Análisis del efecto del tratamiento magnético sobre la actividad enzimática en semillas de maíz (Zea mays L.)

The development of a plant starts in germination, determined by various processes such as water absorption and adsorption, gene replication and expression, hormonal and enzymatic activity, among others. These processes have been studied, seeking sensitivity, directly or indirectly to the magnetic tr...

Full description

Autores:
Aranzazu Osorio, Jainer Enrique
Tipo de recurso:
Work document
Fecha de publicación:
2019
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/75611
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/75611
Palabra clave:
Plantas
germinación
Alfa amilasas
Proteasas
Tratamiento magnético
Germination
Alpha amylase
Protease
Magnetic treatment
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_cce8aabc580c96bc377410644f939303
oai_identifier_str oai:repositorio.unal.edu.co:unal/75611
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Análisis del efecto del tratamiento magnético sobre la actividad enzimática en semillas de maíz (Zea mays L.)
title Análisis del efecto del tratamiento magnético sobre la actividad enzimática en semillas de maíz (Zea mays L.)
spellingShingle Análisis del efecto del tratamiento magnético sobre la actividad enzimática en semillas de maíz (Zea mays L.)
Plantas
germinación
Alfa amilasas
Proteasas
Tratamiento magnético
Germination
Alpha amylase
Protease
Magnetic treatment
title_short Análisis del efecto del tratamiento magnético sobre la actividad enzimática en semillas de maíz (Zea mays L.)
title_full Análisis del efecto del tratamiento magnético sobre la actividad enzimática en semillas de maíz (Zea mays L.)
title_fullStr Análisis del efecto del tratamiento magnético sobre la actividad enzimática en semillas de maíz (Zea mays L.)
title_full_unstemmed Análisis del efecto del tratamiento magnético sobre la actividad enzimática en semillas de maíz (Zea mays L.)
title_sort Análisis del efecto del tratamiento magnético sobre la actividad enzimática en semillas de maíz (Zea mays L.)
dc.creator.fl_str_mv Aranzazu Osorio, Jainer Enrique
dc.contributor.author.spa.fl_str_mv Aranzazu Osorio, Jainer Enrique
dc.subject.ddc.spa.fl_str_mv Plantas
topic Plantas
germinación
Alfa amilasas
Proteasas
Tratamiento magnético
Germination
Alpha amylase
Protease
Magnetic treatment
dc.subject.proposal.spa.fl_str_mv germinación
Alfa amilasas
Proteasas
Tratamiento magnético
dc.subject.proposal.eng.fl_str_mv Germination
Alpha amylase
Protease
Magnetic treatment
description The development of a plant starts in germination, determined by various processes such as water absorption and adsorption, gene replication and expression, hormonal and enzymatic activity, among others. These processes have been studied, seeking sensitivity, directly or indirectly to the magnetic treatment of seeds, however it is still necessary to investigate the modified processes in biological, biochemical and biophysical variables. This is why corn seeds were exposed to a magnetic flux density of 100 mT, times between 55 s and 543 s and water volumes between 12.2 mL and 23.8 mL. In the first instance, germination parameter responses were evaluated (maximum germination percentage, germination time of 50 % of seeds (t50) and times t1, t10, t25, t75 and t90) and enzymatic activity by spectrophotometry of both alpha amylase and proteases, at a wavelength of 500 nm and 660 nm respectively. To advance the understanding of the processes modified by the action of the magnetic treatment (MT) of corn seeds, the germination parameters were correlated with the enzymatic activity. The effect of MT is mainly reported in t50 and Gmax, obtaining reductions up to 31 % in t50 and increase of 16 % in Gmax. Enzyme activity increased in alpha amylases and proteases up to 68 % and 85.81 %, respectively. The correlation of the alpha amylases activity with the germination variables was direct with Gmax and inverse in t50, in proteases an inverse correlation with t50 was found. It is concluded that the magnetic treatment in corn seeds directly affects germination and increases the enzymatic activity of alpha amylases and proteases. The obtained results allow to contribute to the understanding of the processes modified by the MT action in corn seeds and consequently on the mobilization of reserve substances. At a biotechnological level, the MT makes it possible to optimize the germination process in an environmentally reliable, affordable and low cost; also the use of the MT can be considered as a useful tool to improve the performance of the processes where hydrolytic enzymes act.
publishDate 2019
dc.date.available.spa.fl_str_mv 2019
2020-02-14T21:06:09Z
dc.date.issued.spa.fl_str_mv 2019
dc.date.accessioned.spa.fl_str_mv 2020-02-14T21:06:09Z
dc.type.spa.fl_str_mv Documento de trabajo
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/WP
format http://purl.org/coar/resource_type/c_8042
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/75611
url https://repositorio.unal.edu.co/handle/unal/75611
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv S. Pietruszewski and E. Martínez, “Magnetic field as a method of improving the quality of sowing material: a review,” Int. Agrophysics, vol. 29, no. 3, pp. 377–389, 2015.
J. Torres, A. Socorro, and E. Hincapié, “Effect of homogeneous static magnetic treatment on the adsorption capacity in maize seeds (Zea mays L.),” Bioelectromagnetics, no. February, 2018
J. A. Teixeira and J. Dobránszki, “How do magnetic fields affect plants in vitro?,” Vitr. Cell. Dev. Biol. - Plant, vol. 51, no. 3, pp. 233–240, 2015
N. Katsenios et al., “Role of pulsed electromagnetic field on enzyme activity, germination, plant growth and yield of durum wheat,” Biocatal. Agric. Biotechnol., vol. 6, pp. 152–158, 2016.
J. I. Torres-Osorio, J. E. Aranzazu-Osorio, and M. V. Carbonell-Padrino, “Efecto del campo magnético estático homogéneo en la germinación y absorción de agua en semillas de soja,” Tecno Lógicas, vol. 18, no. 35, pp. 11–20, 2015.
H. Feizi, H. Sahabi, R. Parviz, N. Shahtahmassebi, O. Gallehgir, and S. Amirmoradi, “Impact of Intensity and Exposure Duration of Magnetic Field on Seed Germination of Tomato (Lycopersicon esculentum L.),” Not. Sci. Biol., vol. 4, no. 1, pp. 116–120, 2012.
M.-O. Zepeda-Bautista, Hernández-Aguilar, Domínguez-Pacheco, Cruz-Orea, Godina-Nava, “Electromagnetic field and seed vigour of corn hybrids,” Int. Agrophysics, vol. 24, pp. 329–332, 2010.
M. Iqbal, Z. U. Haq, Y. Jamil, and M. R. Ahmad, “Effect of presowing magnetic treatment on properties of pea,” Int. Agrophysics, vol. 26, no. 1, pp. 25–31, 2012.
V. Madhu, “Nuclear magnetic resonance (H1-Nmr) spectroscopy and imaging of water uptake and distribution in sunflower (Helianthus Annus L.) seeds exposed to magnetic field,” Int. J. Chem. Phys. Sci. Nucl., vol. 3, no. 5, pp. 95–104, 2014.
A. Vashisth and S. Nagarajan, “Characterization of water distribution and activities of enzymes during germination in magnetically-exposed maize (Zea mays L) seeds.,” Indian J. Biochem. Biophys., vol. 47, no. 5, pp. 311–318, 2010
A. Vashisth and S. Nagarajan, “Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field,” J. Plant Physiol., vol. 167, no. 2, pp. 149–156, 2010
J. Bhardwaj, A. Anand, and S. Nagarajan, “Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds,” Plant Physiol. Biochem., vol. 57, pp. 67–73, 2012
M. Rochalska and K. Grabowska, “Influence of magnetic fields on the activity of enzymes: α- and β-amylase and glutathione S-transferase (GST) in wheat plants,” Int. Agrophysics, vol. 21, pp. 185–188, 2007
R. Radhakrishnan, T. Leelapriya, and B. D. R. Kumari, “Effects of pulsed magnetic field treatment of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress,” Bioelectromagnetics, vol. 33, no. 8, pp. 670–681, 2012.
M. S. Sankhla, M. Kumari, K. Sharma, and R. S. Kushwah, “Water contamination through pesticide & their toxic effect on human health,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 6, no. 1, pp. 967–970, 2018.
R. N. Chibbar, S. Jaiswal, M. Gangola, and M. Båga, “Carbohydrate Metabolism,” in Encyclopedia of Food Grains: Second Edition, vol. 2, 201AD, pp. 161–173
D’Astre, “Influence physiologique de l’etat magnitique, In: Biological Effect on Magnetic Fields (Ed. M.F. Barnothy).,” Plenum Press. Paris, Fr., 1882.
Ç. Atak, Ö. Emiroğlu, S. Alikamanoğlu, and A. Rzakoulieva, “Stimulation of regeneration by magnetic field in soybean (Glycine max L. Merrill) tissue cultures,” J. Cell Mol. Biol., vol. 2, pp. 113–119, 2003.
A. De souza, E. Porras, and R. Casate, “Efecto del Tratamiento Magnético de Semillas de Tomate (Lycopersicon esculentum Mill.) Sobre la Germinación y el Crecimiento de las Plántulas,” Invest. Agr. Prod. Prot. Veg., vol. 14, no. 3, pp. 437–444, 1999.
A. Majd, A. Shabrangi, M. Bahar, and S. Abdi, “Effect of AC and DC Magnetic Fields on Seed Germination and Early Vegetative Growth in Brassica napus L.,” Prog. Electromagn. Res. Symp. Moscow, Russ. August 18-21, pp. 710–714, 2009.
A. Majd and A. Shabrangi, “Effect of seed pretreatment by magnetic fields on seed germination and ontogeny growth of agricultural plants,” Prog. Electromagn. Res. Symp. Beijing, China, March 23-27, pp. 1137–1141, 2009.
C. Torres, J. Díaz, and P. Cabal, “Efecto de campos magnéticos en la germinación de semillas de arroz (Oryza sativa L.) y tomate (Solanum lycopersicum L.),” Agron. Colomb., vol. 26, no. 2, pp. 177–185, 2008.
M. Blank and R. Goodman, “Do electromagnetic fields interact directly with DNA?,” Bioelectromagnetics, vol. 18, pp. 111–115, 1997
E. M. Goodman, B. Greenebaum, and M. T. Marron, “Effects of electromagnetic fields on molecules and cells.,” Int. Rev. Cytol., vol. 158, pp. 279–338, 1995.
M. Yamashita, K. Tomita-Yokotani, H. Hashimoto, M. Takai, M. Tsushima, and T. Nakamura, “Experimental concept for examination of biological effects of magnetic field concealed by gravity,” Adv. Sp. Res., vol. 34, pp. 1575–1578, 2004.
B. C. Stange, R. E. Rowland, B. I. Rapley, and J. V. Podd, “ELF Magnetic Fields Increase Amino Acid Uptake into Vicia faba L. Roots and Alter Ion Movement Across the Plasma Membrane,” Bioelectromagnetics, vol. 23, no. 5, pp. 347–354, 2002.
A. Vashisth and D. K. Joshi, “Growth characteristics of maize seeds exposed to magnetic field,” Bioelectromagnetics, vol. 38, no. 2, pp. 151–157, 2017.
A. De Souza, D. García, L. Sueiro, L. Licea, and E. Porras, “Pre-sowing magnetic treatment of tomato seeds: effects on the growth and yield of plants cultivated late in the season,” Spanish J. Agric. Res., vol. 3, no. 1, p. 113, 2005.
J. Podleoeny, S. Pietruszewski, and A. Podlesna, “Efficiency of the magnetic treatment of broad bean seeds cultivated under experimental plot conditions,” Int. Agrophysics ·, vol. 18, pp. 65–71, 2004.
M. V. Carbonell, E. Martinez, and J. M. Amaya, “Stimulation of germination in rice (Oryza Sativa L.) by a static magnetic field,” Electro- and magnetobiology, vol. 19, no. 1, pp. 121–128, 2000.
B. L. Maheshwari and H. S. Grewal, “Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity,” Agric. Water Manag., vol. 96, no. 8, pp. 1229–1236, 2009.
M. Hozayn and A. M. Saeed, “Irrigation with magnetized water enhances growth, chemical constituent and yield of chickpea (Cicer arietinum L.),” Agric. Biol. J. North Am., vol. 1, no. 4, pp. 671–676, 2010.
