Citocinas en vesículas extracelulares derivadas de células MCF-7 expuestas a Doxorrubicina y su efecto sobre la viabilidad de cardiomiocitos aislados

ilustraciones, diagramas, fotografías

Autores:
Osorio Méndez, Jhon Jairo
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85734
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85734
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::572 - Bioquímica
Neoplasias de la Mama
Citocinas
Miocitos Cardíacos
Breast Neoplasms
Cytokines
Myocytes, Cardiac
Vesículas extracelulares
Exosomas
Enfermedades cardiovasculares
Cáncer de seno
Lesión cardiaca
Extracellular vesicles
Exosomes
Cardiovascular diseases
Breast cancer
Cardiac injury
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_cd7abe3e5a0cf61724f1ea73d7a631a8
oai_identifier_str oai:repositorio.unal.edu.co:unal/85734
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Citocinas en vesículas extracelulares derivadas de células MCF-7 expuestas a Doxorrubicina y su efecto sobre la viabilidad de cardiomiocitos aislados
dc.title.translated.eng.fl_str_mv Cytokines in extracellular vesicles derived from MCF-7 cells exposed to Doxorubicin and their effect on the viability of isolated cardiomyocytes
title Citocinas en vesículas extracelulares derivadas de células MCF-7 expuestas a Doxorrubicina y su efecto sobre la viabilidad de cardiomiocitos aislados
spellingShingle Citocinas en vesículas extracelulares derivadas de células MCF-7 expuestas a Doxorrubicina y su efecto sobre la viabilidad de cardiomiocitos aislados
570 - Biología::572 - Bioquímica
Neoplasias de la Mama
Citocinas
Miocitos Cardíacos
Breast Neoplasms
Cytokines
Myocytes, Cardiac
Vesículas extracelulares
Exosomas
Enfermedades cardiovasculares
Cáncer de seno
Lesión cardiaca
Extracellular vesicles
Exosomes
Cardiovascular diseases
Breast cancer
Cardiac injury
title_short Citocinas en vesículas extracelulares derivadas de células MCF-7 expuestas a Doxorrubicina y su efecto sobre la viabilidad de cardiomiocitos aislados
title_full Citocinas en vesículas extracelulares derivadas de células MCF-7 expuestas a Doxorrubicina y su efecto sobre la viabilidad de cardiomiocitos aislados
title_fullStr Citocinas en vesículas extracelulares derivadas de células MCF-7 expuestas a Doxorrubicina y su efecto sobre la viabilidad de cardiomiocitos aislados
title_full_unstemmed Citocinas en vesículas extracelulares derivadas de células MCF-7 expuestas a Doxorrubicina y su efecto sobre la viabilidad de cardiomiocitos aislados
title_sort Citocinas en vesículas extracelulares derivadas de células MCF-7 expuestas a Doxorrubicina y su efecto sobre la viabilidad de cardiomiocitos aislados
dc.creator.fl_str_mv Osorio Méndez, Jhon Jairo
dc.contributor.advisor.none.fl_str_mv Gómez Grosso, Luis Alberto
dc.contributor.author.none.fl_str_mv Osorio Méndez, Jhon Jairo
dc.contributor.researchgroup.spa.fl_str_mv Fisiología Molecular - Instituto Nacional de Salud
dc.subject.ddc.spa.fl_str_mv 570 - Biología::572 - Bioquímica
topic 570 - Biología::572 - Bioquímica
Neoplasias de la Mama
Citocinas
Miocitos Cardíacos
Breast Neoplasms
Cytokines
Myocytes, Cardiac
Vesículas extracelulares
Exosomas
Enfermedades cardiovasculares
Cáncer de seno
Lesión cardiaca
Extracellular vesicles
Exosomes
Cardiovascular diseases
Breast cancer
Cardiac injury
dc.subject.decs.spa.fl_str_mv Neoplasias de la Mama
Citocinas
Miocitos Cardíacos
dc.subject.decs.eng.fl_str_mv Breast Neoplasms
Cytokines
Myocytes, Cardiac
dc.subject.proposal.spa.fl_str_mv Vesículas extracelulares
Exosomas
Enfermedades cardiovasculares
Cáncer de seno
Lesión cardiaca
dc.subject.proposal.eng.fl_str_mv Extracellular vesicles
Exosomes
Cardiovascular diseases
Breast cancer
Cardiac injury
description ilustraciones, diagramas, fotografías
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-02-28T16:21:36Z
dc.date.available.none.fl_str_mv 2024-02-28T16:21:36Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85734
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85734
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv World Heart Federation, “WORLD HEART REPORT 2023 CONFRONTING THE WORLD ’ S NUMBER,” 2023
M. Reulen, C., Raoul, C., Winter, D., Frobisher C., Lancashire, E., Stiller, C., Jenney, M., Skinner, R., Stivens, M., Hawkins, “Long-term Cause-Specific Mortality Among Survivors of Childhood Cancer,” JAMA, vol. 304, no. 2, p. 172, Jul. 2010, doi: 10.1001/jama.2010.923.
T. M. Okwuosa, S. Anzevino, and R. Rao, “Cardiovascular disease in cancer survivors,” Postgrad. Med. J., vol. 93, no. 1096, pp. 82–90, 2017, doi: 10.1136/postgradmedj-2016-134417.
S. Raj, V. I. Franco, and S. E. Lipshultz, “Anthracycline-induced cardiotoxicity: A review of pathophysiology, diagnosis, and treatment,” Curr. Treat. Options Cardiovasc. Med., vol. 16, no. 6, 2014, doi: 10.1007/s11936-014-0315-4.
Hongxin Zhu, “Doxorubicin-Induced Cardiotoxicity,” in Cardiotoxicity, vol. I, W. Tan, Ed. InTech, 2018, p. 20.
L. Zhao and B. Zhang, “Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes,” Sci. Rep., vol. 7, no. March, pp. 1–11, 2017, doi: 10.1038/srep44735.
C. S. Abdullah et al., “Doxorubicin-induced cardiomyopathy associated with inhibition of autophagic degradation process and defects in mitochondrial respiration,” Sci. Rep., no. August 2018, pp. 1–20, 2019, doi: 10.1038/s41598-018-37862-3.
S. Zerikiotis, C. Angelidis, I. Dhima, K. K. Naka, and P. Kasioumi, “The increased expression of the inducible Hsp70 (HSP70A1A) in serum of patients with heart failure and its protective effect against the cardiotoxic agent doxorubicin,” Mol. Cell. Biochem., vol. 0, no. 0, p. 0, 2018, doi: 10.1007/s11010-018-3469-7.
S. Amirfakhri, A. Salimi, and N. Fernandez, “Effects of conditioned medium from breast cancer cells on Tlr2 expression in Nb4 cells,” Asian Pacific J. Cancer Prev., vol. 16, no. 18, pp. 8445–8450, 2015, doi: 10.7314/APJCP.2015.16.18.8445.
Y. Feng et al., “Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis,” Genes Dis., vol. 5, no. 2, pp. 77–106, 2018, doi: 10.1016/j.gendis.2018.05.001
Y. Feng et al., “Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis,” Genes Dis., vol. 5, no. 2, pp. 77–106, 2018, doi: 10.1016/j.gendis.2018.05.001.
K. Aubertin et al., “Massive release of extracellular vesicles from cancer cells after photodynamic treatment or chemotherapy,” Sci. Rep., vol. 6, no. June, pp. 1–11, 2016, doi: 10.1038/srep35376.
M. Iero et al., “Tumour-released exosomes and their implications in cancer immunity,” Cell Death Differ., vol. 15, no. 1, pp. 80–88, 2008, doi: 10.1038/sj.cdd.4402237.
