Evaluación del efecto de condiciones de cultivo sobre la producción de Penicillium sp. HC1 usado en la degradación de residuos vegetales de cultivos de flores en Guasca – Cundinamarca
ilustraciones, diagramas, fotografías
- Autores:
-
García Rico, Danna Lorena
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85343
- Palabra clave:
- 660 - Ingeniería química
570 - Biología
Residuos
Waste Products
Gestión de Residuos
Penicillium sp.
Calcio
Casaminoácidos
Aireación
Bioprocesos
Degradación
Flores
Calcium
Casamino acids
Aeration
Bioprocess
Degradation
Flowers
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_cd5248128fdb24bb21ea2933667962a1 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85343 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación del efecto de condiciones de cultivo sobre la producción de Penicillium sp. HC1 usado en la degradación de residuos vegetales de cultivos de flores en Guasca – Cundinamarca |
dc.title.translated.eng.fl_str_mv |
Evaluation of the effect of growing conditions on the production of Penicillium sp. HC1 used in the degradation of plant residues from flower crops in Guasca - Cundinamarca |
title |
Evaluación del efecto de condiciones de cultivo sobre la producción de Penicillium sp. HC1 usado en la degradación de residuos vegetales de cultivos de flores en Guasca – Cundinamarca |
spellingShingle |
Evaluación del efecto de condiciones de cultivo sobre la producción de Penicillium sp. HC1 usado en la degradación de residuos vegetales de cultivos de flores en Guasca – Cundinamarca 660 - Ingeniería química 570 - Biología Residuos Waste Products Gestión de Residuos Penicillium sp. Calcio Casaminoácidos Aireación Bioprocesos Degradación Flores Calcium Casamino acids Aeration Bioprocess Degradation Flowers |
title_short |
Evaluación del efecto de condiciones de cultivo sobre la producción de Penicillium sp. HC1 usado en la degradación de residuos vegetales de cultivos de flores en Guasca – Cundinamarca |
title_full |
Evaluación del efecto de condiciones de cultivo sobre la producción de Penicillium sp. HC1 usado en la degradación de residuos vegetales de cultivos de flores en Guasca – Cundinamarca |
title_fullStr |
Evaluación del efecto de condiciones de cultivo sobre la producción de Penicillium sp. HC1 usado en la degradación de residuos vegetales de cultivos de flores en Guasca – Cundinamarca |
title_full_unstemmed |
Evaluación del efecto de condiciones de cultivo sobre la producción de Penicillium sp. HC1 usado en la degradación de residuos vegetales de cultivos de flores en Guasca – Cundinamarca |
title_sort |
Evaluación del efecto de condiciones de cultivo sobre la producción de Penicillium sp. HC1 usado en la degradación de residuos vegetales de cultivos de flores en Guasca – Cundinamarca |
dc.creator.fl_str_mv |
García Rico, Danna Lorena |
dc.contributor.advisor.none.fl_str_mv |
Moreno Sarmiento, Nubia Carmenza Gutiérrez Rojas, Ivonne |
dc.contributor.author.none.fl_str_mv |
García Rico, Danna Lorena |
dc.contributor.researchgroup.spa.fl_str_mv |
Bioprocesos y Bioprospección |
dc.subject.ddc.spa.fl_str_mv |
660 - Ingeniería química 570 - Biología |
topic |
660 - Ingeniería química 570 - Biología Residuos Waste Products Gestión de Residuos Penicillium sp. Calcio Casaminoácidos Aireación Bioprocesos Degradación Flores Calcium Casamino acids Aeration Bioprocess Degradation Flowers |
dc.subject.decs.none.fl_str_mv |
Residuos |
dc.subject.decs.eng.fl_str_mv |
Waste Products |
dc.subject.decs.spa.fl_str_mv |
Gestión de Residuos |
dc.subject.proposal.spa.fl_str_mv |
Penicillium sp. Calcio Casaminoácidos Aireación Bioprocesos Degradación Flores |
dc.subject.proposal.eng.fl_str_mv |
Calcium Casamino acids Aeration Bioprocess Degradation Flowers |
description |
ilustraciones, diagramas, fotografías |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-12-05 |
dc.date.accessioned.none.fl_str_mv |
2024-01-17T14:23:59Z |
dc.date.available.none.fl_str_mv |
2024-01-17T14:23:59Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85343 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85343 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abdul Manan, M., & Webb, C. (2018). Estimating fungal growth in submerged fermentation in the presence of solid particles based on colour development. Biotechnology & Biotechnological Equipment, 32(3), 618–627. https://doi.org/10.1080/13102818.2018.1440974 Adams, T. H., Wieser, J. K., & Yu, J.-H. (1998). Asexual Sporulation in Aspergillus nidulans. Microbiology and Molecular Biology Reviews, 62(1), 35–54. https://doi.org/10.1128/MMBR.62.1.35-54.1998 Ahmed, J., Taslim, A., Raihan, T., Sohag, Md. M. H., Hasan, M., Suhani, S., Qadri, F., & Azad, A. K. (2023). Characterization of an endo‐beta‐1,4 glucanase gene from paper‐degrading and denim bio‐stoning cellulase producing Aspergillus isolates. Biotechnology and Applied Biochemistry, 70(3), 1057–1071. https://doi.org/10.1002/bab.2420 Albaek, M. O., Gernaey, K. V., Hansen, M. S., & Stocks, S. M. (2011). Modeling enzyme production with Aspergillus oryzae in pilot scale vessels with different agitation, aeration, and agitator types. Biotechnology and Bioengineering, 108(8), 1828–1840. https://doi.org/10.1002/bit.23121 Alfonso Moreno, F., Robayo Quintana, M., Ferrucho Rodríguez, L., & Vargas Oyola, M. (2016). Aprovechamiento de residuos vegetales de pétalos de rosas, tallos de girasol y vástago de plátano para la fabricación artesanal de papel. INVENTUM, 11(20), 71–82. https://doi.org/10.26620/uniminuto.inventum.11.20.2016.71-82 Al-Snafi, P. D. A. E. (2017). Chemical contents and medical importance of Dianthus caryophyllus- A review. IOSR Journal of Pharmacy (IOSRPHR), 07(03), 61–71. https://doi.org/10.9790/3013-0703016171 Ardestani, F., Fatemi, S. A., Yakhchali, B., Hosseyni, M., & Najafpour, G. (2009). The Effects of Methionine and Acetate Concentrations on Mycophenolic Acid Production by Penicillium bervicompactum MUCL 19011 in Submerged Culture. International Journal of Chemical, Materials and Biomolecular Sciences, 2. Ardestani, F., & Marzban, A. (2012). L-isoleucine Effects on Yield and Productivity of a Batch Fermentation Process for Mycophenolic Acid Production by Penicillium brevicompactum. World Applied Science Journal, 20, 742–747. Asadollahzadeh, M., Mohammadi, M., & Lennartsson, P. R. (2023). Fungal biotechnology. En Current Developments in Biotechnology and Bioengineering (pp. 31–66). Elsevier. https://doi.org/10.1016/B978-0-323-91872-5.00006-5 Asocolflores. (2022). ASOCOLFLORES – BALANCE 2022: El fortalecimiento de la sostenibilidad, el reencuentro y la promoción marcaron este año para las flores de Colombia | Agricultura & Ganadería. Bapat, P. M., Das, D., Sohoni, S. V, & Wangikar, P. P. (2006). Hierarchical amino acid utilization and its influence on fermentation dynamics: rifamycin B fermentation using Amycolatopsis mediterraneiS699, a case study. Microbial Cell Factories, 5(1), 32. https://doi.org/10.1186/1475-2859-5-32 Barriga, M. (2007). No te comas al mundo, las raíces de las flores: las deudas y los impactos de la floricultura en Colombia. Basto, B., da Silva, N. R., Teixeira, J. A., & Silvério, S. C. (2022). Production of Natural Pigments by Penicillium brevicompactum Using Agro-Industrial Byproducts. Fermentation, 8(10), 536. https://doi.org/10.3390/fermentation8100536 Basu, S. N., & Bhattacharyya, J. P. (1962). Studies on the Growth and Sporulation of Some Species of Penicillium. Journal of General Microbiology, 27(1), 61–73. https://doi.org/10.1099/00221287-27-1-61 Beguin, H. (2010). Tritirachium egenum, a thiamine- and siderophore-auxotrophic fungal species isolated from a Penicillium rugulosum. FEMS Microbiology Ecology, 74(1), 165–173. https://doi.org/10.1111/j.1574-6941.2010.00929.x Beitel, S. M., & Knob, A. (2013). Penicillium miczynskii β -glucosidase: A Glucose-Tolerant Enzyme Produced Using Pineapple Peel as Substrate. Industrial Biotechnology, 9(5), 293–300. https://doi.org/10.1089/ind.2013.0016 Bernal Ruiz, S. M., & Gómez Sánchez, L. C. (2016). Hidrólisis parcial de cascarilla de cebada mediante el uso de extracto enzimático producido por Penicillium sp. HC1 para la obtención de xilosa. Pontificia Universidad Javeriana. Berovič, M., Cimerman, A., Steiner, W., & Koloini, T. (1991). Submerged citric acid fermentation: rheological properties ofAspergillus niger broth in a stirred tank reactor. Applied Microbiology and Biotechnology, 34(5), 579–581. https://doi.org/10.1007/BF00167902 Bird, R. B., Stewart, W. E., & Lightfoot. (2002). Transport Phenomena (John Wiley and Sons Inc., Ed.; 2nd Ed.). Bockelmann, W., Portius, S., Lick, S., & Heller, K. J. (1999). Sporulation of Penicillium camemberti in Submerged Batch Culture. Systematic and Applied Microbiology, 22(3), 479–485. https://doi.org/10.1016/S0723-2020(99)80058-7 Bonilla López, D. S. (2020). Efecto de la incorporación de tamo de arroz degradado por Talaromyces sayulitensis HC1 y el enriquecimiento con nitrogeno sobre la germinación y el crecimiento de arroz y tomate. Pontificia Universidad Javeriana. Bonilla Rojas, M. P. (2021). La maravilla del sector de la Floricultura. ANEIA - Universidad de Los Andes. https://agronegocios.uniandes.edu.co/2022/03/la-maravilla-del-sector-de-la-floricultura/ Bonnarme, P., & Jeffries, T. W. (1990). Mn(II) Regulation of Lignin Peroxidases and Manganese-Dependent Peroxidases from Lignin-Degrading White Rot Fungi. Applied and Environmental Microbiology, 56(1), 210–217. https://doi.org/10.1128/aem.56.1.210-217.1990 Boyle, J. (2005). Lehninger principles of biochemistry (4th ed.): Nelson, D., and Cox, M. Biochemistry and Molecular Biology Education, 33(1), 74–75. https://doi.org/10.1002/bmb.2005.494033010419 Cadena Forero, D. M. (2022). Cadena Forero, 2021. Incorporacion de la economía circular en el sector floricultor de la sabana de bogotá en colombia. Universidad de La Sabana. Calderón Tenori, C. D., Porras Rey, L., Mena, F., Solano Díaz, K., & Arias Andrés, M. (2001). Producción de enzimas ligninolíticas y biodegradación del herbicida diuron por hongos de la pudrición blanca colectados en Costa Rica, cultivados sobre rastrojo de piña. r, Instituto Regional de Estudios en Sustancias Tóxicas de la Universidad Nacional (IRETUNA). Canteri, H., & Ghoul, M. (2015). Submerged Liquid Culture for Production of Biomass and Spores of Penicillium. https://doi.org/10.1080/87559129.2015.1015136, 31(3), 262–278. https://doi.org/10.1080/87559129.2015.1015136 Carrillo, L. (2003). Los hongos de los alimentos y forrajes. Universidad Nacional de Jujuy. Ceniflores. (2023). Sector Floricultor. https://ceniflores.org/sector-floricultor/ Chen, H. (2013). Modern Solid State Fermentation. Springer Netherlands. https://doi.org/10.1007/978-94-007-6043-1 Chen, M., Wang, J., Lin, L., Xu, X., Wei, W., Shen, Y., & Wei, D. (2022). Synergistic Regulation of Metabolism by Ca 2+ /Reactive Oxygen Species in Penicillium brevicompactum Improves Production of Mycophenolic Acid and Investigation of the Ca 2+ Channel. ACS Synthetic Biology, 11(1), 273–285. https://doi.org/10.1021/acssynbio.1c00413 Cho, Y. J., Hwang, H. J., Kim, S. W., Song, C. H., & Yun, J. W. (2002a). Effect of carbon source and aeration rate on broth rheology and fungal morphology during red pigment production by Paecilomyces sinclairii in a batch bioreactor. Journal of Biotechnology, 95(1), 13–23. https://doi.org/10.1016/S0168-1656(01)00445-X Cho, Y. J., Hwang, H. J., Kim, S. W., Song, C. H., & Yun, J. W. (2002b). Effect of carbon source and aeration rate on broth rheology and fungal morphology during red pigment production by Paecilomyces sinclairii in a batch bioreactor. Journal of Biotechnology, 95(1), 13–23. https://doi.org/10.1016/S0168-1656(01)00445-X Cliquet, S., & Jackson, M. A. (2005). Impact of carbon and nitrogen nutrition on the quality, yield and composition of blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus. Journal of Industrial Microbiology & Biotechnology, 32(5), 204–210. https://doi.org/10.1007/s10295-005-0232-3 Colombia CO. (2019). Colombia CO. En floricultura, la respuesta es Colombia. Cunningham, R., & López, G. (1994). Etanol de lignocelulósicos: tecnología y perspectivas. Programa CYTED. da Costa, S. G., Pereira, O. L., Teixeira-Ferreira, A., Valente, R. H., de Rezende, S. T., Guimarães, V. M., & Genta, F. A. (2018). Penicillium citrinum UFV1 β-glucosidases: purification, characterization, and application for biomass saccharification. Biotechnology for Biofuels, 11(1), 226. https://doi.org/10.1186/s13068-018-1226-5 DANE, & DIRPEN. (2011). Censo de Fincas Productoras de Flores En 28 municipios de la Sabana de Bogotá y Cundinamarca 2009. Day, J. B., Mantle, P. G., & Shaw, B. I. (1980). Production of Verruculogen by Penicillium estinogenum in Stirred Fermenters. Microbiology, 117(2), 405–410. https://doi.org/10.1099/00221287-117-2-405 de Carvalho, C. C. C. R. (2016). Fungi in Fermentation and Biotransformation Systems. 