A. Aladjadjiyan and A. Zahariev, “Influence of Stationary Magnetic Field on the Absorption Spectra of the Photosynthetic Apparatus of Some Ornamental Perennial Species,” Bulg. J. Phys, vol. 29, no. 3–4, pp. 179–183, 2002
B. Camps-Raga, S. Gyawali, and N. E. Islam, “Germination rate studies of soybean under static and low-frequency magnetic fields,” IEEE Trans. Dielectr. Electr. Insul., vol. 16, no. 5, pp. 1317–1321, 2009.
A. Vashisth and S. Nagarajan, “Germination Characteristics of Seeds of Maize (Zea mays L.) Exposed to Magnetic Fields under Accelerated Ageing Condition,” J. Agric. Phys., vol. 9, pp. 50–58, 2009.
A. Aladjadjiyan and T. Ylieva, “Influence of stationary magnetic field on the early stages of the development of tobacco seeds (Nicotiana tabacum L.),” J. Cent. Eur. Agric., vol. 4, no. April 2003, pp. 131–138, 2003
A. Domínguez Pacheco, C. Hernández Aguilar, A. Cruz Orea, A. Carballo Carballo, R. Zepeda Bautista, and E. M. Martínez Ortíz, “Semilla de maíz bajo la influencia de irradiación de campos electromagnéticos,” Rev. Fitotec. Mex., vol. 33, no. 2, pp. 183–188, 2010.
Y. Yao, Y. Li, Y. Yang, and C. Li, “Effect of seed pretreatment by magnetic field on the sensitivity of cucumber (Cucumis sativus) seedlings to ultraviolet-B radiation,” Environ. Exp. Bot., vol. 54, no. 3, pp. 286–294, 2005.
J. Podleoeny, S. Pietruszewski, and a Podleoena, “Influence of magnetic stimulation of seeds on the formation of morphological features and yielding of the pea,” Int. Agrophysics, vol. 19, pp. 61–68, 2005
C. Atak, Ö. Çelik, A. Olgun, S. Alikamanoglu, and A. Rzakoulieva, “Effect of magnetic field on peroxidase activities of soybean tissue culture,” Biotechnol. Biotechnol. Equip., vol. 21, no. 2, pp. 166–171, 2007
R. Hołubowicz, L. Kubisz, M. Gauza, Y. Tong, and D. Hojan-Jezierska, “Effect of low frequency magnetic field (LFMF) on the germination of seeds and selected useful characters of onion (Allium cepa L .),” Not. Bot. Horti Agrobot., vol. 42, no. 1, pp. 168–172, 2014
M. B. Shine, K. . Guruprasad, and A. Anand, “Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybean,” Bioelectromagnetics, vol. 33, no. 5, pp. 428–437, 2012.
M. F. Garcia, E. M. Ramirez, and M. V. C. Padrino, “Germination of grass seeds subjected to stationary magnetic field,” Ing. Recur. Nat. y del Ambient., vol. 7, no. 7, pp. 12–17, 2008
S. Kataria, L. Baghel, and K. N. Guruprasad, “Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean,” Biocatal. Agric. Biotechnol., vol. 10, no. February, pp. 83–90, 2017.
L. Pourakbar, “Effect of Static Magnetic Field on Germination , Growth Characteristics and Activities of Some Enzymes in Chamomile Seeds (Matricaria Chamomilla L.),” vol. 4, no. 9, pp. 2335–2340, 2013
M. Iqbal, Z. ul Haq, Y. Jamil, and J. Nisar, “Pre-sowing seed magnetic field treatment influence on germination, seedling growth and enzymatic activities of melon (Cucumis melo L.),” Biocatal. Agric. Biotechnol., vol. 6, pp. 176–183, 2016
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
Acceso abierto
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 97
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.department.spa.fl_str_mv Escuela de biociencias
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/75611/1/1053699399.2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/75611/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/75611/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/75611/4/1053699399.2020.pdf.jpg
bitstream.checksum.fl_str_mv b0a601467e62ce8476dbf1a95a398462
6f3f13b02594d02ad110b3ad534cd5df
4460e5956bc1d1639be9ae6146a50347
8c00eac43ef4b494156513a472afaf7b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090185490563072
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Aranzazu Osorio, Jainer Enrique5d45fcf9-7b94-40b8-92f6-a7a719cf4a852020-02-14T21:06:09Z20192020-02-14T21:06:09Z2019https://repositorio.unal.edu.co/handle/unal/75611The development of a plant starts in germination, determined by various processes such as water absorption and adsorption, gene replication and expression, hormonal and enzymatic activity, among others. These processes have been studied, seeking sensitivity, directly or indirectly to the magnetic treatment of seeds, however it is still necessary to investigate the modified processes in biological, biochemical and biophysical variables. This is why corn seeds were exposed to a magnetic flux density of 100 mT, times between 55 s and 543 s and water volumes between 12.2 mL and 23.8 mL. In the first instance, germination parameter responses were evaluated (maximum germination percentage, germination time of 50 % of seeds (t50) and times t1, t10, t25, t75 and t90) and enzymatic activity by spectrophotometry of both alpha amylase and proteases, at a wavelength of 500 nm and 660 nm respectively. To advance the understanding of the processes modified by the action of the magnetic treatment (MT) of corn seeds, the germination parameters were correlated with the enzymatic activity. The effect of MT is mainly reported in t50 and Gmax, obtaining reductions up to 31 % in t50 and increase of 16 % in Gmax. Enzyme activity increased in alpha amylases and proteases up to 68 % and 85.81 %, respectively. The correlation of the alpha amylases activity with the germination variables was direct with Gmax and inverse in t50, in proteases an inverse correlation with t50 was found. It is concluded that the magnetic treatment in corn seeds directly affects germination and increases the enzymatic activity of alpha amylases and proteases. The obtained results allow to contribute to the understanding of the processes modified by the MT action in corn seeds and consequently on the mobilization of reserve substances. At a biotechnological level, the MT makes it possible to optimize the germination process in an environmentally reliable, affordable and low cost; also the use of the MT can be considered as a useful tool to improve the performance of the processes where hydrolytic enzymes act.El desarrollo de una planta parte en la germinación, determinada por diversos procesos como la absorción y adsorción de agua, la replicación y expresión génica, la actividad hormonal y enzimática, entre otros. Estos procesos han sido estudiados, buscando la sensibilidad, de manera directa o indirecta al tratamiento magnético de semillas, sin embargo aún es necesario investigar los procesos modificados en variables biológicas, bioquímicas y biofísicas. Por esto se expusieron semillas de maíz a densidad de flujo magnético de 100 mT, tiempos entre 55 s y 543 s y volúmenes de agua entre 12.2 mL y 23.8 mL. Se evaluaron, en primera instancia respuestas de parámetros de germinación (porcentaje de germinación máximo (Gmáx), el tiempo de germinación del 50 % de las semillas (t50) y los tiempos t1, t10, t25, t75 y t90) y actividad enzimática por espectrofotometría tanto de la alfa amilasa como proteasas, a una longitud de onda de 500 nm y 660 nm respectivamente. Para avanzar en el entendimiento de los procesos modificados por la acción del tratamiento magnético (TM) de semillas de maíz, los parámetros de germinación se correlacionaron con la actividad enzimática. Se reporta el efecto del TM principalmente en t50 y Gmáx, obteniendo reducciones hasta 31 % en t50 y aumento de 16 % en Gmáx. La actividad enzimática aumento en la alfa amilasa y proteasas hasta 68 % y 85.81 %, respectivamente. La correlación de la actividad de la alfa amilasa con las variables de germinación fue directa con Gmáx e inversa en t50, en proteasas se encontró correlación inversa con t50. Se concluye que el tratamiento magnético en semillas de maíz afecta directamente la germinación e incrementa la actividad enzimática de la alfa amilasa y proteasas. Los resultados obtenidos son una contribución para comprender los procesos modificados por la acción del TM en semillas de maiz y en consecuencia sobre la movilización de sustancias de reserva. Desde el punto de vista biotecnológico el TM hace posible optimizar el proceso de germinación de forma ambientalmente fiable, asequible y de bajo costo; además el uso del TM se puede considerar como una herramienta útil para mejorar el rendimiento de los procesos donde actúan enzimas hidrolíticas.Magister en Ciencias - BiotecnologíaMaestría97application/pdfspaPlantasgerminaciónAlfa amilasasProteasasTratamiento magnéticoGerminationAlpha amylaseProteaseMagnetic treatmentAnálisis del efecto del tratamiento magnético sobre la actividad enzimática en semillas de maíz (Zea mays L.)Documento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_8042Texthttp://purl.org/redcol/resource_type/WPEscuela de biocienciasUniversidad Nacional de Colombia - Sede MedellínS. Pietruszewski and E. Martínez, “Magnetic field as a method of improving the quality of sowing material: a review,” Int. Agrophysics, vol. 29, no. 3, pp. 377–389, 2015.J. Torres, A. Socorro, and E. Hincapié, “Effect of homogeneous static magnetic treatment on the adsorption capacity in maize seeds (Zea mays L.),” Bioelectromagnetics, no. February, 2018J. A. Teixeira and J. Dobránszki, “How do magnetic fields affect plants in vitro?,” Vitr. Cell. Dev. Biol. - Plant, vol. 51, no. 3, pp. 233–240, 2015N. Katsenios et al., “Role of pulsed electromagnetic field on enzyme activity, germination, plant growth and yield of durum wheat,” Biocatal. Agric. Biotechnol., vol. 6, pp. 152–158, 2016.J. I. Torres-Osorio, J. E. Aranzazu-Osorio, and M. V. Carbonell-Padrino, “Efecto del campo magnético estático homogéneo en la germinación y absorción de agua en semillas de soja,” Tecno Lógicas, vol. 18, no. 35, pp. 11–20, 2015.H. Feizi, H. Sahabi, R. Parviz, N. Shahtahmassebi, O. Gallehgir, and S. Amirmoradi, “Impact of Intensity and Exposure Duration of Magnetic Field on Seed Germination of Tomato (Lycopersicon esculentum L.),” Not. Sci. Biol., vol. 4, no. 1, pp. 116–120, 2012.M.-O. Zepeda-Bautista, Hernández-Aguilar, Domínguez-Pacheco, Cruz-Orea, Godina-Nava, “Electromagnetic field and seed vigour of corn hybrids,” Int. Agrophysics, vol. 24, pp. 329–332, 2010.M. Iqbal, Z. U. Haq, Y. Jamil, and M. R. Ahmad, “Effect of presowing magnetic treatment on properties of pea,” Int. Agrophysics, vol. 26, no. 1, pp. 25–31, 2012.V. Madhu, “Nuclear magnetic resonance (H1-Nmr) spectroscopy and imaging of water uptake and distribution in sunflower (Helianthus Annus L.) seeds exposed to magnetic field,” Int. J. Chem. Phys. Sci. Nucl., vol. 3, no. 5, pp. 95–104, 2014.A. Vashisth and S. Nagarajan, “Characterization of water distribution and activities of enzymes during germination in magnetically-exposed maize (Zea mays L) seeds.,” Indian J. Biochem. Biophys., vol. 47, no. 5, pp. 311–318, 2010A. Vashisth and S. Nagarajan, “Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field,” J. Plant Physiol., vol. 167, no. 2, pp. 149–156, 2010J. Bhardwaj, A. Anand, and S. Nagarajan, “Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds,” Plant Physiol. Biochem., vol. 57, pp. 67–73, 2012M. Rochalska and K. Grabowska, “Influence of magnetic fields on the activity of enzymes: α- and β-amylase and glutathione S-transferase (GST) in wheat plants,” Int. Agrophysics, vol. 21, pp. 185–188, 2007R. Radhakrishnan, T. Leelapriya, and B. D. R. Kumari, “Effects of pulsed magnetic field treatment of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress,” Bioelectromagnetics, vol. 33, no. 8, pp. 670–681, 2012.M. S. Sankhla, M. Kumari, K. Sharma, and R. S. Kushwah, “Water contamination through pesticide & their toxic effect on human health,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 6, no. 1, pp. 967–970, 2018.R. N. Chibbar, S. Jaiswal, M. Gangola, and M. Båga, “Carbohydrate Metabolism,” in Encyclopedia of Food Grains: Second Edition, vol. 2, 201AD, pp. 161–173D’Astre, “Influence physiologique de l’etat magnitique, In: Biological Effect on Magnetic Fields (Ed. M.F. Barnothy).,” Plenum Press. Paris, Fr., 1882.Ç. Atak, Ö. Emiroğlu, S. Alikamanoğlu, and A. Rzakoulieva, “Stimulation of regeneration by magnetic field in soybean (Glycine max L. Merrill) tissue cultures,” J. Cell Mol. Biol., vol. 2, pp. 113–119, 2003.A. De souza, E. Porras, and R. Casate, “Efecto del Tratamiento Magnético de Semillas de Tomate (Lycopersicon esculentum Mill.) Sobre la Germinación y el Crecimiento de las Plántulas,” Invest. Agr. Prod. Prot. Veg., vol. 14, no. 3, pp. 437–444, 1999.A. Majd, A. Shabrangi, M. Bahar, and S. Abdi, “Effect of AC and DC Magnetic Fields on Seed Germination and Early Vegetative Growth in Brassica napus L.,” Prog. Electromagn. Res. Symp. Moscow, Russ. August 18-21, pp. 710–714, 2009.A. Majd and A. Shabrangi, “Effect of seed pretreatment by magnetic fields on seed germination and ontogeny growth of agricultural plants,” Prog. Electromagn. Res. Symp. Beijing, China, March 23-27, pp. 1137–1141, 2009.C. Torres, J. Díaz, and P. Cabal, “Efecto de campos magnéticos en la germinación de semillas de arroz (Oryza sativa L.) y tomate (Solanum lycopersicum L.),” Agron. Colomb., vol. 26, no. 2, pp. 177–185, 2008.M. Blank and R. Goodman, “Do electromagnetic fields interact directly with DNA?,” Bioelectromagnetics, vol. 18, pp. 111–115, 1997E. M. Goodman, B. Greenebaum, and M. T. Marron, “Effects of electromagnetic fields on molecules and cells.,” Int. Rev. Cytol., vol. 158, pp. 279–338, 1995.M. Yamashita, K. Tomita-Yokotani, H. Hashimoto, M. Takai, M. Tsushima, and T. Nakamura, “Experimental concept for examination of biological effects of magnetic field concealed by gravity,” Adv. Sp. Res., vol. 34, pp. 1575–1578, 2004.B. C. Stange, R. E. Rowland, B. I. Rapley, and J. V. Podd, “ELF Magnetic Fields Increase Amino Acid Uptake into Vicia faba L. Roots and Alter Ion Movement Across the Plasma Membrane,” Bioelectromagnetics, vol. 23, no. 5, pp. 347–354, 2002.A. Vashisth and D. K. Joshi, “Growth characteristics of maize seeds exposed to magnetic field,” Bioelectromagnetics, vol. 38, no. 2, pp. 151–157, 2017.A. De Souza, D. García, L. Sueiro, L. Licea, and E. Porras, “Pre-sowing magnetic treatment of tomato seeds: effects on the growth and yield of plants cultivated late in the season,” Spanish J. Agric. Res., vol. 3, no. 1, p. 113, 2005.J. Podleoeny, S. Pietruszewski, and A. Podlesna, “Efficiency of the magnetic treatment of broad bean seeds cultivated under experimental plot conditions,” Int. Agrophysics ·, vol. 18, pp. 65–71, 2004.M. V. Carbonell, E. Martinez, and J. M. Amaya, “Stimulation of germination in rice (Oryza Sativa L.) by a static magnetic field,” Electro- and magnetobiology, vol. 19, no. 1, pp. 121–128, 2000.B. L. Maheshwari and H. S. Grewal, “Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity,” Agric. Water Manag., vol. 96, no. 8, pp. 1229–1236, 2009.M. Hozayn and A. M. Saeed, “Irrigation with magnetized water enhances growth, chemical constituent and yield of chickpea (Cicer arietinum L.),” Agric. Biol. J. North Am., vol. 1, no. 4, pp. 671–676, 2010.A. Aladjadjiyan and A. Zahariev, “Influence of Stationary Magnetic Field on the Absorption Spectra of the Photosynthetic Apparatus of Some Ornamental Perennial Species,” Bulg. J. Phys, vol. 29, no. 3–4, pp. 179–183, 2002B. Camps-Raga, S. Gyawali, and N. E. Islam, “Germination rate studies of soybean under static and low-frequency magnetic fields,” IEEE Trans. Dielectr. Electr. Insul., vol. 16, no. 5, pp. 1317–1321, 2009.A. Vashisth and S. Nagarajan, “Germination Characteristics of Seeds of Maize (Zea mays L.) Exposed to Magnetic Fields under Accelerated Ageing Condition,” J. Agric. Phys., vol. 9, pp. 50–58, 2009.A. Aladjadjiyan and T. Ylieva, “Influence of stationary magnetic field on the early stages of the development of tobacco seeds (Nicotiana tabacum L.),” J. Cent. Eur. Agric., vol. 4, no. April 2003, pp. 131–138, 2003A. Domínguez Pacheco, C. Hernández Aguilar, A. Cruz Orea, A. Carballo Carballo, R. Zepeda Bautista, and E. M. Martínez Ortíz, “Semilla de maíz bajo la influencia de irradiación de campos electromagnéticos,” Rev. Fitotec. Mex., vol. 33, no. 2, pp. 183–188, 2010.Y. Yao, Y. Li, Y. Yang, and C. Li, “Effect of seed pretreatment by magnetic field on the sensitivity of cucumber (Cucumis sativus) seedlings to ultraviolet-B radiation,” Environ. Exp. Bot., vol. 54, no. 3, pp. 286–294, 2005.J. Podleoeny, S. Pietruszewski, and a Podleoena, “Influence of magnetic stimulation of seeds on the formation of morphological features and yielding of the pea,” Int. Agrophysics, vol. 19, pp. 61–68, 2005C. Atak, Ö. Çelik, A. Olgun, S. Alikamanoglu, and A. Rzakoulieva, “Effect of magnetic field on peroxidase activities of soybean tissue culture,” Biotechnol. Biotechnol. Equip., vol. 21, no. 2, pp. 166–171, 2007R. Hołubowicz, L. Kubisz, M. Gauza, Y. Tong, and D. Hojan-Jezierska, “Effect of low frequency magnetic field (LFMF) on the germination of seeds and selected useful characters of onion (Allium cepa L .),” Not. Bot. Horti Agrobot., vol. 42, no. 1, pp. 168–172, 2014M. B. Shine, K. . Guruprasad, and A. Anand, “Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybean,” Bioelectromagnetics, vol. 33, no. 5, pp. 428–437, 2012.M. F. Garcia, E. M. Ramirez, and M. V. C. Padrino, “Germination of grass seeds subjected to stationary magnetic field,” Ing. Recur. Nat. y del Ambient., vol. 7, no. 7, pp. 12–17, 2008S. Kataria, L. Baghel, and K. N. Guruprasad, “Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean,” Biocatal. Agric. Biotechnol., vol. 10, no. February, pp. 83–90, 2017.L. Pourakbar, “Effect of Static Magnetic Field on Germination , Growth Characteristics and Activities of Some Enzymes in Chamomile Seeds (Matricaria Chamomilla L.),” vol. 4, no. 9, pp. 2335–2340, 2013M. Iqbal, Z. ul Haq, Y. Jamil, and J. Nisar, “Pre-sowing seed magnetic field treatment influence on germination, seedling growth and enzymatic activities of melon (Cucumis melo L.),” Biocatal. Agric. Biotechnol., vol. 6, pp. 176–183, 2016ORIGINAL1053699399.2020.pdf1053699399.2020.pdfapplication/pdf1282966https://repositorio.unal.edu.co/bitstream/unal/75611/1/1053699399.2020.pdfb0a601467e62ce8476dbf1a95a398462MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/75611/2/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/75611/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53THUMBNAIL1053699399.2020.pdf.jpg1053699399.2020.pdf.jpgGenerated Thumbnailimage/jpeg5166https://repositorio.unal.edu.co/bitstream/unal/75611/4/1053699399.2020.pdf.jpg8c00eac43ef4b494156513a472afaf7bMD54unal/75611oai:repositorio.unal.edu.co:unal/756112024-03-05 23:07:44.75Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg==