Performance comparison between a classic particle swarm optimization and a genetic algorithm in manufacturing cell design
This article studies the performance of two metaheuristics, the Particle Swarm Optimization (PSO) and the Genetic Algorithm (GA), in the manufacturing cell formation problem of a factory that needs to organize three production cases in an efficient way for four, five and six manufacturing cells to p...
- Autores:
-
Rodríguez León, Johanna
Quiroga Méndez, Jabid Eduardo
Ortiz Pimiento, Nestor Raúl
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2013
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/39529
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/39529
http://bdigital.unal.edu.co/29626/
- Palabra clave:
- Manufacturing cells
Group Technology
Cellular Manufacturing
Meta-heuristic Models
Particle Swarm Optimization
Genetic Algorithm
Intercellular Transfers
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_ccd885e6f50ea632ded48cd92b263182 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/39529 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rodríguez León, Johannaa9421956-cbf5-43eb-8ade-43d6d30bc23d300Quiroga Méndez, Jabid Eduardofcc1628f-98b2-41ac-a88c-8befa55ca2ea300Ortiz Pimiento, Nestor Raúl02948551-37a2-4e27-bca2-21279b3c41563002019-06-28T04:01:22Z2019-06-28T04:01:22Z2013https://repositorio.unal.edu.co/handle/unal/39529http://bdigital.unal.edu.co/29626/This article studies the performance of two metaheuristics, the Particle Swarm Optimization (PSO) and the Genetic Algorithm (GA), in the manufacturing cell formation problem of a factory that needs to organize three production cases in an efficient way for four, five and six manufacturing cells to produce 30, 40 and 50 different products to be processed in 10, 10 and 20 type machines, respectively. The procedure for adjusting the particular parameters of each algorithm is implemented through a Design of Experiments which includes their own analysis of variance. Both algorithms are implemented in Matlab®. The results obtained by each meta heuristic are compared in terms of the cost of the best solution found and the execution time used to find that solution, so that it is possible to establish which methodology is the most appropriate when solving this optimization problem.application/pdfspaUniversidad Nacional de Colombia Sede Medellínhttp://revistas.unal.edu.co/index.php/dyna/article/view/28199Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaDyna; Vol. 80, núm. 178 (2013); 29-36 DYNA; Vol. 80, núm. 178 (2013); 29-36 2346-2183 0012-7353Rodríguez León, Johanna and Quiroga Méndez, Jabid Eduardo and Ortiz Pimiento, Nestor Raúl (2013) Performance comparison between a classic particle swarm optimization and a genetic algorithm in manufacturing cell design. Dyna; Vol. 80, núm. 178 (2013); 29-36 DYNA; Vol. 80, núm. 178 (2013); 29-36 2346-2183 0012-7353 .Performance comparison between a classic particle swarm optimization and a genetic algorithm in manufacturing cell designArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTManufacturing cellsGroup TechnologyCellular ManufacturingMeta-heuristic ModelsParticle Swarm OptimizationGenetic AlgorithmIntercellular TransfersORIGINAL28199-100208-1-SP.docxapplication/vnd.openxmlformats-officedocument.wordprocessingml.document78217https://repositorio.unal.edu.co/bitstream/unal/39529/1/28199-100208-1-SP.docxea13c970254e27ad87117cd7b25415b5MD5128199-197473-1-PB.htmltext/html35458https://repositorio.unal.edu.co/bitstream/unal/39529/2/28199-197473-1-PB.html34173e61adcbe9ae74818fd28d6c5d3aMD5228199-167418-1-PB.pdfapplication/pdf712116https://repositorio.unal.edu.co/bitstream/unal/39529/3/28199-167418-1-PB.pdf626fb44dc5e69ac7d9f70712c8a591b7MD53THUMBNAIL28199-167418-1-PB.pdf.jpg28199-167418-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg9426https://repositorio.unal.edu.co/bitstream/unal/39529/4/28199-167418-1-PB.pdf.jpg966f8acfea9b181070c03237edce9f60MD54unal/39529oai:repositorio.unal.edu.co:unal/395292024-01-20 23:06:35.854Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Performance comparison between a classic particle swarm optimization and a genetic algorithm in manufacturing cell design |
title |
