov, Z. Y. Yang, D. R. Dean, and L. C. Seefeldt, “Mechanism of nitrogen fixation by nitrogenase: The next stage,” Chem. Rev., vol. 114, no. 8, pp. 4041–4062, 2014, doi: 10.1021/cr400641x.F. W. Larimer et al., “Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris,” Nat. Biotechnol., vol. 22, no. 1, pp. 55–61, 2004, doi: 10.1038/nbt923.P. Castillo Moreno, “Evaluación experimental de la producciónn de hidrógeno a partir de suero de leche como sustrato en la fotosíntesis de microorganismos recombinados de Rhodobacter Capsulatus,” Universidad Nacional de Colombia, 2012. [Online]. Available: http://www.bdigital.unal.edu.co/8156/.K. R. Khalilpour, R. Pace, and F. Karimi, “Retrospective and prospective of the hydrogen supply chain: A longitudinal techno-historical analysis,” Int. J. Hydrogen Energy, no. xxxx, 2020, doi: 10.1016/j.ijhydene.2020.02.099.A. M. Ela Eroglu a, “Photobiological hydrogen production: recent advances and state of the art,” Bioresour. Technol., no. 102, pp. 8403–8413, 2011, doi: 10.1016/j.biortech.2011.03.026.S. Al-Azad, T. K. Soon, and J. Ransangan, “Effects of light intensities and photoperiods on growth and proteolytic activity in purple non-sulfur marine bacterium, <i>Afifella marina</i> strain ME (KC205142),” Adv. Biosci. Biotechnol., 2013, doi: 10.4236/abb.2013.410120.R. Munir and D. B. Levin, “Enzyme systems of anaerobes for biomass conversion,” Adv. Biochem. Eng. Biotechnol., vol. 156, pp. 113–138, 2016, doi: 10.1007/10_2015_5002.E. B. Sydney et al., “Economic process to produce biohydrogen and volatile fatty acids by a mixed culture using vinasse from sugarcane ethanol industry as nutrient source,” Bioresour. Technol., vol. 159, pp. 380–386, 2014, doi: 10.1016/j.biortech.2014.02.042.X. M. Guo, E. Trably, E. Latrille, H. Carrre, and J. P. Steyer, “Hydrogen production from agricultural waste by dark fermentation: A review,” Int. J. Hydrogen Energy, vol. 35, no. 19, pp. 10660–10673, 2010, doi: 10.1016/j.ijhydene.2010.03.008.C. Hamilton et al., “Effect of the nitrogen source on the hydrogen production metabolism and hydrogenases of Clostridium butyricum CWBI1009,” Int. J. Hydrogen Energy, vol. 43, no. 11, pp. 5451–5462, 2018, doi: 10.1016/j.ijhydene.2017.12.162.C. D. Boiangiu et al., “Sodium ion pumps and hydrogen production in glutamate fermenting anaerobic bacteria,” J. Mol. Microbiol. Biotechnol., vol. 10, no. 2–4, pp. 105–119, 2006, doi: 10.1159/000091558.A. Kanazawa and D. M. Kramer, “In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase,” Proc. Natl. Acad. Sci. U. S. A., vol. 99, no. 20, pp. 12789–12794, 2002, doi: 10.1073/pnas.182427499.P. Hillmer and H. Gest, “H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures,” J. Bacteriol., vol. 129, no. 2, pp. 724–731, 1977.T. Happe, A. Hemschemeier, M. Winkler, and A. Kaminski, “Hydrogenases in green algae: Do they save the algae’s life and solve our energy problems?,” Trends Plant Sci., vol. 7, no. 6, pp. 246–250, 2002, doi: 10.1016/S1360-1385(02)02274-4.M. Sakarika et al., “Purple non-sulphur bacteria and plant production: benefits for fertilization, stress resistance and the environment,” Microb. Biotechnol., vol. 13, no. 5, pp. 1336–1365, 2020, doi: 10.1111/1751-7915.13474.T. K. Soon, S. Al-Azad, and J. Ransangan, “Isolation and characterization of purple non-sulfur bacteria, Afifella marina, producing large amount of carotenoids from mangrove microhabitats,” J. Microbiol. Biotechnol., vol. 24, no. 8, pp. 1034–1043, 2014, doi: 10.4014/jmb.1308.08072.Merck, “Microbiology Introduction,” 2021. https://www.sigmaaldrich.com/CO/es/technical-documents/technical-article/microbiological-testing/microbial-culture-media-preparation/microbiology-introduction (accessed Oct. 06, 2021).R. Gutiérrez Pulido, Humberto; De la Vara Salazar, Análisis y diseño de experimentos. Mc GrawHill, 2005.P. Moreno, “Evaluación experimental de la producción de hidrógeno a partir de suero de leche como sustrato en la fotosíntesis de microorganismos recombinados de Rhodobacter capsulatus,” Universidad Nacional de Colombia, 2012.F. R. Ortiz Rodriguez, “Evaluación de la producción de hidrógeno en reactores bioelectroquímicos de asistencia microbial (beamr),” 2019.M. S. Kim, D. H. Kim, and J. Cha, “Culture conditions affecting H2 production by phototrophic bacterium Rhodobacter sphaeroides KD131,” Int. J. Hydrogen Energy, vol. 37, no. 19, pp. 14055–14061, 2012, doi: 10.1016/j.ijhydene.2012.06.085.Y. E. Martínez Saldaña, “Determinación de biomasa-Labo2. PESO HÚMEDO, PESO SECO, TURBIDIMETRÍA- Laboratorio de biotecnología de los productos agroindustriales,” Trujillo, Dec. 2012. Accessed: Oct. 10, 2021. [Online]. Available: https://es.slideshare.net/yuricomartinez/labo2-peso-hmedo-peso-seco-turbidimetra.EstudiantesInvestigadoresPersonal de apoyo escolarPúblico generalORIGINAL1014238643.2022.pdf1014238643.2022.pdfTesis de Maestría en Ingeniería Químicaapplication/pdf4821763https://repositorio.unal.edu.co/bitstream/unal/81366/3/1014238643.2022.pdff3a95af91eac62fc2ea961229a577303MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81366/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1014238643.2022.pdf.jpg1014238643.2022.pdf.jpgGenerated Thumbnailimage/jpeg5962https://repositorio.unal.edu.co/bitstream/unal/81366/5/1014238643.2022.pdf.jpg4185644305e9b8e3d96a8ce2378c94deMD55unal/81366oai:repositorio.unal.edu.co:unal/813662023-08-03 23:04:22.889Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK