Multiple radial solutions for a semilinear dirichlet problem in a ball
We prove that a semilinear elliptic boundary value problem in a ball has 4j -1 radially symmetric solutions when the nonlinearity has a positive zero and the range of the derivative of the nonlinearity includes at least the first j eigenvalues. We make extensive use of the global bifurcation theorem...
- Autores:
-
Castro, Alfonso
Cossio, Jorge
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 1993
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/43576
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/43576
http://bdigital.unal.edu.co/33674/
- Palabra clave:
- Semi-linéaires
problèmes elliptiques
la valeur limite
valeur propre
le théorème de bifurcation globale
les valeurs de bifurcation
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | We prove that a semilinear elliptic boundary value problem in a ball has 4j -1 radially symmetric solutions when the nonlinearity has a positive zero and the range of the derivative of the nonlinearity includes at least the first j eigenvalues. We make extensive use of the global bifurcation theorem, bifurcation from infinity, and bifurcation from simple eigenvalues. |
---|