D. S. Chulpanova, K. V. Kitaeva, V. James, A. A. Rizvanov, and V. V. Solovyeva, “Therapeutic prospects of extracellular vesicles in cancer treatment,” Front. Immunol., vol. 9, no. July, 2018, doi: 10.3389/fimmu.2018.01534.
X. Li et al., “Nano carriers for drug transport across the blood–brain barrier,” J. Drug Target., vol. 25, no. 1, pp. 17–28, 2017, doi: 10.1080/1061186X.2016.1184272.
C. Liu and C. Su, “Design strategies and application progress of therapeutic exosomes,” Theranostics, vol. 9, no. 4, pp. 1015–1028, 2019, doi: 10.7150/thno.30853.
N. Eiro, L. O. Gonzalez, S. Cid, J. Schneider, and F. J. Vizoso, “Breast Cancer Tumor Stroma : Cellular Components , Therapeutic Opportunities,” Cancers (Basel)., vol. 664, no. 11, pp. 1–26, 2019.
F. Masoudkabir et al., “Cardiovascular disease and cancer: Evidence for shared disease pathways and pharmacologic prevention,” Atherosclerosis, pp. 343–351, 2018, doi: 10.1016/j.atherosclerosis.2017.06.001.Cardiovascular.
C. Shaima, P. Moorthi, and N. Shaheen, “Cardiovascular diseases: Traditional and non-traditional risk factors,” J. Med. Allied Sci., vol. 6, no. 2, p. 46, 2016, doi: 10.5455/jmas.228597.
R. J. Koene, A. E. Prizment, A. Blaes, and S. H. Konety, “Shared risk factors in cardiovascular disease and cancer,” Circulation, vol. 133, no. 11, pp. 1104–1114, 2016, doi: 10.1161/CIRCULATIONAHA.115.020406.
K. H. Allison, “Molecular pathology of breast cancer: What a pathologist needs to know,” Am. J. Clin. Pathol., vol. 138, no. 6, pp. 770–780, 2012, doi: 10.1309/AJCPIV9IQ1MRQMOO.
A. R. Venkitaraman, “How do mutations affecting the breast cancer genes BRCA1 and BRCA2 cause cancer susceptibility?,” DNA Repair (Amst)., vol. 81, no. July, p. 102668, 2019, doi: 10.1016/j.dnarep.2019.102668.
A. R. Venkitaraman, “Cancer suppression by the chromosome custodians, BRCA1 and BRCA2,” Science (80-. )., vol. 343, no. 6178, pp. 1470–1475, 2014, doi: 10.1126/science.1252230.
Y. Liubomirski et al., “Tumor-stroma-inflammation networks promote pro-metastatic chemokines and aggressiveness characteristics in triple-negative breast cancer,” Front. Immunol., vol. 10, no. APR, pp. 1–24, 2019, doi: 10.3389/fimmu.2019.00757.
P. Eroles, A. Bosch, J. Alejandro Pérez-Fidalgo, and A. Lluch, “Molecular biology in breast cancer: Intrinsic subtypes and signaling pathways,” Cancer Treat. Rev., vol. 38, no. 6, pp. 698–707, 2012, doi: 10.1016/j.ctrv.2011.11.005.
A. Ahmad, Breast cancer metastasis and drug resistance: Progress and prospects. 2019.
H. Kennecke et al., “Metastatic behavior of breast cancer subtypes,” J. Clin. Oncol., vol. 28, no. 20, pp. 3271–3277, 2010, doi: 10.1200/JCO.2009.25.9820.
A. Kontoyannis and H. Sweetland, “Adjuvant therapy for breast cancer,” Surgery, vol. 25, no. 6, pp. 272–275, 2007, doi: 10.1016/j.mpsur.2007.05.005.
C. J. Lovitt, T. B. Shelper, and V. M. Avery, “Doxorubicin resistance in breast cancer cells is mediated by extracellular matrix proteins,” BMC Cancer, vol. 18, no. 1, pp. 1–11, 2018, doi: 10.1186/s12885-017-3953-6.
O. Tacar, P. Sriamornsak, and C. R. Dass, “Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems,” J. Pharm. Pharmacol., vol. 65, no. 2, pp. 157–170, 2013, doi: 10.1111/j.2042-7158.2012.01567.x.
S. N. Hilmer, V. C. Cogger, M. Muller, and D. G. Le Couteur, “THE HEPATIC PHARMACOKINETICS OF DOXORUBICIN AND LIPOSOMAL DOXORUBICIN,” Drug Metab. Dispos., vol. 32, no. 8, pp. 794–799, Aug. 2004, doi: 10.1124/dmd.32.8.794.
P. S. Rawat, A. Jaiswal, A. Khurana, J. S. Bhatti, and U. Navik, “Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management,” Biomed. Pharmacother., vol. 139, p. 111708, 2021, doi: 10.1016/j.biopha.2021.111708.
D. Cardinale et al., “Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy,” Circulation, vol. 131, no. 22, pp. 1981–1988, 2015, doi: 10.1161/CIRCULATIONAHA.114.013777.
L. Han, E. W. F. Lam, and Y. Sun, “Extracellular vesicles in the tumor microenvironment: Old stories, but new tales,” Mol. Cancer, vol. 18, no. 1, pp. 1–14, 2019, doi: 10.1186/s12943-019-0980-8.
M. Patil, J. Henderson, H. Luong, D. Annamalai, G. Sreejit, and P. Krishnamurthy, “The Art of Intercellular Wireless Communications: Exosomes in Heart Disease and Therapy,” Front. Cell Dev. Biol., vol. 7, no. December, pp. 1–16, 2019, doi: 10.3389/fcell.2019.00315.
Y. Fujita, Y. Yoshioka, and T. Ochiya, “Extracellular vesicle transfer of cancer pathogenic components,” Cancer Sci., vol. 107, no. 4, pp. 385–390, 2016, doi: 10.1111/cas.12896.
D. Lucchetti, C. R. Tenore, F. Colella, and A. Sgambato, “Extracellular Vesicles and Cancer: A Focus on Metabolism, Cytokines, and Immunity,” Cancers (Basel)., pp. 1–19, 2020, [Online]. Available: https://www.mdpi.com/2072-6694/12/1/171/htm#B6-cancers-12-00171.
A. Loftus et al., “Extracellular Vesicles From Osteotropic Breast Cancer Cells Affect Bone Resident Cells,” J. Bone Miner. Res., vol. 35, no. 2, pp. 396–412, 2020, doi: 10.1002/jbmr.3891.
A. Gaceb, M. C. Martinez, and R. Andriantsitohaina, “Extracellular vesicles: New players in cardiovascular diseases,” Int. J. Biochem. Cell Biol., vol. 50, no. 1, pp. 24–28, 2014, doi: 10.1016/j.biocel.2014.01.018.
S. Munich, A. Sobo-Vujanovic, W. J. Buchser, D. Beer-Stolz, and N. L. Vujanovic, “Dendritic cell exosomes directly kill tumor cells and activate natural killer cells via TNF superfamily ligands,” Oncoimmunology, vol. 1, no. 7, pp. 1074–1083, 2012, doi: 10.4161/onci.20897.
Y. Zheng, C. Tu, J. Zhang, and J. Wang, “Inhibition of multiple myeloma‑derived exosomes uptake suppresses the functional response in bone marrow stromal cell,” Int. J. Oncol., vol. 54, no. 3, pp. 1061–1070, 2019, doi: 10.3892/ijo.2019.4685.
S. Gurung, D. Perocheau, L. Touramanidou, and J. Baruteau, “The exosome journey: from biogenesis to uptake and intracellular signalling,” Cell Commun. Signal., vol. 19, no. 1, pp. 1–19, 2021, doi: 10.1186/s12964-021-00730-1.
