Multiple radial solutions for a semilinear dirichlet problem in a ball

We prove that a semilinear elliptic boundary value problem in a ball has 4j -1 radially symmetric solutions when the nonlinearity has a positive zero and the range of the derivative of the nonlinearity includes at least the first j eigenvalues. We make extensive use of the global bifurcation theorem...

Full description

Autores:
Castro, Alfonso
Cossio, Jorge
Tipo de recurso:
Article of journal
Fecha de publicación:
1993
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/43576
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/43576
http://bdigital.unal.edu.co/33674/
Palabra clave:
Semi-linéaires
problèmes elliptiques
la valeur limite
valeur propre
le théorème de bifurcation globale
les valeurs de bifurcation
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:We prove that a semilinear elliptic boundary value problem in a ball has 4j -1 radially symmetric solutions when the nonlinearity has a positive zero and the range of the derivative of the nonlinearity includes at least the first j eigenvalues. We make extensive use of the global bifurcation theorem, bifurcation from infinity, and bifurcation from simple eigenvalues.