Performance comparison between a classic particle swarm optimization and a genetic algorithm in manufacturing cell design |
spellingShingle |
Performance comparison between a classic particle swarm optimization and a genetic algorithm in manufacturing cell design Manufacturing cells Group Technology Cellular Manufacturing Meta-heuristic Models Particle Swarm Optimization Genetic Algorithm Intercellular Transfers |
title_short |
Performance comparison between a classic particle swarm optimization and a genetic algorithm in manufacturing cell design |
title_full |
Performance comparison between a classic particle swarm optimization and a genetic algorithm in manufacturing cell design |
title_fullStr |
Performance comparison between a classic particle swarm optimization and a genetic algorithm in manufacturing cell design |
title_full_unstemmed |
Performance comparison between a classic particle swarm optimization and a genetic algorithm in manufacturing cell design |
title_sort |
Performance comparison between a classic particle swarm optimization and a genetic algorithm in manufacturing cell design |
dc.creator.fl_str_mv |
Rodríguez León, Johanna Quiroga Méndez, Jabid Eduardo Ortiz Pimiento, Nestor Raúl |
dc.contributor.author.spa.fl_str_mv |
Rodríguez León, Johanna Quiroga Méndez, Jabid Eduardo Ortiz Pimiento, Nestor Raúl |
dc.subject.proposal.spa.fl_str_mv |
Manufacturing cells Group Technology Cellular Manufacturing Meta-heuristic Models Particle Swarm Optimization Genetic Algorithm Intercellular Transfers |
topic |
Manufacturing cells Group Technology Cellular Manufacturing Meta-heuristic Models Particle Swarm Optimization Genetic Algorithm Intercellular Transfers |
description |
This article studies the performance of two metaheuristics, the Particle Swarm Optimization (PSO) and the Genetic Algorithm (GA), in the manufacturing cell formation problem of a factory that needs to organize three production cases in an efficient way for four, five and six manufacturing cells to produce 30, 40 and 50 different products to be processed in 10, 10 and 20 type machines, respectively. The procedure for adjusting the particular parameters of each algorithm is implemented through a Design of Experiments which includes their own analysis of variance. Both algorithms are implemented in Matlab®. The results obtained by each meta heuristic are compared in terms of the cost of the best solution found and the execution time used to find that solution, so that it is possible to establish which methodology is the most appropriate when solving this optimization problem. |
publishDate |
2013 |
dc.date.issued.spa.fl_str_mv |
2013 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-28T04:01:22Z |
dc.date.available.spa.fl_str_mv |
2019-06-28T04:01:22Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/39529 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/29626/ |
url |
https://repositorio.unal.edu.co/handle/unal/39529 http://bdigital.unal.edu.co/29626/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
http://revistas.unal.edu.co/index.php/dyna/article/view/28199 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Dyna Dyna |
dc.relation.ispartofseries.none.fl_str_mv |
Dyna; Vol. 80, núm. 178 (2013); 29-36 DYNA; Vol. 80, núm. 178 (2013); 29-36 2346-2183 0012-7353 |
dc.relation.references.spa.fl_str_mv |
Rodríguez León, Johanna and Quiroga Méndez, Jabid Eduardo and Ortiz Pimiento, Nestor Raúl (2013) Performance comparison between a classic particle swarm optimization and a genetic algorithm in manufacturing cell design. Dyna; Vol. 80, núm. 178 (2013); 29-36 DYNA; Vol. 80, núm. 178 (2013); 29-36 2346-2183 0012-7353 . |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/39529/1/28199-100208-1-SP.docx https://repositorio.unal.edu.co/bitstream/unal/39529/2/28199-197473-1-PB.html https://repositorio.unal.edu.co/bitstream/unal/39529/3/28199-167418-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/39529/4/28199-167418-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
ea13c970254e27ad87117cd7b25415b5 34173e61adcbe9ae74818fd28d6c5d3a 626fb44dc5e69ac7d9f70712c8a591b7 966f8acfea9b181070c03237edce9f60 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090006493396992 |