525–541. https://doi.org/10.1007/978-3-319-29137-6_21 de Castro Coêlho, M., da Câmara Rocha, J., Augusto Santos, F., Carlos Ramos Gonçalves, J., Maria de Vasconcelos, S., Cristina Soares de Lima Grisi, T., Florentino de Melo Santos, S., Antônio Machado de Araújo, D., & Campos Teixeira de Carvalho-Gonçalves, L. (2021). Use of agroindustrial wastes for the production of cellulases by Penicillium sp. FSDE15. Journal of King Saud University - Science, 33(6), 101553. https://doi.org/10.1016/J.JKSUS.2021.101553 Detroy, R. W., DeMarini, D. M., & Stil, P. E. (1978). Mycoviruses of Penicillium stoloniferum: influence of carbon-nitrogen nutrition upon replication. Northern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, Peoria, IL, U. S. A., 947–953 Dietsch, R., Jakobs-Schönwandt, D., Grünberger, A., & Patel, A. (2021). Desiccation-tolerant fungal blastospores: From production to application. Current Research in Biotechnology, 3, 323–339. https://doi.org/10.1016/j.crbiot.2021.11.005 Dijksterhuis, J., & Samson, R. A. (2002). Food and Crop Spoilage on Storage. En Agricultural Applications (pp. 39–52). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-03059-2_3 Durán Sequeda, D. E. (2017). Evaluación de la fuente, concentración y relación de carbono nitrógeno (C:N) sobre la formación de conidios de Penicillium sp. HC1 en medio líquido. Dyer, P. S., & O’Gorman, C. M. (2011a). A fungal sexual revolution: Aspergillus and Penicillium show the way. Current Opinion in Microbiology, 14(6), 649–654. https://doi.org/10.1016/j.mib.2011.10.001 Dyer, P. S., & O’Gorman, C. M. (2011b). A fungal sexual revolution: Aspergillus and Penicillium show the way. Current Opinion in Microbiology, 14(6), 649–654. https://doi.org/10.1016/j.mib.2011.10.001 Elisashvili, V., Kachlishvili, E., Tsiklauri, N., Metreveli, E., Khardziani, T., & Agathos, S. N. (2009). Lignocellulose-degrading enzyme production by white-rot Basidiomycetes isolated from the forests of Georgia. World Journal of Microbiology and Biotechnology, 25(2), 331–339. https://doi.org/10.1007/s11274-008-9897-x Eriksson, T., Börjesson, J., & Tjerneld, F. (2002). Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme and Microbial Technology, 31(3), 353–364. https://doi.org/10.1016/S0141-0229(02)00134-5 Espinosa Negrín, A. M., López González, L. M., & Casdelo Gutiérrez, N. L. (2022). Pretratamientos aplicados a biomasas lignocelulósicas: una revisión de los principales métodos analíticos utilizados para su evaluación. Revista Cubana de Química, 34 (1), 87–110. Fernandes, T. V., Klaasse Bos, G. J., Zeeman, G., Sanders, J. P. M., & van Lier, J. B. (2009). Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass. Bioresource Technology, 100(9), 2575–2579. https://doi.org/10.1016/j.biortech.2008.12.012 Florverde. (2022). Florverde 25 años trabajando por la sostenibilidad. Florverde Sustainable Flowers. Foster, J. W., McDaniel, L. E., Woodruff, H. B., & Stokes, J. L. (1945). Microbiological Aspects of Penicillin. Journal of Bacteriology, 50(3), 365–368. https://doi.org/10.1128/jb.50.3.365-368.1945 Foster, J. W., Woodruff, H. B., & McDaniel, L. E. (1946). Microbiological Aspects of Penicillin. Journal of Bacteriology, 51(4), 465–478. https://doi.org/10.1128/jb.51.4.465-478.1946 Frisvad, J. C. (2015). Taxonomy, chemodiversity, and chemoconsistency of Aspergillus, Penicillium, and Talaromyces species. Frontiers in microbiology, 5(DEC). https://doi.org/10.3389/FMICB.2014.00773 Frisvad, J. C., Smedsgaard, J., Larsen, T. O., & Samson, R. A. (2004). Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. En IN MYCOLOGY (Vol. 49). Frivsad, J. C. (1985). Creatine sucrose agar, a differential medium for mycotoxin producing terverticillate Penicillium species. Letters in Applied Microbiology, 1(6), 109–113. https://doi.org/10.1111/j.1472-765X.1985.tb01500.x García Castillo, C. (2015). Evaluación del efecto de la luz sobre la morfología, el crecimiento y la conidiogénesis de Penicillium sp. HC1 [Tesis de pregrado en microbiología]. Pontificia Universidad Javeriana. García, D. A. (2019). Producción sostenible en el sector floricultor colombiano. Semillero de Investigación Desarrollo Sostenible. Fundación Universitaria de la Cámara de Comercio de Bogotá. García Mora, A. E. (2006). Estudio de la degradación de residuos lignocelulósicos derivados del procesamiento industrial del cranberry (Vaccinium macrocarpon Ait.). http://cybertesis.uach.cl/tesis/uach/2006/egg216e/doc/egg216e.pdf García-Rico, R. O., Martín, J. F., & Fierro, F. (2011). Heterotrimeric Gα protein Pga1 from Penicillium chrysogenum triggers germination in response to carbon sources and affects negatively resistance to different stress conditions. Fungal Genetics and Biology, 48(6), 641–649. https://doi.org/10.1016/j.fgb.2010.11.013 García-Soto, M. J., Botello-Alvarez, E., Jiménez-Islas, H., Navarrete-Bolaños, J. L., Barajas-Conde, E., Rico-Martínez, R., Guevara-González, R. G., & Torres-Pacheco, I. (2006). Growth morphology and hydrodynamics of filamentous fungi in submerged cultures. Germec, M., & Turhan, I. (2023). Effect of pH control and aeration on inulinase production from sugarbeet molasses in a bench-scale bioreactor. Biomass Conversion and Biorefinery, 13(6), 4727–4739. https://doi.org/10.1007/s13399-021-01436-7 Gomes, D. G., Coelho, E., Silva, R., Domingues, L., & Teixeira, J. A. (2023). Bioreactors and engineering of filamentous fungi cultivation. En Current Developments in Biotechnology and Bioengineering (pp. 219–250). Elsevier. https://doi.org/10.1016/B978-0-323-91872-5.00018-1 Gupta, R., Mehta, G., Khasa, Y. P., & Kuhad, R. C. (2011). Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation, 22(4), 797–804. https://doi.org/10.1007/s10532-010-9404-6 Gutiérrez, I., Villamil, A., Aguirre Morales, M., Reyes-Pineda, E., Lemos-Gordo, S., Méndez-Pedraza, J., Núñez-Arbeláez, Á., Parra-Fajardo, L., Alfonso-Piragua, A., Avendaño-Herrera, D., Melgarejo, L. M., Camelo, C., & Rodríguez, J. (2012). Estimación de poblaciones de microorganismos ligninolíticos y celulolíticos y actividad de β-Glucosidasa en agrosistemas de arroz. (pp. 89–107). Gutiérrez Rojas, I. (2017). Evaluación del efecto de condiciones de cultivo sobre la conidiogénesis en Penicillium sp. (HC1). Gutiérrez-Rojas, I., Moreno-Sarmiento, N., & Montoya, D. (2015). Mecanismos y regulación de la hidrólisis enzimática de celulosa en hongos filamentosos: casos clásicos y nuevos modelos. Revista Iberoamericana de Micología, 32(1), 1–12. https://doi.org/10.1016/j.riam.2013.10.009 Hadley, G., & Harrold, C. E. (1958). The Sporulation of Penicillium notatum Westling in Submerged Liquid Culture. Journal of Experimental Botany, 9(3), 408–417. https://doi.org/10.1093/jxb/9.3.408 Harvey, L. M., McNeil, B., Berry, D. R., & White, S. (1998). Autolysis in Batch Cultures of Penicillium Chrysogenum at Varying Agitation Rates. Enzyme and Microbial Technology, 22(6), 446–458. https://doi.org/10.1016/S0141-0229(97)00234-2 Heath, I. B. (1995). Integration and regulation of hyphal tip growth. Canadian Journal of Botany, 73(S1), 131–139. https://doi.org/10.1139/b95-236 Houbraken, J., Kocsubé, S., Visagie, C. M., Yilmaz, N., Wang, X.-C., Meijer, M., Kraak, B., Hubka, V., Bensch, K., Samson, R. A., & Frisvad, J. C. (2020). Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Studies in Mycology, 95, 5–169. https://doi.org/10.1016/j.simyco.2020.05.002 Houbraken, J., & Samson, R. A. (2011). Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology, 70, 1–51. https://doi.org/10.3114/sim.2011.70.01 Howard, R. L., Abotsi, E., Jansen, van R. E. L., & Howard, S. (2003). Lignocellulose biotechnology: issues of bioconversion and enzyme production. African Journal of Biotechnology, 2(12), 602–619. https://doi.org/10.5897/AJB2003.000-1115 Ibba, M., Taylor, S. J. C., Weedon, C. M., & Mantle, P. G. (1987). Submerged Fermentation of Penicillium paxilli Biosynthesizing Paxilline, a Process Inhibited by Calcium-induced Sporulation. Microbiology, 133(11), 3109–3119. https://doi.org/10.1099/00221287-133-11-3109 Icontec. (2023). Certificación Florverde. Idárraga, P., & Callejas, P. (2011). Catálogo de plantas vasculares. Análisis florístico de la vegetación del Departamento de Antioquia. Series Biodiversidad y Recursos Naturales. Universidad de Antioquia, Missouri Botanical Garden & Oficina de planeación departamental de la gobernación de Antioquia, II. Ijadpanahsaravi, M., Punt, M., Wösten, H. A. B., & Teertstra, W. R. (2021). Minimal nutrient requirements for induction of germination of Aspergillus niger conidia. Fungal Biology, 125(3), 231–238. https://doi.org/10.1016/j.funbio.2020.11.004 Inch, J. M. M., Humphreys, A. M., Trinci, A. P. J., & Gillespie, A. T. (1986). Growth and blastospore formation by Paecilomyces fumosoroseus, a pathogen of brown planthopper (Nilaparvata lugens). Transactions of the British Mycological Society, 87(2), 215–222. https://doi.org/10.1016/S0007-1536(86)80023-7 Issaly, N., Chauveau, H., Aglevor, F., Fargues, J., & Durand, A. (2005). Influence of nutrient, pH and dissolved oxygen on the production of Metarhizium flavoviride Mf189 blastospores in submerged batch culture. Process Biochemistry, 40(3–4), 1425–1431. https://doi.org/10.1016/j.procbio.2004.06.029 Jackson, M. A., Macguire, M. R., Lacey, L. A., & Wraight, S. P. (1997). Liquid culture production of desiccation tolerant blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus. Mycological Research, 101(1), 35-41., 101, 35–41. Jackson, M. A., & Schisler, D. A. (1992). The Composition and Attributes of Colletotrichum truncatum Spores Are Altered by the Nutritional Environment. Applied and Environmental Microbiology, 58(7), 2260–2265. https://doi.org/10.1128/aem.58.7.2260-2265.1992 Jin, Z., Hou, Q., & Niu, T. (2020). Effect of cultivating Pleurotus ostreatus on substrates supplemented with herb residues on yield characteristics, substrates degradation, and fruiting bodies’ properties. Journal of the Science of Food and Agriculture, 100(13), 4901–4910. https://doi.org/10.1002/jsfa.10551 Jung, B., Kim, S., & Lee, J. (2014). Microcyle Conidiation in Filamentous Fungi. Mycobiology, 42(1), 1–5. https://doi.org/10.5941/MYCO.2014.42.1.1 K., M., R.R., R., K., M., C., L. A., & N., G. (2014). Effect of co-culturing of cellulolytic fungal isolates for degradation of lignocellulosic material. Journal of Yeast and Fungal Research, 5(3), 31–38. https://doi.org/10.5897/JYFR2014.0134 Kirk, T. K., & Farrell, R. L. (1987). Enzymatic “Combustion”: The Microbial Degradation of Lignin. Annual Review of Microbiology, 41(1), 465–501. https://doi.org/10.1146/annurev.mi.41.100187.002341 Kobori, N. N., Mascarin, G. M., Jackson, M. A., & Schisler, D. A. (2015). Liquid culture production of microsclerotia and submerged conidia by Trichoderma harzianum active against damping-off disease caused by Rhizoctonia solani. Fungal Biology, 119(4), 179–190. https://doi.org/10.1016/j.funbio.2014.12.005 Krull, R., Wucherpfennig, T., Esfandabadi, M. E., Walisko, R., Melzer, G., Hempel, D. C., Kampen, I., Kwade, A., & Wittmann, C. (2013). Characterization and control of fungal morphology for improved production performance in biotechnology. Journal of biotechnology, 163(2), 112–123. https://doi.org/10.1016/J.JBIOTEC.2012.06.024 Lange, M., & Peiter, E. (2020). Calcium Transport Proteins in Fungi: The Phylogenetic Diversity of Their Relevance for Growth, Virulence, and Stress Resistance. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.03100 Larroche, C., & Gros, J. B. (1997). Special transformation processes using fungal spores and immobilized cells. Advances in biochemical engineering/biotechnology, 55, 179–220. https://doi.org/10.1007/BFB0102066 Ma, Q., Zhou, W., Du, X., Huang, H., & Gong, Z. (2023). Combined dilute sulfuric acid and Tween 80 pretreatment of corn stover significantly improves the enzyme digestibility: Synergistic removal of hemicellulose and lignin. Bioresource Technology, 382, 129218. https://doi.org/10.1016/j.biortech.2023.129218 Macias Camacho, J. G. (2017). Modelo macro cinético de la producción de conidios en fermentación sumergida por lotes a partir de Penicillium pinophilum. Maiorano, A. E., da Silva, E. S., Perna, R. F., Ottoni, C. A., Piccoli, R. A. M., Fernandez, R. C., Maresma, B. G., & de Andrade Rodrigues, M. F. (2020). Effect of agitation speed and aeration rate on fructosyltransferase production of Aspergillus oryzae IPT-301 in stirred tank bioreactor. Biotechnology Letters, 42(12), 2619–2629. https://doi.org/10.1007/s10529-020-03006-9 Malloch, D., & Cain, R. F. (1972). The Trichocomataceae: Ascomycetes with Aspergillus, Paecilomyces , and Penicillium imperfect states . Canadian Journal of Botany, 50(12), 2613–2628. https://doi.org/10.1139/B72-335 Martínez, Á. T., Ruiz-Dueñas, F. J., Martínez, M. J., del Río, J. C., & Gutiérrez, A. (2009). Enzymatic delignification of plant cell wall: from nature to mill. Current Opinion in Biotechnology, 20(3), 348–357. https://doi.org/10.1016/j.copbio.2009.05.002 Martínez Benítez, E. (2003). Estudio de especies micotoxígenas del genero Penicillium: Penicillium verrucosum Dierckx. Universitat Autónoma de Barcelona. Mejía Rivera, C. del M. (2021). Evaluación de lignina como precursor para el desarrollo de electrodos de supercondensadores. Universidad Pontificia Bolivariana. Méndez Zavala, A., Contreras Esquivel, J. C., Lara Victoriano, F., Rodríguez Herrera, R., & Aguilar, C. N. (2007). Producción fungica de un pigmento rojo empleando la cepa xerofilica Penicillium purpurogenum GH-2. Revista Mexicana de Ingeniería Química, 6, 267–273. Mendonça Maciel, M. J., Castro e Silva, A., & Telles Ribeiro, H. C. (2010). Industrial and biotechnological applications of ligninolytic enzymes of the basidiomycota: a review. Electronic Journal of Biotechnology, 13(6), 0–0. https://doi.org/10.2225/vol13-issue6-fulltext-2 Minagricultura. (2020). Cadena de Flores, Follajes y Ornamentales. Ministerio de Agricultura y Desarrollo Rural. (2020). Informe de rendición de cuentas 2019 - 2020. Montero, H., Vera, M., & García, A. (2019). Síntesis de los indicadores asociados a la generación de residuos. Montero Sánchez, H. F., & Quintero Cardoso, J. (2010). Guías de buenas prácticas ambientales para cultivos de flores y ornamentales. Asocolflores y MAVDT. Morton. (1961). The induction of sporulation in mould fungi. Proceedings of the Royal Society of London. Series B. Biological Sciences, 153(953), 548–569. https://doi.org/10.1098/rspb.1961.0018 Moss, M. O. (1987). Morphology and Physiology of Penicillium and Acremonium. En Penicillium and Acremonium (pp. 37–71). Springer US. https://doi.org/10.1007/978-1-4899-1986-1_2 Mukherjee, S., & Ghorai, S. (2023). Fungal biology. En Current Developments in Biotechnology and Bioengineering (pp. 67–104). Elsevier. https://doi.org/10.1016/B978-0-323-91872-5.00017-X Nugrahini, A. D., Kurniawan, M. P., & Kinasih, D. A. (2022). Development of lignocellulose-based bioethanol from chrysanthemum flower waste (Chrysanthemum sp.). IOP Conference Series: Earth and Environmental Science, 963(1), 012017. https://doi.org/10.1088/1755-1315/963/1/012017 Ospina, A., & Piñeros, Y. (2007). Estudio de la producción de ligninasas a partir del cultivo de Pleuoruts sp. sobre residuos de palma, efecto del pH y la temperatura. Universidad Jorge Tadeo Lozano. Paixão, F. R. S., Fernandes, É. K. K., & Pedrini, N. (2019). Thermotolerance of Fungal Conidia (pp. 185–196). https://doi.org/10.1007/978-3-030-23045-6_6 Papagianni, M. (2004). Fungal morphology and metabolite production in submerged mycelial processes. Biotechnology Advances, 22(3), 189–259. https://doi.org/10.1016/j.biotechadv.2003.09.005 Park, H. S., & Yu, J. H. (2012). Genetic control of asexual sporulation in filamentous fungi. Current Opinion in Microbiology, 15(6), 669–677. https://doi.org/10.1016/J.MIB.2012.09.006 Pascual, S., Melgarejo, P., & Magan, N. (1997). Induction of submerged conidiation of the biocontrol agent Penicillium oxalicum. Applied Microbiology and Biotechnology, 48(3), 389–392. https://doi.org/10.1007/s002530051068 Patel, G., Patil, M. D., Soni, S., Khobragade, T. P., Chisti, Y., & Banerjee, U. C. (2016). Production of mycophenolic acid by Penicillium brevicompactum—A comparison of two methods of optimization. Biotechnology Reports, 11, 77–85. https://doi.org/10.1016/j.btre.2016.07.003 Pazout, J., & Schroder, P. (1988). Microcycle Conidiation in Submerged Cultures of Penicillium cyclopium Attained without Temperature Changes. Microbiology, 134(10), 2685–2692. https://doi.org/10.1099/00221287-134-10-2685 Pedraza-Zapata, D. C., Sánchez-Garibello, A. M., Quevedo-Hidalgo, B., Moreno-Sarmiento, N., & Gutiérrez-Rojas, I. (2017). Promising cellulolytic fungi isolates for rice straw degradation. Journal of Microbiology, 55(9), 711–719. https://doi.org/10.1007/S12275-017-6282-1/METRICS Pereira, P. C. G., Parente, C. E. T., Carvalho, G. O., Torres, J. P. M., Meire, R. O., Dorneles, P. R., & Malm, O. (2021). A review on pesticides in flower production: A push to reduce human exposure and environmental contamination. Environmental Pollution, 289, 117817. https://doi.org/10.1016/j.envpol.2021.117817 Pirt, S. J., & Callow, D. S. (1959). Continuous-Flow Culture of the Filamentous Mould Penicillium Chrysogenum and the Control of its Morphology. Nature, 184(4683), 307–310. https://doi.org/10.1038/184307a0 Pitt, D., & Mosley, M. J. (1986). Oxidation of carbon sources via the tricarboxylic acid cycle during calcium-induced conidation of Penicillium notatum. Antonie van Leeuwenhoek, 52(6), 467–482. https://doi.org/10.1007/BF00423408 Pitt, & Poole, P. C. (1981). Calcium-induced conidiation in Penicillium notatum in submerged culture. Transactions of the British Mycological Society, 76(2), 219–230. https://doi.org/10.1016/S0007-1536(81)80142-8 Pitt, & Hocking, A. D. (2009). Fungi and food spoilage. En Fungi and Food Spoilage. Springer US. https://doi.org/10.1007/978-0-387-92207-2 Podrepšek, G. H., Knez, Ž., & Leitgeb, M. (2023). Industrial production of enzymes for use in animal-feed bioprocessing. En Valorization of Biomass to Bioproducts (pp. 349–387). Elsevier. https://doi.org/10.1016/B978-0-12-822887-6.00019-X Porto de Souza Vandenberghe, L., Wedderhoff Herrmann, L., de Oliveira Penha, R., Murawski de Mello, A. F., Martínez-Burgos, W. J., Magalhães Junior, A. I., de Souza Kirnev, P. C., de Carvalho, J. C., & Soccol, C. R. (2022). Engineering aspects for scale-up of bioreactors. En Current Developments in Biotechnology and Bioengineering (pp. 59–85). Elsevier. https://doi.org/10.1016/B978-0-323-91167-2.00002-2 Prinsen, P. (2010). Composición química de diversos materiales lignocelulósicos de interés industrial y análisis estructural de sus ligninas [Tesis de maestría en Estudios Avanzados en Química]. Universidad de Sevilla. Procolombia. (2019). Procolombia. Exportaciones Turismo Inversión Marca País. ¿Cómo funciona el sector floricultor en Colombia? Punt, M., Teertstra, W. R., & Wösten, H. A. B. (2022). Penicillium roqueforti conidia induced by L-amino acids can germinate without detectable swelling. Antonie van Leeuwenhoek, 115(1), 103–110. https://doi.org/10.1007/s10482-021-01686-5 Qi, J., Zhang, X., Zhou, Y., Zhang, C., Wen, J., Deng, S., Luo, B., Fan, M., & Xia, Y. (2023). Selectively enzymatic conversion of wood constituents with white and brown rot fungi. Industrial Crops and Products, 199, 116703. https://doi.org/10.1016/j.indcrop.2023.116703 Quevedo Hidalgo, B. E. (2011). Evaluación de la degradación de residuos de floricultura para la obtención de azúcares con el uso de tres hongos lignocelulolíticos. https://repositorio.unal.edu.co/handle/unal/9578 Quevedo-Hidalgo, B., Narváez-Rincón, P. C., Pedroza-Rodríguez, A. M., & Velásquez-Lozano, M. E. (2014). Production of lignocellulolytic enzymes from floriculture residues using Pleurotus ostreatus. Universitas Scientiarum, 20(1), 117. https://doi.org/10.11144/Javeriana.SC20-1.eple R, K. C., M, Y. A., M, A. M., V, R. O., & Ch, L. C. (2017). Residuos agroindustriales su impacto, manejo y aprovechamiento. Revista Colombiana de Ciencia Animal - RECIA, 9(S1), 122–132. https://doi.org/10.24188/RECIA.V9.NS.2017.530 Rangel Ortega, S. X. (2012). Estudio del efecto de enzimas ligninolíticas y celulolíticas obtenidas del hongo Pleurotus ostreatus sobre una gramínea forrajera tropical. Reddy, A. S. N., Ali, G. S., Celesnik, H., & Day, I. S. (2011). Coping with Stresses: Roles of Calcium- and Calcium/Calmodulin-Regulated Gene Expression. The Plant Cell, 23(6), 2010–2032. https://doi.org/10.1105/tpc.111.084988 Refai, M., Abo El-Yazid, H., & Tawakkol, W. (2015). The genus Penicillium A guide for historical, classification and identification of penicilli, their industrial applications and detrimental effects. https://matteroffactsblog.wordpress.com/.../ancient-egyptians-used-pencil... Rengifo, L. R., Rosas, P., Méndez, N., Ludeña, Y., Sirvas, S., Samolski, I., & Villena, G. K. (2022). Comparison of Pigment Production by Filamentous Fungal Strains under Submerged (SmF) and Surface Adhesion Fermentation (SAF). Journal of Fungi, 9(1), 48. https://doi.org/10.3390/jof9010048 Rho, Y. T. (2011). Effects of carbon and nitrogen sources on immunosuppressant mycophenolic acid fermentation by Penicillium brevi-compactum. The Korean Journal of Microbiology. Roberto-López, N. D. (2013). Composición química y evaluación de degradabilidad de residuos tóxicos de un núcleo ensilado a base de desechos de clavel. CIENCIA Y AGRICULTURA, 10(1), 9. https://doi.org/10.19053/01228420.2823 Rodríguez, D., & Romero, K. (2014). Evaluación del efecto de inductores sobre la conidiogénesis de Penicillium sp. HC1 en medio líquido [Tesis de pregrado microbiología]. Pontificia Universidad Javeriana . Rodríguez Porcel, E. M., Casas López, J. L., Sánchez Pérez, J. A., Fernández Sevilla, J. M., & Chisti, Y. (2023). Effects of pellet morphology on broth rheology in fermentations of Aspergillus terreus. Biochemical Engineering Journal, 26(2–3), 139–144. https://doi.org/10.1016/j.bej.2005.04.011 Rodríguez Sánchez, I. J., & Rodríguez Alfonso, M. A. (2017). Evaluación in vitro de actividades directas de promoción de crecimiento vegetal de Penicillium sp. HC1. Pontificia Universidad Javeriana. Rojas, L. (2011). Evaluación de pre-tratamientos biológicos y térmicos previos a la hidrólisis enzimática de fibra prensada de palma, para la producción de azúcares fermentables. [Tesis de Maestría]. Universidad Nacional de Colombia. Roncal, T., & Ugalde, U. (2003). Conidiation induction in Penicillium. Research in Microbiology, 154(8), 539–546. https://doi.org/10.1016/S0923-2508(03)00168-2 Roy, A., Kumar, A., Baruah, D., & Tamuli, R. (2021). Calcium signaling is involved in diverse cellular processes in fungi. Mycology, 12(1), 10–24. https://doi.org/10.1080/21501203.2020.1785962 Saha, B. C. (2004). Lignocellulose Biodegradation and Applications in Biotechnology (B. C. Saha & K. Hayashi, Eds.; Vol. 889). American Chemical Society. https://doi.org/10.1021/bk-2004-0889 Samson, R. A., Houbraken, J., Thrane, U., Frisvad, J. C., & Andersen, B. (2010). Food and Indoor Fungi. CBS-KNAW Fungal Biodiversity Centre. https://pure.knaw.nl/portal/en/publications/food-and-indoor-fungi Samson, R. A., Yilmaz, N., Houbraken, J., Spierenburg, H., Seifert, K. A., Peterson, S. W., Varga, J., & Frisvad, J. C. (2011). Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Studies in Mycology, 70, 159–183. https://doi.org/10.3114/sim.2011.70.04 Sánchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 27(2), 185–194. https://doi.org/10.1016/j.biotechadv.2008.11.001 Sánchez Garibello, A. M. (2013). Evaluación de la degradación del tamo de arroz por hongos celulolíticos aislados de suelos de cultivo de arroz. Universidad Nacional de Colombia. Sánchez Rodríguez, L. (2012). Evaluación cuantitativa de la degradación del tamo de arroz empleando microorganismos nativos lignocelulolíticos. Universidad Colegio Mayor de Cundinamarca. Santos, A. L. F., Kawase, K. Y. F., & Coelho, G. L. V. (2011). Enzymatic saccharification of lignocellulosic materials after treatment with supercritical carbon dioxide. The Journal of Supercritical Fluids, 56(3), 277–282. https://doi.org/10.1016/j.supflu.2010.10.044 Santos Díaz, A. M., Grijalba Bernal, E. P., Torres Torres, L., & Uribe Gutiérrez, L. A. (2022). Plaguicidas microbianos: control y aseguramiento de calidad. Corporación colombiana de investigación agropecuaria - AGROSAVIA. https://doi.org/10.21930/agrosavia.manual.7405125 Santos Ríos, E. G. (2021). Aprovechamiento de los residuos generados en la industria de la floricultura para la producción de etanol y furfural. Santos-Ebinuma, V. C., Roberto, I. C., Simas Teixeira, M. F., & Pessoa, A. (2013). Improving of red colorants production by a new Penicillium purpurogenum strain in submerged culture and the effect of different parameters in their stability. Biotechnology Progress, 29(3), 778–785. https://doi.org/10.1002/btpr.1720 Santoyo, F., González, A. E., Terrón, M. C., Ramírez, L., & Pisabarro, A. G. (2008). Quantitative linkage mapping of lignin-degrading enzymatic activities in Pleurotus ostreatus. Enzyme and Microbial Technology, 43(2), 137–143. https://doi.org/10.1016/j.enzmictec.2007.11.007 Scervino, J. M., Papinutti, V. L., Godoy, M. S., Rodriguez, M. A., Della Monica, I., Recchi, M., Pettinari, M. J., & Godeas, A. M. (2011). Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production. Journal of Applied Microbiology, 110(5), 1215–1223. https://doi.org/10.1111/j.1365-2672.2011.04972.x Schisler, D. A. (1991). Influence of Nutrition During Conidiation of Colletotrichum truncatum on Conidial Germination and Efficacy in Inciting Disease in Sesbania exaltata. Phytopathology, 81(4), 458. https://doi.org/10.1094/Phyto-81-458 Seydametova, E., & Zainol, N. (2021). Morphological, physiological, biochemical and molecular characterization of statin-producing Penicillium microfungi isolated from little-explored tropical ecosystems. Current Research in Microbial Sciences, 2, 100044. https://doi.org/10.1016/J.CRMICR.2021.100044 Shora, H., Metwally, M., & Zaki, M. (2021). Optimization of L-glutaminase production by Penicillium chrysogenum. THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY (Botany), 17(2), 157. https://doi.org/10.5455/egyjebb.20211118082536 Singh, R. S., Chauhan, K., & Pandey, A. (2019). Influence of aeration, agitation and process duration on fungal inulinase production from paneer whey in a stirred tank reactor. Bioresource Technology Reports, 8, 100343. https://doi.org/10.1016/j.biteb.2019.100343 Singhal, V., & Rathore, V. S. (2001). Effects of Zn2+ and Cu2+ on growth, lignin degradation and ligninolytic enzymes in Phanerochaete chrysosporium. . World Journal of Microbiology and Biotechnology, 17(3), 235–240. https://doi.org/10.1023/A:1016617025769 Somogy, M. (1952). Notes on sugar determination. The Journal of Biological Chemistry, 195, 19–23. Spalding, D. H., & Lieberman, M. (1965). Factors affecting the production of ethylene by Penicillium digitatum. Plant Physiology, 40(4), 645–648. https://doi.org/10.1104/pp.40.4.645 Stamatiu Sánchez, K., Alarcón, A., Ferrera Cerrato, R., Nava Díaz, C., Sánchez Escudero, J., Cruz Sánchez, J. S., & Castillo, M. de P. (2015). Tolerancia de hongos filamentosos a endosulfán, clorpirifós y clorotalonil en condiciones in vitro. Revista internacional de contaminación ambiental, 31. Su, Y. C. (1983). Fermentative Production of Ankapigments (Monascus-pigments). Korean Journal of Applied Microbiology and Bioengineering, 11, 325–337. Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83(1), 1–11. https://doi.org/10.1016/S0960-8524(01)00212-7 Swain, S. S., Rout, Y., Sahoo, P. B., & Nayak, S. (2023). Microbial perspectives for the agricultural soil health management in mountain forests under climatic stress. En Understanding Soils of Mountainous Landscapes (pp. 59–90). Elsevier. https://doi.org/10.1016/B978-0-323-95925-4.00006-6 Tang, Z.-Y., Li, L., Tang, W., Shen, J.-W., Yang, Q.-Z., Ma, C., & He, Y.-C. (2023). Significantly enhanced enzymatic hydrolysis of waste rice hull through a novel surfactant-based deep eutectic solvent pretreatment. Bioresource Technology, 381, 129106. https://doi.org/10.1016/j.biortech.2023.129106 Taniguchi, M., Suzuki, H., Watanabe, D., Sakai, K., Hoshino, K., & Tanaka, T. (2005). Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. Journal of Bioscience and Bioengineering, 100(6), 637–643. https://doi.org/10.1263/jbb.100.637 Tibasosa Rodríguez, G. (2014). Evaluación del efecto de fuentes de carbono y de nitrógeno sobre la conidiogénesis de Penicillium sp. HC1 en medio sólido y líquido. Tinoco, Pickard, & Vazquez-Duhalt. (2001). Kinetic differences of purified laccases from six Pleurotus ostreatus strains. Letters in Applied Microbiology, 32(5), 331–335. https://doi.org/10.1046/j.1472-765X.2001.00913.x Tisi, R., Rigamonti, M., Groppi, S., & Belotti, F. (2016). Calcium homeostasis and signaling in fungi and their relevance forpathogenicity of yeasts and filamentous fungi. AIMS Molecular Science, 3(4), 505–549. https://doi.org/10.3934/molsci.2016.4.505 Tlecuitl-Beristain, S., Viniegra-González, G., Díaz-Godínez, G., & Loera, O. (2010). Medium Selection and Effect of Higher Oxygen Concentration Pulses on Metarhizium anisopliae var. lepidiotum Conidial Production and Quality. Mycopathologia, 169(5), 387–394. https://doi.org/10.1007/s11046-009-9268-7 Torres-Garcia, D., Gené, J., & García, D. (2022). New and interesting species of Penicillium (Eurotiomycetes, Aspergillaceae) in freshwater sediments from Spain. MycoKeys, 86, 103–145. https://doi.org/10.3897/mycokeys.86.73861 Ugalde, U. O., & Pitt, D. (1986). Calcium uptake kinetics in relation to conidiation in submerged cultures of Penicillium cyclopium. Transactions of the British Mycological Society, 87(2), 199–203. https://doi.org/10.1016/S0007-1536(86)80021-3 Ugalde, U. O., Virto, M. D., & Pitt, D. (1990). Calcium binding and induction of conidiation in protoplasts of Penicillium cyclopium. Antonie van Leeuwenhoek, 57(1), 43–49. https://doi.org/10.1007/BF00400335 Ugalde, U., & Pitt, D. (1983). Morphology and calcium-induced conidiation of Penicillium cyclopium in submerged culture. Transactions of the British Mycological Society, 80(2), 319–325. https://doi.org/10.1016/S0007-1536(83)80016-3 Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74(10), 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2 Vargas Corredor, Y. A., & Pérez Pérez, L. I. (2018). Aprovechamiento de residuos agroindustriales para el mejoramiento de la calidad del ambiente. Revista Facultad de Ciencias Básicas, 14(1), 59–72. https://doi.org/10.18359/rfcb.xxxx Vargas Rodríguez, Á. A., & Romero Gutiérrez, C. C. (2009). Evaluación del efecto de la aplicación de un residuo vegetal de crisantemo degradado por Pleurotus ostreatus en un proceso de compostaje en microcosmos. Pontificia Universidad Javeriana. Villarreal Usaquén, K. N. (2022). Estrategias de contribución al desarrollo sostenible en el sector floricultor colombiano. Universidad Militar Nueva Granada. Facultad de Ingeniería. Visagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S. B., Klaassen, C. H. W., Perrone, G., Seifert, K. A., Varga, J., Yaguchi, T., & Samson, R. A. (2014). Identification and nomenclature of the genus Penicillium. Studies in Mycology, 78(1), 343–371. https://doi.org/10.1016/J.SIMYCO.2014.09.001 Vogl, C., Klein, C. M., Batke, A. F., Schweingruber, M. E., & Stolz, J. (2008). Characterization of Thi9, a Novel Thiamine (Vitamin B1) Transporter from Schizosaccharomyces pombe. Journal of Biological Chemistry, 283(12), 7379–7389. https://doi.org/10.1074/jbc.M708275200 Vrabl, P., Fuchs, V., Pichler, B., Schinagl, C. W., & Burgstaller, W. (2012). Organic Acid Excretion in Penicillium ochrochloron Increases with Ambient pH. Frontiers in Microbiology, 3. https://doi.org/10.3389/fmicb.2012.00121 Wang, H., Chen, Q., Zhang, S., & Lu, L. (2021). A Transient Receptor Potential-like Calcium Ion Channel in the Filamentous Fungus Aspergillus nidulans. Journal of Fungi, 7(11), 920. https://doi.org/10.3390/jof7110920 Warren, S. J., Keshavarz-Moore, E., Shamlou, P. A., Lilly, M. D., Thomas, C. R., & Dixon, K. (1995). Rheologies and morphologies of three actinomycetes in submerged culture. Biotechnology and Bioengineering, 45(1), 80–85. https://doi.org/10.1002/bit.260450111 Wu, W., Li, P., Huang, L., Wei, Y., Li, J., Zhang, L., & Jin, Y. (2023). The Role of Lignin Structure on Cellulase Adsorption and Enzymatic Hydrolysis. Biomass, 3(1), 96–107. https://doi.org/10.3390/biomass3010007 Xu, H., & Hosen, Y. (2010). Effects of soil water content and rice straw incorporation in the fallow season on CH4 emissions during fallow and the following rice-cropping seasons. Plant and Soil, 335(1–2), 373–383. https://doi.org/10.1007/s11104-010-0426-y Yepes Maya, D. M., & Chejne Janna, F. (2012). Gasificación de biomasa residual en el sector floricultor, caso: Oriente Antioqueño Gasification of waste biomass in the flower industry, case: Eastern Antioquia. Zambrano Arcentales, M. A. (2017). Formación de un complejo enzimático lignocelulolítico a partir de hongos de pudrición de la madera para hidrolizar paja de trigo. https://repositorio.uchile.cl/handle/2250/144760 Zeidler, G., & Margalith, P. (1973). Modification of the sporulation cycle in Penicillium digitatum (Sacc.). Canadian Journal of Microbiology, 19(4), 481–483. https://doi.org/10.1139/m73-077 Zhai, R., Hu, J., & Saddler, J. N. (2018). The inhibition of hemicellulosic sugars on cellulose hydrolysis are highly dependant on the cellulase productive binding, processivity, and substrate surface charges. Bioresource Technology, 258, 79–87. https://doi.org/10.1016/j.biortech.2017.12.006 Zhang, Y., & Yamaura, K. (2020). Transcriptome Analysis of White-Rot Fungi in Response to Lignocellulose or Lignocellulose-Derived Material Using RNA Sequencing Technology. Advances in Bioscience and Biotechnology, 11(08), 355–368. https://doi.org/10.4236/abb.2020.118025 Zhang, Y.-H. P., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnology and Bioengineering, 88(7), 797–824. https://doi.org/10.1002/bit.20282 Zhou, Y., Han, L.-R., He, H.-W., Sang, B., Yu, D.-L., Feng, J.-T., & Zhang, X. (2018). Effects of Agitation, Aeration and Temperature on Production of a Novel Glycoprotein GP-1 by Streptomyces kanasenisi ZX01 and Scale-Up Based on Volumetric Oxygen Transfer Coefficient. Molecules, 23(1), 125. https://doi.org/10.3390/molecules23010125 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvii, 149 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Colombia |
dc.coverage.region.none.fl_str_mv |
Guasca Cundinamarca |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Microbiología |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85343/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85343/2/1069305875.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/85343/3/1069305875.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a cc5151eb527c903ff1ebc56f10d9358e a2b4e726f83d606ab17a88caee062601 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089683900039168 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Moreno Sarmiento, Nubia Carmenza410ae8ab86963ff6ed5de426293858da600Gutiérrez Rojas, Ivonneb1d760973fb2da6a9aaa6f67959cc4be600García Rico, Danna Lorenac96eb7b18a0d6403f19f7cfc9bca79d6Bioprocesos y Bioprospección2024-01-17T14:23:59Z2024-01-17T14:23:59Z2023-12-05https://repositorio.unal.edu.co/handle/unal/85343Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasEn las últimas décadas, Colombia se ha posicionado como un referente a nivel mundial en la industria floricultora. Sin embargo, este próspero sector enfrenta retos ambientales, siendo la generación de residuos una preocupación constante. En contexto, la producción de desechos de clavel en el país es de 1500 kg/mes por hectárea, de los cuales en promedio el 10% es utilizado en compostaje y el 90% restante es dado por lo general como alimento para animales, lo cual ha sido cuestionable por magnificar los plaguicidas en la cadena trófica. Es así, como la búsqueda de soluciones sostenibles y eficientes para la degradación de residuos vegetales se ha convertido en una prioridad de este sector agrícola. Una alternativa que se ha venido estudiando es el uso directo de microorganismos con capacidad lignocelulolítica. Biocultivos S.A. y el Instituto de Biotecnología de la Universidad Nacional de Colombia – IBUN desarrollaron un inóculo a partir de Penicillium sp. HC1 para acelerar la degradación de material lignocelulósico. Este bioinsumo presenta desafíos alineados a la producción y calidad de sus conidios en fermentación sumergida y, por tanto, el presente trabajo evaluó diferentes condiciones de cultivo sobre la producción de Penicillium sp. HC1, así como su uso en la degradación de residuos de material vegetal de cultivos de residuos de clavel en búsqueda de la mejora del producto. Esta investigación no mostró cambios significativos en el producto final utilizando CaCl2. Por otra parte, se profundizó en la influencia que tienen diversos aditivos complejos como casaminoácidos, aminoácidos ramificados, otros suplementos y vitaminas al ser agregados al medio de cultivo líquido en la producción de Penicillium sp. HC1, encontrándose resultados positivos. Concentraciones de 13 g/L de casaminoácidos mejoran la producción de biomasa y conidios 6% y 11% respectivamente con relación al control (medio base). Del mismo modo, los llamados aminoácidos de prueba (AP) en esta investigación, resultaron ser un reemplazo efectivo y más económico a los casaminoácidos, obteniendo además mejoría en la viabilidad y productividad de los conidios de Penicillium sp. HC1. Sin embargo, la tolerancia térmica no mostraba progreso. Esto se solucionó al adicionar vitaminas obteniendo un incremento del 64% de la tolerancia térmica con respecto al valor obtenido con el producto inicial. Adicionalmente, se exploró el efecto que tienen tres flujos aire en el proceso de fermentación sumergida en tanque agitado, logrando una mejoría significativa en el producto a 2,5 vvm. En resumen, la biomasa mejoró un 27%, los conidios 16%, la viabilidad 76% y la tolerancia térmica 54% en el producto del biorreactor. Por último, se validó el uso de Penicillium sp. HC1 proveniente del medio de cultivo MBAP VIT producido a 2,5 vvm, satisfaciendo así una necesidad agrícola en la industria floricultora, que busca constantemente alternativas para el manejo de sus residuos vegetales. Esta investigación demostró la mejora en la aceleración de la degradación de los residuos de clavel utilizando Penicillium sp. HC1, consiguiendo resultados favorables en co-cultivos con Pleurotus ostreatus T1.1. (Texto tomado de la fuente)In recent decades, Colombia has positioned itself as a world leader in the flower industry. However, this thriving sector faces environmental challenges, with waste generation being a constant concern. In context, carnation waste production in the country is 1500 kg/month per hectare, of which an average of 10% is used in composting and the remaining 90% is usually given as animal feed, which has been questioned for magnifying pesticides in the food chain. Thus, the search for sustainable and efficient solutions for the degradation of plant residues has become a priority in this agricultural sector. One alternative that has been studied is the direct use of microorganisms with lignocellulolytic capacity. Biocultivos S.A. and the Institute of Biotechnology of the National University of Colombia - IBUN developed an inoculum from Penicillium sp. HC1 to accelerate the degradation of lignocellulosic material. This bioinput presents challenges aligned to the production and quality of its conidia in submerged fermentation and, therefore, the present work evaluated different culture conditions on the production of Penicillium sp. HC1, as well as its use in the degradation of plant material residues from carnation residue crops in search of product improvement. This research did not show significant changes in the final product using CaCl2. On the other hand, the influence of various complex additives such as casamino acids, branched amino acids, other supplements and vitamins when added to the liquid culture medium on the production of Penicillium sp. HC1 was studied, and positive results were found. Concentrations of 13 g/L of casamino acids improve the production of biomass and conidia 6% and 11%, respectively, with respect to the control (base medium). Similarly, the so-called test amino acids (PA) in this research proved to be an effective and more economical replacement for casamino acids, also improving the viability and productivity of Penicillium sp. HC1 conidia. However, thermal tolerance did not show progress. This was solved by adding vitamins, obtaining a 64% increase in thermal tolerance with respect to the initial product. Additionally, the effect of three air flows in the submerged fermentation process in a stirred tank was explored, achieving a significant improvement in the product at 2.5 vvm. In summary, biomass improved 27%, conidia 16%, viability 76% and thermal tolerance 54% in the bioreactor product. Finally, the use of Penicillium sp. HC1 from the MBAP VIT culture medium produced at 2.5 vvm was validated, thus satisfying an agricultural need in the floriculture industry, which is constantly looking for alternatives for the management of its plant residues. This research demonstrated the improvement in the acceleration of carnation waste degradation using Penicillium sp. HC1, achieving favorable results in co-cultures with Pleurotus ostreatus T1.1.MaestríaMagíster en Ciencias - MicrobiologíaBioinsumosxvii, 149 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MicrobiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería química570 - BiologíaResiduosWaste ProductsGestión de ResiduosPenicillium sp.CalcioCasaminoácidosAireaciónBioprocesosDegradaciónFloresCalciumCasamino acidsAerationBioprocessDegradationFlowersEvaluación del efecto de condiciones de cultivo sobre la producción de Penicillium sp. HC1 usado en la degradación de residuos vegetales de cultivos de flores en Guasca – CundinamarcaEvaluation of the effect of growing conditions on the production of Penicillium sp. HC1 used in the degradation of plant residues from flower crops in Guasca - CundinamarcaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiaGuascaCundinamarcaAbdul Manan, M., & Webb, C. (2018). Estimating fungal growth in submerged fermentation in the presence of solid particles based on colour development. Biotechnology & Biotechnological Equipment, 32(3), 618–627. https://doi.org/10.1080/13102818.2018.1440974Adams, T. H., Wieser, J. K., & Yu, J.-H. (1998). Asexual Sporulation in Aspergillus nidulans. Microbiology and Molecular Biology Reviews, 62(1), 35–54. https://doi.org/10.1128/MMBR.62.1.35-54.1998Ahmed, J., Taslim, A., Raihan, T., Sohag, Md. M. H., Hasan, M., Suhani, S., Qadri, F., & Azad, A. K. (2023). Characterization of an endo‐beta‐1,4 glucanase gene from paper‐degrading and denim bio‐stoning cellulase producing Aspergillus isolates. Biotechnology and Applied Biochemistry, 70(3), 1057–1071. https://doi.org/10.1002/bab.2420Albaek, M. O., Gernaey, K. V., Hansen, M. S., & Stocks, S. M. (2011). Modeling enzyme production with Aspergillus oryzae in pilot scale vessels with different agitation, aeration, and agitator types. Biotechnology and Bioengineering, 108(8), 1828–1840. https://doi.org/10.1002/bit.23121Alfonso Moreno, F., Robayo Quintana, M., Ferrucho Rodríguez, L., & Vargas Oyola, M. (2016). Aprovechamiento de residuos vegetales de pétalos de rosas, tallos de girasol y vástago de plátano para la fabricación artesanal de papel. INVENTUM, 11(20), 71–82. https://doi.org/10.26620/uniminuto.inventum.11.20.2016.71-82Al-Snafi, P. D. A. E. (2017). Chemical contents and medical importance of Dianthus caryophyllus- A review. IOSR Journal of Pharmacy (IOSRPHR), 07(03), 61–71. https://doi.org/10.9790/3013-0703016171Ardestani, F., Fatemi, S. A., Yakhchali, B., Hosseyni, M., & Najafpour, G. (2009). The Effects of Methionine and Acetate Concentrations on Mycophenolic Acid Production by Penicillium bervicompactum MUCL 19011 in Submerged Culture. International Journal of Chemical, Materials and Biomolecular Sciences, 2.Ardestani, F., & Marzban, A. (2012). L-isoleucine Effects on Yield and Productivity of a Batch Fermentation Process for Mycophenolic Acid Production by Penicillium brevicompactum. World Applied Science Journal, 20, 742–747.Asadollahzadeh, M., Mohammadi, M., & Lennartsson, P. R. (2023). Fungal biotechnology. En Current Developments in Biotechnology and Bioengineering (pp. 31–66). Elsevier. https://doi.org/10.1016/B978-0-323-91872-5.00006-5Asocolflores. (2022). ASOCOLFLORES – BALANCE 2022: El fortalecimiento de la sostenibilidad, el reencuentro y la promoción marcaron este año para las flores de Colombia | Agricultura & Ganadería.Bapat, P. M., Das, D., Sohoni, S. V, & Wangikar, P. P. (2006). Hierarchical amino acid utilization and its influence on fermentation dynamics: rifamycin B fermentation using Amycolatopsis mediterraneiS699, a case study. Microbial Cell Factories, 5(1), 32. https://doi.org/10.1186/1475-2859-5-32Barriga, M. (2007). No te comas al mundo, las raíces de las flores: las deudas y los impactos de la floricultura en Colombia.Basto, B., da Silva, N. R., Teixeira, J. A., & Silvério, S. C. (2022). Production of Natural Pigments by Penicillium brevicompactum Using Agro-Industrial Byproducts. Fermentation, 8(10), 536. https://doi.org/10.3390/fermentation8100536Basu, S. N., & Bhattacharyya, J. P. (1962). Studies on the Growth and Sporulation of Some Species of Penicillium. Journal of General Microbiology, 27(1), 61–73. https://doi.org/10.1099/00221287-27-1-61Beguin, H. (2010). Tritirachium egenum, a thiamine- and siderophore-auxotrophic fungal species isolated from a Penicillium rugulosum. FEMS Microbiology Ecology, 74(1), 165–173. https://doi.org/10.1111/j.1574-6941.2010.00929.xBeitel, S. M., & Knob, A. (2013). Penicillium miczynskii β -glucosidase: A Glucose-Tolerant Enzyme Produced Using Pineapple Peel as Substrate. Industrial Biotechnology, 9(5), 293–300. https://doi.org/10.1089/ind.2013.0016Bernal Ruiz, S. M., & Gómez Sánchez, L. C. (2016). Hidrólisis parcial de cascarilla de cebada mediante el uso de extracto enzimático producido por Penicillium sp. HC1 para la obtención de xilosa. Pontificia Universidad Javeriana.Berovič, M., Cimerman, A., Steiner, W., & Koloini, T. (1991). Submerged citric acid fermentation: rheological properties ofAspergillus niger broth in a stirred tank reactor. Applied Microbiology and Biotechnology, 34(5), 579–581. https://doi.org/10.1007/BF00167902Bird, R. B., Stewart, W. E., & Lightfoot. (2002). Transport Phenomena (John Wiley and Sons Inc., Ed.; 2nd Ed.).Bockelmann, W., Portius, S., Lick, S., & Heller, K. J. (1999). Sporulation of Penicillium camemberti in Submerged Batch Culture. Systematic and Applied Microbiology, 22(3), 479–485. https://doi.org/10.1016/S0723-2020(99)80058-7Bonilla López, D. S. (2020). Efecto de la incorporación de tamo de arroz degradado por Talaromyces sayulitensis HC1 y el enriquecimiento con nitrogeno sobre la germinación y el crecimiento de arroz y tomate. Pontificia Universidad Javeriana.Bonilla Rojas, M. P. (2021). La maravilla del sector de la Floricultura. ANEIA - Universidad de Los Andes. https://agronegocios.uniandes.edu.co/2022/03/la-maravilla-del-sector-de-la-floricultura/Bonnarme, P., & Jeffries, T. W. (1990). Mn(II) Regulation of Lignin Peroxidases and Manganese-Dependent Peroxidases from Lignin-Degrading White Rot Fungi. Applied and Environmental Microbiology, 56(1), 210–217. https://doi.org/10.1128/aem.56.1.210-217.1990Boyle, J. (2005). Lehninger principles of biochemistry (4th ed.): Nelson, D., and Cox, M. Biochemistry and Molecular Biology Education, 33(1), 74–75. https://doi.org/10.1002/bmb.2005.494033010419Cadena Forero, D. M. (2022). Cadena Forero, 2021. Incorporacion de la economía circular en el sector floricultor de la sabana de bogotá en colombia. Universidad de La Sabana.Calderón Tenori, C. D., Porras Rey, L., Mena, F., Solano Díaz, K., & Arias Andrés, M. (2001). Producción de enzimas ligninolíticas y biodegradación del herbicida diuron por hongos de la pudrición blanca colectados en Costa Rica, cultivados sobre rastrojo de piña. r, Instituto Regional de Estudios en Sustancias Tóxicas de la Universidad Nacional (IRETUNA).Canteri, H., & Ghoul, M. (2015). Submerged Liquid Culture for Production of Biomass and Spores of Penicillium. https://doi.org/10.1080/87559129.2015.1015136, 31(3), 262–278. https://doi.org/10.1080/87559129.2015.1015136Carrillo, L. (2003). Los hongos de los alimentos y forrajes. Universidad Nacional de Jujuy.Ceniflores. (2023). Sector Floricultor. https://ceniflores.org/sector-floricultor/Chen, H. (2013). Modern Solid State Fermentation. Springer Netherlands. https://doi.org/10.1007/978-94-007-6043-1Chen, M., Wang, J., Lin, L., Xu, X., Wei, W., Shen, Y., & Wei, D. (2022). Synergistic Regulation of Metabolism by Ca 2+ /Reactive Oxygen Species in Penicillium brevicompactum Improves Production of Mycophenolic Acid and Investigation of the Ca 2+ Channel. ACS Synthetic Biology, 11(1), 273–285. https://doi.org/10.1021/acssynbio.1c00413Cho, Y. J., Hwang, H. J., Kim, S. W., Song, C. H., & Yun, J. W. (2002a). Effect of carbon source and aeration rate on broth rheology and fungal morphology during red pigment production by Paecilomyces sinclairii in a batch bioreactor. Journal of Biotechnology, 95(1), 13–23. https://doi.org/10.1016/S0168-1656(01)00445-XCho, Y. J., Hwang, H. J., Kim, S. W., Song, C. H., & Yun, J. W. (2002b). Effect of carbon source and aeration rate on broth rheology and fungal morphology during red pigment production by Paecilomyces sinclairii in a batch bioreactor. Journal of Biotechnology, 95(1), 13–23. https://doi.org/10.1016/S0168-1656(01)00445-XCliquet, S., & Jackson, M. A. (2005). Impact of carbon and nitrogen nutrition on the quality, yield and composition of blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus. Journal of Industrial Microbiology & Biotechnology, 32(5), 204–210. https://doi.org/10.1007/s10295-005-0232-3Colombia CO. (2019). Colombia CO. En floricultura, la respuesta es Colombia.Cunningham, R., & López, G. (1994). Etanol de lignocelulósicos: tecnología y perspectivas. Programa CYTED.da Costa, S. G., Pereira, O. L., Teixeira-Ferreira, A., Valente, R. H., de Rezende, S. T., Guimarães, V. M., & Genta, F. A. (2018). Penicillium citrinum UFV1 β-glucosidases: purification, characterization, and application for biomass saccharification. Biotechnology for Biofuels, 11(1), 226. https://doi.org/10.1186/s13068-018-1226-5DANE, & DIRPEN. (2011). Censo de Fincas Productoras de Flores En 28 municipios de la Sabana de Bogotá y Cundinamarca 2009.Day, J. B., Mantle, P. G., & Shaw, B. I. (1980). Production of Verruculogen by Penicillium estinogenum in Stirred Fermenters. Microbiology, 117(2), 405–410. https://doi.org/10.1099/00221287-117-2-405de Carvalho, C. C. C. R. (2016). Fungi in Fermentation and Biotransformation Systems. 525–541. https://doi.org/10.1007/978-3-319-29137-6_21de Castro Coêlho, M., da Câmara Rocha, J., Augusto Santos, F., Carlos Ramos Gonçalves, J., Maria de Vasconcelos, S., Cristina Soares de Lima Grisi, T., Florentino de Melo Santos, S., Antônio Machado de Araújo, D., & Campos Teixeira de Carvalho-Gonçalves, L. (2021). Use of agroindustrial wastes for the production of cellulases by Penicillium sp. FSDE15. Journal of King Saud University - Science, 33(6), 101553. https://doi.org/10.1016/J.JKSUS.2021.101553Detroy, R. W., DeMarini, D. M., & Stil, P. E. (1978). Mycoviruses of Penicillium stoloniferum: influence of carbon-nitrogen nutrition upon replication. Northern Regional Research Center, Agricultural Research Service, U. S. Department of Agriculture, Peoria, IL, U. S. A., 947–953Dietsch, R., Jakobs-Schönwandt, D., Grünberger, A., & Patel, A. (2021). Desiccation-tolerant fungal blastospores: From production to application. Current Research in Biotechnology, 3, 323–339. https://doi.org/10.1016/j.crbiot.2021.11.005Dijksterhuis, J., & Samson, R. A. (2002). Food and Crop Spoilage on Storage. En Agricultural Applications (pp. 39–52). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-03059-2_3Durán Sequeda, D. E. (2017). Evaluación de la fuente, concentración y relación de carbono nitrógeno (C:N) sobre la formación de conidios de Penicillium sp. HC1 en medio líquido.Dyer, P. S., & O’Gorman, C. M. (2011a). A fungal sexual revolution: Aspergillus and Penicillium show the way. Current Opinion in Microbiology, 14(6), 649–654. https://doi.org/10.1016/j.mib.2011.10.001Dyer, P. S., & O’Gorman, C. M. (2011b). A fungal sexual revolution: Aspergillus and Penicillium show the way. Current Opinion in Microbiology, 14(6), 649–654. https://doi.org/10.1016/j.mib.2011.10.001Elisashvili, V., Kachlishvili, E., Tsiklauri, N., Metreveli, E., Khardziani, T., & Agathos, S. N. (2009). Lignocellulose-degrading enzyme production by white-rot Basidiomycetes isolated from the forests of Georgia. World Journal of Microbiology and Biotechnology, 25(2), 331–339. https://doi.org/10.1007/s11274-008-9897-xEriksson, T., Börjesson, J., & Tjerneld, F. (2002). Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme and Microbial Technology, 31(3), 353–364. https://doi.org/10.1016/S0141-0229(02)00134-5Espinosa Negrín, A. M., López González, L. M., & Casdelo Gutiérrez, N. L. (2022). Pretratamientos aplicados a biomasas lignocelulósicas: una revisión de los principales métodos analíticos utilizados para su evaluación. Revista Cubana de Química, 34 (1), 87–110.Fernandes, T. V., Klaasse Bos, G. J., Zeeman, G., Sanders, J. P. M., & van Lier, J. B. (2009). Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass. Bioresource Technology, 100(9), 2575–2579. https://doi.org/10.1016/j.biortech.2008.12.012Florverde. (2022). Florverde 25 años trabajando por la sostenibilidad. Florverde Sustainable Flowers.Foster, J. W., McDaniel, L. E., Woodruff, H. B., & Stokes, J. L. (1945). Microbiological Aspects of Penicillin. Journal of Bacteriology, 50(3), 365–368. https://doi.org/10.1128/jb.50.3.365-368.1945Foster, J. W., Woodruff, H. B., & McDaniel, L. E. (1946). Microbiological Aspects of Penicillin. Journal of Bacteriology, 51(4), 465–478. https://doi.org/10.1128/jb.51.4.465-478.1946Frisvad, J. C. (2015). Taxonomy, chemodiversity, and chemoconsistency of Aspergillus, Penicillium, and Talaromyces species. Frontiers in microbiology, 5(DEC). https://doi.org/10.3389/FMICB.2014.00773Frisvad, J. C., Smedsgaard, J., Larsen, T. O., & Samson, R. A. (2004). Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. En IN MYCOLOGY (Vol. 49).Frivsad, J. C. (1985). Creatine sucrose agar, a differential medium for mycotoxin producing terverticillate Penicillium species. Letters in Applied Microbiology, 1(6), 109–113. https://doi.org/10.1111/j.1472-765X.1985.tb01500.xGarcía Castillo, C. (2015). Evaluación del efecto de la luz sobre la morfología, el crecimiento y la conidiogénesis de Penicillium sp. HC1 [Tesis de pregrado en microbiología]. Pontificia Universidad Javeriana.García, D. A. (2019). Producción sostenible en el sector floricultor colombiano. Semillero de Investigación Desarrollo Sostenible. Fundación Universitaria de la Cámara de Comercio de Bogotá.García Mora, A. E. (2006). Estudio de la degradación de residuos lignocelulósicos derivados del procesamiento industrial del cranberry (Vaccinium macrocarpon Ait.). http://cybertesis.uach.cl/tesis/uach/2006/egg216e/doc/egg216e.pdfGarcía-Rico, R. O., Martín, J. F., & Fierro, F. (2011). Heterotrimeric Gα protein Pga1 from Penicillium chrysogenum triggers germination in response to carbon sources and affects negatively resistance to different stress conditions. Fungal Genetics and Biology, 48(6), 641–649. https://doi.org/10.1016/j.fgb.2010.11.013García-Soto, M. J., Botello-Alvarez, E., Jiménez-Islas, H., Navarrete-Bolaños, J. L., Barajas-Conde, E., Rico-Martínez, R., Guevara-González, R. G., & Torres-Pacheco, I. (2006). Growth morphology and hydrodynamics of filamentous fungi in submerged cultures.Germec, M., & Turhan, I. (2023). Effect of pH control and aeration on inulinase production from sugarbeet molasses in a bench-scale bioreactor. Biomass Conversion and Biorefinery, 13(6), 4727–4739. https://doi.org/10.1007/s13399-021-01436-7Gomes, D. G., Coelho, E., Silva, R., Domingues, L., & Teixeira, J. A. (2023). Bioreactors and engineering of filamentous fungi cultivation. En Current Developments in Biotechnology and Bioengineering (pp. 219–250). Elsevier. https://doi.org/10.1016/B978-0-323-91872-5.00018-1Gupta, R., Mehta, G., Khasa, Y. P., & Kuhad, R. C. (2011). Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation, 22(4), 797–804. https://doi.org/10.1007/s10532-010-9404-6Gutiérrez, I., Villamil, A., Aguirre Morales, M., Reyes-Pineda, E., Lemos-Gordo, S., Méndez-Pedraza, J., Núñez-Arbeláez, Á., Parra-Fajardo, L., Alfonso-Piragua, A., Avendaño-Herrera, D., Melgarejo, L. M., Camelo, C., & Rodríguez, J. (2012). Estimación de poblaciones de microorganismos ligninolíticos y celulolíticos y actividad de β-Glucosidasa en agrosistemas de arroz. (pp. 89–107).Gutiérrez Rojas, I. (2017). Evaluación del efecto de condiciones de cultivo sobre la conidiogénesis en Penicillium sp. (HC1).Gutiérrez-Rojas, I., Moreno-Sarmiento, N., & Montoya, D. (2015). Mecanismos y regulación de la hidrólisis enzimática de celulosa en hongos filamentosos: casos clásicos y nuevos modelos. Revista Iberoamericana de Micología, 32(1), 1–12. https://doi.org/10.1016/j.riam.2013.10.009Hadley, G., & Harrold, C. E. (1958). The Sporulation of Penicillium notatum Westling in Submerged Liquid Culture. Journal of Experimental Botany, 9(3), 408–417. https://doi.org/10.1093/jxb/9.3.408Harvey, L. M., McNeil, B., Berry, D. R., & White, S. (1998). Autolysis in Batch Cultures of Penicillium Chrysogenum at Varying Agitation Rates. Enzyme and Microbial Technology, 22(6), 446–458. https://doi.org/10.1016/S0141-0229(97)00234-2Heath, I. B. (1995). Integration and regulation of hyphal tip growth. Canadian Journal of Botany, 73(S1), 131–139. https://doi.org/10.1139/b95-236Houbraken, J., Kocsubé, S., Visagie, C. M., Yilmaz, N., Wang, X.-C., Meijer, M., Kraak, B., Hubka, V., Bensch, K., Samson, R. A., & Frisvad, J. C. (2020). Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Studies in Mycology, 95, 5–169. https://doi.org/10.1016/j.simyco.2020.05.002Houbraken, J., & Samson, R. A. (2011). Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology, 70, 1–51. https://doi.org/10.3114/sim.2011.70.01Howard, R. L., Abotsi, E., Jansen, van R. E. L., & Howard, S. (2003). Lignocellulose biotechnology: issues of bioconversion and enzyme production. African Journal of Biotechnology, 2(12), 602–619. https://doi.org/10.5897/AJB2003.000-1115Ibba, M., Taylor, S. J. C., Weedon, C. M., & Mantle, P. G. (1987). Submerged Fermentation of Penicillium paxilli Biosynthesizing Paxilline, a Process Inhibited by Calcium-induced Sporulation. Microbiology, 133(11), 3109–3119. https://doi.org/10.1099/00221287-133-11-3109Icontec. (2023). Certificación Florverde.Idárraga, P., & Callejas, P. (2011). Catálogo de plantas vasculares. Análisis florístico de la vegetación del Departamento de Antioquia. Series Biodiversidad y Recursos Naturales. Universidad de Antioquia, Missouri Botanical Garden & Oficina de planeación departamental de la gobernación de Antioquia, II.Ijadpanahsaravi, M., Punt, M., Wösten, H. A. B., & Teertstra, W. R. (2021). Minimal nutrient requirements for induction of germination of Aspergillus niger conidia. Fungal Biology, 125(3), 231–238. https://doi.org/10.1016/j.funbio.2020.11.004Inch, J. M. M., Humphreys, A. M., Trinci, A. P. J., & Gillespie, A. T. (1986). Growth and blastospore formation by Paecilomyces fumosoroseus, a pathogen of brown planthopper (Nilaparvata lugens). Transactions of the British Mycological Society, 87(2), 215–222. https://doi.org/10.1016/S0007-1536(86)80023-7Issaly, N., Chauveau, H., Aglevor, F., Fargues, J., & Durand, A. (2005). Influence of nutrient, pH and dissolved oxygen on the production of Metarhizium flavoviride Mf189 blastospores in submerged batch culture. Process Biochemistry, 40(3–4), 1425–1431. https://doi.org/10.1016/j.procbio.2004.06.029Jackson, M. A., Macguire, M. R., Lacey, L. A., & Wraight, S. P. (1997). Liquid culture production of desiccation tolerant blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus. Mycological Research, 101(1), 35-41., 101, 35–41.Jackson, M. A., & Schisler, D. A. (1992). The Composition and Attributes of Colletotrichum truncatum Spores Are Altered by the Nutritional Environment. Applied and Environmental Microbiology, 58(7), 2260–2265. https://doi.org/10.1128/aem.58.7.2260-2265.1992Jin, Z., Hou, Q., & Niu, T. (2020). Effect of cultivating Pleurotus ostreatus on substrates supplemented with herb residues on yield characteristics, substrates degradation, and fruiting bodies’ properties. Journal of the Science of Food and Agriculture, 100(13), 4901–4910. https://doi.org/10.1002/jsfa.10551Jung, B., Kim, S., & Lee, J. (2014). Microcyle Conidiation in Filamentous Fungi. Mycobiology, 42(1), 1–5. https://doi.org/10.5941/MYCO.2014.42.1.1K., M., R.R., R., K., M., C., L. A., & N., G. (2014). Effect of co-culturing of cellulolytic fungal isolates for degradation of lignocellulosic material. Journal of Yeast and Fungal Research, 5(3), 31–38. https://doi.org/10.5897/JYFR2014.0134Kirk, T. K., & Farrell, R. L. (1987). Enzymatic “Combustion”: The Microbial Degradation of Lignin. Annual Review of Microbiology, 41(1), 465–501. https://doi.org/10.1146/annurev.mi.41.100187.002341Kobori, N. N., Mascarin, G. M., Jackson, M. A., & Schisler, D. A. (2015). Liquid culture production of microsclerotia and submerged conidia by Trichoderma harzianum active against damping-off disease caused by Rhizoctonia solani. Fungal Biology, 119(4), 179–190. https://doi.org/10.1016/j.funbio.2014.12.005Krull, R., Wucherpfennig, T., Esfandabadi, M. E., Walisko, R., Melzer, G., Hempel, D. C., Kampen, I., Kwade, A., & Wittmann, C. (2013). Characterization and control of fungal morphology for improved production performance in biotechnology. Journal of biotechnology, 163(2), 112–123. https://doi.org/10.1016/J.JBIOTEC.2012.06.024Lange, M., & Peiter, E. (2020). Calcium Transport Proteins in Fungi: The Phylogenetic Diversity of Their Relevance for Growth, Virulence, and Stress Resistance. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.03100Larroche, C., & Gros, J. B. (1997). Special transformation processes using fungal spores and immobilized cells. Advances in biochemical engineering/biotechnology, 55, 179–220. https://doi.org/10.1007/BFB0102066Ma, Q., Zhou, W., Du, X., Huang, H., & Gong, Z. (2023). Combined dilute sulfuric acid and Tween 80 pretreatment of corn stover significantly improves the enzyme digestibility: Synergistic removal of hemicellulose and lignin. Bioresource Technology, 382, 129218. https://doi.org/10.1016/j.biortech.2023.129218Macias Camacho, J. G. (2017). Modelo macro cinético de la producción de conidios en fermentación sumergida por lotes a partir de Penicillium pinophilum.Maiorano, A. E., da Silva, E. S., Perna, R. F., Ottoni, C. A., Piccoli, R. A. M., Fernandez, R. C., Maresma, B. G., & de Andrade Rodrigues, M. F. (2020). Effect of agitation speed and aeration rate on fructosyltransferase production of Aspergillus oryzae IPT-301 in stirred tank bioreactor. Biotechnology Letters, 42(12), 2619–2629. https://doi.org/10.1007/s10529-020-03006-9Malloch, D., & Cain, R. F. (1972). The Trichocomataceae: Ascomycetes with Aspergillus, Paecilomyces , and Penicillium imperfect states . Canadian Journal of Botany, 50(12), 2613–2628. https://doi.org/10.1139/B72-335Martínez, Á. T., Ruiz-Dueñas, F. J., Martínez, M. J., del Río, J. C., & Gutiérrez, A. (2009). Enzymatic delignification of plant cell wall: from nature to mill. Current Opinion in Biotechnology, 20(3), 348–357. https://doi.org/10.1016/j.copbio.2009.05.002Martínez Benítez, E. (2003). Estudio de especies micotoxígenas del genero Penicillium: Penicillium verrucosum Dierckx. Universitat Autónoma de Barcelona.Mejía Rivera, C. del M. (2021). Evaluación de lignina como precursor para el desarrollo de electrodos de supercondensadores. Universidad Pontificia Bolivariana.Méndez Zavala, A., Contreras Esquivel, J. C., Lara Victoriano, F., Rodríguez Herrera, R., & Aguilar, C. N. (2007). Producción fungica de un pigmento rojo empleando la cepa xerofilica Penicillium purpurogenum GH-2. Revista Mexicana de Ingeniería Química, 6, 267–273.Mendonça Maciel, M. J., Castro e Silva, A., & Telles Ribeiro, H. C. (2010). Industrial and biotechnological applications of ligninolytic enzymes of the basidiomycota: a review. Electronic Journal of Biotechnology, 13(6), 0–0. https://doi.org/10.2225/vol13-issue6-fulltext-2Minagricultura. (2020). Cadena de Flores, Follajes y Ornamentales.Ministerio de Agricultura y Desarrollo Rural. (2020). Informe de rendición de cuentas 2019 - 2020.Montero, H., Vera, M., & García, A. (2019). Síntesis de los indicadores asociados a la generación de residuos.Montero Sánchez, H. F., & Quintero Cardoso, J. (2010). Guías de buenas prácticas ambientales para cultivos de flores y ornamentales. Asocolflores y MAVDT.Morton. (1961). The induction of sporulation in mould fungi. Proceedings of the Royal Society of London. Series B. Biological Sciences, 153(953), 548–569. https://doi.org/10.1098/rspb.1961.0018Moss, M. O. (1987). Morphology and Physiology of Penicillium and Acremonium. En Penicillium and Acremonium (pp. 37–71). Springer US. https://doi.org/10.1007/978-1-4899-1986-1_2Mukherjee, S., & Ghorai, S. (2023). Fungal biology. En Current Developments in Biotechnology and Bioengineering (pp. 67–104). Elsevier. https://doi.org/10.1016/B978-0-323-91872-5.00017-XNugrahini, A. D., Kurniawan, M. P., & Kinasih, D. A. (2022). Development of lignocellulose-based bioethanol from chrysanthemum flower waste (Chrysanthemum sp.). IOP Conference Series: Earth and Environmental Science, 963(1), 012017. https://doi.org/10.1088/1755-1315/963/1/012017Ospina, A., & Piñeros, Y. (2007). Estudio de la producción de ligninasas a partir del cultivo de Pleuoruts sp. sobre residuos de palma, efecto del pH y la temperatura. Universidad Jorge Tadeo Lozano.Paixão, F. R. S., Fernandes, É. K. K., & Pedrini, N. (2019). Thermotolerance of Fungal Conidia (pp. 185–196). https://doi.org/10.1007/978-3-030-23045-6_6Papagianni, M. (2004). Fungal morphology and metabolite production in submerged mycelial processes. Biotechnology Advances, 22(3), 189–259. https://doi.org/10.1016/j.biotechadv.2003.09.005Park, H. S., & Yu, J. H. (2012). Genetic control of asexual sporulation in filamentous fungi. Current Opinion in Microbiology, 15(6), 669–677. https://doi.org/10.1016/J.MIB.2012.09.006Pascual, S., Melgarejo, P., & Magan, N. (1997). Induction of submerged conidiation of the biocontrol agent Penicillium oxalicum. Applied Microbiology and Biotechnology, 48(3), 389–392. https://doi.org/10.1007/s002530051068Patel, G., Patil, M. D., Soni, S., Khobragade, T. P., Chisti, Y., & Banerjee, U. C. (2016). Production of mycophenolic acid by Penicillium brevicompactum—A comparison of two methods of optimization. Biotechnology Reports, 11, 77–85. https://doi.org/10.1016/j.btre.2016.07.003Pazout, J., & Schroder, P. (1988). Microcycle Conidiation in Submerged Cultures of Penicillium cyclopium Attained without Temperature Changes. Microbiology, 134(10), 2685–2692. https://doi.org/10.1099/00221287-134-10-2685Pedraza-Zapata, D. C., Sánchez-Garibello, A. M., Quevedo-Hidalgo, B., Moreno-Sarmiento, N., & Gutiérrez-Rojas, I. (2017). Promising cellulolytic fungi isolates for rice straw degradation. Journal of Microbiology, 55(9), 711–719. https://doi.org/10.1007/S12275-017-6282-1/METRICSPereira, P. C. G., Parente, C. E. T., Carvalho, G. O., Torres, J. P. M., Meire, R. O., Dorneles, P. R., & Malm, O. (2021). A review on pesticides in flower production: A push to reduce human exposure and environmental contamination. Environmental Pollution, 289, 117817. https://doi.org/10.1016/j.envpol.2021.117817Pirt, S. J., & Callow, D. S. (1959). Continuous-Flow Culture of the Filamentous Mould Penicillium Chrysogenum and the Control of its Morphology. Nature, 184(4683), 307–310. https://doi.org/10.1038/184307a0Pitt, D., & Mosley, M. J. (1986). Oxidation of carbon sources via the tricarboxylic acid cycle during calcium-induced conidation of Penicillium notatum. Antonie van Leeuwenhoek, 52(6), 467–482. https://doi.org/10.1007/BF00423408Pitt, & Poole, P. C. (1981). Calcium-induced conidiation in Penicillium notatum in submerged culture. Transactions of the British Mycological Society, 76(2), 219–230. https://doi.org/10.1016/S0007-1536(81)80142-8Pitt, & Hocking, A. D. (2009). Fungi and food spoilage. En Fungi and Food Spoilage. Springer US. https://doi.org/10.1007/978-0-387-92207-2Podrepšek, G. H., Knez, Ž., & Leitgeb, M. (2023). Industrial production of enzymes for use in animal-feed bioprocessing. En Valorization of Biomass to Bioproducts (pp. 349–387). Elsevier. https://doi.org/10.1016/B978-0-12-822887-6.00019-XPorto de Souza Vandenberghe, L., Wedderhoff Herrmann, L., de Oliveira Penha, R., Murawski de Mello, A. F., Martínez-Burgos, W. J., Magalhães Junior, A. I., de Souza Kirnev, P. C., de Carvalho, J. C., & Soccol, C. R. (2022). Engineering aspects for scale-up of bioreactors. En Current Developments in Biotechnology and Bioengineering (pp. 59–85). Elsevier. https://doi.org/10.1016/B978-0-323-91167-2.00002-2Prinsen, P. (2010). Composición química de diversos materiales lignocelulósicos de interés industrial y análisis estructural de sus ligninas [Tesis de maestría en Estudios Avanzados en Química]. Universidad de Sevilla.Procolombia. (2019). Procolombia. Exportaciones Turismo Inversión Marca País. ¿Cómo funciona el sector floricultor en Colombia?Punt, M., Teertstra, W. R., & Wösten, H. A. B. (2022). Penicillium roqueforti conidia induced by L-amino acids can germinate without detectable swelling. Antonie van Leeuwenhoek, 115(1), 103–110. https://doi.org/10.1007/s10482-021-01686-5Qi, J., Zhang, X., Zhou, Y., Zhang, C., Wen, J., Deng, S., Luo, B., Fan, M., & Xia, Y. (2023). Selectively enzymatic conversion of wood constituents with white and brown rot fungi. Industrial Crops and Products, 199, 116703. https://doi.org/10.1016/j.indcrop.2023.116703Quevedo Hidalgo, B. E. (2011). Evaluación de la degradación de residuos de floricultura para la obtención de azúcares con el uso de tres hongos lignocelulolíticos. https://repositorio.unal.edu.co/handle/unal/9578Quevedo-Hidalgo, B., Narváez-Rincón, P. C., Pedroza-Rodríguez, A. M., & Velásquez-Lozano, M. E. (2014). Production of lignocellulolytic enzymes from floriculture residues using Pleurotus ostreatus. Universitas Scientiarum, 20(1), 117. https://doi.org/10.11144/Javeriana.SC20-1.epleR, K. C., M, Y. A., M, A. M., V, R. O., & Ch, L. C. (2017). Residuos agroindustriales su impacto, manejo y aprovechamiento. Revista Colombiana de Ciencia Animal - RECIA, 9(S1), 122–132. https://doi.org/10.24188/RECIA.V9.NS.2017.530Rangel Ortega, S. X. (2012). Estudio del efecto de enzimas ligninolíticas y celulolíticas obtenidas del hongo Pleurotus ostreatus sobre una gramínea forrajera tropical.Reddy, A. S. N., Ali, G. S., Celesnik, H., & Day, I. S. (2011). Coping with Stresses: Roles of Calcium- and Calcium/Calmodulin-Regulated Gene Expression. The Plant Cell, 23(6), 2010–2032. https://doi.org/10.1105/tpc.111.084988Refai, M., Abo El-Yazid, H., & Tawakkol, W. (2015). The genus Penicillium A guide for historical, classification and identification of penicilli, their industrial applications and detrimental effects. https://matteroffactsblog.wordpress.com/.../ancient-egyptians-used-pencil...Rengifo, L. R., Rosas, P., Méndez, N., Ludeña, Y., Sirvas, S., Samolski, I., & Villena, G. K. (2022). Comparison of Pigment Production by Filamentous Fungal Strains under Submerged (SmF) and Surface Adhesion Fermentation (SAF). Journal of Fungi, 9(1), 48. https://doi.org/10.3390/jof9010048Rho, Y. T. (2011). Effects of carbon and nitrogen sources on immunosuppressant mycophenolic acid fermentation by Penicillium brevi-compactum. The Korean Journal of Microbiology.Roberto-López, N. D. (2013). Composición química y evaluación de degradabilidad de residuos tóxicos de un núcleo ensilado a base de desechos de clavel. CIENCIA Y AGRICULTURA, 10(1), 9. https://doi.org/10.19053/01228420.2823Rodríguez, D., & Romero, K. (2014). Evaluación del efecto de inductores sobre la conidiogénesis de Penicillium sp. HC1 en medio líquido [Tesis de pregrado microbiología]. Pontificia Universidad Javeriana .Rodríguez Porcel, E. M., Casas López, J. L., Sánchez Pérez, J. A., Fernández Sevilla, J. M., & Chisti, Y. (2023). Effects of pellet morphology on broth rheology in fermentations of Aspergillus terreus. Biochemical Engineering Journal, 26(2–3), 139–144. https://doi.org/10.1016/j.bej.2005.04.011Rodríguez Sánchez, I. J., & Rodríguez Alfonso, M. A. (2017). Evaluación in vitro de actividades directas de promoción de crecimiento vegetal de Penicillium sp. HC1. Pontificia Universidad Javeriana.Rojas, L. (2011). Evaluación de pre-tratamientos biológicos y térmicos previos a la hidrólisis enzimática de fibra prensada de palma, para la producción de azúcares fermentables. [Tesis de Maestría]. Universidad Nacional de Colombia.Roncal, T., & Ugalde, U. (2003). Conidiation induction in Penicillium. Research in Microbiology, 154(8), 539–546. https://doi.org/10.1016/S0923-2508(03)00168-2Roy, A., Kumar, A., Baruah, D., & Tamuli, R. (2021). Calcium signaling is involved in diverse cellular processes in fungi. Mycology, 12(1), 10–24. https://doi.org/10.1080/21501203.2020.1785962Saha, B. C. (2004). Lignocellulose Biodegradation and Applications in Biotechnology (B. C. Saha & K. Hayashi, Eds.; Vol. 889). American Chemical Society. https://doi.org/10.1021/bk-2004-0889Samson, R. A., Houbraken, J., Thrane, U., Frisvad, J. C., & Andersen, B. (2010). Food and Indoor Fungi. CBS-KNAW Fungal Biodiversity Centre. https://pure.knaw.nl/portal/en/publications/food-and-indoor-fungiSamson, R. A., Yilmaz, N., Houbraken, J., Spierenburg, H., Seifert, K. A., Peterson, S. W., Varga, J., & Frisvad, J. C. (2011). Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Studies in Mycology, 70, 159–183. https://doi.org/10.3114/sim.2011.70.04Sánchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 27(2), 185–194. https://doi.org/10.1016/j.biotechadv.2008.11.001Sánchez Garibello, A. M. (2013). Evaluación de la degradación del tamo de arroz por hongos celulolíticos aislados de suelos de cultivo de arroz. Universidad Nacional de Colombia.Sánchez Rodríguez, L. (2012). Evaluación cuantitativa de la degradación del tamo de arroz empleando microorganismos nativos lignocelulolíticos. Universidad Colegio Mayor de Cundinamarca.Santos, A. L. F., Kawase, K. Y. F., & Coelho, G. L. V. (2011). Enzymatic saccharification of lignocellulosic materials after treatment with supercritical carbon dioxide. The Journal of Supercritical Fluids, 56(3), 277–282. https://doi.org/10.1016/j.supflu.2010.10.044Santos Díaz, A. M., Grijalba Bernal, E. P., Torres Torres, L., & Uribe Gutiérrez, L. A. (2022). Plaguicidas microbianos: control y aseguramiento de calidad. Corporación colombiana de investigación agropecuaria - AGROSAVIA. https://doi.org/10.21930/agrosavia.manual.7405125Santos Ríos, E. G. (2021). Aprovechamiento de los residuos generados en la industria de la floricultura para la producción de etanol y furfural.Santos-Ebinuma, V. C., Roberto, I. C., Simas Teixeira, M. F., & Pessoa, A. (2013). Improving of red colorants production by a new Penicillium purpurogenum strain in submerged culture and the effect of different parameters in their stability. Biotechnology Progress, 29(3), 778–785. https://doi.org/10.1002/btpr.1720Santoyo, F., González, A. E., Terrón, M. C., Ramírez, L., & Pisabarro, A. G. (2008). Quantitative linkage mapping of lignin-degrading enzymatic activities in Pleurotus ostreatus. Enzyme and Microbial Technology, 43(2), 137–143. https://doi.org/10.1016/j.enzmictec.2007.11.007Scervino, J. M., Papinutti, V. L., Godoy, M. S., Rodriguez, M. A., Della Monica, I., Recchi, M., Pettinari, M. J., & Godeas, A. M. (2011). Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production. Journal of Applied Microbiology, 110(5), 1215–1223. https://doi.org/10.1111/j.1365-2672.2011.04972.xSchisler, D. A. (1991). Influence of Nutrition During Conidiation of Colletotrichum truncatum on Conidial Germination and Efficacy in Inciting Disease in Sesbania exaltata. Phytopathology, 81(4), 458. https://doi.org/10.1094/Phyto-81-458Seydametova, E., & Zainol, N. (2021). Morphological, physiological, biochemical and molecular characterization of statin-producing Penicillium microfungi isolated from little-explored tropical ecosystems. Current Research in Microbial Sciences, 2, 100044. https://doi.org/10.1016/J.CRMICR.2021.100044Shora, H., Metwally, M., & Zaki, M. (2021). Optimization of L-glutaminase production by Penicillium chrysogenum. THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY (Botany), 17(2), 157. https://doi.org/10.5455/egyjebb.20211118082536Singh, R. S., Chauhan, K., & Pandey, A. (2019). Influence of aeration, agitation and process duration on fungal inulinase production from paneer whey in a stirred tank reactor. Bioresource Technology Reports, 8, 100343. https://doi.org/10.1016/j.biteb.2019.100343Singhal, V., & Rathore, V. S. (2001). Effects of Zn2+ and Cu2+ on growth, lignin degradation and ligninolytic enzymes in Phanerochaete chrysosporium. . World Journal of Microbiology and Biotechnology, 17(3), 235–240. https://doi.org/10.1023/A:1016617025769Somogy, M. (1952). Notes on sugar determination. The Journal of Biological Chemistry, 195, 19–23.Spalding, D. H., & Lieberman, M. (1965). Factors affecting the production of ethylene by Penicillium digitatum. Plant Physiology, 40(4), 645–648. https://doi.org/10.1104/pp.40.4.645Stamatiu Sánchez, K., Alarcón, A., Ferrera Cerrato, R., Nava Díaz, C., Sánchez Escudero, J., Cruz Sánchez, J. S., & Castillo, M. de P. (2015). Tolerancia de hongos filamentosos a endosulfán, clorpirifós y clorotalonil en condiciones in vitro. Revista internacional de contaminación ambiental, 31.Su, Y. C. (1983). Fermentative Production of Ankapigments (Monascus-pigments). Korean Journal of Applied Microbiology and Bioengineering, 11, 325–337.Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83(1), 1–11. https://doi.org/10.1016/S0960-8524(01)00212-7Swain, S. S., Rout, Y., Sahoo, P. B., & Nayak, S. (2023). Microbial perspectives for the agricultural soil health management in mountain forests under climatic stress. En Understanding Soils of Mountainous Landscapes (pp. 59–90). Elsevier. https://doi.org/10.1016/B978-0-323-95925-4.00006-6Tang, Z.-Y., Li, L., Tang, W., Shen, J.-W., Yang, Q.-Z., Ma, C., & He, Y.-C. (2023). Significantly enhanced enzymatic hydrolysis of waste rice hull through a novel surfactant-based deep eutectic solvent pretreatment. Bioresource Technology, 381, 129106. https://doi.org/10.1016/j.biortech.2023.129106Taniguchi, M., Suzuki, H., Watanabe, D., Sakai, K., Hoshino, K., & Tanaka, T. (2005). Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. Journal of Bioscience and Bioengineering, 100(6), 637–643. https://doi.org/10.1263/jbb.100.637Tibasosa Rodríguez, G. (2014). Evaluación del efecto de fuentes de carbono y de nitrógeno sobre la conidiogénesis de Penicillium sp. HC1 en medio sólido y líquido.Tinoco, Pickard, & Vazquez-Duhalt. (2001). Kinetic differences of purified laccases from six Pleurotus ostreatus strains. Letters in Applied Microbiology, 32(5), 331–335. https://doi.org/10.1046/j.1472-765X.2001.00913.xTisi, R., Rigamonti, M., Groppi, S., & Belotti, F. (2016). Calcium homeostasis and signaling in fungi and their relevance forpathogenicity of yeasts and filamentous fungi. AIMS Molecular Science, 3(4), 505–549. https://doi.org/10.3934/molsci.2016.4.505Tlecuitl-Beristain, S., Viniegra-González, G., Díaz-Godínez, G., & Loera, O. (2010). Medium Selection and Effect of Higher Oxygen Concentration Pulses on Metarhizium anisopliae var. lepidiotum Conidial Production and Quality. Mycopathologia, 169(5), 387–394. https://doi.org/10.1007/s11046-009-9268-7Torres-Garcia, D., Gené, J., & García, D. (2022). New and interesting species of Penicillium (Eurotiomycetes, Aspergillaceae) in freshwater sediments from Spain. MycoKeys, 86, 103–145. https://doi.org/10.3897/mycokeys.86.73861Ugalde, U. O., & Pitt, D. (1986). Calcium uptake kinetics in relation to conidiation in submerged cultures of Penicillium cyclopium. Transactions of the British Mycological Society, 87(2), 199–203. https://doi.org/10.1016/S0007-1536(86)80021-3Ugalde, U. O., Virto, M. D., & Pitt, D. (1990). Calcium binding and induction of conidiation in protoplasts of Penicillium cyclopium. Antonie van Leeuwenhoek, 57(1), 43–49. https://doi.org/10.1007/BF00400335Ugalde, U., & Pitt, D. (1983). Morphology and calcium-induced conidiation of Penicillium cyclopium in submerged culture. Transactions of the British Mycological Society, 80(2), 319–325. https://doi.org/10.1016/S0007-1536(83)80016-3Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74(10), 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2Vargas Corredor, Y. A., & Pérez Pérez, L. I. (2018). Aprovechamiento de residuos agroindustriales para el mejoramiento de la calidad del ambiente. Revista Facultad de Ciencias Básicas, 14(1), 59–72. https://doi.org/10.18359/rfcb.xxxxVargas Rodríguez, Á. A., & Romero Gutiérrez, C. C. (2009). Evaluación del efecto de la aplicación de un residuo vegetal de crisantemo degradado por Pleurotus ostreatus en un proceso de compostaje en microcosmos. Pontificia Universidad Javeriana.Villarreal Usaquén, K. N. (2022). Estrategias de contribución al desarrollo sostenible en el sector floricultor colombiano. Universidad Militar Nueva Granada. Facultad de Ingeniería.Visagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S. B., Klaassen, C. H. W., Perrone, G., Seifert, K. A., Varga, J., Yaguchi, T., & Samson, R. A. (2014). Identification and nomenclature of the genus Penicillium. Studies in Mycology, 78(1), 343–371. https://doi.org/10.1016/J.SIMYCO.2014.09.001Vogl, C., Klein, C. M., Batke, A. F., Schweingruber, M. E., & Stolz, J. (2008). Characterization of Thi9, a Novel Thiamine (Vitamin B1) Transporter from Schizosaccharomyces pombe. Journal of Biological Chemistry, 283(12), 7379–7389. https://doi.org/10.1074/jbc.M708275200Vrabl, P., Fuchs, V., Pichler, B., Schinagl, C. W., & Burgstaller, W. (2012). Organic Acid Excretion in Penicillium ochrochloron Increases with Ambient pH. Frontiers in Microbiology, 3. https://doi.org/10.3389/fmicb.2012.00121Wang, H., Chen, Q., Zhang, S., & Lu, L. (2021). A Transient Receptor Potential-like Calcium Ion Channel in the Filamentous Fungus Aspergillus nidulans. Journal of Fungi, 7(11), 920. https://doi.org/10.3390/jof7110920Warren, S. J., Keshavarz-Moore, E., Shamlou, P. A., Lilly, M. D., Thomas, C. R., & Dixon, K. (1995). Rheologies and morphologies of three actinomycetes in submerged culture. Biotechnology and Bioengineering, 45(1), 80–85. https://doi.org/10.1002/bit.260450111Wu, W., Li, P., Huang, L., Wei, Y., Li, J., Zhang, L., & Jin, Y. (2023). The Role of Lignin Structure on Cellulase Adsorption and Enzymatic Hydrolysis. Biomass, 3(1), 96–107. https://doi.org/10.3390/biomass3010007Xu, H., & Hosen, Y. (2010). Effects of soil water content and rice straw incorporation in the fallow season on CH4 emissions during fallow and the following rice-cropping seasons. Plant and Soil, 335(1–2), 373–383. https://doi.org/10.1007/s11104-010-0426-yYepes Maya, D. M., & Chejne Janna, F. (2012). Gasificación de biomasa residual en el sector floricultor, caso: Oriente Antioqueño Gasification of waste biomass in the flower industry, case: Eastern Antioquia.Zambrano Arcentales, M. A. (2017). Formación de un complejo enzimático lignocelulolítico a partir de hongos de pudrición de la madera para hidrolizar paja de trigo. https://repositorio.uchile.cl/handle/2250/144760Zeidler, G., & Margalith, P. (1973). Modification of the sporulation cycle in Penicillium digitatum (Sacc.). Canadian Journal of Microbiology, 19(4), 481–483. https://doi.org/10.1139/m73-077Zhai, R., Hu, J., & Saddler, J. N. (2018). The inhibition of hemicellulosic sugars on cellulose hydrolysis are highly dependant on the cellulase productive binding, processivity, and substrate surface charges. Bioresource Technology, 258, 79–87. https://doi.org/10.1016/j.biortech.2017.12.006Zhang, Y., & Yamaura, K. (2020). Transcriptome Analysis of White-Rot Fungi in Response to Lignocellulose or Lignocellulose-Derived Material Using RNA Sequencing Technology. Advances in Bioscience and Biotechnology, 11(08), 355–368. https://doi.org/10.4236/abb.2020.118025Zhang, Y.-H. P., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnology and Bioengineering, 88(7), 797–824. https://doi.org/10.1002/bit.20282Zhou, Y., Han, L.-R., He, H.-W., Sang, B., Yu, D.-L., Feng, J.-T., & Zhang, X. (2018). Effects of Agitation, Aeration and Temperature on Production of a Novel Glycoprotein GP-1 by Streptomyces kanasenisi ZX01 and Scale-Up Based on Volumetric Oxygen Transfer Coefficient. Molecules, 23(1), 125. https://doi.org/10.3390/molecules23010125EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85343/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1069305875.2023.pdf1069305875.2023.pdfTesis de Maestría en Ciencias - Microbiologíaapplication/pdf3815572https://repositorio.unal.edu.co/bitstream/unal/85343/2/1069305875.2023.pdfcc5151eb527c903ff1ebc56f10d9358eMD52THUMBNAIL1069305875.2023.pdf.jpg1069305875.2023.pdf.jpgGenerated Thumbnailimage/jpeg5775https://repositorio.unal.edu.co/bitstream/unal/85343/3/1069305875.2023.pdf.jpga2b4e726f83d606ab17a88caee062601MD53unal/85343oai:repositorio.unal.edu.co:unal/853432024-08-21 23:13:15.717Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |