Data mining model to predict academic performance at the Universidad Nacional de Colombia
Abstract. The present research proposes an approach to Educational Data Mining at the Universidad Nacional de Colombia through the definition of models that integrate clustering and classification techniques to analyze academic data, corresponding to the students who joined the University to the pro...
- Autores:
-
López Guarín, Camilo Ernesto
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/51303
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/51303
http://bdigital.unal.edu.co/45384/
- Palabra clave:
- 0 Generalidades / Computer science, information and general works
37 Educación / Education
62 Ingeniería y operaciones afines / Engineering
Data mining
Dropout
Education
Minería de Datos
Deserción
Educación
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_cc914cc21476d19d7803eac0e07b370a |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/51303 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2León Guzmán, ElizabethGonzález Osorio, Fabio Augusto (Thesis advisor)1a1ca1a2-3358-4948-8b97-2100f858189f-1López Guarín, Camilo Ernesto5132452d-843b-477d-bf52-117931fe09f33002019-06-29T11:43:32Z2019-06-29T11:43:32Z2013https://repositorio.unal.edu.co/handle/unal/51303http://bdigital.unal.edu.co/45384/Abstract. The present research proposes an approach to Educational Data Mining at the Universidad Nacional de Colombia through the definition of models that integrate clustering and classification techniques to analyze academic data, corresponding to the students who joined the University to the programs of Agricultural and Computer and Systems Engineering between 2007-03 and 2012-01. These techniques are intended to acquire a better understanding of the attrition during the first enrollments and to assess the quality of the data for the classification task, which can be understood as the prediction of the loss of academic status due to low academic performance. Different models were built to predict the loss of academic status in different scenarios such as: in the first four enrollments regardless when; at a specific academic period using only the admission process data and then, using academic records. Experimental results show that the prediction of the loss of academic status is improved when adding academic data.La presente investigación propone un acercamiento a la Minería de Datos Educativa en la Universidad Nacional de Colombia mediante la definición de modelos que integran técnicas de agrupamiento y clasificación para el análisis de datos académicos reales pertenecientes a los estudiantes de Ingeniería Agrícola e Ingeniería de Sistemas que ingresaron entre 2007-03 y 2012-01. Se pretende con estas técnicas obtener un mejor entendimiento de la desvinculación por desempeño académico en los primeros semestres de la carrera y evaluar la calidad de los datos para la tarea de clasificación, que puede entenderse como la predicción de la pérdida de calidad de estudiante. Se construyeron diferentes modelos para la predicción en diferentes escenarios, como: en las primeras cuatro matrículas sin importar cuando; en un periodo académico específico usando solo los datos de admisión y después usando los registros académicos. Resultados experimentales muestran que la predicción de la pérdida de calidad de estudiante mejora al usar información académica.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e IndustrialDepartamento de Ingeniería de Sistemas e IndustrialLópez Guarín, Camilo Ernesto (2013) Data mining model to predict academic performance at the Universidad Nacional de Colombia. Maestría thesis, Universidad Nacional de Colombia.0 Generalidades / Computer science, information and general works37 Educación / Education62 Ingeniería y operaciones afines / EngineeringData miningDropoutEducationMinería de DatosDeserciónEducaciónData mining model to predict academic performance at the Universidad Nacional de ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINAL80094110.2013.pdfapplication/pdf1536016https://repositorio.unal.edu.co/bitstream/unal/51303/1/80094110.2013.pdf8bca2f1f192e7cda0351050c172daa06MD51THUMBNAIL80094110.2013.pdf.jpg80094110.2013.pdf.jpgGenerated Thumbnailimage/jpeg4473https://repositorio.unal.edu.co/bitstream/unal/51303/2/80094110.2013.pdf.jpgc6eb5e331ec34a082523f0ee687bda3fMD52unal/51303oai:repositorio.unal.edu.co:unal/513032024-02-25 23:08:01.453Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Data mining model to predict academic performance at the Universidad Nacional de Colombia |
title |
Data mining model to predict academic performance at the Universidad Nacional de Colombia |
spellingShingle |
Data mining model to predict academic performance at the Universidad Nacional de Colombia 0 Generalidades / Computer science, information and general works 37 Educación / Education 62 Ingeniería y operaciones afines / Engineering Data mining Dropout Education Minería de Datos Deserción Educación |
title_short |
Data mining model to predict academic performance at the Universidad Nacional de Colombia |
title_full |
Data mining model to predict academic performance at the Universidad Nacional de Colombia |
title_fullStr |
Data mining model to predict academic performance at the Universidad Nacional de Colombia |
title_full_unstemmed |
Data mining model to predict academic performance at the Universidad Nacional de Colombia |
title_sort |
Data mining model to predict academic performance at the Universidad Nacional de Colombia |
dc.creator.fl_str_mv |
López Guarín, Camilo Ernesto |
dc.contributor.advisor.spa.fl_str_mv |
González Osorio, Fabio Augusto (Thesis advisor) |
dc.contributor.author.spa.fl_str_mv |
López Guarín, Camilo Ernesto |
dc.contributor.spa.fl_str_mv |
León Guzmán, Elizabeth |
dc.subject.ddc.spa.fl_str_mv |
0 Generalidades / Computer science, information and general works 37 Educación / Education 62 Ingeniería y operaciones afines / Engineering |
topic |
0 Generalidades / Computer science, information and general works 37 Educación / Education 62 Ingeniería y operaciones afines / Engineering Data mining Dropout Education Minería de Datos Deserción Educación |
dc.subject.proposal.spa.fl_str_mv |
Data mining Dropout Education Minería de Datos Deserción Educación |
description |
Abstract. The present research proposes an approach to Educational Data Mining at the Universidad Nacional de Colombia through the definition of models that integrate clustering and classification techniques to analyze academic data, corresponding to the students who joined the University to the programs of Agricultural and Computer and Systems Engineering between 2007-03 and 2012-01. These techniques are intended to acquire a better understanding of the attrition during the first enrollments and to assess the quality of the data for the classification task, which can be understood as the prediction of the loss of academic status due to low academic performance. Different models were built to predict the loss of academic status in different scenarios such as: in the first four enrollments regardless when; at a specific academic period using only the admission process data and then, using academic records. Experimental results show that the prediction of the loss of academic status is improved when adding academic data. |
publishDate |
2013 |
dc.date.issued.spa.fl_str_mv |
2013 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-29T11:43:32Z |
dc.date.available.spa.fl_str_mv |
2019-06-29T11:43:32Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/51303 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/45384/ |
url |
https://repositorio.unal.edu.co/handle/unal/51303 http://bdigital.unal.edu.co/45384/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Departamento de Ingeniería de Sistemas e Industrial |
dc.relation.references.spa.fl_str_mv |
López Guarín, Camilo Ernesto (2013) Data mining model to predict academic performance at the Universidad Nacional de Colombia. Maestría thesis, Universidad Nacional de Colombia. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/51303/1/80094110.2013.pdf https://repositorio.unal.edu.co/bitstream/unal/51303/2/80094110.2013.pdf.jpg |
bitstream.checksum.fl_str_mv |
8bca2f1f192e7cda0351050c172daa06 c6eb5e331ec34a082523f0ee687bda3f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089875069075456 |