Data mining model to predict academic performance at the Universidad Nacional de Colombia

Abstract. The present research proposes an approach to Educational Data Mining at the Universidad Nacional de Colombia through the definition of models that integrate clustering and classification techniques to analyze academic data, corresponding to the students who joined the University to the pro...

Full description

Autores:
López Guarín, Camilo Ernesto
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/51303
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/51303
http://bdigital.unal.edu.co/45384/
Palabra clave:
0 Generalidades / Computer science, information and general works
37 Educación / Education
62 Ingeniería y operaciones afines / Engineering
Data mining
Dropout
Education
Minería de Datos
Deserción
Educación
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_cc914cc21476d19d7803eac0e07b370a
oai_identifier_str oai:repositorio.unal.edu.co:unal/51303
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2León Guzmán, ElizabethGonzález Osorio, Fabio Augusto (Thesis advisor)1a1ca1a2-3358-4948-8b97-2100f858189f-1López Guarín, Camilo Ernesto5132452d-843b-477d-bf52-117931fe09f33002019-06-29T11:43:32Z2019-06-29T11:43:32Z2013https://repositorio.unal.edu.co/handle/unal/51303http://bdigital.unal.edu.co/45384/Abstract. The present research proposes an approach to Educational Data Mining at the Universidad Nacional de Colombia through the definition of models that integrate clustering and classification techniques to analyze academic data, corresponding to the students who joined the University to the programs of Agricultural and Computer and Systems Engineering between 2007-03 and 2012-01. These techniques are intended to acquire a better understanding of the attrition during the first enrollments and to assess the quality of the data for the classification task, which can be understood as the prediction of the loss of academic status due to low academic performance. Different models were built to predict the loss of academic status in different scenarios such as: in the first four enrollments regardless when; at a specific academic period using only the admission process data and then, using academic records. Experimental results show that the prediction of the loss of academic status is improved when adding academic data.La presente investigación propone un acercamiento a la Minería de Datos Educativa en la Universidad Nacional de Colombia mediante la definición de modelos que integran técnicas de agrupamiento y clasificación para el análisis de datos académicos reales pertenecientes a los estudiantes de Ingeniería Agrícola e Ingeniería de Sistemas que ingresaron entre 2007-03 y 2012-01. Se pretende con estas técnicas obtener un mejor entendimiento de la desvinculación por desempeño académico en los primeros semestres de la carrera y evaluar la calidad de los datos para la tarea de clasificación, que puede entenderse como la predicción de la pérdida de calidad de estudiante. Se construyeron diferentes modelos para la predicción en diferentes escenarios, como: en las primeras cuatro matrículas sin importar cuando; en un periodo académico específico usando solo los datos de admisión y después usando los registros académicos. Resultados experimentales muestran que la predicción de la pérdida de calidad de estudiante mejora al usar información académica.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e IndustrialDepartamento de Ingeniería de Sistemas e IndustrialLópez Guarín, Camilo Ernesto (2013) Data mining model to predict academic performance at the Universidad Nacional de Colombia. Maestría thesis, Universidad Nacional de Colombia.0 Generalidades / Computer science, information and general works37 Educación / Education62 Ingeniería y operaciones afines / EngineeringData miningDropoutEducationMinería de DatosDeserciónEducaciónData mining model to predict academic performance at the Universidad Nacional de ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINAL80094110.2013.pdfapplication/pdf1536016https://repositorio.unal.edu.co/bitstream/unal/51303/1/80094110.2013.pdf8bca2f1f192e7cda0351050c172daa06MD51THUMBNAIL80094110.2013.pdf.jpg80094110.2013.pdf.jpgGenerated Thumbnailimage/jpeg4473https://repositorio.unal.edu.co/bitstream/unal/51303/2/80094110.2013.pdf.jpgc6eb5e331ec34a082523f0ee687bda3fMD52unal/51303oai:repositorio.unal.edu.co:unal/513032024-02-25 23:08:01.453Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Data mining model to predict academic performance at the Universidad Nacional de Colombia
title Data mining model to predict academic performance at the Universidad Nacional de Colombia
spellingShingle Data mining model to predict academic performance at the Universidad Nacional de Colombia
0 Generalidades / Computer science, information and general works
37 Educación / Education
62 Ingeniería y operaciones afines / Engineering
Data mining
Dropout
Education
Minería de Datos
Deserción
Educación
title_short Data mining model to predict academic performance at the Universidad Nacional de Colombia
title_full Data mining model to predict academic performance at the Universidad Nacional de Colombia
title_fullStr Data mining model to predict academic performance at the Universidad Nacional de Colombia
title_full_unstemmed Data mining model to predict academic performance at the Universidad Nacional de Colombia
title_sort Data mining model to predict academic performance at the Universidad Nacional de Colombia
dc.creator.fl_str_mv López Guarín, Camilo Ernesto
dc.contributor.advisor.spa.fl_str_mv González Osorio, Fabio Augusto (Thesis advisor)
dc.contributor.author.spa.fl_str_mv López Guarín, Camilo Ernesto
dc.contributor.spa.fl_str_mv León Guzmán, Elizabeth
dc.subject.ddc.spa.fl_str_mv 0 Generalidades / Computer science, information and general works
37 Educación / Education
62 Ingeniería y operaciones afines / Engineering
topic 0 Generalidades / Computer science, information and general works
37 Educación / Education
62 Ingeniería y operaciones afines / Engineering
Data mining
Dropout
Education
Minería de Datos
Deserción
Educación
dc.subject.proposal.spa.fl_str_mv Data mining
Dropout
Education
Minería de Datos
Deserción
Educación
description Abstract. The present research proposes an approach to Educational Data Mining at the Universidad Nacional de Colombia through the definition of models that integrate clustering and classification techniques to analyze academic data, corresponding to the students who joined the University to the programs of Agricultural and Computer and Systems Engineering between 2007-03 and 2012-01. These techniques are intended to acquire a better understanding of the attrition during the first enrollments and to assess the quality of the data for the classification task, which can be understood as the prediction of the loss of academic status due to low academic performance. Different models were built to predict the loss of academic status in different scenarios such as: in the first four enrollments regardless when; at a specific academic period using only the admission process data and then, using academic records. Experimental results show that the prediction of the loss of academic status is improved when adding academic data.
publishDate 2013
dc.date.issued.spa.fl_str_mv 2013
dc.date.accessioned.spa.fl_str_mv 2019-06-29T11:43:32Z
dc.date.available.spa.fl_str_mv 2019-06-29T11:43:32Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/51303
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/45384/
url https://repositorio.unal.edu.co/handle/unal/51303
http://bdigital.unal.edu.co/45384/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial
Departamento de Ingeniería de Sistemas e Industrial
dc.relation.references.spa.fl_str_mv López Guarín, Camilo Ernesto (2013) Data mining model to predict academic performance at the Universidad Nacional de Colombia. Maestría thesis, Universidad Nacional de Colombia.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/51303/1/80094110.2013.pdf
https://repositorio.unal.edu.co/bitstream/unal/51303/2/80094110.2013.pdf.jpg
bitstream.checksum.fl_str_mv 8bca2f1f192e7cda0351050c172daa06
c6eb5e331ec34a082523f0ee687bda3f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089875069075456