S. Eguchi et al., “Cardiomyocytes capture stem cell-derived, anti-apoptotic microRNA-214 via clathrin-mediated endocytosis in acute myocardial infarction,” J. Biol. Chem., vol. 294, no. 31, pp. 11665–11674, 2019, doi: 10.1074/jbc.RA119.007537.
S. A. W. Joshua L. Hood, Hua Pan, Gregory M. Lanza, “Paracrine Induction of Endothelium by Tumor Exosomes,” Lab. Investig., 2009, doi: https://doi.org/10.1038/labinvest.2009.94.
A. Ramteke et al., “Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules,” Mol. Carcinog., vol. 54, no. 7, pp. 554–565, 2015, doi: 10.1002/mc.22124.
R. Ferreira, V.; Borba H.; Bonetti A.; Leonart A.; Pontarolo, “Cytokines and Interferons: Types and Functions,” in Autoantibodies and Cytokines, vol. i, W. A. Khan, Ed. 2019.
R. J. Dunlop and C. W. Campbell, “Cytokines and advanced cancer,” J. Pain Symptom Manage., vol. 20, no. 3, pp. 214–232, 2000, doi: 10.1016/S0885-3924(00)00199-8.
M. Bartekova, J. Radosinska, M. Jelemensky, and N. S. Dhalla, “Role of cytokines and inflammation in heart function during health and disease,” Heart Fail. Rev., vol. 23, no. 5, pp. 733–758, 2018, doi: 10.1007/s10741-018-9716-x.
M. Hedayat, M. J. Mahmoudi, N. R. Rose, and N. Rezaei, “Proinflammatory cytokines in heart failure: Double-edged swords,” Heart Fail. Rev., vol. 15, no. 6, pp. 543–562, 2010, doi: 10.1007/s10741-010-9168-4.
A. Lebedeva, W. Fitzgerald, I. Molodtsov, A. Shpektor, E. Vasilieva, and L. Margolis, “Differential clusterization of soluble and extracellular vesicle-associated cytokines in myocardial infarction,” Sci. Rep., vol. 10, no. 1, pp. 1–14, 2020, doi: 10.1038/s41598-020-78004-y.
W. Fitzgerald, M. L. Freeman, M. M. Lederman, E. Vasilieva, R. Romero, and L. Margolis, “A System of Cytokines Encapsulated in ExtraCellular Vesicles,” Sci. Rep., vol. 8, no. 1, pp. 1–11, 2018, doi: 10.1038/s41598-018-27190-x.
R. Cailleau, R. Young, M. Olivé, and W. J. Reeves, “Breast tumor cell lines from pleural effusions,” J. Natl. Cancer Inst., vol. 53, no. 3, pp. 661–674, 1974, doi: 10.1093/jnci/53.3.661.
H. D. Soule, J. Vazquez, A. Long, S. Albert, and M. Brennan, “A human cell line from a pleural effusion derived from a breast carcinoma1,2,” J. Natl. Cancer Inst., vol. 51, no. 5, pp. 1409–1416, 1973, doi: 10.1093/jnci/51.5.1409.
C. Théry, C. Aled, A. Sebastian, and R. Graça, “Isolation and Characterization of Exosomes from Cell Culture Supernatants,” Curr. Protoc. Cell Biol., vol. 3.22, pp. 1–29, 2006.
S. S. Novoa Herrán, “La malignización celular analizada mediante proteómica comparativa de líneas celulares trofoblásticas humanas,” Universidad Nacional de Colombia, 2017.
X. Osteikoetxea et al., “Differential detergent sensitivity of extracellular vesicle subpopulations,” Org. Biomol. Chem., vol. 13, no. 38, pp. 9775–9782, 2015, doi: 10.1039/c5ob01451d.
S. Chiloiro et al., “Markers of humoral and cell-mediated immune response in primary autoimmune hypophysitis: a pilot study,” Endocrine, vol. 73, no. 2, pp. 308–315, 2021, doi: 10.1007/s12020-021-02612-5.
L. A. Gomez, A. E. Alekseev, L. A. Aleksandrova, P. A. Brady, and A. Terzic, “Use of the MTT assay in adult ventricular cardiomyocytes to assess viability: Effects of adenosine and potassium on cellular survival,” J. Mol. Cell. Cardiol., vol. 29, no. 4, pp. 1255–1266, 1997, doi: 10.1006/jmcc.1996.0363.
L. A. Gómez-Grosso, “Preacondicionamiento isquémico en cardiomiocitos ventriculares aislados. Identificación y expresión de algunos microRNAs asociados,” Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., vol. 37, no. 145, p. 433, 2014, doi: 10.18257/raccefyn.26.
P. A. Brady, A. E. Alekseev, L. A. Aleksandrova, L. A. Gomez, and A. Terzic, “A disrupter of actin microfilaments impairs sulfonylurea-inhibitory gating of cardiac KATP channels,” Am. J. Physiol., vol. 271, no. 6 PART 2, 1996, doi: 10.1152/ajpheart.1996.271.6.h2710.
A. Wojtala, M. Bonora, D. Malinska, P. Pinton, J. Duszynski, and M. R. Wieckowski, Methods to monitor ROS production by fluorescence microscopy and fluorometry, 1st ed., vol. 542. Elsevier Inc., 2014.
R. P. Rastogi, S. P. Singh, D. P. Häder, and R. P. Sinha, “Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2’,7’-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937,” Biochem. Biophys. Res. Commun., vol. 397, no. 3, pp. 603–607, 2010, doi: 10.1016/j.bbrc.2010.06.006.
D. Li et al., “Isolation and identification of exosomes from feline plasma, urine and adipose-derived mesenchymal stem cells,” BMC Vet. Res., vol. 17, no. 1, pp. 1–8, 2021, doi: 10.1186/s12917-021-02960-4.
J. Van Deun et al., “The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling,” J. Extracell. Vesicles, vol. 3, no. 1, 2014, doi: 10.3402/jev.v3.24858.
L. D. Zorova et al., “Do Extracellular Vesicles Derived from Mesenchymal Stem Cells Contain Functional Mitochondria?,” Int. J. Mol. Sci., vol. 23, no. 13, 2022, doi: 10.3390/ijms23137408.
M. A. M. Ali, A. D. Kandasamy, X. Fan, and R. Schulz, “Hydrogen peroxide-induced necrotic cell death in cardiomyocytes is independent of matrix metalloproteinase-2,” Toxicol. Vitr., vol. 27, no. 6, pp. 1686–1692, 2013, doi: 10.1016/j.tiv.2013.04.013.
H. He et al., “Calcineurin suppresses AMPK-dependent cytoprotective autophagy in cardiomyocytes under oxidative stress,” Cell Death Dis., vol. 5, no. 1, 2014, doi: 10.1038/cddis.2013.533.
J. D. Hutcheson and E. Aikawa, “Extracellular vesicles in cardiovascular homeostasis and disease,” Curr. Opin. Cardiol., vol. 33, no. 3, pp. 290–297, 2018, doi: 10.1097/HCO.0000000000000510.
A. Matsumoto et al., “Accelerated growth of B16BL6 tumor in mice through efficient uptake of their own exosomes by B16BL6 cells,” Cancer Sci., vol. 108, no. 9, pp. 1803–1810, 2017, doi: 10.1111/cas.13310.
L. D. Zorova et al., “Do Extracellular Vesicles Derived from Mesenchymal Stem Cells Contain Functional Mitochondria?,” Int. J. Mol. Sci., vol. 23, no. 13, Jul. 2022, doi: 10.3390/IJMS23137408/S1.
H. Li and F. Li, “Exosomes from BM-MSCs increase the population of CSCs via transfer of miR-142-3p,” Br. J. Cancer, vol. 119, no. 6, pp. 744–755, 2018, doi: 10.1038/s41416-018-0254-z.
G. Palazzolo, N. N. Albanese, G. Di Cara, D. Gygax, M. L. Vittorelli, and I. Pucci-Minafra, “Proteomic analysis of exosome-like vesicles derived from breast cancer cells,” Anticancer Res., vol. 32, no. 3, pp. 847–860, 2012.
A. Becker, B. K. Thakur, J. M. Weiss, H. S. Kim, H. Peinado, and D. Lyden, “Extracellular Vesicles in Cancer: Cell-to-Cell Mediators of Metastasis,” Cancer Cell, vol. 30, no. 6, pp. 836–848, 2016, doi: 10.1016/j.ccell.2016.10.009.
J. Xu, R.;Greening, D.; Zhu, H.; Takahashi, N.; Simpson, “Extracellular vesicle isolation and characterization: toward clinical application,” J. Clin. Invest., vol. 4, pp. 1152–1162, 2016, doi: 10.1172/JCI81129.
M. Tkach, J. Kowal, and C. Théry, “Why the need and how to approach the functional diversity of extracellular vesicles,” Philos. Trans. R. Soc. B Biol. Sci., vol. 373, no. 1737, 2018, doi: 10.1098/rstb.2016.0479.
C. Lynch, M. Panagopoulou, and C. D. Gregory, “Extracellular vesicles arising from apoptotic cells in tumors: Roles in cancer pathogenesis and potential clinical applications,” Front. Immunol., vol. 8, no. SEP, pp. 1–8, 2017, doi: 10.3389/fimmu.2017.01174.
J. Kowal et al., “Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes,” Proc. Natl. Acad. Sci. U. S. A., vol. 113, no. 8, pp. E968–E977, 2016, doi: 10.1073/pnas.1521230113.
D. W. Edwardson, J. Boudreau, J. Mapletoft, C. Lanner, A. T. Kovala, and A. M. Parissenti, Inflammatory cytokine production in tumor cells upon chemotherapy drug exposure or upon selection for drug resistance, vol. 12, no. 9. 2017.
M. Mirabdollahi, S. H. Javanmard, and H. Sadeghi-Aliabadi, “In vitro assessment of cytokine expression profile of MCF-7 cells in response to hWJ-MSCs secretome,” Adv. Pharm. Bull., vol. 9, no. 4, pp. 649–654, 2019, doi: 10.15171/apb.2019.075.
A. Maillet et al., “Modeling Doxorubicin-Induced Cardiotoxicity in Human Pluripotent Stem Cell Derived-Cardiomyocytes,” Sci. Rep., vol. 6, no. January, pp. 1–13, 2016, doi: 10.1038/srep25333.
K. Chen et al., “Cytokine secretion in breast cancer cells – MILLIPLEX assay data,” Data Br., vol. 28, p. 104798, 2020, doi: 10.1016/j.dib.2019.104798.
S. Fimmel, L. Devermann, A. Herrmann, and C. Zouboulis, “GRO-α: A potential marker for cancer and aging silenced by RNA interference,” Ann. N. Y. Acad. Sci., vol. 1119, no. 1, pp. 176–189, 2007, doi: 10.1196/annals.1404.016.
X. Man et al., “High expression level of CXCL1/GROα is linked to advanced stage and worse survival in uterine cervical cancer and facilitates tumor cell malignant processes,” BMC Cancer, vol. 22, no. 1, pp. 1–13, 2022, doi: 10.1186/s12885-022-09749-0.
A. Hanna and N. G. Frangogiannis, “Inflammatory Cytokines and Chemokines as Therapeutic Targets in Heart Failure,” Cardiovasc. Drugs Ther., pp. 849–863, 2020, doi: https://doi.org/10.1007/s10557-020-07071-0.
Y. Liu, D. Zhang, and D. Yin, “Pathophysiological Effects of Various Interleukins on Primary Cell Types in Common Heart Disease,” Int. J. Mol. Sci., vol. 24, no. 7, 2023, doi: 10.3390/ijms24076497.
W. Zhang, T. Zhu, L. Chen, W. Luo, and J. Chao, “MCP-1 mediates ischemia-reperfusion-induced cardiomyocyte apoptosis via MCPIP1 and CaSR,” Am. J. Physiol. - Hear. Circ. Physiol., vol. 318, no. 1, pp. H59–H71, 2020, doi: 10.1152/ajpheart.00308.2019.
M. Shibakura et al., “Induction of IL-8 and monocyte chemoattractant protein-1 by doxorubicin in human small cell lung carcinoma cells,” Int. J. Cancer, vol. 103, no. 3, pp. 380–386, 2003, doi: 10.1002/ijc.10842.
A. Syukri et al., “Doxorubicin induced immune abnormalities and inflammatory responses via HMGB1, HIF1-α and VEGF pathway in progressive of cardiovascular damage,” Ann. Med. Surg., vol. 76, no. February, p. 103501, 2022, doi: 10.1016/j.amsu.2022.103501.
S. H. Lee, K. W. Kim, K. M. Min, K. W. Kim, S. I. Chang, and J. C. Kim, “Angiogenin reduces immune inflammation via inhibition of tank-binding kinase 1 expression in human corneal fibroblast cells,” Mediators Inflamm., vol. 2014, 2014, doi: 10.1155/2014/861435.
R. Ascione et al., “Migration towards SDF-1 selects angiogenin-expressing bone marrow monocytes endowed with cardiac reparative activity in patients with previous myocardial infarction,” Stem Cell Res. Ther., vol. 6, no. 1, pp. 1–16, 2015, doi: 10.1186/s13287-015-0028-y.
J. P. Maloney and L. Gao, “Proinflammatory Cytokines Increase Vascular Endothelial Growth Factor Expression in Alveolar Epithelial Cells,” Mediators Inflamm., vol. 2015, 2015, doi: 10.1155/2015/387842.
C. L. Roland, K. D. Lynn, J. E. Toombs, S. P. Dineen, D. G. Udugamasooriya, and R. A. Brekken, “Cytokine levels correlate with immune cell infiltration after anti-VEGF therapy in preclinical mouse models of breast cancer,” PLoS One, vol. 4, no. 11, pp. 1–13, 2009, doi: 10.1371/journal.pone.0007669.
A. E. Vegf, V. Lionetti, F. Recchia, and M. Giacca, “340. AAV-Mediated Expression of VEGF165 and VEGF-B Enhances Cardiomyocytes Protection and Improves Heart Performance in the Infarcted Myocardium,” Mol. Ther., vol. 16, no. May, p. S128, 2008, doi: 10.1016/s1525-0016(16)39743-x.
G. hua Li et al., “Dual effects of VEGF-B on activating cardiomyocytes and cardiac stem cells to protect the heart against short- and long-term ischemia-reperfusion injury,” J. Transl. Med., vol. 14, no. 1, pp. 1–14, 2016, doi: 10.1186/s12967-016-0847-3.
T. Tang and H. K. Hammond, Gene Transfer for Clinical Congestive Heart Failure. Elsevier Inc., 2015.
A. A. Jarrah et al., “SDF-1 induces TNF-mediated apoptosis in cardiac myocytes,” Apoptosis, vol. 23, no. 1, pp. 79–91, 2018, doi: 10.1007/s10495-017-1438-3.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 96 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Medicina - Maestría en Bioquímica
dc.publisher.faculty.spa.fl_str_mv Facultad de Medicina
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85734/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85734/2/1026582711.2023.pdf
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
2971e0d63f8011601876fe8d0035c2a0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089851379646464
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gómez Grosso, Luis Alberto4e7823be0e6e7a95d83cee153f1a7644Osorio Méndez, Jhon Jairo75fc2fa462b943b90c8616f52b94c8d8Fisiología Molecular - Instituto Nacional de Salud2024-02-28T16:21:36Z2024-02-28T16:21:36Z2023https://repositorio.unal.edu.co/handle/unal/85734Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasLas enfermedades cardiovasculares y el cáncer representan las principales causas de morbilidad y mortalidad a nivel mundial. La Doxorrubicina es un agente antineoplásico ampliamente utilizado, sin embargo, su uso se ve limitado por sus efectos cardiotóxicos. Los exosomas, vesículas bilipídicas especializadas formadas en vías endocíticas, han sido descritos como mediadores de la comunicación y señalización celular necesarias para la supervivencia de las células tumorales en el microambiente tumoral. El objetivo del estudio fue caracterizar las citocinas presentes en vesículas extracelulares tipo exosoma, producidas por el tratamiento de la línea celular de cáncer de seno MCF-7 con Doxorrubicina y evaluar su efecto sobre la viabilidad de cardiomiocitos aislados de cobayo (Cavia porcellus). Se trató a las células MCF-7 con Doxorrubicina, se obtuvieron los medios condicionados y se aislaron las vesículas extracelulares (VEs) tipo exosoma. Posteriormente, se trataron los cardiomiocitos con estas VEs y se evaluó su efecto sobre la viabilidad celular. Los resultados mostraron que el tratamiento con Doxorrubicina induce un perfil diferencial de citocinas en comparación con el control. La exposición de cardiomiocitos a las VEs produjo un aumento en los niveles de especies reactivas de oxígeno (ROS), pérdida de la viabilidad celular, despolarización de la membrana celular y aumento en los niveles de calcio intracelular. Estos resultados sugieren que las VEs tipo exosoma inducidas por Doxorrubicina contribuyen a la pérdida de viabilidad en cardiomiocitos a través de las citocinas presentes en ellas. Estos hallazgos pueden tener implicaciones importantes para el desarrollo de estrategias terapéuticas que minimicen los efectos cardiotóxicos asociados al tratamiento con Doxorrubicina en pacientes con cáncer. (Texto tomado de la fuente)Cardiovascular diseases and cancer remain significant contributors to global morbidity and mortality. Doxorubicin, a widely used antineoplastic agent, demonstrates a broad treatment spectrum and high efficacy. However, its clinical utility is limited by its cardiotoxic effects. Exosomes, specialized bilipid vesicles formed as part of endocytic pathways, play a crucial role as mediators of cellular communication and signaling within the tumor microenvironment, contributing to tumor cell survival. The present study aimed to characterize the cytokines present in exosome-type extracellular vesicles (EVs), produced following the treatment of MCF-7 breast cancer cell lines with Doxorubicin, and to assess their impact on isolated guinea pig cardiomyocytes' (Cavia porcellus) viability. MCF-7 cells were subjected to Doxorubicin treatment, conditioned media were collected, and exosometype EVs were isolated. Subsequently, cardiomyocytes were exposed to these EVs, and their effect on cell viability was evaluated. Results revealed that Doxorubicin treatment induced a distinctive profile of cytokines in the EVs compared to the control group. Exposure of cardiomyocytes to the exosome-type EVs led to an increase in reactive oxygen species (ROS) levels, accompanied by reduced cell viability, cell membrane depolarization, and elevated intracellular calcium concentrations. In conclusion, the findings suggest that exosome-type extracellular vesicles derived from Doxorubicin-treated MCF-7 cells induce cardiomyocyte viability loss through the action of specific cytokines. These observations have important implications for developing therapeutic strategies to mitigate the cardiotoxic effects associated with Doxorubicin treatment in cancer patients.MaestríaMagíster en BioquímicaMecanismos celulares y moleculares de cardioprotección96 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Medicina - Maestría en BioquímicaFacultad de MedicinaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::572 - BioquímicaNeoplasias de la MamaCitocinasMiocitos CardíacosBreast NeoplasmsCytokinesMyocytes, CardiacVesículas extracelularesExosomasEnfermedades cardiovascularesCáncer de senoLesión cardiacaExtracellular vesiclesExosomesCardiovascular diseasesBreast cancerCardiac injuryCitocinas en vesículas extracelulares derivadas de células MCF-7 expuestas a Doxorrubicina y su efecto sobre la viabilidad de cardiomiocitos aisladosCytokines in extracellular vesicles derived from MCF-7 cells exposed to Doxorubicin and their effect on the viability of isolated cardiomyocytesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMWorld Heart Federation, “WORLD HEART REPORT 2023 CONFRONTING THE WORLD ’ S NUMBER,” 2023M. Reulen, C., Raoul, C., Winter, D., Frobisher C., Lancashire, E., Stiller, C., Jenney, M., Skinner, R., Stivens, M., Hawkins, “Long-term Cause-Specific Mortality Among Survivors of Childhood Cancer,” JAMA, vol. 304, no. 2, p. 172, Jul. 2010, doi: 10.1001/jama.2010.923.T. M. Okwuosa, S. Anzevino, and R. Rao, “Cardiovascular disease in cancer survivors,” Postgrad. Med. J., vol. 93, no. 1096, pp. 82–90, 2017, doi: 10.1136/postgradmedj-2016-134417.S. Raj, V. I. Franco, and S. E. Lipshultz, “Anthracycline-induced cardiotoxicity: A review of pathophysiology, diagnosis, and treatment,” Curr. Treat. Options Cardiovasc. Med., vol. 16, no. 6, 2014, doi: 10.1007/s11936-014-0315-4.Hongxin Zhu, “Doxorubicin-Induced Cardiotoxicity,” in Cardiotoxicity, vol. I, W. Tan, Ed. InTech, 2018, p. 20.L. Zhao and B. Zhang, “Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes,” Sci. Rep., vol. 7, no. March, pp. 1–11, 2017, doi: 10.1038/srep44735.C. S. Abdullah et al., “Doxorubicin-induced cardiomyopathy associated with inhibition of autophagic degradation process and defects in mitochondrial respiration,” Sci. Rep., no. August 2018, pp. 1–20, 2019, doi: 10.1038/s41598-018-37862-3.S. Zerikiotis, C. Angelidis, I. Dhima, K. K. Naka, and P. Kasioumi, “The increased expression of the inducible Hsp70 (HSP70A1A) in serum of patients with heart failure and its protective effect against the cardiotoxic agent doxorubicin,” Mol. Cell. Biochem., vol. 0, no. 0, p. 0, 2018, doi: 10.1007/s11010-018-3469-7.S. Amirfakhri, A. Salimi, and N. Fernandez, “Effects of conditioned medium from breast cancer cells on Tlr2 expression in Nb4 cells,” Asian Pacific J. Cancer Prev., vol. 16, no. 18, pp. 8445–8450, 2015, doi: 10.7314/APJCP.2015.16.18.8445.Y. Feng et al., “Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis,” Genes Dis., vol. 5, no. 2, pp. 77–106, 2018, doi: 10.1016/j.gendis.2018.05.001Y. Feng et al., “Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis,” Genes Dis., vol. 5, no. 2, pp. 77–106, 2018, doi: 10.1016/j.gendis.2018.05.001.K. Aubertin et al., “Massive release of extracellular vesicles from cancer cells after photodynamic treatment or chemotherapy,” Sci. Rep., vol. 6, no. June, pp. 1–11, 2016, doi: 10.1038/srep35376.M. Iero et al., “Tumour-released exosomes and their implications in cancer immunity,” Cell Death Differ., vol. 15, no. 1, pp. 80–88, 2008, doi: 10.1038/sj.cdd.4402237.D. S. Chulpanova, K. V. Kitaeva, V. James, A. A. Rizvanov, and V. V. Solovyeva, “Therapeutic prospects of extracellular vesicles in cancer treatment,” Front. Immunol., vol. 9, no. July, 2018, doi: 10.3389/fimmu.2018.01534.X. Li et al., “Nano carriers for drug transport across the blood–brain barrier,” J. Drug Target., vol. 25, no. 1, pp. 17–28, 2017, doi: 10.1080/1061186X.2016.1184272.C. Liu and C. Su, “Design strategies and application progress of therapeutic exosomes,” Theranostics, vol. 9, no. 4, pp. 1015–1028, 2019, doi: 10.7150/thno.30853.N. Eiro, L. O. Gonzalez, S. Cid, J. Schneider, and F. J. Vizoso, “Breast Cancer Tumor Stroma : Cellular Components , Therapeutic Opportunities,” Cancers (Basel)., vol. 664, no. 11, pp. 1–26, 2019.F. Masoudkabir et al., “Cardiovascular disease and cancer: Evidence for shared disease pathways and pharmacologic prevention,” Atherosclerosis, pp. 343–351, 2018, doi: 10.1016/j.atherosclerosis.2017.06.001.Cardiovascular.C. Shaima, P. Moorthi, and N. Shaheen, “Cardiovascular diseases: Traditional and non-traditional risk factors,” J. Med. Allied Sci., vol. 6, no. 2, p. 46, 2016, doi: 10.5455/jmas.228597.R. J. Koene, A. E. Prizment, A. Blaes, and S. H. Konety, “Shared risk factors in cardiovascular disease and cancer,” Circulation, vol. 133, no. 11, pp. 1104–1114, 2016, doi: 10.1161/CIRCULATIONAHA.115.020406.K. H. Allison, “Molecular pathology of breast cancer: What a pathologist needs to know,” Am. J. Clin. Pathol., vol. 138, no. 6, pp. 770–780, 2012, doi: 10.1309/AJCPIV9IQ1MRQMOO.A. R. Venkitaraman, “How do mutations affecting the breast cancer genes BRCA1 and BRCA2 cause cancer susceptibility?,” DNA Repair (Amst)., vol. 81, no. July, p. 102668, 2019, doi: 10.1016/j.dnarep.2019.102668.A. R. Venkitaraman, “Cancer suppression by the chromosome custodians, BRCA1 and BRCA2,” Science (80-. )., vol. 343, no. 6178, pp. 1470–1475, 2014, doi: 10.1126/science.1252230.Y. Liubomirski et al., “Tumor-stroma-inflammation networks promote pro-metastatic chemokines and aggressiveness characteristics in triple-negative breast cancer,” Front. Immunol., vol. 10, no. APR, pp. 1–24, 2019, doi: 10.3389/fimmu.2019.00757.P. Eroles, A. Bosch, J. Alejandro Pérez-Fidalgo, and A. Lluch, “Molecular biology in breast cancer: Intrinsic subtypes and signaling pathways,” Cancer Treat. Rev., vol. 38, no. 6, pp. 698–707, 2012, doi: 10.1016/j.ctrv.2011.11.005.A. Ahmad, Breast cancer metastasis and drug resistance: Progress and prospects. 2019.H. Kennecke et al., “Metastatic behavior of breast cancer subtypes,” J. Clin. Oncol., vol. 28, no. 20, pp. 3271–3277, 2010, doi: 10.1200/JCO.2009.25.9820.A. Kontoyannis and H. Sweetland, “Adjuvant therapy for breast cancer,” Surgery, vol. 25, no. 6, pp. 272–275, 2007, doi: 10.1016/j.mpsur.2007.05.005.C. J. Lovitt, T. B. Shelper, and V. M. Avery, “Doxorubicin resistance in breast cancer cells is mediated by extracellular matrix proteins,” BMC Cancer, vol. 18, no. 1, pp. 1–11, 2018, doi: 10.1186/s12885-017-3953-6.O. Tacar, P. Sriamornsak, and C. R. Dass, “Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems,” J. Pharm. Pharmacol., vol. 65, no. 2, pp. 157–170, 2013, doi: 10.1111/j.2042-7158.2012.01567.x.S. N. Hilmer, V. C. Cogger, M. Muller, and D. G. Le Couteur, “THE HEPATIC PHARMACOKINETICS OF DOXORUBICIN AND LIPOSOMAL DOXORUBICIN,” Drug Metab. Dispos., vol. 32, no. 8, pp. 794–799, Aug. 2004, doi: 10.1124/dmd.32.8.794.P. S. Rawat, A. Jaiswal, A. Khurana, J. S. Bhatti, and U. Navik, “Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management,” Biomed. Pharmacother., vol. 139, p. 111708, 2021, doi: 10.1016/j.biopha.2021.111708.D. Cardinale et al., “Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy,” Circulation, vol. 131, no. 22, pp. 1981–1988, 2015, doi: 10.1161/CIRCULATIONAHA.114.013777.L. Han, E. W. F. Lam, and Y. Sun, “Extracellular vesicles in the tumor microenvironment: Old stories, but new tales,” Mol. Cancer, vol. 18, no. 1, pp. 1–14, 2019, doi: 10.1186/s12943-019-0980-8.M. Patil, J. Henderson, H. Luong, D. Annamalai, G. Sreejit, and P. Krishnamurthy, “The Art of Intercellular Wireless Communications: Exosomes in Heart Disease and Therapy,” Front. Cell Dev. Biol., vol. 7, no. December, pp. 1–16, 2019, doi: 10.3389/fcell.2019.00315.Y. Fujita, Y. Yoshioka, and T. Ochiya, “Extracellular vesicle transfer of cancer pathogenic components,” Cancer Sci., vol. 107, no. 4, pp. 385–390, 2016, doi: 10.1111/cas.12896.D. Lucchetti, C. R. Tenore, F. Colella, and A. Sgambato, “Extracellular Vesicles and Cancer: A Focus on Metabolism, Cytokines, and Immunity,” Cancers (Basel)., pp. 1–19, 2020, [Online]. Available: https://www.mdpi.com/2072-6694/12/1/171/htm#B6-cancers-12-00171.A. Loftus et al., “Extracellular Vesicles From Osteotropic Breast Cancer Cells Affect Bone Resident Cells,” J. Bone Miner. Res., vol. 35, no. 2, pp. 396–412, 2020, doi: 10.1002/jbmr.3891.A. Gaceb, M. C. Martinez, and R. Andriantsitohaina, “Extracellular vesicles: New players in cardiovascular diseases,” Int. J. Biochem. Cell Biol., vol. 50, no. 1, pp. 24–28, 2014, doi: 10.1016/j.biocel.2014.01.018.S. Munich, A. Sobo-Vujanovic, W. J. Buchser, D. Beer-Stolz, and N. L. Vujanovic, “Dendritic cell exosomes directly kill tumor cells and activate natural killer cells via TNF superfamily ligands,” Oncoimmunology, vol. 1, no. 7, pp. 1074–1083, 2012, doi: 10.4161/onci.20897.Y. Zheng, C. Tu, J. Zhang, and J. Wang, “Inhibition of multiple myeloma‑derived exosomes uptake suppresses the functional response in bone marrow stromal cell,” Int. J. Oncol., vol. 54, no. 3, pp. 1061–1070, 2019, doi: 10.3892/ijo.2019.4685.S. Gurung, D. Perocheau, L. Touramanidou, and J. Baruteau, “The exosome journey: from biogenesis to uptake and intracellular signalling,” Cell Commun. Signal., vol. 19, no. 1, pp. 1–19, 2021, doi: 10.1186/s12964-021-00730-1.S. Eguchi et al., “Cardiomyocytes capture stem cell-derived, anti-apoptotic microRNA-214 via clathrin-mediated endocytosis in acute myocardial infarction,” J. Biol. Chem., vol. 294, no. 31, pp. 11665–11674, 2019, doi: 10.1074/jbc.RA119.007537.S. A. W. Joshua L. Hood, Hua Pan, Gregory M. Lanza, “Paracrine Induction of Endothelium by Tumor Exosomes,” Lab. Investig., 2009, doi: https://doi.org/10.1038/labinvest.2009.94.A. Ramteke et al., “Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules,” Mol. Carcinog., vol. 54, no. 7, pp. 554–565, 2015, doi: 10.1002/mc.22124.R. Ferreira, V.; Borba H.; Bonetti A.; Leonart A.; Pontarolo, “Cytokines and Interferons: Types and Functions,” in Autoantibodies and Cytokines, vol. i, W. A. Khan, Ed. 2019.R. J. Dunlop and C. W. Campbell, “Cytokines and advanced cancer,” J. Pain Symptom Manage., vol. 20, no. 3, pp. 214–232, 2000, doi: 10.1016/S0885-3924(00)00199-8.M. Bartekova, J. Radosinska, M. Jelemensky, and N. S. Dhalla, “Role of cytokines and inflammation in heart function during health and disease,” Heart Fail. Rev., vol. 23, no. 5, pp. 733–758, 2018, doi: 10.1007/s10741-018-9716-x.M. Hedayat, M. J. Mahmoudi, N. R. Rose, and N. Rezaei, “Proinflammatory cytokines in heart failure: Double-edged swords,” Heart Fail. Rev., vol. 15, no. 6, pp. 543–562, 2010, doi: 10.1007/s10741-010-9168-4.A. Lebedeva, W. Fitzgerald, I. Molodtsov, A. Shpektor, E. Vasilieva, and L. Margolis, “Differential clusterization of soluble and extracellular vesicle-associated cytokines in myocardial infarction,” Sci. Rep., vol. 10, no. 1, pp. 1–14, 2020, doi: 10.1038/s41598-020-78004-y.W. Fitzgerald, M. L. Freeman, M. M. Lederman, E. Vasilieva, R. Romero, and L. Margolis, “A System of Cytokines Encapsulated in ExtraCellular Vesicles,” Sci. Rep., vol. 8, no. 1, pp. 1–11, 2018, doi: 10.1038/s41598-018-27190-x.R. Cailleau, R. Young, M. Olivé, and W. J. Reeves, “Breast tumor cell lines from pleural effusions,” J. Natl. Cancer Inst., vol. 53, no. 3, pp. 661–674, 1974, doi: 10.1093/jnci/53.3.661.H. D. Soule, J. Vazquez, A. Long, S. Albert, and M. Brennan, “A human cell line from a pleural effusion derived from a breast carcinoma1,2,” J. Natl. Cancer Inst., vol. 51, no. 5, pp. 1409–1416, 1973, doi: 10.1093/jnci/51.5.1409.C. Théry, C. Aled, A. Sebastian, and R. Graça, “Isolation and Characterization of Exosomes from Cell Culture Supernatants,” Curr. Protoc. Cell Biol., vol. 3.22, pp. 1–29, 2006.S. S. Novoa Herrán, “La malignización celular analizada mediante proteómica comparativa de líneas celulares trofoblásticas humanas,” Universidad Nacional de Colombia, 2017.X. Osteikoetxea et al., “Differential detergent sensitivity of extracellular vesicle subpopulations,” Org. Biomol. Chem., vol. 13, no. 38, pp. 9775–9782, 2015, doi: 10.1039/c5ob01451d.S. Chiloiro et al., “Markers of humoral and cell-mediated immune response in primary autoimmune hypophysitis: a pilot study,” Endocrine, vol. 73, no. 2, pp. 308–315, 2021, doi: 10.1007/s12020-021-02612-5.L. A. Gomez, A. E. Alekseev, L. A. Aleksandrova, P. A. Brady, and A. Terzic, “Use of the MTT assay in adult ventricular cardiomyocytes to assess viability: Effects of adenosine and potassium on cellular survival,” J. Mol. Cell. Cardiol., vol. 29, no. 4, pp. 1255–1266, 1997, doi: 10.1006/jmcc.1996.0363.L. A. Gómez-Grosso, “Preacondicionamiento isquémico en cardiomiocitos ventriculares aislados. Identificación y expresión de algunos microRNAs asociados,” Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., vol. 37, no. 145, p. 433, 2014, doi: 10.18257/raccefyn.26.P. A. Brady, A. E. Alekseev, L. A. Aleksandrova, L. A. Gomez, and A. Terzic, “A disrupter of actin microfilaments impairs sulfonylurea-inhibitory gating of cardiac KATP channels,” Am. J. Physiol., vol. 271, no. 6 PART 2, 1996, doi: 10.1152/ajpheart.1996.271.6.h2710.A. Wojtala, M. Bonora, D. Malinska, P. Pinton, J. Duszynski, and M. R. Wieckowski, Methods to monitor ROS production by fluorescence microscopy and fluorometry, 1st ed., vol. 542. Elsevier Inc., 2014.R. P. Rastogi, S. P. Singh, D. P. Häder, and R. P. Sinha, “Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2’,7’-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937,” Biochem. Biophys. Res. Commun., vol. 397, no. 3, pp. 603–607, 2010, doi: 10.1016/j.bbrc.2010.06.006.D. Li et al., “Isolation and identification of exosomes from feline plasma, urine and adipose-derived mesenchymal stem cells,” BMC Vet. Res., vol. 17, no. 1, pp. 1–8, 2021, doi: 10.1186/s12917-021-02960-4.J. Van Deun et al., “The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling,” J. Extracell. Vesicles, vol. 3, no. 1, 2014, doi: 10.3402/jev.v3.24858.L. D. Zorova et al., “Do Extracellular Vesicles Derived from Mesenchymal Stem Cells Contain Functional Mitochondria?,” Int. J. Mol. Sci., vol. 23, no. 13, 2022, doi: 10.3390/ijms23137408.M. A. M. Ali, A. D. Kandasamy, X. Fan, and R. Schulz, “Hydrogen peroxide-induced necrotic cell death in cardiomyocytes is independent of matrix metalloproteinase-2,” Toxicol. Vitr., vol. 27, no. 6, pp. 1686–1692, 2013, doi: 10.1016/j.tiv.2013.04.013.H. He et al., “Calcineurin suppresses AMPK-dependent cytoprotective autophagy in cardiomyocytes under oxidative stress,” Cell Death Dis., vol. 5, no. 1, 2014, doi: 10.1038/cddis.2013.533.J. D. Hutcheson and E. Aikawa, “Extracellular vesicles in cardiovascular homeostasis and disease,” Curr. Opin. Cardiol., vol. 33, no. 3, pp. 290–297, 2018, doi: 10.1097/HCO.0000000000000510.A. Matsumoto et al., “Accelerated growth of B16BL6 tumor in mice through efficient uptake of their own exosomes by B16BL6 cells,” Cancer Sci., vol. 108, no. 9, pp. 1803–1810, 2017, doi: 10.1111/cas.13310.L. D. Zorova et al., “Do Extracellular Vesicles Derived from Mesenchymal Stem Cells Contain Functional Mitochondria?,” Int. J. Mol. Sci., vol. 23, no. 13, Jul. 2022, doi: 10.3390/IJMS23137408/S1.H. Li and F. Li, “Exosomes from BM-MSCs increase the population of CSCs via transfer of miR-142-3p,” Br. J. Cancer, vol. 119, no. 6, pp. 744–755, 2018, doi: 10.1038/s41416-018-0254-z.G. Palazzolo, N. N. Albanese, G. Di Cara, D. Gygax, M. L. Vittorelli, and I. Pucci-Minafra, “Proteomic analysis of exosome-like vesicles derived from breast cancer cells,” Anticancer Res., vol. 32, no. 3, pp. 847–860, 2012.A. Becker, B. K. Thakur, J. M. Weiss, H. S. Kim, H. Peinado, and D. Lyden, “Extracellular Vesicles in Cancer: Cell-to-Cell Mediators of Metastasis,” Cancer Cell, vol. 30, no. 6, pp. 836–848, 2016, doi: 10.1016/j.ccell.2016.10.009.J. Xu, R.;Greening, D.; Zhu, H.; Takahashi, N.; Simpson, “Extracellular vesicle isolation and characterization: toward clinical application,” J. Clin. Invest., vol. 4, pp. 1152–1162, 2016, doi: 10.1172/JCI81129.M. Tkach, J. Kowal, and C. Théry, “Why the need and how to approach the functional diversity of extracellular vesicles,” Philos. Trans. R. Soc. B Biol. Sci., vol. 373, no. 1737, 2018, doi: 10.1098/rstb.2016.0479.C. Lynch, M. Panagopoulou, and C. D. Gregory, “Extracellular vesicles arising from apoptotic cells in tumors: Roles in cancer pathogenesis and potential clinical applications,” Front. Immunol., vol. 8, no. SEP, pp. 1–8, 2017, doi: 10.3389/fimmu.2017.01174.J. Kowal et al., “Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes,” Proc. Natl. Acad. Sci. U. S. A., vol. 113, no. 8, pp. E968–E977, 2016, doi: 10.1073/pnas.1521230113.D. W. Edwardson, J. Boudreau, J. Mapletoft, C. Lanner, A. T. Kovala, and A. M. Parissenti, Inflammatory cytokine production in tumor cells upon chemotherapy drug exposure or upon selection for drug resistance, vol. 12, no. 9. 2017.M. Mirabdollahi, S. H. Javanmard, and H. Sadeghi-Aliabadi, “In vitro assessment of cytokine expression profile of MCF-7 cells in response to hWJ-MSCs secretome,” Adv. Pharm. Bull., vol. 9, no. 4, pp. 649–654, 2019, doi: 10.15171/apb.2019.075.A. Maillet et al., “Modeling Doxorubicin-Induced Cardiotoxicity in Human Pluripotent Stem Cell Derived-Cardiomyocytes,” Sci. Rep., vol. 6, no. January, pp. 1–13, 2016, doi: 10.1038/srep25333.K. Chen et al., “Cytokine secretion in breast cancer cells – MILLIPLEX assay data,” Data Br., vol. 28, p. 104798, 2020, doi: 10.1016/j.dib.2019.104798.S. Fimmel, L. Devermann, A. Herrmann, and C. Zouboulis, “GRO-α: A potential marker for cancer and aging silenced by RNA interference,” Ann. N. Y. Acad. Sci., vol. 1119, no. 1, pp. 176–189, 2007, doi: 10.1196/annals.1404.016.X. Man et al., “High expression level of CXCL1/GROα is linked to advanced stage and worse survival in uterine cervical cancer and facilitates tumor cell malignant processes,” BMC Cancer, vol. 22, no. 1, pp. 1–13, 2022, doi: 10.1186/s12885-022-09749-0.A. Hanna and N. G. Frangogiannis, “Inflammatory Cytokines and Chemokines as Therapeutic Targets in Heart Failure,” Cardiovasc. Drugs Ther., pp. 849–863, 2020, doi: https://doi.org/10.1007/s10557-020-07071-0.Y. Liu, D. Zhang, and D. Yin, “Pathophysiological Effects of Various Interleukins on Primary Cell Types in Common Heart Disease,” Int. J. Mol. Sci., vol. 24, no. 7, 2023, doi: 10.3390/ijms24076497.W. Zhang, T. Zhu, L. Chen, W. Luo, and J. Chao, “MCP-1 mediates ischemia-reperfusion-induced cardiomyocyte apoptosis via MCPIP1 and CaSR,” Am. J. Physiol. - Hear. Circ. Physiol., vol. 318, no. 1, pp. H59–H71, 2020, doi: 10.1152/ajpheart.00308.2019.M. Shibakura et al., “Induction of IL-8 and monocyte chemoattractant protein-1 by doxorubicin in human small cell lung carcinoma cells,” Int. J. Cancer, vol. 103, no. 3, pp. 380–386, 2003, doi: 10.1002/ijc.10842.A. Syukri et al., “Doxorubicin induced immune abnormalities and inflammatory responses via HMGB1, HIF1-α and VEGF pathway in progressive of cardiovascular damage,” Ann. Med. Surg., vol. 76, no. February, p. 103501, 2022, doi: 10.1016/j.amsu.2022.103501.S. H. Lee, K. W. Kim, K. M. Min, K. W. Kim, S. I. Chang, and J. C. Kim, “Angiogenin reduces immune inflammation via inhibition of tank-binding kinase 1 expression in human corneal fibroblast cells,” Mediators Inflamm., vol. 2014, 2014, doi: 10.1155/2014/861435.R. Ascione et al., “Migration towards SDF-1 selects angiogenin-expressing bone marrow monocytes endowed with cardiac reparative activity in patients with previous myocardial infarction,” Stem Cell Res. Ther., vol. 6, no. 1, pp. 1–16, 2015, doi: 10.1186/s13287-015-0028-y.J. P. Maloney and L. Gao, “Proinflammatory Cytokines Increase Vascular Endothelial Growth Factor Expression in Alveolar Epithelial Cells,” Mediators Inflamm., vol. 2015, 2015, doi: 10.1155/2015/387842.C. L. Roland, K. D. Lynn, J. E. Toombs, S. P. Dineen, D. G. Udugamasooriya, and R. A. Brekken, “Cytokine levels correlate with immune cell infiltration after anti-VEGF therapy in preclinical mouse models of breast cancer,” PLoS One, vol. 4, no. 11, pp. 1–13, 2009, doi: 10.1371/journal.pone.0007669.A. E. Vegf, V. Lionetti, F. Recchia, and M. Giacca, “340. AAV-Mediated Expression of VEGF165 and VEGF-B Enhances Cardiomyocytes Protection and Improves Heart Performance in the Infarcted Myocardium,” Mol. Ther., vol. 16, no. May, p. S128, 2008, doi: 10.1016/s1525-0016(16)39743-x.G. hua Li et al., “Dual effects of VEGF-B on activating cardiomyocytes and cardiac stem cells to protect the heart against short- and long-term ischemia-reperfusion injury,” J. Transl. Med., vol. 14, no. 1, pp. 1–14, 2016, doi: 10.1186/s12967-016-0847-3.T. Tang and H. K. Hammond, Gene Transfer for Clinical Congestive Heart Failure. Elsevier Inc., 2015.A. A. Jarrah et al., “SDF-1 induces TNF-mediated apoptosis in cardiac myocytes,” Apoptosis, vol. 23, no. 1, pp. 79–91, 2018, doi: 10.1007/s10495-017-1438-3.Lesión de cardiomiocitos inducida por Doxorrubicina: Expresión de miRNAs e influencia de vesículas extracelulares tipo exosomas derivadas de células de cáncer de seno.MinCienciasInstituto Nacional de SaludInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85734/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1026582711.2023.pdf1026582711.2023.pdfTesis de Maestría en Bioquímicaapplication/pdf1733297https://repositorio.unal.edu.co/bitstream/unal/85734/2/1026582711.2023.pdf2971e0d63f8011601876fe8d0035c2a0MD52unal/85734oai:repositorio.unal.edu.co:unal/857342024-02-28 11:23:07.085Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=