Performance comparison between a classic particle swarm optimization and a genetic algorithm in manufacturing cell design

This article studies the performance of two metaheuristics, the Particle Swarm Optimization (PSO) and the Genetic Algorithm (GA), in the manufacturing cell formation problem of a factory that needs to organize three production cases in an efficient way for four, five and six manufacturing cells to p...

Full description

Autores:
Rodríguez León, Johanna
Quiroga Méndez, Jabid Eduardo
Ortiz Pimiento, Nestor Raúl
Tipo de recurso:
Article of journal
Fecha de publicación:
2013
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/39529
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/39529
http://bdigital.unal.edu.co/29626/
Palabra clave:
Manufacturing cells
Group Technology
Cellular Manufacturing
Meta-heuristic Models
Particle Swarm Optimization
Genetic Algorithm
Intercellular Transfers
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_ccd885e6f50ea632ded48cd92b263182
oai_identifier_str oai:repositorio.unal.edu.co:unal/39529
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rodríguez León, Johannaa9421956-cbf5-43eb-8ade-43d6d30bc23d300Quiroga Méndez, Jabid Eduardofcc1628f-98b2-41ac-a88c-8befa55ca2ea300Ortiz Pimiento, Nestor Raúl02948551-37a2-4e27-bca2-21279b3c41563002019-06-28T04:01:22Z2019-06-28T04:01:22Z2013https://repositorio.unal.edu.co/handle/unal/39529http://bdigital.unal.edu.co/29626/This article studies the performance of two metaheuristics, the Particle Swarm Optimization (PSO) and the Genetic Algorithm (GA), in the manufacturing cell formation problem of a factory that needs to organize three production cases in an efficient way for four, five and six manufacturing cells to produce 30, 40 and 50 different products to be processed in 10, 10 and 20 type machines, respectively. The procedure for adjusting the particular parameters of each algorithm is implemented through a Design of Experiments which includes their own analysis of variance. Both algorithms are implemented in Matlab®. The results obtained by each meta heuristic are compared in terms of the cost of the best solution found and the execution time used to find that solution, so that it is possible to establish which methodology is the most appropriate when solving this optimization problem.application/pdfspaUniversidad Nacional de Colombia Sede Medellínhttp://revistas.unal.edu.co/index.php/dyna/article/view/28199Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaDyna; Vol. 80, núm. 178 (2013); 29-36 DYNA; Vol. 80, núm. 178 (2013); 29-36 2346-2183 0012-7353Rodríguez León, Johanna and Quiroga Méndez, Jabid Eduardo and Ortiz Pimiento, Nestor Raúl (2013) Performance comparison between a classic particle swarm optimization and a genetic algorithm in manufacturing cell design. Dyna; Vol. 80, núm. 178 (2013); 29-36 DYNA; Vol. 80, núm. 178 (2013); 29-36 2346-2183 0012-7353 .Performance comparison between a classic particle swarm optimization and a genetic algorithm in manufacturing cell designArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTManufacturing cellsGroup TechnologyCellular ManufacturingMeta-heuristic ModelsParticle Swarm OptimizationGenetic AlgorithmIntercellular TransfersORIGINAL28199-100208-1-SP.docxapplication/vnd.openxmlformats-officedocument.wordprocessingml.document78217https://repositorio.unal.edu.co/bitstream/unal/39529/1/28199-100208-1-SP.docxea13c970254e27ad87117cd7b25415b5MD5128199-197473-1-PB.htmltext/html35458https://repositorio.unal.edu.co/bitstream/unal/39529/2/28199-197473-1-PB.html34173e61adcbe9ae74818fd28d6c5d3aMD5228199-167418-1-PB.pdfapplication/pdf712116https://repositorio.unal.edu.co/bitstream/unal/39529/3/28199-167418-1-PB.pdf626fb44dc5e69ac7d9f70712c8a591b7MD53THUMBNAIL28199-167418-1-PB.pdf.jpg28199-167418-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg9426https://repositorio.unal.edu.co/bitstream/unal/39529/4/28199-167418-1-PB.pdf.jpg966f8acfea9b181070c03237edce9f60MD54unal/39529oai:repositorio.unal.edu.co:unal/395292024-01-20 23:06:35.854Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Performance comparison between a classic particle swarm optimization and a genetic algorithm in manufacturing cell design
title Performance comparison between a classic particle swarm optimization and a genetic algorithm in manufacturing cell design
spellingShingle Performance comparison between a classic particle swarm optimization and a genetic algorithm in manufacturing cell design
Manufacturing cells
Group Technology
Cellular Manufacturing
Meta-heuristic Models
Particle Swarm Optimization
Genetic Algorithm
Intercellular Transfers
title_short Performance comparison between a classic particle swarm optimization and a genetic algorithm in manufacturing cell design
title_full Performance comparison between a classic particle swarm optimization and a genetic algorithm in manufacturing cell design
title_fullStr Performance comparison between a classic particle swarm optimization and a genetic algorithm in manufacturing cell design
title_full_unstemmed Performance comparison between a classic particle swarm optimization and a genetic algorithm in manufacturing cell design
title_sort Performance comparison between a classic particle swarm optimization and a genetic algorithm in manufacturing cell design
dc.creator.fl_str_mv Rodríguez León, Johanna
Quiroga Méndez, Jabid Eduardo
Ortiz Pimiento, Nestor Raúl
dc.contributor.author.spa.fl_str_mv Rodríguez León, Johanna
Quiroga Méndez, Jabid Eduardo
Ortiz Pimiento, Nestor Raúl
dc.subject.proposal.spa.fl_str_mv Manufacturing cells
Group Technology
Cellular Manufacturing
Meta-heuristic Models
Particle Swarm Optimization
Genetic Algorithm
Intercellular Transfers
topic Manufacturing cells
Group Technology
Cellular Manufacturing
Meta-heuristic Models
Particle Swarm Optimization
Genetic Algorithm
Intercellular Transfers
description This article studies the performance of two metaheuristics, the Particle Swarm Optimization (PSO) and the Genetic Algorithm (GA), in the manufacturing cell formation problem of a factory that needs to organize three production cases in an efficient way for four, five and six manufacturing cells to produce 30, 40 and 50 different products to be processed in 10, 10 and 20 type machines, respectively. The procedure for adjusting the particular parameters of each algorithm is implemented through a Design of Experiments which includes their own analysis of variance. Both algorithms are implemented in Matlab®. The results obtained by each meta heuristic are compared in terms of the cost of the best solution found and the execution time used to find that solution, so that it is possible to establish which methodology is the most appropriate when solving this optimization problem.
publishDate 2013
dc.date.issued.spa.fl_str_mv 2013
dc.date.accessioned.spa.fl_str_mv 2019-06-28T04:01:22Z
dc.date.available.spa.fl_str_mv 2019-06-28T04:01:22Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/39529
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/29626/
url https://repositorio.unal.edu.co/handle/unal/39529
http://bdigital.unal.edu.co/29626/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/dyna/article/view/28199
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Dyna
Dyna
dc.relation.ispartofseries.none.fl_str_mv Dyna; Vol. 80, núm. 178 (2013); 29-36 DYNA; Vol. 80, núm. 178 (2013); 29-36 2346-2183 0012-7353
dc.relation.references.spa.fl_str_mv Rodríguez León, Johanna and Quiroga Méndez, Jabid Eduardo and Ortiz Pimiento, Nestor Raúl (2013) Performance comparison between a classic particle swarm optimization and a genetic algorithm in manufacturing cell design. Dyna; Vol. 80, núm. 178 (2013); 29-36 DYNA; Vol. 80, núm. 178 (2013); 29-36 2346-2183 0012-7353 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/39529/1/28199-100208-1-SP.docx
https://repositorio.unal.edu.co/bitstream/unal/39529/2/28199-197473-1-PB.html
https://repositorio.unal.edu.co/bitstream/unal/39529/3/28199-167418-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/39529/4/28199-167418-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv ea13c970254e27ad87117cd7b25415b5
34173e61adcbe9ae74818fd28d6c5d3a
626fb44dc5e69ac7d9f70712c8a591b7
966f8acfea9b181070c03237edce9f60
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090006493396992