Cuantificación del efecto del clima en el aislamiento poblacional de especies de aves neotropicales (Orden Paseriformes)

ilustraciones, diagramas, mapas, tablas

Autores:
Gutierrez Toro, Juan Camilo
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86917
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86917
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::576 - Genética y evolución
MECANISMOS DE AISLAMIENTO (BIOLOGIA)
Isolating mechanisms
Diversidad genética
Aves neotropicales
Aislamiento geográfico
Resistencia climática
Genetic Diversity
Neotropical Birds
Geographic Isolation
Climatic Resistance
Conservation
Climate change and ecosystems
cell differentiation
cambio climático y ecosistemas
diferenciación celular
Rights
openAccess
License
Atribución-SinDerivadas 4.0 Internacional
id UNACIONAL2_cc70e9231bce3991f122bce06212390b
oai_identifier_str oai:repositorio.unal.edu.co:unal/86917
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Cuantificación del efecto del clima en el aislamiento poblacional de especies de aves neotropicales (Orden Paseriformes)
dc.title.translated.eng.fl_str_mv Quantification of the effect of climate on population isolation of neotropical bird species (Order Passeriformes)
title Cuantificación del efecto del clima en el aislamiento poblacional de especies de aves neotropicales (Orden Paseriformes)
spellingShingle Cuantificación del efecto del clima en el aislamiento poblacional de especies de aves neotropicales (Orden Paseriformes)
570 - Biología::576 - Genética y evolución
MECANISMOS DE AISLAMIENTO (BIOLOGIA)
Isolating mechanisms
Diversidad genética
Aves neotropicales
Aislamiento geográfico
Resistencia climática
Genetic Diversity
Neotropical Birds
Geographic Isolation
Climatic Resistance
Conservation
Climate change and ecosystems
cell differentiation
cambio climático y ecosistemas
diferenciación celular
title_short Cuantificación del efecto del clima en el aislamiento poblacional de especies de aves neotropicales (Orden Paseriformes)
title_full Cuantificación del efecto del clima en el aislamiento poblacional de especies de aves neotropicales (Orden Paseriformes)
title_fullStr Cuantificación del efecto del clima en el aislamiento poblacional de especies de aves neotropicales (Orden Paseriformes)
title_full_unstemmed Cuantificación del efecto del clima en el aislamiento poblacional de especies de aves neotropicales (Orden Paseriformes)
title_sort Cuantificación del efecto del clima en el aislamiento poblacional de especies de aves neotropicales (Orden Paseriformes)
dc.creator.fl_str_mv Gutierrez Toro, Juan Camilo
dc.contributor.advisor.none.fl_str_mv Campos Mosos, Héctor Aníbal
dc.contributor.author.none.fl_str_mv Gutierrez Toro, Juan Camilo
dc.contributor.orcid.spa.fl_str_mv Gutierrez Toro, Juan Camilo [0000-0003-1554-5217]
dc.subject.ddc.spa.fl_str_mv 570 - Biología::576 - Genética y evolución
topic 570 - Biología::576 - Genética y evolución
MECANISMOS DE AISLAMIENTO (BIOLOGIA)
Isolating mechanisms
Diversidad genética
Aves neotropicales
Aislamiento geográfico
Resistencia climática
Genetic Diversity
Neotropical Birds
Geographic Isolation
Climatic Resistance
Conservation
Climate change and ecosystems
cell differentiation
cambio climático y ecosistemas
diferenciación celular
dc.subject.lemb.spa.fl_str_mv MECANISMOS DE AISLAMIENTO (BIOLOGIA)
dc.subject.lemb.eng.fl_str_mv Isolating mechanisms
dc.subject.proposal.spa.fl_str_mv Diversidad genética
Aves neotropicales
Aislamiento geográfico
Resistencia climática
dc.subject.proposal.eng.fl_str_mv Genetic Diversity
Neotropical Birds
Geographic Isolation
Climatic Resistance
Conservation
dc.subject.wikidata.eng.fl_str_mv Climate change and ecosystems
cell differentiation
dc.subject.wikidata.spa.fl_str_mv cambio climático y ecosistemas
diferenciación celular
description ilustraciones, diagramas, mapas, tablas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-09T13:23:55Z
dc.date.available.none.fl_str_mv 2024-10-09T13:23:55Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86917
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86917
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38(5), 541–545. https://doi.org/https://doi.org/10.1111/ecog.01132
Alcaide, M., Serrano, D., Negro, J. J., Tella, J. L., Laaksonen, T., Müller, C., Gal, A., & Korpimäki, E. (2009). Population fragmentation leads to isolation by distance but not genetic impoverishment in the philopatric Lesser Kestrel: A comparison with the widespread and sympatric Eurasian Kestrel. Heredity, 102(2), 190–198. https://doi.org/10.1038/hdy.2008.107
Anderson, J. T., Inouye, D. W., McKinney, A. M., Colautti, R. I., & Mitchell-Olds, T. (2012). Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proceedings of the Royal Society B: Biological Sciences, 279(1743), 3843–3852. https://doi.org/10.1098/RSPB.2012.1051
Araújo, M. B., & New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22(1), 42–47. https://doi.org/10.1016/j.tree.2006.09.010
Arnold, M. L., Ballerini, E. S., & Brothers, A. N. (2012). Hybrid fitness, adaptation and evolutionary diversification: lessons learned from Louisiana Irises. Heredity, 108(3), 159. https://doi.org/10.1038/HDY.2011.65
Arslan, N. A., & Martin, T. E. (2019). Reproductive biology of Grey-breasted Wood-Wren (Henicorhina leucophrys): A comparative study of tropical and temperate wrens. The Wilson Journal of Ornithology, 131(1), 1–11. https://doi.org/10.1676/18-12
Ayala, F. J., Tracey, M. L., Hedgecock, D., & Richmond, R. C. (1974). Genetic Differentiation During the Speciation Process in Drosophila. Evolution, 28(4), 576–592. https://doi.org/10.2307/2407283
Bailey, L. D., van de Pol, M., Adriaensen, F., Arct, A., Barba, E., Bellamy, P. E., Bonamour, S., Bouvier, J. C., Burgess, M. D., Charmantier, A., Cusimano, C., Doligez, B., Drobniak, S. M., Dubiec, A., Eens, M., Eeva, T., Ferns, P. N., Goodenough, A. E., Hartley, I. R., … Visser, M. E. (2022). Bird populations most exposed to climate change are less sensitive to climatic variation. Nature Communications 2022 13:1, 13(1), 1–10. https://doi.org/10.1038/s41467-022-29635-4
Baird, S. F. (1865). Review of American birds in the Museum of the Smithsonian Institution (Vol. 1).
Balkenhol, N., Waits, L. P., & Dezzani, R. J. (2009). Statistical approaches in landscape genetics: An evaluation of methods for linking landscape and genetic data. Ecography, 32(5), 818–830. https://doi.org/10.1111/J.1600-0587.2009.05807.X
Barber, B. R., & Klicka, J. (2010). Two pulses of diversification across the Isthmus of Tehuantepec in a montane Mexican bird fauna. Proceedings of the Royal Society B: Biological Sciences, 277(1694), 2675–2681. https://doi.org/10.1098/rspb.2010.0343
Barnagaud, J. Y., Barbaro, L., Hampe, A., Jiguet, F., & Archaux, F. (2013). Species’ thermal preferences affect forest bird communities along landscape and local scale habitat gradients. Ecography, 36(11), 1218–1226. https://doi.org/10.1111/J.1600-0587.2012.00227.X
Barnagaud, J. Y., Barbaro, L., Hampe, A., Jiguet, F., & Archaux, F. (2013). Species’ thermal preferences affect forest bird communities along landscape and local scale habitat gradients. Ecography, 36(11), 1218–1226. https://doi.org/10.1111/J.1600-0587.2012.00227.X
Barrier, E., Velasquillo, L., Chavez, M., & Gaulon, R. (1998). Neotectonic evolution of the Isthmus of Tehuantepec (southeastern Mexico). Tectonophysics, 287(1), 77–96. https://doi.org/https://doi.org/10.1016/S0040-1951(98)80062-0
Bates, J. M., Haffer, J., & Grismer, E. (2004). Avian mitochondrial DNA sequence divergence across a headwater stream of the Rio Tapajós, a major Amazonian River. Journal of Ornithology, 145(3), 199–205. https://doi.org/10.1007/S10336-004-0039-4/METRICS
Bay, R. A., Harrigan, R. J., Underwood, V. Le, Gibbs, H. L., Smith, T. B., & Ruegg, K. (2018). Genomic signals of selection predict climate-driven population declines in a migratory bird. Science, 359(6371), 83–86. https://doi.org/10.1126/science.aan4380
Bay, R. A., Karp, D. S., Saracco, J. F., Anderegg, W. R. L., Frishkoff, L. O., Wiedenfeld, D., Smith, T. B., & Ruegg, K. (2021). Genetic variation reveals individual-level climate tracking across the annual cycle of a migratory bird. Ecology Letters, 24(4), 819–828. https://doi.org/10.1111/ELE.13706
Benítez-Benítez, C., Sanz-Arnal, M., Urbani, M., Jiménez-Mejías, P., & Martín-Bravo, S. (2022). Dramatic impact of future climate change on the genetic diversity and distribution of ecologically relevant Western Mediterranean Carex (Cyperaceae). PeerJ, 10. https://doi.org/10.7717/peerj.13464
Blair, C., Weigel, D. E., Balazik, M., Keeley, A. T. H., Walker, F. M., Landguth, E., Cushman, S., Murphy, M., Waits, L., & Balkenhol, N. (2012). A simulation-based evaluation of methods for inferring linear barriers to gene flow. Molecular Ecology Resources, 12(5), 822–833. https://doi.org/10.1111/J.1755-0998.2012.03151.X
Bohonak, A. (1999). Dispersal, Gee flow, and Population Structure. The Quarterly Review of Biology, 74(1), 21–45. http://www.journals.uchicago.edu/t-and-c
Bollen, K. A. (2002). Latent variables in psychology and the social sciences. Annual Review of Psychology, 53(1), 605–634.
Bolnick, D. I., & Otto, S. P. (2013). The magnitude of local adaptation under genotype‐dependent dispersal. Ecology and Evolution, 3(14), 4722–4735. https://doi.org/10.1002/ece3.850
Bonaccorso, E., Navarro-Sigüenza, A. G., Sánchez-González, L. A., Townsend Peterson, A., & García-Moreno, J. (2008). Genetic differentiation of the Chlorospingus ophthalmicus complex in Mexico and Central America. Journal of Avian Biology, 39(3), 311–321. https://doi.org/https://doi.org/10.1111/j.0908-8857.2008.04233.x
Bonamour, S., Chevin, L. M., Charmantier, A., & Teplitsky, C. (2019). Phenotypic plasticity in response to climate change: the importance of cue variation. Philosophical Transactions of the Royal Society B, 374(1768). https://doi.org/10.1098/RSTB.2018.0178
Botero-Delgadillo, E., Quirici, V., Poblete, Y., Cuevas, É., Kuhn, S., Girg, A., Teltscher, K., Poulin, E., Kempenaers, B., & Vásquez, R. A. (2017). Variation in fine-scale genetic structure and local dispersal patterns between peripheral populations of a South American passerine bird. Ecology and Evolution, 7(20), 8363–8378. https://doi.org/10.1002/ece3.3342
Bradburd, G. S., Ralph, P. L., & Coop, G. M. (2013). Disentangling the effects of geographic and ecological isolation on genetic differentiation. Evolution, 67(11), 3258–3273. https://doi.org/10.1111/evo.12193
Broquet, T., Ray, N., Petit, E., Fryxell, J. M., & Burel, F. (2006). Genetic isolation by distance and landscape connectivity in the American marten (Martes americana). Landscape Ecology, 21(6), 877–889. https://doi.org/10.1007/S10980-005-5956-Y/METRICS
Brown, J. H., & Kodric-Brown, A. (1977). Turnover Rates in Insular Biogeography: Effect of Immigration on Extinction. Ecology, 58(2), 445–449. https://doi.org/10.2307/1935620
Brown, J. L., & Yoder, A. D. (2015). Shifting ranges and conservation challenges for lemurs in the face of climate change. Ecology and Evolution, 5(6), 1131–1142. https://doi.org/10.1002/ECE3.1418
Brown, L. M., Ramey, R. R., Tamburini, B., & Gavin, T. A. (2004). Population structure and mitochondrial DNA variation in sedentary Neotropical birds isolated by forest fragmentation. Conservation Genetics, 5(6), 743–757. https://doi.org/10.1007/S10592-004-1865-X/METRICS
Bruggeman, D. J., Wiegand, T., & FernÁndez, N. (2010). The relative effects of habitat loss and fragmentation on population genetic variation in the red-cockaded woodpecker (Picoides borealis). Molecular Ecology, 19(17), 3679–3691. https://doi.org/10.1111/J.1365-294X.2010.04659.X
Brumfield, R. T. (2012). Inferring the Origins of Lowland Neotropical Birds. The Auk, 129(3), 367–376. https://doi.org/10.1525/AUK.2012.129.3.367
Bründl, A. C., Sallé, L., Lejeune, L. A., Sorato, E., Thiney, A. C., Chaine, A. S., & Russell, A. F. (2020). Elevational Gradients as a Model for Understanding Associations Among Temperature, Breeding Phenology and Success. Frontiers in Ecology and Evolution, 8, 563377. https://doi.org/10.3389/FEVO.2020.563377/BIBTEX
Burney, C. W., & Brumfield, R. T. (2009). Ecology Predicts Levels of Genetic Differentiation in Neotropical Birds. Https://Doi.Org/10.1086/603613, 174(3), 358–368. https://doi.org/10.1086/603613
Butterfield, J. E. L., & Coulson, J. C. (1997). Terrestrial invertebrates and climate change: Physiological and life-cycle adaptations. Past and Future Rapid Environmental Changes, 401–412. https://doi.org/10.1007/978-3-642-60599-4_31
Cab-Sulub, L., & Álvarez-Castañeda, S. T. (2022). Genetic isolation between conspecific populations and their relationship to climate heterogeneity. Acta Oecologica, 116. https://doi.org/10.1016/j.actao.2022.103847
Cadena, C. D., Klicka, J., & Ricklefs, R. E. (2007). Evolutionary differentiation in the Neotropical montane region: Molecular phylogenetics and phylogeography of Buarremon brush-finches (Aves, Emberizidae). Molecular Phylogenetics and Evolution, 44(3), 993–1016. https://doi.org/https://doi.org/10.1016/j.ympev.2006.12.012
Cadena, C. D., Pérez-Emán, J. L., Cuervo, A. M., Céspedes, L. N., Epperly, K. L., & Klicka, J. T. (2019). Extreme genetic structure and dynamic range evolution in a montane passerine bird: implications for tropical diversification. In Biological Journal of the Linnean Society (Vol. 126). https://academic.oup.com/biolinnean/article/126/3/487/5306478
Caro, L. M., Caycedo-Rosales, P. C., Bowie, R. C. K., Slabbekoorn, H., & Cadena, C. D. (2013). Ecological speciation along an elevational gradient in a tropical passerine bird? Journal of Evolutionary Biology, 26(2), 357–374. https://doi.org/10.1111/jeb.12055
Carvalho, S. B., Torres, J., Tarroso, P., & Velo‐Antón, G. (2019). Genes on the edge: A framework to detect genetic diversity imperiled by climate change. Global Change Biology, 25(12), 4034–4047. https://doi.org/10.1111/gcb.14740
Chan, K. O., Alexander, A. M., Grismer, L. L., Su, Y.-C., Grismer, J. L., Quah, E. S. H., & Brown, R. M. (2017). Species delimitation with gene flow: A methodological comparison and population genomics approach to elucidate cryptic species boundaries in Malaysian Torrent Frogs. Molecular Ecology, 26(20), 5435–5450. https://doi.org/https://doi.org/10.1111/mec.14296
Charlesworth, B., Charlesworth, D., & Barton, N. H. (2003). The Effects of Genetic and Geographic Structure on Neutral Variation. Annual Review of Ecology, Evolution, and Systematics, 34, 99–125. https://doi.org/10.1146/annurev.ecolsys.34.011802.132359
Claramunt, S., Derryberry, E. P., Remsen, J. V., & Brumfield, R. T. (2012). High dispersal ability inhibits speciation in a continental radiation of passerine birds. Proceedings of the Royal Society B: Biological Sciences, 279(1733), 1567–1574. https://doi.org/10.1098/rspb.2011.1922
Coelho, M. T. P., Barreto, E., Rangel, T. F., Diniz-Filho, J. A. F., Wüest, R. O., Bach, W., Skeels, A., McFadden, I. R., Roberts, D. W., Pellissier, L., Zimmermann, N. E., & Graham, C. H. (2023). The geography of climate and the global patterns of species diversity. Nature 2023, 1–8. https://doi.org/10.1038/s41586-023-06577-5
Cortés-Rodríguez, N., Hernández-Baños, B. E., Navarro-Sigüenza, A. G., Townsend Peterson, A., & García-Moreno, J. (2008). Phylogeography and population genetics of the Amethyst-throated Hummingbird (Lampornis amethystinus). Molecular Phylogenetics and Evolution, 48(1), 1–11. https://doi.org/https://doi.org/10.1016/j.ympev.2008.02.005
Costa, M. da S. G., Batista, R. de C., & Gurgel-Gonçalves, R. (2014). Predicting geographic distributions of Phacellodomus species (Aves: Furnariidae) in South America based on ecological niche modeling. Acta Scientiarum. Biological Sciences, 36(3), 299–306. https://doi.org/10.4025/actascibiolsci.v36i3.22165
Coulon, A., Cosson, J. F., Angibault, J. M., Cargnelutti, B., Galan, M., Morellet, N., Petit, E., Aulagnier, S., & Hewison, A. J. M. (2004). Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual–based approach. Molecular Ecology, 13(9), 2841–2850. https://doi.org/10.1111/J.1365-294X.2004.02253.X
Coulon, A., Guillot, G., Cosson, J. F., Angibault, J. M. A., Aulagnier, S., Cargnelutti, B., Galan, M., & Hewison, A. J. M. (2006). Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. Molecular Ecology, 15(6), 1669–1679. https://doi.org/10.1111/J.1365-294X.2006.02861.X
Cowley, E., & Siriwardena, G. M. (2005). Long-term variation in survival rates of Sand Martins Riparia riparia: dependence on breeding and wintering ground weather, age and sex, and their population consequences. Bird Study, 52(3), 237–251. https://doi.org/10.1080/00063650509461397
Crispo, E., Bentzen, P., Reznick, D. N., Kinnison, M. T., & Hendry, A. P. (2006). The relative influence of natural selection and geography on gene flow in guppies. Molecular Ecology, 15(1), 49–62. https://doi.org/https://doi.org/10.1111/j.1365-294X.2005.02764.x
Cuervo, P. F., Flores, F. S., Venzal, J. M., & Nava, S. (2021). Niche divergence among closely related taxa provides insight on evolutionary patterns of ticks. Journal of Biogeography, 48(11), 2865–2876. https://doi.org/10.1111/JBI.14245
Cuervo, P. F., Flores, F. S., Venzal, J. M., & Nava, S. (2021). Niche divergence among closely related taxa provides insight on evolutionary patterns of ticks. Journal of Biogeography, 48(11), 2865–2876. https://doi.org/10.1111/JBI.14245
Cushman, S. A., McKelvey, K. S., Hayden, J., & Schwartz, M. K. (2006). Gene Flow in Complex Landscapes: Testing Multiple Hypotheses with Causal Modeling. The American Naturalist, 168(4), 486–499. https://doi.org/10.1086/506976
Cushman, S. A., Wasserman, T. N., Landguth, E. L., & Shirk, A. J. (2013). Re-Evaluating Causal Modeling with Mantel Tests in Landscape Genetics. Diversity 2013, Vol. 5, Pages 51-72, 5(1), 51–72. https://doi.org/10.3390/D5010051
Dattalo, P. (2013). Choosing among Procedures for the Analysis of Multiple Dependent Variables. Analysis of Multiple Dependent Variables, 149–156. https://doi.org/10.1093/ACPROF:OSO/9780199773596.003.0006
Davis, J. M., & Stamps, J. A. (2004). The effect of natal experience on habitat preferences. Trends in Ecology & Evolution, 19(8), 411–416. https://doi.org/10.1016/j.tree.2004.04.006
Davis, M. B., & Shaw, R. G. (2001). Range Shifts and Adaptive Responses to Quaternary Climate Change. Science, 292(5517), 673–679. https://doi.org/10.1126/SCIENCE.292.5517.673
de Souza, M. S., Barcellos, S. A., Costa, A. L., Kretschmer, R., Garnero, A. D. V., & Gunski, R. J. (2019). Polymorphism of Sooty-fronted Spinetail (Synallaxis frontalis Aves: Furnariidae): Evidence of chromosomal rearrangements by pericentric inversion in autosomal macrochromosomes. Genetics and Molecular Biology, 42(1), 62–67. https://doi.org/10.1590/1678-4685-GMB-2018-0039
Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., D’Amen, M., Randin, C., Engler, R., Pottier, J., Pio, D., Dubuis, A., Pellissier, L., Mateo, R. G., Hordijk, W., Salamin, N., & Guisan, A. (2017). ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40(6), 774–787. https://doi.org/https://doi.org/10.1111/ecog.02671
Dingle, C., Halfwerk, W., & Slabbekoorn, H. (2008). Habitat-dependent song divergence at subspecies level in the grey-breasted wood-wren. Journal of Evolutionary Biology, 21(4), 1079–1089. https://doi.org/10.1111/J.1420-9101.2008.01536.X
Dingle, C., Lovette, I. J., Canaday, C., & Smith, T. B. (2006). Elevational Zonation and the Phylogenetic Relationships of the Henicorhina Wood-Wrens. The Auk, 123(1), 119–134. https://doi.org/10.1093/AUK/123.1.119
Dingle, C., Lovette, I. J., Canaday, C., & Smith, T. B. (2006). Elevational Zonation and the Phylogenetic Relationships of the Henicorhina Wood-Wrens. The Auk, 123(1), 119–134. https://doi.org/10.1093/AUK/123.1.119
Dupanloup, I., Schneider, S., & Excoffier, L. (2002). A simulated annealing approach to define the genetic structure of populations. Molecular Ecology, 11, 2571–2581.
Durant, S. E., Hopkins, W. A., Hepp, G. R., & Walters, J. R. (2013). Ecological, evolutionary, and conservation implications of incubation temperature-dependent phenotypes in birds. Biological Reviews, 88(2), 499–509. https://doi.org/10.1111/BRV.12015
Durant, S. E., Hopkins, W. A., Wilson, A. F., & Hepp, G. R. (2012). Incubation temperature affects the metabolic cost of thermoregulation in a young precocial bird. Functional Ecology, 26(2), 416–422. https://doi.org/10.1111/J.1365-2435.2011.01945.X
Edelaar, P., & Bolnick, D. I. (2012). Non-random gene flow: An underappreciated force in evolution and ecology. Trends in Ecology and Evolution, 27(12), 659–665. https://doi.org/10.1016/j.tree.2012.07.009
Edelaar, P., Siepielski, A. M., & Clobert, J. (2008). Matching habitat choice causes directed gene flow: A neglected dimension in evolution and ecology. In Evolution (Vol. 62, Issue 10, pp. 2462–2472). https://doi.org/10.1111/j.1558-5646.2008.00459.x
Edwards, S. V., Jennings, W. B., & Shedlock, A. M. (2005). Phylogenetics of modern birds in the era of genomics. Proceedings of the Royal Society B: Biological Sciences, 272(1567), 979–992. https://doi.org/10.1098/rspb.2004.3035
Epperson, B. K., McRae, B. H., Scribner, K., Cushman, S. A., Rosenberg, M. S., Fortin, M. J., James, P. M. A., Murphy, M., Manel, S., Legendre, P., & Dale, M. R. T. (2010). Utility of computer simulations in landscape genetics. Molecular Ecology, 19(17), 3549–3564. https://doi.org/10.1111/J.1365-294X.2010.04678.X
Espíndola, A., Pellissier, L., Maiorano, L., Hordijk, W., Guisan, A., & Alvarez, N. (2012). Predicting present and future intra-specific genetic structure through niche hindcasting across 24 millennia. Ecology Letters, 15(7), 649–657. https://doi.org/https://doi.org/10.1111/j.1461-0248.2012.01779.x
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.org/https://doi.org/10.1111/j.1365-294X.2005.02553.x
Excoffier, L., & Lischer, H. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. https://doi.org/https://doi.org/10.1111/j.1755-0998.2010.02847.x
Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of Molecular Variance Inferred From Metric Distances Among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data. Genetics, 131, 479–491.
Fahrig, L., Pedlar, J. H., Pope, S. E., Taylor, P. D., & Wegner, J. F. (1995). Effect of road traffic on amphibian density. Biological Conservation, 73(3), 177–182. https://doi.org/10.1016/0006-3207(94)00102-V
Fan, D., Lei, S., Liang, H., Yao, Q., Kou, Y., Cheng, S., Yang, Y., Qiu, Y., & Zhang, Z. (2022). More opportunities more species: Pleistocene differentiation and northward expansion of an evergreen broad-leaved tree species Machilus thunbergii (Lauraceae) in Southeast China. BMC Plant Biology, 22(1). https://doi.org/10.1186/s12870-021-03420-9
Feder, J. L., Egan, S. P., & Nosil, P. (2012a). The genomics of speciation-with-gene-flow. Trends in Genetics, 28(7), 342–350. https://doi.org/10.1016/j.tig.2012.03.009
Feder, J. L., & Forbes, A. A. (2007). Habitat avoidance and speciation for phytophagous insect specialists. Functional Ecology, 21(3), 585–597. https://doi.org/10.1111/j.1365-2435.2007.01232.x
Feder, J. L., & Nosil, P. (2010). The efficacy of divergence hitchhiking in generating genomic islands during ecological speciation. Evolution; International Journal of Organic Evolution, 64(6), 1729–1747. https://doi.org/10.1111/j.1558-5646.2010.00943.x
Fernandes, A. M., Gonzalez, J., Wink, M., & Aleixo, A. (2013). Multilocus phylogeography of the Wedge-billed Woodcreeper Glyphorynchus spirurus (Aves, Furnariidae) in lowland Amazonia: Widespread cryptic diversity and paraphyly reveal a complex diversification pattern. Molecular Phylogenetics and Evolution, 66(1), 270–282. https://doi.org/10.1016/j.ympev.2012.09.033
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/https://doi.org/10.1002/joc.5086
Fierro-Calderón, K., Estela, F. A., & Chacón-Ulloa, P. (2006). Observaciones sobre las dietas de algunas aves de la cordillera Oriental de Colombia a partir del análisis de contenidos estomacales. Ornitología Colombiana, 4, 6–15. https://asociacioncolombianadeornitologia.org/ojs/index.php/roc/article/view/89
Flaxman, S. M., Feder, J. L., & Nosil, P. (2013). Genetic hitchhiking and the dynamic buildup of genomic divergence during speciation with gene flow. Evolution, 67(9), 2577–2591. https://doi.org/10.1111/EVO.12055
Francis, R. M. (2017). pophelper: an R package and web app to analyse and visualize population structure. Molecular Ecology Resources, 17(1), 27–32. https://doi.org/https://doi.org/10.1111/1755-0998.12509
Funk, D. J., Egan, S. P., & Nosil, P. (2011). Isolation by adaptation in Neochlamisus leaf beetles: host-related selection promotes neutral genomic divergence. Molecular Ecology, 20(22), 4671–4682. https://doi.org/10.1111/J.1365-294X.2011.05311.X
Funk, D. J., Nosil, P., & Etges, W. J. (2006). Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proceedings of the National Academy of Sciences of the United States of America, 103(9), 3209–3213. https://doi.org/10.1073/PNAS.0508653103/SUPPL_FILE/INDEX.HTML
Gaitán, J. J., Oliva, G. E., Bran, D. E., Maestre, F. T., Aguiar, M. R., Jobbágy, E. G., Buono, G. G., Ferrante, D., Nakamatsu, V. B., Ciari, G., Salomone, J. M., & Massara, V. (2014). Vegetation structure is as important as climate for explaining ecosystem function across Patagonian rangelands. Journal of Ecology, 102(6), 1419–1428. https://doi.org/10.1111/1365-2745.12273
Gavrilets, S. (2003). Perspective: models of speciation: what have we learned in 40 years? Evolution, 57(10), 2197–2215. https://doi.org/10.1111/J.0014-3820.2003.TB00233.X
Gibbs, J. P. (1998). Amphibian Movements in Response to Forest Edges, Roads, and Streambeds in Southern New England. The Journal of Wildlife Management, 62(2), 584. https://doi.org/10.2307/3802333
González, C., Ornelas, J. F., & Gutiérrez-Rodríguez, C. (2011). Selection and geographic isolation influence hummingbird speciation: genetic, acoustic and morphological divergence in the wedge-tailed sabrewing (Campylopterus curvipennis). BMC Evolutionary Biology, 11(1), 38. https://doi.org/10.1186/1471-2148-11-38
Grace, J. B. (2006). Part I - A beginning. In Structural Equation Modeling and Natural Systems (pp. 3–33).
Guan, B. cai, Liu, X., Gong, X., Cai, Q. ying, & Ge, G. (2019). Genetic landscape and landscape connectivity of Ceratopteris thalictroides, an endangered aquatic fern. Ecological Informatics, 53, 100973. https://doi.org/10.1016/J.ECOINF.2019.100973
Guan, B., Gao, J., Chen, W., Gong, X., & Ge, G. (2021). The Effects of Climate Change on Landscape Connectivity and Genetic Clusters in a Small Subtropical and Warm-Temperate Tree. Frontiers in Plant Science, 12, 671336. https://doi.org/10.3389/FPLS.2021.671336/BIBTEX
Guillot, G., & Rousset, F. (2013). Dismantling the Mantel tests. Methods in Ecology and Evolution, 4(4), 336–344. https://doi.org/https://doi.org/10.1111/2041-210x.12018
Gutiérrez-Pinto, N., Cuervo, A. M., Miranda, J., Pérez-Emán, J. L., Brumfield, R. T., & Cadena, C. D. (2012). Non-monophyly and deep genetic differentiation across low-elevation barriers in a Neotropical montane bird (Basileuterus tristriatus; Aves: Parulidae). Molecular Phylogenetics and Evolution, 64(1), 156–165. https://doi.org/https://doi.org/10.1016/j.ympev.2012.03.011
Halffter, G. (1987). Biogeography of the Montane Entomofauna of Mexico and Central America. Annual Review of Entomology, 32(1), 95–114. https://doi.org/10.1146/annurev.en.32.010187.000523
Harpending, H., & Rogers, A. (1987). On Wright’s Mechanism for Intergroup Selection. J. Theor. Biol, 127, 51–61.
Harrison, S. (1991). Local extinction in a metapopulation context: an empirical evaluation. Biological Journal of the Linnean Society, 42(1–2), 73–88. https://doi.org/10.1111/j.1095-8312.1991.tb00552.x
Harte, J., & Shaw, R. (1995). Shifting Dominance Within a Montane Vegetation Community: Results of a Climate-Warming Experiment. Science, 267(5199), 876–880. https://doi.org/10.1126/SCIENCE.267.5199.876
Hartl, D. L., & Clark, G. C. (1997). Principles of Population Genetics. Sinauer Associates.
Hartlaub, G. (1852). Descriptions de quelques nouvelles especes d’Oiseaux. In F.-É. Guérin-Méneville (Ed.), Revue et magasin de zoologie pure et appliquée (Vol. 2, p. 5). Bureau de la revue et magasin de zoologie.
Hausdorf, B., & Hennig, C. (2020). Species delimitation and geography. Molecular Ecology Resources, 20(4), 950–960. https://doi.org/https://doi.org/10.1111/1755-0998.13184
Hausfather, Z., & Peters, G. P. (2020a). Emissions – the ‘business as usual’ story is misleading. Nature 2021 577:7792, 577(7792), 618–620. https://doi.org/10.1038/d41586-020-00177-3
Hausfather, Z., & Peters, G. P. (2020b). RCP8.5 is a problematic scenario for near-term emissions. Proceedings of the National Academy of Sciences, 117(45), 27791–27792. https://doi.org/10.1073/pnas.2017124117
Hawkins, E., & Sutton, R. (2009). The Potential to Narrow Uncertainty in Regional Climate Predictions. Bulletin of the American Meteorological Society, 90(8), 1095–1108. https://doi.org/10.1175/2009BAMS2607.1
Hendry, A. P. (2004). Selection against migrants contributes to the rapid evolution of ecologically dependent reproductive isolation. Evolutionary Ecology Research, 6, 1219–1236.
Hendry, A. P. (2009). Ecological speciation! Or the lack thereof? Canadian Journal of Fisheries and Aquatic Sciences, 66(8), 1383–1398. https://doi.org/10.1139/F09-074
Hendry, A. P., Nosil, P., & Rieseberg, L. H. (2007). The speed of ecological speciation. Functional Ecology, 21(3), 455. https://doi.org/10.1111/J.1365-2435.2006.01240.X
Hewitt, G. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society, 58(3), 247–276. https://doi.org/10.1006/BIJL.1996.0035
Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. Nature 2000 405:6789, 405(6789), 907–913. https://doi.org/10.1038/35016000
Hickling, R., Roy, D. B., Hill, J. K., Fox, R., & Thomas, C. D. (2006). The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology, 12(3), 450–455. https://doi.org/10.1111/J.1365-2486.2006.01116.X
Hidalgo Aranzamendi, N., Hall, M. L., Kingma, S. A., van de Pol, M., & Peters, A. (2019). Rapid plastic breeding response to rain matches peak prey abundance in a tropical savanna bird. Journal of Animal Ecology, 88(11), 1799–1811. https://doi.org/10.1111/1365-2656.13068
Hijmans, R. J., Van Etten, J., Cheng, J., Mattiuzzi, M., Sumner, M., Greenberg, J. A., Lamigueiro, O. P., Bevan, A., Racine, E. B., & Shortridge, A. (2015). Package ‘raster’. R Package, 734, 473.
Hoffmann, A. A., & Sgró, C. M. (2011). Climate change and evolutionary adaptation. Nature 2011 470:7335, 470(7335), 479–485. https://doi.org/10.1038/nature09670
Holsinger, K. E. (2001). Natural Selection. In S. Brenner & J. H. Miller (Eds.), Encyclopedia of Genetics (pp. 1291–1297). Elsevier. https://doi.org/10.1006/rwgn.2001.1161
Holt, R. D., & Gaines, M. S. (1992). Analysis of adaptation in heterogeneous landscapes: Implications for the evolution of fundamental niches. Evolutionary Ecology, 6(5), 433–447. https://doi.org/10.1007/BF02270702/METRICS
Hua, X., & Wiens, J. J. (2013). How does climate influence speciation? American Naturalist, 182(1), 1–12. https://doi.org/10.1086/670690
Huang, Q., Wu, L.-Y., & Zhang, X.-S. (2013). Corbi: a new R package for biological network alignment and querying. BMC Systems Biology, 7(2), S6. https://doi.org/10.1186/1752-0509-7-S2-S6
Huidobro, L., Morrone, J. J., Villalobos, J. L., & Álvarez, F. (2006). Distributional patterns of freshwater taxa (fishes, crustaceans and plants) from the Mexican Transition Zone. Journal of Biogeography, 33(4), 731–741. https://doi.org/https://doi.org/10.1111/j.1365-2699.2005.01400.x
Hutchison, D. W., & Templeton, A. R. (1999). Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution, 53(6), 1898–1914. https://doi.org/10.1111/J.1558-5646.1999.TB04571.X
Inoue, K., & Berg, D. J. (2017). Predicting the effects of climate change on population connectivity and genetic diversity of an imperiled freshwater mussel, Cumberlandia monodonta (Bivalvia: Margaritiferidae), in riverine systems. Global Change Biology, 23(1), 94–107. https://doi.org/10.1111/GCB.13369
Janes, J. K., & Batista, P. D. (2016). The Role of Population Genetic Structure in Understanding and Managing Pine Beetles. In Advances in Insect Physiology (Vol. 50, pp. 75–100). Academic Press Inc. https://doi.org/10.1016/bs.aiip.2016.01.001
Jenkins, D. G., Carey, M., Czerniewska, J., Fletcher, J., Hether, T., Jones, A., Knight, S., Knox, J., Long, T., Mannino, M., Mcguire, M., Riffle, A., Segelsky, S., Shappell, L., Sterner, A., Strickler, T., Tursi, R., Jenkins, D. G., Carey, M., … Tursi, R. (2010). A meta-analysis of isolation by distance: relic or reference standard for landscape genetics? Ecography, 33(2), 315–320. https://doi.org/10.1111/J.1600-0587.2010.06285.X
Jiménez-Valverde, A. (2012). Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecology and Biogeography, 21(4), 498–507. https://doi.org/https://doi.org/10.1111/j.1466-8238.2011.00683.x
Johnson, J. S., Gaddis, K. D., Cairns, D. M., Konganti, K., & Krutovsky, K. V. (2017). Landscape genomic insights into the historic migration of mountain hemlock in response to Holocene climate change. American Journal of Botany, 104(3), 439–450. https://doi.org/10.3732/AJB.1600262
Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genetics, 11. https://doi.org/10.1186/1471-2156-11-94
Jorgensen, T. H., Richardson, D. S., & Andersson, S. (2006). Comparative Analyses of Population Structure in Two Subspecies of Nigella degenii: Evidence for Diversifying Selection on Pollen-Color Dimorphisms. Evolution, 60(3), 518–528. http://www.jstor.org/stable/4095314
Karl, S. A., Toonen, R. J., Grant, W. S., & Bowen, B. W. (2012). Common misconceptions in molecular ecology: echoes of the modern synthesis. Molecular Ecology, 21(17), 4171–4189. https://doi.org/10.1111/J.1365-294X.2012.05576.X
Kass, J. M., Muscarella, R., Galante, P. J., Bohl, C. L., Pinilla-Buitrago, G. E., Boria, R. A., Soley-Guardia, M., & Anderson, R. P. (2021). ENMeval 2.0: Redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods in Ecology and Evolution, 12(9), 1602–1608. https://doi.org/https://doi.org/10.1111/2041-210X.13628
Kessler Rios, M., Londoño, G., & Biancucci, A. (2008). Notes on birds that follow army ants in the northern Andes. ORNITOLOGIA NEOTROPICAL, 19.
Kim, D., Taylor, A. T., & Near, T. J. (2022). Phylogenomics and species delimitation of the economically important Black Basses (Micropterus). Scientific Reports, 12(1), 9113. https://doi.org/10.1038/s41598-022-11743-2
Kimura, M., & Weisss, G. H. (1964). The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics, 49, 561–576.
Kozakiewicz, C. P., Carver, S., & Burridge, C. P. (2018). Under-representation of avian studies in landscape genetics. Ibis, 160(1), 1–12. https://doi.org/10.1111/ibi.12532
Kremer, A., Ronce, O., Robledo-Arnuncio, J. J., Guillaume, F., Bohrer, G., Nathan, R., Bridle, J. R., Gomulkiewicz, R., Klein, E. K., Ritland, K., Kuparinen, A., Gerber, S., & Schueler, S. (2012). Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecology Letters, 15(4), 378–392. https://doi.org/10.1111/J.1461-0248.2012.01746.X
Landguth, E. L., & Cushman, S. A. (2010). cdpop: A spatially explicit cost distance population genetics program. Molecular Ecology Resources, 10(1), 156–161. https://doi.org/10.1111/J.1755-0998.2009.02719.X
Lee, C. R., & Mitchell-Olds, T. (2011). Quantifying effects of environmental and geographical factors on patterns of genetic differentiation. Molecular Ecology, 20(22), 4631–4642. https://doi.org/10.1111/j.1365-294X.2011.05310.x
Legendre, P., & Fortin, M.-J. (2010). Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Molecular Ecology Resources, 10(5), 831–844. https://doi.org/https://doi.org/10.1111/j.1755-0998.2010.02866.x
Legendre, P., & Troussellier, M. (1988). Aquatic heterotrophic bacteria: Modeling in the presence of spatial autocorrelation. Limnology and Oceanography, 33(5), 1055–1067. https://doi.org/10.4319/lo.1988.33.5.1055
Lenoir, J., Gégout, J. C., Marquet, P. A., De Ruffray, P., & Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 320(5884), 1768–1771. https://doi.org/10.1126/SCIENCE.1156831/SUPPL_FILE/LENOIR.SOM.PDF
Leonardi, S., Gentilesca, T., Guerrieri, R., Ripullone, F., Magnani, F., Mencuccini, M., Noije, T. V., & Borghetti, M. (2012). Assessing the effects of nitrogen deposition and climate on carbon isotope discrimination and intrinsic water-use efficiency of angiosperm and conifer trees under rising CO2 conditions. Global Change Biology, 18(9), 2925–2944. https://doi.org/10.1111/J.1365-2486.2012.02757.X
Lobo, J. M., Jiménez-Valverde, A., & Real, R. (2008). AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17(2), 145–151. https://doi.org/https://doi.org/10.1111/j.1466-8238.2007.00358.x
Lovette, I. J., Pérez-Emán, J. L., Sullivan, J. P., Banks, R. C., Fiorentino, I., Córdoba-Córdoba, S., Echeverry-Galvis, M., Barker, F. K., Burns, K. J., Klicka, J., Lanyon, S. M., & Bermingham, E. (2010). A comprehensive multilocus phylogeny for the wood-warblers and a revised classification of the Parulidae (Aves). Molecular Phylogenetics and Evolution, 57(2), 753–770. https://doi.org/10.1016/j.ympev.2010.07.018
Lozano-Fuentes, S., Fernandez-Salas, I., de Lourdes Munoz, M., Garcia-Rejon, J., Olson, K. E., Beaty, B. J., & Black IV, W. C. (2009). The Neovolcanic Axis Is a Barrier to Gene Flow among Aedes aegypti Populations in Mexico That Differ in Vector Competence for Dengue 2 Virus. PLOS Neglected Tropical Diseases, 3(6), e468-. https://doi.org/10.1371/journal.pntd.0000468
Lu, G., & Bernatchez, L. (1999). Correlated trophic specialization and genetic divergence in sympatric lake whitefish ecotypes (Coregonus clupeaformis): support for the ecological speciation hypothesis. Evolution, 53(5), 1491–1505. https://doi.org/10.1111/j.1558-5646.1999.tb05413.x
Lurwanu, Y., Wang, Y. P., Wu, E. J., He, D. C., Waheed, A., Nkurikiyimfura, O., Wang, Z., Shang, L. P., Yang, L. N., & Zhan, J. (2021). Increasing temperature elevates the variation and spatial differentiation of pesticide tolerance in a plant pathogen. Evolutionary Applications, 14(5), 1274–1285. https://doi.org/10.1111/EVA.13197
Maassen, G. H., & Bakker, A. B. (2001). Suppressor Variables in Path Models: Definitions and Interpretations. Sociological Methods & Research, 30(2), 241–270. https://doi.org/10.1177/0049124101030002004
Machado-Stredel, F., & Pérez-Emán, J. L. (2017). Using morphometrics to determine sex in a neotropical passerine: the gray‐breasted wood‐wren (Henicorhina leucophrys). Ornitología Neotropical, 28, 147–153. https://doi.org/10.58843/ornneo.v28i0.240
Mainwaring, M. C., Nord, A., & Sharp, S. P. (2021). Editorial: The Impact of Weather on the Behavior and Ecology of Birds. In Frontiers in Ecology and Evolution (Vol. 9). Frontiers Media S.A. https://doi.org/10.3389/fevo.2021.777478
Mallet, J. (1995). A species definition for the modern synthesis. Trends in Ecology & Evolution, 10(7), 294–299. https://doi.org/https://doi.org/10.1016/0169-5347(95)90031-4
Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research.
Manthey, J. D., & Moyle, R. G. (2015). Isolation by environment in White‐breasted Nuthatches ( Sitta carolinensis ) of the Madrean Archipelago sky islands: a landscape genomics approach. Molecular Ecology, 24(14), 3628–3638. https://doi.org/10.1111/mec.13258
Mapelli, F. J., Mora, M. S., Mirol, P. M., & Kittlein, M. J. (2012). Population structure and landscape genetics in the endangered subterranean rodent Ctenomys porteousi. Conservation Genetics, 13(1), 165–181. https://doi.org/10.1007/S10592-011-0273-2/METRICS
Marcondes, R. S., & Brumfield, R. T. (2019). Fifty shades of brown: Macroevolution of plumage brightness in the Furnariida, a large clade of drab Neotropical passerines. Evolution, 73(4), 704–719. https://doi.org/10.1111/evo.13707
Marcondes, R. S., Nations, J. A., Seeholzer, G. F., & Brumfield, R. T. (2021). Rethinking Gloger’s Rule: Climate, Light Environments, and Color in a Large Family of Tropical Birds (Furnariidae). Https://Doi.Org/10.1086/713386, 197(5), 592–606. https://doi.org/10.1086/713386
Martin, T. E., Oteyza, J. C., Boyce, A. J., Lloyd, P., & Ton, R. (2015). Adult Mortality Probability and Nest Predation Rates Explain Parental Effort in Warming Eggs with Consequences for Embryonic Development Time. Https://Doi.Org/10.1086/681986, 186(2), 223–236. https://doi.org/10.1086/681986
Martínez-Cruz, B., Godoy, J. A., & Negro, J. J. (2007). Population fragmentation leads to spatial and temporal genetic structure in the endangered Spanish imperial eagle. Molecular Ecology, 16(3), 477–486. https://doi.org/10.1111/j.1365-294X.2007.03147.x
McBride, C. S., & Singer, M. C. (2010). Field Studies Reveal Strong Postmating Isolation between Ecologically Divergent Butterfly Populations. PLoS Biology, 8(10), e1000529. https://doi.org/10.1371/journal.pbio.1000529
McCairns, R. J. S., & Bernatchez, L. (2008). Landscape genetic analyses reveal cryptic population structure and putative selection gradients in a large-scale estuarine environment. Molecular Ecology, 17(17), 3901–3916. https://doi.org/10.1111/J.1365-294X.2008.03884.X
McDonald, P. G., Olsen, P. D., & Cockburn, A. (2004). Weather dictates reproductive success and survival in the Australian brown falcon Falco berigora. Journal of Animal Ecology, 73(4), 683–692. https://doi.org/10.1111/J.0021-8790.2004.00842.X
McGowan, A., Sharp, S. P., & Hatchwell, B. J. (2004). The Structure and Function of Nests of Long-Tailed Tits Aegithalos caudatus. Functional Ecology, 18(4), 578–583. http://www.jstor.org/stable/3599074
McIntyre, N. E., Wright, C. K., Swain, S., Hayhoe, K., Liu, G., Schwartz, F. W., & Henebry, G. M. (2014). Climate forcing of wetland landscape connectivity in the Great Plains. Frontiers in Ecology and the Environment, 12(1), 59–64. https://doi.org/10.1890/120369
McRae, B. H. (2006). Isolation by resistance. Evolution, 60(8), 1551. https://doi.org/10.1554/05-321.1
McRae, B. H., & Beier, P. (2007). Circuit theory predicts gene flow in plant and animal populations. Proceedings of the National Academy of Sciences, 104(50), 19885–19890. https://doi.org/10.1073/pnas.0706568104
Mendoza, A. M., Bolívar-García, W., Vázquez-Domínguez, E., Ibáñez, R., & Parra Olea, G. (2019). The role of Central American barriers in shaping the evolutionary history of the northernmost glassfrog, Hyalinobatrachium fleischmanni (Anura: Centrolenidae). PeerJ, 7, e6115. https://doi.org/10.7717/peerj.6115
Michels, E., Cottenie, K., Neys, L., De Gelas, K., Coppin, P., & De Meester, L. (2001). Geographical and genetic distances among zooplankton populations in a set of interconnected ponds: a plea for using GIS modelling of the effective geographical distance. Molecular Ecology, 10(8), 1929–1938. https://doi.org/10.1046/J.1365-294X.2001.01340.X
Mira, S., Arnaud-Haond, S., Palma, L., Cancela, M. L., & Beja, P. (2013). Large-scale population genetic structure in Bonelli’s Eagle Aquila fasciata. Ibis, 155(3), 485–498. https://doi.org/10.1111/ibi.12065
Monge, O., Maggini, I., Schulze, C. H., Dullinger, S., & Fusani, L. (2023). Physiologically vulnerable or resilient? Tropical birds, global warming, and redistributions. Ecology and Evolution, 13(4), e9985. https://doi.org/10.1002/ECE3.9985
Moreno-Contreras, I., Sánchez-González, L. A., Arizmendi, M. del C., Prieto-Torres, D. A., & Navarro-Sigüenza, A. G. (2020). Climatic Niche Evolution in the Arremon brunneinucha Complex (Aves: Passerellidae) in a Mesoamerican Landscape. Evolutionary Biology, 47(2), 123–132. https://doi.org/10.1007/s11692-020-09498-7
Moritz, C. (1994). Defining ‘Evolutionarily Significant Units’ for conservation. Trends in Ecology & Evolution, 9(10), 373–375. https://doi.org/10.1016/0169-5347(94)90057-4
Mosca, E., Eckert, A. J., Di Pierro, E. A., Rocchini, D., La Porta, N., Belletti, P., & Neale, D. B. (2012). The geographical and environmental determinants of genetic diversity for four alpine conifers of the European Alps. Molecular Ecology, 21(22), 5530–5545. https://doi.org/10.1111/MEC.12043
Moss, R., Babiker, M., Brinkman, S., Calvo, E., Carter, T., Edmonds, J., Elgizouli, I., Emori, S., Erda, L., Hibbard, K., Jones, R., Kainuma, M., Kelleher, J., Lamarque, J. F., Manning, M., Matthews, B., Meehl, J., Meyer, L., Mitchell, J., … Zurek, M. (2008). Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts and Response Strategies. https://archive.ipcc.ch/pdf/supporting-material/expert-meeting-report-scenarios.pdf
Mumme, R. L. (2002). Scare tactics in a neotropical warbler: white tail feathers enhance flush-pursuit foraging performance in the slate-throated redstart (Myioborus miniatus). The Auk, 119(4), 1024–1035. https://academic.oup.com/auk/article/119/4/1024/5562101
Mumme, R. L. (2015). Demography of Slate-throated Redstarts (Myioborus miniatus): A non-migratory Neotropical warbler. Journal of Field Ornithology, 86(2), 89–102. https://doi.org/10.1111/jofo.12093
Muscarella, R., Galante, P. J., Soley-Guardia, M., Boria, R. A., Kass, J. M., Uriarte, M., & Anderson, R. P. (2014). ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution, 5(11), 1198–1205. https://doi.org/https://doi.org/10.1111/2041-210X.12261
Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling? Ecography, 37(2), 191–203. https://doi.org/10.1111/j.1600-0587.2013.00205.x
Nanninga, G., Saenz-Agudelo, P., Manica, A., & Berumen, M. (2013). Environmental gradients predict the genetic structure of a coral reef fish in the Red Sea. Molecular Ecology, 23. https://doi.org/10.1111/mec.12623
Nei, M., & Nozawa, M. (2011). Roles of Mutation and Selection in Speciation: From Hugo de Vries to the Modern Genomic Era. Genome Biology and Evolution, 3(1), 812–829. https://doi.org/10.1093/GBE/EVR028
Nilsson, A. L. K., Reitan, T., Skaugen, T., L’Abée-Lund, J. H., Gamelon, M., Jerstad, K., Røstad, O. W., Slagsvold, T., Stenseth, N. C., Vøllestad, L. A., & Walseng, B. (2020). Location Is Everything, but Climate Gets a Share: Analyzing Small-Scale Environmental Influences on Breeding Success in the White-Throated Dipper. Frontiers in Ecology and Evolution, 8, 542846. https://doi.org/10.3389/FEVO.2020.542846/BIBTEX
Nosil, P. (2004). Reproductive isolation caused by visual predation on migrants between divergent environments. Proceedings of the Royal Society B: Biological Sciences, 271(1547), 1521–1528. https://doi.org/10.1098/rspb.2004.2751
Nyári, Á. S., & Reddy, S. (2013). Comparative Phyloclimatic Analysis and Evolution of Ecological Niches in the Scimitar Babblers (Aves: Timaliidae: Pomatorhinus). PLOS ONE, 8(2), e55629. https://doi.org/10.1371/JOURNAL.PONE.0055629
Öberg, M., Arlt, D., Pärt, T., Laugen, A. T., Eggers, S., & Low, M. (2015). Rainfall during parental care reduces reproductive and survival components of fitness in a passerine bird. Ecology and Evolution, 5(2), 345. https://doi.org/10.1002/ECE3.1345
O’donnell, M. S., & Ignizio, D. A. (2012). Bioclimatic Predictors for Supporting Ecological Applications in the Conterminous United States. http://www.usgs.gov/pubprod
Oksanen, J. (2013). Vegan: ecological diversity. R Project, 368, 1–11.
Ornelas, J. F., González, C., Hernández-Baños, B. E., & García-Moreno, J. (2016). Molecular and iridescent feather reflectance data reveal recent genetic diversification and phenotypic differentiation in a cloud forest hummingbird. Ecology and Evolution, 6(4), 1104–1127. https://doi.org/https://doi.org/10.1002/ece3.1950
Orsini, L., Vanoverbeke, J., Swillen, I., Mergeay, J., & De Meester, L. (2013). Drivers of population genetic differentiation in the wild: Isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Molecular Ecology, 22(24), 5983–5999. https://doi.org/10.1111/mec.12561
Ortiz-Rodriguez, A. E., Licona-Vera, Y., Vásquez-Aguilar, A. A., Hernández-Soto, M., López-Huicochea, E. A., & Ornelas, J. F. (2020). Genetic differentiation among Psittacanthus rhynchanthus (Loranthaceae) populations: novel phylogeographic patterns in the Mesoamerican tropical lowlands. Plant Systematics and Evolution, 306(1), 10. https://doi.org/10.1007/s00606-020-01638-y
Parding, K. M., Dobler, A., McSweeney, C. F., Landgren, O. A., Benestad, R., Erlandsen, H. B., Mezghani, A., Gregow, H., Räty, O., Viktor, E., El Zohbi, J., Christensen, O. B., & Loukos, H. (2020). GCMeval – An interactive tool for evaluation and selection of climate model ensembles. Climate Services, 18, 100167. https://doi.org/10.1016/J.CLISER.2020.100167
Parisod, C., & Christin, P. A. (2008). Genome-wide association to fine-scale ecological heterogeneity within a continuous population of Biscutella laevigata (Brassicaceae). New Phytologist, 178(2), 436–447. https://doi.org/10.1111/J.1469-8137.2007.02361.X
Parker, T. H., Becker, C. D., Sandercock, B. K., & Agreda, A. E. (2006). Apparent Survival Estimates for Five Species of Tropical Birds in an Endangered Forest Habitat in Western Ecuador. Biotropica, 38(6), 764–769. https://doi.org/10.1111/j.1744-7429.2006.00210.x
Parmesan, C. (2006). Ecological and Evolutionary Responses to Recent Climate Change. Https://Doi.Org/10.1146/Annurev.Ecolsys.37.091305.110100, 37, 637–669. https://doi.org/10.1146/ANNUREV.ECOLSYS.37.091305.110100
Paulo, P., Teófilo, F. H., Bertuol, C., Polo, É., Moncrieff, A. E., Bandeira, L. N., Nuñez-Penichet, C., Fernandes, I. Y., Bosholn, M., Machado, A. F., Luna, L. W., Peçanha, W. T., Rampini, A. P., Hashimoto, S., Dias, C., Araripe, J., Aleixo, A., do Rêgo, P. S., Hrbek, T., … Anciães, M. (2023). Geographic Drivers of Genetic and Plumage Color Diversity in the Blue-Crowned Manakin. Evolutionary Biology 2023, 1–19. https://doi.org/10.1007/S11692-023-09613-4
Peakall, R., Ruibal, M., & Lindenmayer, D. B. (2003). Spatial Autocorrelation Analysis Offers New Insights into Gene Flow in the Australian Bush Rat, Rattus fuscipes. In Source: Evolution (Vol. 57, Issue 5).
Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics, 28(19), 2537–2539. https://doi.org/10.1093/bioinformatics/bts460
Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12(5), 361–371. https://doi.org/10.1046/J.1466-822X.2003.00042.X
Pease, K. M., Freedman, A. H., Pollinger, J. P., McCormack, J. E., Buermann, W., Rodzen, J., Banks, J., Meredith, E., Bleich, V. C., Schaefer, R. J., Jones, K., & Wayne, R. K. (2009). Landscape genetics of California mule deer (Odocoileus hemionus): The roles of ecological and historical factors in generating differentiation. Molecular Ecology, 18(9), 1848–1862. https://doi.org/10.1111/j.1365-294X.2009.04112.x
Pérez-Emán, J. L. (2005). Molecular phylogenetics and biogeography of the Neotropical redstarts (Myioborus; Aves, Parulinae). Molecular Phylogenetics and Evolution, 37(2), 511–528. https://doi.org/10.1016/j.ympev.2005.04.013
Pérez-Emán, J. L., Mumme, R. L., & Jabłonński, P. G. (2010). Phylogeography and Adaptive Plumage Evolution in Central American Subspecies of the Slate-Throated Redstart (Myioborus miniatus). Ornithological Monographs, 67(1), 90–102. https://doi.org/10.1525/om.2010.67.1.90
Pérez-Rodríguez, R., Esquivel-Bobadilla, S., Orozco-Ruíz, A. M., Olivas-Hernández, J. L., & García-De León, F. J. (2021). Genetic structure and historical and contemporary gene flow of Astyanax mexicanus in the Gulf of Mexico slope: a microsatellite-based analysis. PeerJ, 9, e10784. https://doi.org/10.7717/peerj.10784
Petkova, D., Novembre, J., & Stephens, M. (2015). Visualizing spatial population structure with estimated effective migration surfaces. Nature Genetics, 48(1), 94–100. https://doi.org/10.1038/ng.3464
Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: an open-source release of Maxent. Ecography, 40(7), 887–893. https://doi.org/10.1111/ecog.03049
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31(2), 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
Pilot, M., Jedrzejewski, W., Branicki, W., Sidorovich, V. E., Jedrzejewska, B., Stachura, K., & Funk, S. M. (2006). Ecological factors influence population genetic structure of European grey wolves. Molecular Ecology, 15(14), 4533–4553. https://doi.org/10.1111/J.1365-294X.2006.03110.X
Pollock, H. S., Brawn, J. D., & Cheviron, Z. A. (2021). Heat tolerances of temperate and tropical birds and their implications for susceptibility to climate warming. Functional Ecology, 35(1), 93–104. https://doi.org/10.1111/1365-2435.13693/SUPPINFO
Popovic, D., Acanski, J., Djan, M., Obreht, D., Vujic, A., & Radenkovic, S. (2015). Sibling species delimitation and nomenclature of the Merodon avidus complex (Diptera: Syrphidae). Europuean Journal of Entomology, 112(4), 790–809. https://www.eje.cz/artkey/eje-201504-0025.php
Porter, A. H. (1990). Testing Nominal Species Boundaries Using Gene Flow Statistics: The Taxonomy of Two Hybridizing Admiral Butterflies (Limenitis: Nymphalidae). Systematic Zoology, 39(2), 131–147. https://doi.org/10.2307/2992451
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics, 945–959. http://www.stats.ox.ac.uk/pritch/home.html.
Provan, J., & Bennett, K. D. (2008). Phylogeographic insights into cryptic glacial refugia. Trends in Ecology & Evolution, 23(10), 564–571. https://doi.org/10.1016/J.TREE.2008.06.010
Quiroga-Carmona, M., & D’Elía, G. (2022). Climate influences the genetic structure and niche differentiation among populations of the olive field mouse Abrothrix olivacea (Cricetidae: Abrotrichini). Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-26937-x
Ralston, J., & Kirchman, J. J. (2013). Predicted range shifts in North American boreal forest birds and the effect of climate change on genetic diversity in blackpoll warblers (Setophaga striata). Conservation Genetics, 14(2), 543–555. https://doi.org/10.1007/s10592-012-0418-y
Rancilhac, L., Miralles, A., Geniez, P., Mendez-Aranda, D., Beddek, M., Brito, J. C., Leblois, R., & Crochet, P.-A. (2023). Phylogeographic breaks and how to find them: An empirical attempt at separating vicariance from isolation by distance in a lizard with restricted dispersal. BioRxiv, 2022.09.30.510256. https://doi.org/10.1101/2022.09.30.510256
Rannala, B. (2015). The art and science of species delimitation. Current Zoology, 61(5), 846–853. https://doi.org/10.1093/czoolo/61.5.846
Räsänen, K., & Hendry, A. P. (2008). Disentangling interactions between adaptive divergence and gene flow when ecology drives diversification. Ecology Letters, 11(6), 624–636. https://doi.org/10.1111/J.1461-0248.2008.01176.X
Reh, W., & Seitz, A. (1990). The influence of land use on the genetic structure of populations of the common frog Rana temporaria. Biological Conservation, 54(3), 239–249. https://doi.org/10.1016/0006-3207(90)90054-S
Reneerkens, J., Schmidt, N. M., Gilg, O., Hansen, J., Hansen, L. H., Moreau, J., & Piersma, T. (2016). Effects of food abundance and early clutch predation on reproductive timing in a high Arctic shorebird exposed to advancements in arthropod abundance. Ecology and Evolution, 6(20), 7375–7386. https://doi.org/10.1002/ECE3.2361
Rizvanovic, M., Kennedy, J. D., Nogués-Bravo, D., & Marske, K. A. (2019). Persistence of genetic diversity and phylogeographic structure of three New Zealand forest beetles under climate change. Diversity and Distributions, 25(1), 142–153. https://doi.org/https://doi.org/10.1111/ddi.12834
Ronce, O. (2007). How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annual Review of Ecology, Evolution, and Systematics, 38, 231–253. https://doi.org/10.1146/annurev.ecolsys.38.091206.095611
Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1–36. https://doi.org/10.18637/jss.v048.i02
Rovito, S. M., Parra-Olea, G., Recuero, E., & Wake, D. B. (2015). Diversification and biogeographical history of Neotropical plethodontid salamanders. Zoological Journal of the Linnean Society, 175(1), 167–188. https://doi.org/10.1111/zoj.12271
Rueda-M, N., Salgado-Roa, F. C., Gantiva-Q, C. H., Pardo-Díaz, C., & Salazar, C. (2021). Environmental Drivers of Diversification and Hybridization in Neotropical Butterflies. Frontiers in Ecology and Evolution, 9. https://doi.org/10.3389/fevo.2021.750703
Ruiz Miñano, M., While, G. M., Yang, W., Burridge, C. P., Salvi, D., & Uller, T. (2022). Population genetic differentiation and genomic signatures of adaptation to climate in an abundant lizard. Heredity 2022 128:4, 128(4), 271–278. https://doi.org/10.1038/s41437-022-00518-0
Ruiz-Sanchez, E., & Ornelas, J. F. (2014). Phylogeography of Liquidambar styraciflua (Altingiaceae) in Mesoamerica: survivors of a Neogene widespread temperate forest (or cloud forest) in North America? Ecology and Evolution, 4(4), 311–328. https://doi.org/https://doi.org/10.1002/ece3.938
Rundle, H. D., & Nosil, P. (2005). Ecological speciation. Ecology Letters, 8(3), 336–352. https://doi.org/10.1111/j.1461-0248.2004.00715.x
Sampson, J., & Byrne, M. (2022). Genetic Differentiation among Subspecies of Banksia nivea (Proteaceae) Associated with Expansion and Habitat Specialization. Diversity 2022, Vol. 14, Page 98, 14(2), 98. https://doi.org/10.3390/D14020098
Sasaki, M. C., & Dam, H. G. (2020). Genetic differentiation underlies seasonal variation in thermal tolerance, body size, and plasticity in a short-lived copepod. Ecology and Evolution, 10(21), 12200–12210. https://doi.org/10.1002/ECE3.6851
Schluter, D. (2009). Evidence for ecological speciation and its alternative. Science, 323(5915), 737–741. https://doi.org/10.1126/SCIENCE.1160006/SUPPL_FILE/SCHLUTER.SOM.PDF
Schluter, D. (2000). The ecology of adaptive radiation. Oxford University Press. https://global.oup.com/academic/product/the-ecology-of-adaptive-radiation-9780198505228
Schoener, T. W. (1968). The Anolis Lizards of Bimini: Resource Partitioning in a Complex Fauna. Ecology, 49(4), 704–726. https://doi.org/https://doi.org/10.2307/1935534
Schwartz, M. K., & McKelvey, K. S. (2009). Why sampling scheme matters: The effect of sampling scheme on landscape genetic results. Conservation Genetics, 10(2), 441–452. https://doi.org/10.1007/S10592-008-9622-1/METRICS
Scotta, M. I., Margris, L., Sellier, N., Warot, S., Gatti, F., Siccardi, F., Gibert, P., Vercken, E., & Ris, N. (2021). Genetic variability, population differentiation, and correlations for thermal tolerance indices in the minute wasp, trichogramma cacoeciae. Insects, 12(11), 1013. https://doi.org/10.3390/INSECTS12111013/S1
Seeholzer, G. F., Claramunt, S., & Brumfield, R. T. (2017). Niche evolution and diversification in a Neotropical radiation of birds (Aves: Furnariidae). Evolution, 71(3), 702–715. https://doi.org/10.1111/EVO.13177
Semlitsch, R. D., & Bodie, J. R. (1998). Are Small, Isolated Wetlands Expendable? Conservation Biology, 12(5), 1129–1133. https://doi.org/10.1046/j.1523-1739.1998.98166.x
Sexton, J. P., Hangartner, S. B., & Hoffmann, A. A. (2014). Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution, 68(1), 1–15. https://doi.org/10.1111/evo.12258
Shafer, A. B. A., Côté, S. D., & Coltman, D. W. (2011a). Hot spots of genetic diversity descended from multiple pleistocene refugia in an alpine ungulate. Evolution, 65(1), 125–138. http://www.jstor.org/stable/27920037
Shafer, A. B. A., Côté, S. D., & Coltman, D. W. (2011b). Hot spots of genetic diversity descended from multiple pleistocene refugia in an alpine ungulate. Evolution, 65(1), 125–138. https://doi.org/10.1111/j.1558-5646.2010.01109.x
Shafer, A. B. A., & Wolf, J. B. W. (2013). Widespread evidence for incipient ecological speciation: A meta-analysis of isolation-by-ecology. Ecology Letters, 16(7), 940–950. https://doi.org/10.1111/ele.12120
Sheffield, J., & Wood, E. F. (2008). Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dynamics, 31(1), 79–105. https://doi.org/10.1007/S00382-007-0340-Z/METRICS
Shi, M. M., Michalski, S. G., Chen, X. Y., & Durka, W. (2011). Isolation by Elevation: Genetic Structure at Neutral and Putatively Non-Neutral Loci in a Dominant Tree of Subtropical Forests, Castanopsis eyrei. PLOS ONE, 6(6), e21302. https://doi.org/10.1371/JOURNAL.PONE.0021302
Shirk, A. J., & Cushman, S. A. (2011). sGD: software for estimating spatially explicit indices of genetic diversity. Molecular Ecology Resources, 11(5), 922–934. https://doi.org/10.1111/j.1755-0998.2011.03035.x
Shirk, A. J., & Cushman, S. A. (2014). Spatially-explicit estimation of Wright’s neighborhood size in continuous populations. Frontiers in Ecology and Evolution, 2(OCT), 101846. https://doi.org/10.3389/FEVO.2014.00062/BIBTEX
Siepielski, A. M., Morrissey, M. B., Buoro, M., Carlson, S. M., Caruso, C. M., Clegg, S. M., Coulson, T., DiBattista, J., Gotanda, K. M., Francis, C. D., Hereford, J., Kingsolver, J. G., Augustine, K. E., Kruuk, L. E. B., Martin, R. A., Sheldon, B. C., Sletvold, N., Svensson, E. I., Wade, M. J., & MacColl, A. D. C. (2017). Precipitation drives global variation in natural selection. Science, 355(6328), 959–962. https://doi.org/10.1126/SCIENCE.AAG2773/SUPPL_FILE/SIEPIELSKI.SM_CORRECTED.PDF
Slatkin, M. (1987). Gene Flow and the Geographic Structure of Natural Populations. Science, 236, 787–792. http://science.sciencemag.org/
Smith, B. T., McCormack, J. E., Cuervo, A. M., Hickerson, M. J., Aleixo, A., Cadena, C. D., Pérez-Emán, J., Burney, C. W., Xie, X., Harvey, M. G., Faircloth, B. C., Glenn, T. C., Derryberry, E. P., Prejean, J., Fields, S., & Brumfield, R. T. (2014). The drivers of tropical speciation. Nature, 515(7527), 406–409. https://doi.org/10.1038/nature13687
Smouse, P. E., Long, J. C., & Sokal, R. R. (1986). Multiple Regression and Correlation Extensions of the Mantel Test of Matrix Correspondence. Systematic Biology, 35(4), 627–632. https://doi.org/10.2307/2413122
Smouse, P. E., & Peakall, R. (1999). Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity, 82, 561–573.
Sobel, J. M., Chen, G. F., Watt, L. R., & Schemske, D. W. (2010). The biology of speciation. Evolution, 64(2), 295–315. https://doi.org/10.1111/J.1558-5646.2009.00877.X
Spear, S. F., Balkenhol, N., Fortin, M. J., McRae, B. H., & Scribner, K. (2010). Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Molecular Ecology, 19(17), 3576–3591. https://doi.org/10.1111/J.1365-294X.2010.04657.X
Springer, C. J., & Ward, J. K. (2007). Flowering time and elevated atmospheric CO2. New Phytologist, 176(2), 243–255. https://doi.org/10.1111/J.1469-8137.2007.02196.X
Srikanthan, P., & Burg, T. (2023). Environmental drivers behind the genetic differentiation in mountain chickadees (Poecile gambeli). BioRxiv, 2023.02.25.529994. https://doi.org/10.1101/2023.02.25.529994
Stech, M., Veldman, S., Larraín, J., Muñoz, J., Quandt, D., Hassel, K., & Kruijer, H. (2013). Molecular Species Delimitation in the Racomitrium canescens Complex (Grimmiaceae) and Implications for DNA Barcoding of Species Complexes in Mosses. PLOS ONE, 8(1), e53134-. https://doi.org/10.1371/journal.pone.0053134
Stevens, V. M., Polus, E., Wesselingh, R. A., Schtickzelle, N., & Baguette, M. (2004). Quantifying functional connectivity: experimental evidence for patch-specific resistance in the Natterjack toad (Bufo calamita). Landscape Ecology, 19(8), 829–842. https://doi.org/10.1007/s10980-004-0166-6
Stevens, V. M., Verkenne, C., Vandewoestijne, S., Wesselingh, R. A., & Baguette, M. (2006). Gene flow and functional connectivity in the natterjack toad. Molecular Ecology, 15(9), 2333–2344. https://doi.org/10.1111/J.1365-294X.2006.02936.X
Stokke, B. G., Møller, A. P., Sæther, B.-E., Rheinwald, G., & Gutscher, H. (2005). Weather in The Breeding Area and During Migration Affects the Demography of a Small Long-Distance Passerine Migrant. The Auk, 122(2), 637–647. https://doi.org/10.1093/AUK/122.2.637
Storfer, A., Murphy, M. A., Evans, J. S., Goldberg, C. S., Robinson, S., Spear, S. F., Dezzani, R., Delmelle, E., Vierling, L., & Waits, L. P. (2006). Putting the ‘landscape’ in landscape genetics. Heredity 2007 98:3, 98(3), 128–142. https://doi.org/10.1038/sj.hdy.6800917
Storfer, A., Murphy, M. A., Spear, S. F., Holderegger, R., & Waits, L. P. (2010). Landscape genetics: where are we now? Molecular Ecology, 19(17), 3496–3514. https://doi.org/10.1111/J.1365-294X.2010.04691.X
Surget-Groba, Y., Johansson, H., & Thorpe, R. S. (2012). Synergy between Allopatry and Ecology in Population Differentiation and Speciation. International Journal of Ecology, 2012, 1–10. https://doi.org/10.1155/2012/273413
Swainson, W. (1827). A synopsis of the Birds discovered in Mexico by W. Bullock, F.L.S. and H.S. and Mr. William Bullock. In R. Taylor & R. Phillips (Eds.), The Philosophical magazine : or Annals of chemistry, mathematics, astronomy, natural history and general science (p. 368). Richard Taylor and Co. https://www.biodiversitylibrary.org/bibliography/58331
Taberlet, P., Fumagalli, L., Wust-Saucy, A. G., & Cosson, J. F. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7(4), 453–464. https://doi.org/10.1046/J.1365-294X.1998.00289.X
Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10(3), 512–526. https://doi.org/10.1093/OXFORDJOURNALS.MOLBEV.A040023
Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120
Taubmann, J., Theissinger, K., Feldheim, K. A., Laube, I., Graf, W., Haase, P., Johannesen, J., & Pauls, S. U. (2011). Modelling range shifts and assessing genetic diversity distribution of the montane aquatic mayfly Ameletus inopinatus in Europe under climate change scenarios. Conservation Genetics, 12(2), 503–515. https://doi.org/10.1007/S10592-010-0157-X/METRICS
Temunović, M., Franjić, J., Satovic, Z., Grgurev, M., Frascaria-Lacoste, N., & Fernández-Manjarrés, J. F. (2012). Environmental Heterogeneity Explains the Genetic Structure of Continental and Mediterranean Populations of Fraxinus angustifolia Vahl. PLOS ONE, 7(8), e42764. https://doi.org/10.1371/JOURNAL.PONE.0042764
Thibert-Plante, X., & Hendry, A. P. (2010). When can ecological speciation be detected with neutral loci? Molecular Ecology, 19(11), 2301–2314. https://doi.org/10.1111/j.1365-294X.2010.04641.x
Thibert-Plante, X., & Hendry, A. P. (2011). The consequences of phenotypic plasticity for ecological speciation. Journal of Evolutionary Biology, 24(2), 326–342. https://doi.org/10.1111/J.1420-9101.2010.02169.X
Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., Ferreira De Siqueira, M., Grainger, A., Hannah, L., Hughes, L., Huntley, B., Van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L., & Williams, S. E. (2004). Extinction risk from climate change. Nature 2003 427:6970, 427(6970), 145–148. https://doi.org/10.1038/nature02121
Thorpe, R. S., Surget-Groba, Y., & Johansson, H. (2008). The relative importance of ecology and geographic isolation for speciation in anoles. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1506), 3071–3081. https://doi.org/10.1098/rstb.2008.0077
Vaissi, S., & Rezaei, S. (2022). Niche Divergence at Intraspecific Level in the Hyrcanian Wood Frog, Rana pseudodalmatina: A Phylogenetic, Climatic, and Environmental Survey. Frontiers in Ecology and Evolution, 10, 774481. https://doi.org/10.3389/FEVO.2022.774481/BIBTEX
Vallely, A. (2001). Foraging at army ant swarms by fifty bird species in the highlands of Costa Rica. Ornitologia Neotropical, 12.
Van Buskirk, J., & Jansen van Rensburg, A. (2020). Relative importance of isolation-by-environment and other determinants of gene flow in an alpine amphibian. Evolution; International Journal of Organic Evolution, 74(5), 962–978. https://doi.org/10.1111/evo.13955
van Etten, J. (2017). R Package gdistance: Distances and Routes on Geographical Grids. Journal of Statistical Software, 76(1), 1–21. https://doi.org/10.18637/JSS.V076.I13
Via, S., & Hawthorne, D. J. (2002). The Genetic Architecture of Ecological Specialization: Correlated Gene Effects on Host Use and Habitat Choice in Pea Aphids. Https://Doi.Org/10.1086/338374, 159(S3), S76–S88. https://doi.org/10.1086/338374
Visser, M. E., & Gienapp, P. (2019). Evolutionary and demographic consequences of phenological mismatches. Nature Ecology & Evolution 2019 3:6, 3(6), 879–885. https://doi.org/10.1038/s41559-019-0880-8
Wagner, C. E., & McCune, A. R. (2009). Contrasting Patterns of Spatial Genetic Structure in Sympatric Rock-Dwelling Cichlid Fishes. Evolution, 63(5), 1312–1326. http://www.jstor.org/stable/25483678
Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J. M., Hoegh-Guldberg, O., & Bairlein, F. (2002). Ecological responses to recent climate change. Nature 2002 416:6879, 416(6879), 389–395. https://doi.org/10.1038/416389a
Wan, H. Y., Cushman, S. A., & Ganey, J. L. (2018). Habitat Fragmentation Reduces Genetic Diversity and Connectivity of the Mexican Spotted Owl: A Simulation Study Using Empirical Resistance Models. Genes 2018, Vol. 9, Page 403, 9(8), 403. https://doi.org/10.3390/GENES9080403
Wang, I. J. (2013). Examining the full effects of landscape heterogeneity on spatial genetic variation: A multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution, 67(12), 3403–3411. https://doi.org/10.1111/evo.12134
Wang, I. J., & Bradburd, G. S. (2014). Isolation by environment. Molecular Ecology, 23(23), 5649–5662. https://doi.org/10.1111/mec.12938
Wang, I. J., Glor, R. E., & Losos, J. B. (2013). Quantifying the roles of ecology and geography in spatial genetic divergence. Ecology Letters, 16(2), 175–182. https://doi.org/10.1111/ele.12025
Wang, I. J., Savage, W. K., & Bradley Shaffer, H. (2009). Landscape genetics and least-cost path analysis reveal unexpected dispersal routes in the California tiger salamander (Ambystoma californiense). Molecular Ecology, 18(7), 1365–1374. https://doi.org/10.1111/J.1365-294X.2009.04122.X
Wang, I. J., & Summers, K. (2010). Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison-dart frog. Molecular Ecology, 19(3), 447–458. https://doi.org/10.1111/j.1365-294X.2009.04465.x
Wang, P., Liu, Y., Liu, Y., Chang, Y., Wang, N., & Zhang, Z. (2017). The role of niche divergence and geographic arrangement in the speciation of Eared Pheasants (Crossoptilon, Hodgson 1938). Molecular Phylogenetics and Evolution, 113, 1–8. https://doi.org/10.1016/J.YMPEV.2017.05.003
Waples, R. S., & England, P. R. (2011). Estimating Contemporary Effective Population Size on the Basis of Linkage Disequilibrium in the Face of Migration. Genetics, 189(2), 633–644. https://doi.org/10.1534/GENETICS.111.132233
Waples, R. S., Luikart, G., Faulkner, J. R., & Tallmon, D. A. (2013). Simple life-history traits explain key effective population size ratios across diverse taxa. Proceedings of the Royal Society B: Biological Sciences, 280(1768). https://doi.org/10.1098/RSPB.2013.1339
Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution, 62(11), 2868–2883. https://doi.org/https://doi.org/10.1111/j.1558-5646.2008.00482.x
Wasserman, T. N., Cushman, S. A., Littell, J. S., Shirk, A. J., & Landguth, E. L. (2013). Population connectivity and genetic diversity of American marten (Martes americana) in the United States northern Rocky Mountains in a climate change context. Conservation Genetics, 14(2), 529–541. https://doi.org/10.1007/s10592-012-0336-z
Wasserman, T. N., Cushman, S. A., Schwartz, M. K., & Wallin, D. O. (2010). Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landscape Ecology, 25(10), 1601–1612. https://doi.org/10.1007/s10980-010-9525-7
Wasserman, T. N., Cushman, S. A., Shirk, A. S., Landguth, E. L., & Littell, J. S. (2012). Simulating the effects of climate change on population connectivity of American marten (Martes americana) in the northern Rocky Mountains, USA. Landscape Ecology, 27(2), 211–225. https://doi.org/10.1007/s10980-011-9653-8
Weir, J. T. (2006). Divergent timing and patterns of species accumulation in lowland and highland neotropical birds. Evolution; International Journal of Organic Evolution, 60(4), 842–855. http://www.ncbi.nlm.nih.gov/pubmed/16739464
Weir, J. T., Bermingham, E., & Schluter, D. (2009). The Great American Biotic Interchange in birds. Proceedings of the National Academy of Sciences of the United States of America, 106(51), 21737–21742. https://doi.org/10.1073/PNAS.0903811106/SUPPL_FILE/SD1.XLS
Weir, J. T., Faccio, M. S., Pulido-Santacruz, P., Barrera-Guzmán, A. O., & Aleixo, A. (2015). Hybridization in headwater regions, and the role of rivers as drivers of speciation in Amazonian birds. Evolution, 69(7), 1823–1834. https://doi.org/10.1111/EVO.12696
Weir, J. T., & Price, M. (2011). Andean uplift promotes lowland speciation through vicariance and dispersal in Dendrocincla woodcreepers. Molecular Ecology, 20(21), 4550–4563. https://doi.org/10.1111/J.1365-294X.2011.05294.X
Wetmore, A. (1942). Descriptions of three additional Birds from southern Vera Cruz. Proceedings of The Biological Society of Washington, 55, 105–108.
Wetmore, A. (1944). A collection of birds from northern Guanacaste, Costa Rica. Proceedings of the United States National Museum, 95(3179), 25–80, 4 pls. https://doi.org/10.5479/SI.00963801.95-3179.25
White, T. A., Stamford, J., & Rus Hoelzel, A. (2010). Local selection and population structure in a deep-sea fish, the roundnose grenadier (Coryphaenoides rupestris). Molecular Ecology, 19(2), 216–226. https://doi.org/10.1111/J.1365-294X.2009.04446.X
Whitlock, M. C. (2004). Selection and Drift in Metapopulations. In I. Hanski & O. E. Gaggiotti (Eds.), Ecology, Genetics and Evolution of Metapopulations (pp. 153–173). Elsevier. https://doi.org/10.1016/B978-012323448-3/50009-X
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis Second Edition. http://www.springer.com/series/6991
Wiens, J. J. (2004). Speciation and ecology revisited: Pylogenetic niche conservatism and the origin of species. Evolution, 58(1), 193–197. https://doi.org/10.1111/j.0014-3820.2004.tb01586.x
Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V, Damschen, E. I., Jonathan Davies, T., Grytnes, J.-A., Harrison, S. P., Hawkins, B. A., Holt, R. D., McCain, C. M., & Stephens, P. R. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 13(10), 1310–1324. https://doi.org/10.1111/j.1461-0248.2010.01515.x
Wiens, J. J., & Graham, C. H. (2005). Niche Conservatism: Integrating Evolution, Ecology, and Conservation Biology. Annual Review of Ecology, Evolution, and Systematics, 36(1), 519–539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431
Wiley, E. M., & Ridley, A. R. (2016). The effects of temperature on offspring provisioning in a cooperative breeder. Animal Behaviour, 117, 187–195. https://doi.org/10.1016/J.ANBEHAV.2016.05.009
Williams, J. B., & Tieleman, B. I. (2005). Physiological Adaptation in Desert Birds. BioScience, 55(5), 416–425. https://doi.org/10.1641/0006-3568(2005)055[0416:PAIDB]2.0.CO;2
Willis, C. G., Ruhfel, B., Primack, R. B., Miller-Rushing, A. J., & Davis, C. C. (2008). Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change. Proceedings of the National Academy of Sciences of the United States of America, 105(44), 17029–17033. https://doi.org/10.1073/PNAS.0806446105/SUPPL_FILE/0806446105SI.PDF
Wilson, P. J., & Provan, J. (2003). Effect of habitat fragmentation on levels and patterns of genetic diversity in natural populations of the peat moss Polytrichum commune. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1517), 881–886. https://doi.org/10.1098/RSPB.2002.2324
Woodward, F. I. (1988). Temperature and the distribution of plant species. Symposia of the Society for Experimental Biology, 42, 59–75. https://europepmc.org/article/med/3270209
Wright, L. I., Tregenza, T., & Hosken, D. J. (2008). Inbreeding, inbreeding depression and extinction. Conservation Genetics, 9(4), 833–843. https://doi.org/10.1007/S10592-007-9405-0/METRICS
Wright, S. (1943). Isolation by distance. Genetics, 28(114), 114–138. https://academic.oup.com/genetics/article/28/2/114/6033172
Wróblewska, A., & Mirski, P. (2018). From past to future: impact of climate change on range shifts and genetic diversity patterns of circumboreal plants. Regional Environmental Change, 18(2), 409–424. https://doi.org/10.1007/S10113-017-1208-3/FIGURES/3
Wu, C. I., & Ting, C. T. (2004). Genes and speciation. Nature Reviews Genetics 2004 5:2, 5(2), 114–122. https://doi.org/10.1038/nrg1269
Wu, Y., Colwell, R. K., Rahbek, C., Zhang, C., Quan, Q., Wang, C., & Lei, F. (2013). Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains. Journal of Biogeography, 40(12), 2310–2323. https://doi.org/10.1111/JBI.12177
Youngblut, J. M. (1994). A consumer’s guide to causal modeling: Part I. Journal of Pediatric Nursing, 9(4), 268–271. http://www.ncbi.nlm.nih.gov/pubmed/7965594
Yuan, S., Ma, L., Guo, C., & Wang, R. (2016). What drives phenotypic divergence in Leymus chinensis (Poaceae) on large-scale gradient, climate or genetic differentiation? Scientific Reports 2016 6:1, 6(1), 1–11. https://doi.org/10.1038/srep26288
Zamudio-Beltrán, L. E., Ornelas, J. F., Malpica, A., & Hernández-Baños, B. E. (2020). Genetic and morphological differentiation among populations of the Rivoli’s Hummingbird (Eugenes fulgens) species complex (Aves: Trochilidae). The Auk, 137(4), ukaa032. https://doi.org/10.1093/auk/ukaa032
Zhang, G., Li, C., Li, Q., Li, B., Larkin, D. M., Lee, C., Storz, J. F., Antunes, A., Greenwold, M. J., Meredith, R. W., Ödeen, A., Cui, J., Zhou, Q., Xu, L., Pan, H., Wang, Z., Jin, L., Zhang, P., Hu, H., … Wang, J. (2014). Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 346(6215), 1311–1320. www.sciencemag.org
Zhang, Y. H., Wang, I. J., Comes, H. P., Peng, H., & Qiu, Y. X. (2016). Contributions of historical and contemporary geographic and environmental factors to phylogeographic structure in a Tertiary relict species, Emmenopterys henryi (Rubiaceae). Scientific Reports 2016 6:1, 6(1), 1–14. https://doi.org/10.1038/srep24041
Zink, R. M., & Barrowclough, G. F. (2008). Mitochondrial DNA under siege in avian phylogeography. Molecular Ecology, 17(9), 2107–2121. https://doi.org/10.1111/J.1365-294X.2008.03737.X
Zizka, A., Silvestro, D., Andermann, T., Azevedo, J., Duarte Ritter, C., Edler, D., Farooq, H., Herdean, A., Ariza, M., Scharn, R., Svantesson, S., Wengström, N., Zizka, V., & Antonelli, A. (2019). CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods in Ecology and Evolution, 10(5), 744–751. https://doi.org/https://doi.org/10.1111/2041-210X.13152
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xix, 126 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Biología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86917/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86917/2/1144101977.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86917/3/1144101977.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
2175bf6d5a9e27d393b242bb50e9066f
db75cc5d59c72378a2338a100cd64a18
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089754968326144
spelling Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Campos Mosos, Héctor Aníbalc266ace65b02f0fe09e4fe94e8975c60Gutierrez Toro, Juan Camilo05db9881758cd752f4284fa96d399b3bGutierrez Toro, Juan Camilo [0000-0003-1554-5217]2024-10-09T13:23:55Z2024-10-09T13:23:55Z2024https://repositorio.unal.edu.co/handle/unal/86917Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapas, tablasEsta investigación se centra en identificar los factores determinantes de la divergencia genética en aves neotropicales del orden paseriforme. El objetivo principal es analizar cómo la distancia geográfica y la disimilitud climática influyen en la diferenciación genética de estas poblaciones. Contrariamente a la creencia anterior sobre la predominancia de factores ecológicos, los hallazgos subrayan la relevancia crucial del aislamiento geográfico en las poblaciones estudiadas. A pesar de considerar la distancia geográfica, se observa la persistencia del aislamiento ambiental, indicando posibles adaptaciones locales, probablemente atribuibles a la selección natural divergente o barreras reproductivas. Se examina detalladamente la influencia de la resistencia climática en la diferenciación genética, resaltando el costo del movimiento entre poblaciones como un posible determinante de estas diferencias genéticas. La compleja interacción entre factores geográficos y ambientales destaca la necesidad de un enfoque holístico en la comprensión de estos procesos. Desde una perspectiva de conservación, a pesar del cambio climático, se evidencia una resiliencia genética que sugiere un impacto limitado en estas especies, posiblemente debido a sus amplias distribuciones geográficas. Se destaca la importancia de preservar hábitats existentes y la implementación de estrategias de conservación. En resumen, esta investigación aporta significativamente a la comprensión de los factores clave que impulsan la diversidad genética en aves neotropicales, enfatizando la importancia de la geografía y el aislamiento geográfico, con importantes implicaciones para la conservación y la adaptabilidad en un entorno de cambios ambientales. (Texto tomado de la fuente)This research focuses on identifying the determining factors of genetic divergence in neotropical passerine birds. The main objective is to analyze how geographical distance and climatic dissimilarity influence the genetic differentiation of these populations. Contrary to previous beliefs regarding the predominance of ecological factors, the findings underscore the crucial relevance of geographic isolation in the studied populations. Despite accounting for geographical distance, the persistence of environmental isolation is seen, indicating possible local adaptations, likely attributable to divergent natural selection or reproductive barriers. The influence of climatic resistance on genetic differentiation is examined in detail, emphasizing the cost of movement between populations as a potential determinant of these genetic differences. The complex interaction between geographical and environmental factors highlights the need for a comprehensive approach in understanding these processes. From a conservation perspective, despite climate change, genetic resilience is clear, suggesting limited impact on these species, possibly due to their broad geographical distributions. The importance of preserving existing habitats and implementing conservation strategies is emphasized. In summary, this research significantly contributes to understanding the key factors driving genetic diversity in neotropical birds, emphasizing the importance of geography and geographic isolation, with significant implications for conservation and adaptability in an environment of environmental changes.MaestríaMagíster en Ciencias - BiologíaGenética de poblacionesxix, 126 páginasapplication/pdfspa570 - Biología::576 - Genética y evoluciónMECANISMOS DE AISLAMIENTO (BIOLOGIA)Isolating mechanismsDiversidad genéticaAves neotropicalesAislamiento geográficoResistencia climáticaGenetic DiversityNeotropical BirdsGeographic IsolationClimatic ResistanceConservationClimate change and ecosystemscell differentiationcambio climático y ecosistemasdiferenciación celularCuantificación del efecto del clima en el aislamiento poblacional de especies de aves neotropicales (Orden Paseriformes)Quantification of the effect of climate on population isolation of neotropical bird species (Order Passeriformes)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotá - Ciencias - Maestría en Ciencias - BiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáAiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38(5), 541–545. https://doi.org/https://doi.org/10.1111/ecog.01132Alcaide, M., Serrano, D., Negro, J. J., Tella, J. L., Laaksonen, T., Müller, C., Gal, A., & Korpimäki, E. (2009). Population fragmentation leads to isolation by distance but not genetic impoverishment in the philopatric Lesser Kestrel: A comparison with the widespread and sympatric Eurasian Kestrel. Heredity, 102(2), 190–198. https://doi.org/10.1038/hdy.2008.107Anderson, J. T., Inouye, D. W., McKinney, A. M., Colautti, R. I., & Mitchell-Olds, T. (2012). Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proceedings of the Royal Society B: Biological Sciences, 279(1743), 3843–3852. https://doi.org/10.1098/RSPB.2012.1051Araújo, M. B., & New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22(1), 42–47. https://doi.org/10.1016/j.tree.2006.09.010Arnold, M. L., Ballerini, E. S., & Brothers, A. N. (2012). Hybrid fitness, adaptation and evolutionary diversification: lessons learned from Louisiana Irises. Heredity, 108(3), 159. https://doi.org/10.1038/HDY.2011.65Arslan, N. A., & Martin, T. E. (2019). Reproductive biology of Grey-breasted Wood-Wren (Henicorhina leucophrys): A comparative study of tropical and temperate wrens. The Wilson Journal of Ornithology, 131(1), 1–11. https://doi.org/10.1676/18-12Ayala, F. J., Tracey, M. L., Hedgecock, D., & Richmond, R. C. (1974). Genetic Differentiation During the Speciation Process in Drosophila. Evolution, 28(4), 576–592. https://doi.org/10.2307/2407283Bailey, L. D., van de Pol, M., Adriaensen, F., Arct, A., Barba, E., Bellamy, P. E., Bonamour, S., Bouvier, J. C., Burgess, M. D., Charmantier, A., Cusimano, C., Doligez, B., Drobniak, S. M., Dubiec, A., Eens, M., Eeva, T., Ferns, P. N., Goodenough, A. E., Hartley, I. R., … Visser, M. E. (2022). Bird populations most exposed to climate change are less sensitive to climatic variation. Nature Communications 2022 13:1, 13(1), 1–10. https://doi.org/10.1038/s41467-022-29635-4Baird, S. F. (1865). Review of American birds in the Museum of the Smithsonian Institution (Vol. 1).Balkenhol, N., Waits, L. P., & Dezzani, R. J. (2009). Statistical approaches in landscape genetics: An evaluation of methods for linking landscape and genetic data. Ecography, 32(5), 818–830. https://doi.org/10.1111/J.1600-0587.2009.05807.XBarber, B. R., & Klicka, J. (2010). Two pulses of diversification across the Isthmus of Tehuantepec in a montane Mexican bird fauna. Proceedings of the Royal Society B: Biological Sciences, 277(1694), 2675–2681. https://doi.org/10.1098/rspb.2010.0343Barnagaud, J. Y., Barbaro, L., Hampe, A., Jiguet, F., & Archaux, F. (2013). Species’ thermal preferences affect forest bird communities along landscape and local scale habitat gradients. Ecography, 36(11), 1218–1226. https://doi.org/10.1111/J.1600-0587.2012.00227.XBarnagaud, J. Y., Barbaro, L., Hampe, A., Jiguet, F., & Archaux, F. (2013). Species’ thermal preferences affect forest bird communities along landscape and local scale habitat gradients. Ecography, 36(11), 1218–1226. https://doi.org/10.1111/J.1600-0587.2012.00227.XBarrier, E., Velasquillo, L., Chavez, M., & Gaulon, R. (1998). Neotectonic evolution of the Isthmus of Tehuantepec (southeastern Mexico). Tectonophysics, 287(1), 77–96. https://doi.org/https://doi.org/10.1016/S0040-1951(98)80062-0Bates, J. M., Haffer, J., & Grismer, E. (2004). Avian mitochondrial DNA sequence divergence across a headwater stream of the Rio Tapajós, a major Amazonian River. Journal of Ornithology, 145(3), 199–205. https://doi.org/10.1007/S10336-004-0039-4/METRICSBay, R. A., Harrigan, R. J., Underwood, V. Le, Gibbs, H. L., Smith, T. B., & Ruegg, K. (2018). Genomic signals of selection predict climate-driven population declines in a migratory bird. Science, 359(6371), 83–86. https://doi.org/10.1126/science.aan4380Bay, R. A., Karp, D. S., Saracco, J. F., Anderegg, W. R. L., Frishkoff, L. O., Wiedenfeld, D., Smith, T. B., & Ruegg, K. (2021). Genetic variation reveals individual-level climate tracking across the annual cycle of a migratory bird. Ecology Letters, 24(4), 819–828. https://doi.org/10.1111/ELE.13706Benítez-Benítez, C., Sanz-Arnal, M., Urbani, M., Jiménez-Mejías, P., & Martín-Bravo, S. (2022). Dramatic impact of future climate change on the genetic diversity and distribution of ecologically relevant Western Mediterranean Carex (Cyperaceae). PeerJ, 10. https://doi.org/10.7717/peerj.13464Blair, C., Weigel, D. E., Balazik, M., Keeley, A. T. H., Walker, F. M., Landguth, E., Cushman, S., Murphy, M., Waits, L., & Balkenhol, N. (2012). A simulation-based evaluation of methods for inferring linear barriers to gene flow. Molecular Ecology Resources, 12(5), 822–833. https://doi.org/10.1111/J.1755-0998.2012.03151.XBohonak, A. (1999). Dispersal, Gee flow, and Population Structure. The Quarterly Review of Biology, 74(1), 21–45. http://www.journals.uchicago.edu/t-and-cBollen, K. A. (2002). Latent variables in psychology and the social sciences. Annual Review of Psychology, 53(1), 605–634.Bolnick, D. I., & Otto, S. P. (2013). The magnitude of local adaptation under genotype‐dependent dispersal. Ecology and Evolution, 3(14), 4722–4735. https://doi.org/10.1002/ece3.850Bonaccorso, E., Navarro-Sigüenza, A. G., Sánchez-González, L. A., Townsend Peterson, A., & García-Moreno, J. (2008). Genetic differentiation of the Chlorospingus ophthalmicus complex in Mexico and Central America. Journal of Avian Biology, 39(3), 311–321. https://doi.org/https://doi.org/10.1111/j.0908-8857.2008.04233.xBonamour, S., Chevin, L. M., Charmantier, A., & Teplitsky, C. (2019). Phenotypic plasticity in response to climate change: the importance of cue variation. Philosophical Transactions of the Royal Society B, 374(1768). https://doi.org/10.1098/RSTB.2018.0178Botero-Delgadillo, E., Quirici, V., Poblete, Y., Cuevas, É., Kuhn, S., Girg, A., Teltscher, K., Poulin, E., Kempenaers, B., & Vásquez, R. A. (2017). Variation in fine-scale genetic structure and local dispersal patterns between peripheral populations of a South American passerine bird. Ecology and Evolution, 7(20), 8363–8378. https://doi.org/10.1002/ece3.3342Bradburd, G. S., Ralph, P. L., & Coop, G. M. (2013). Disentangling the effects of geographic and ecological isolation on genetic differentiation. Evolution, 67(11), 3258–3273. https://doi.org/10.1111/evo.12193Broquet, T., Ray, N., Petit, E., Fryxell, J. M., & Burel, F. (2006). Genetic isolation by distance and landscape connectivity in the American marten (Martes americana). Landscape Ecology, 21(6), 877–889. https://doi.org/10.1007/S10980-005-5956-Y/METRICSBrown, J. H., & Kodric-Brown, A. (1977). Turnover Rates in Insular Biogeography: Effect of Immigration on Extinction. Ecology, 58(2), 445–449. https://doi.org/10.2307/1935620Brown, J. L., & Yoder, A. D. (2015). Shifting ranges and conservation challenges for lemurs in the face of climate change. Ecology and Evolution, 5(6), 1131–1142. https://doi.org/10.1002/ECE3.1418Brown, L. M., Ramey, R. R., Tamburini, B., & Gavin, T. A. (2004). Population structure and mitochondrial DNA variation in sedentary Neotropical birds isolated by forest fragmentation. Conservation Genetics, 5(6), 743–757. https://doi.org/10.1007/S10592-004-1865-X/METRICSBruggeman, D. J., Wiegand, T., & FernÁndez, N. (2010). The relative effects of habitat loss and fragmentation on population genetic variation in the red-cockaded woodpecker (Picoides borealis). Molecular Ecology, 19(17), 3679–3691. https://doi.org/10.1111/J.1365-294X.2010.04659.XBrumfield, R. T. (2012). Inferring the Origins of Lowland Neotropical Birds. The Auk, 129(3), 367–376. https://doi.org/10.1525/AUK.2012.129.3.367Bründl, A. C., Sallé, L., Lejeune, L. A., Sorato, E., Thiney, A. C., Chaine, A. S., & Russell, A. F. (2020). Elevational Gradients as a Model for Understanding Associations Among Temperature, Breeding Phenology and Success. Frontiers in Ecology and Evolution, 8, 563377. https://doi.org/10.3389/FEVO.2020.563377/BIBTEXBurney, C. W., & Brumfield, R. T. (2009). Ecology Predicts Levels of Genetic Differentiation in Neotropical Birds. Https://Doi.Org/10.1086/603613, 174(3), 358–368. https://doi.org/10.1086/603613Butterfield, J. E. L., & Coulson, J. C. (1997). Terrestrial invertebrates and climate change: Physiological and life-cycle adaptations. Past and Future Rapid Environmental Changes, 401–412. https://doi.org/10.1007/978-3-642-60599-4_31Cab-Sulub, L., & Álvarez-Castañeda, S. T. (2022). Genetic isolation between conspecific populations and their relationship to climate heterogeneity. Acta Oecologica, 116. https://doi.org/10.1016/j.actao.2022.103847Cadena, C. D., Klicka, J., & Ricklefs, R. E. (2007). Evolutionary differentiation in the Neotropical montane region: Molecular phylogenetics and phylogeography of Buarremon brush-finches (Aves, Emberizidae). Molecular Phylogenetics and Evolution, 44(3), 993–1016. https://doi.org/https://doi.org/10.1016/j.ympev.2006.12.012Cadena, C. D., Pérez-Emán, J. L., Cuervo, A. M., Céspedes, L. N., Epperly, K. L., & Klicka, J. T. (2019). Extreme genetic structure and dynamic range evolution in a montane passerine bird: implications for tropical diversification. In Biological Journal of the Linnean Society (Vol. 126). https://academic.oup.com/biolinnean/article/126/3/487/5306478Caro, L. M., Caycedo-Rosales, P. C., Bowie, R. C. K., Slabbekoorn, H., & Cadena, C. D. (2013). Ecological speciation along an elevational gradient in a tropical passerine bird? Journal of Evolutionary Biology, 26(2), 357–374. https://doi.org/10.1111/jeb.12055Carvalho, S. B., Torres, J., Tarroso, P., & Velo‐Antón, G. (2019). Genes on the edge: A framework to detect genetic diversity imperiled by climate change. Global Change Biology, 25(12), 4034–4047. https://doi.org/10.1111/gcb.14740Chan, K. O., Alexander, A. M., Grismer, L. L., Su, Y.-C., Grismer, J. L., Quah, E. S. H., & Brown, R. M. (2017). Species delimitation with gene flow: A methodological comparison and population genomics approach to elucidate cryptic species boundaries in Malaysian Torrent Frogs. Molecular Ecology, 26(20), 5435–5450. https://doi.org/https://doi.org/10.1111/mec.14296Charlesworth, B., Charlesworth, D., & Barton, N. H. (2003). The Effects of Genetic and Geographic Structure on Neutral Variation. Annual Review of Ecology, Evolution, and Systematics, 34, 99–125. https://doi.org/10.1146/annurev.ecolsys.34.011802.132359Claramunt, S., Derryberry, E. P., Remsen, J. V., & Brumfield, R. T. (2012). High dispersal ability inhibits speciation in a continental radiation of passerine birds. Proceedings of the Royal Society B: Biological Sciences, 279(1733), 1567–1574. https://doi.org/10.1098/rspb.2011.1922Coelho, M. T. P., Barreto, E., Rangel, T. F., Diniz-Filho, J. A. F., Wüest, R. O., Bach, W., Skeels, A., McFadden, I. R., Roberts, D. W., Pellissier, L., Zimmermann, N. E., & Graham, C. H. (2023). The geography of climate and the global patterns of species diversity. Nature 2023, 1–8. https://doi.org/10.1038/s41586-023-06577-5Cortés-Rodríguez, N., Hernández-Baños, B. E., Navarro-Sigüenza, A. G., Townsend Peterson, A., & García-Moreno, J. (2008). Phylogeography and population genetics of the Amethyst-throated Hummingbird (Lampornis amethystinus). Molecular Phylogenetics and Evolution, 48(1), 1–11. https://doi.org/https://doi.org/10.1016/j.ympev.2008.02.005Costa, M. da S. G., Batista, R. de C., & Gurgel-Gonçalves, R. (2014). Predicting geographic distributions of Phacellodomus species (Aves: Furnariidae) in South America based on ecological niche modeling. Acta Scientiarum. Biological Sciences, 36(3), 299–306. https://doi.org/10.4025/actascibiolsci.v36i3.22165Coulon, A., Cosson, J. F., Angibault, J. M., Cargnelutti, B., Galan, M., Morellet, N., Petit, E., Aulagnier, S., & Hewison, A. J. M. (2004). Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual–based approach. Molecular Ecology, 13(9), 2841–2850. https://doi.org/10.1111/J.1365-294X.2004.02253.XCoulon, A., Guillot, G., Cosson, J. F., Angibault, J. M. A., Aulagnier, S., Cargnelutti, B., Galan, M., & Hewison, A. J. M. (2006). Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. Molecular Ecology, 15(6), 1669–1679. https://doi.org/10.1111/J.1365-294X.2006.02861.XCowley, E., & Siriwardena, G. M. (2005). Long-term variation in survival rates of Sand Martins Riparia riparia: dependence on breeding and wintering ground weather, age and sex, and their population consequences. Bird Study, 52(3), 237–251. https://doi.org/10.1080/00063650509461397Crispo, E., Bentzen, P., Reznick, D. N., Kinnison, M. T., & Hendry, A. P. (2006). The relative influence of natural selection and geography on gene flow in guppies. Molecular Ecology, 15(1), 49–62. https://doi.org/https://doi.org/10.1111/j.1365-294X.2005.02764.xCuervo, P. F., Flores, F. S., Venzal, J. M., & Nava, S. (2021). Niche divergence among closely related taxa provides insight on evolutionary patterns of ticks. Journal of Biogeography, 48(11), 2865–2876. https://doi.org/10.1111/JBI.14245Cuervo, P. F., Flores, F. S., Venzal, J. M., & Nava, S. (2021). Niche divergence among closely related taxa provides insight on evolutionary patterns of ticks. Journal of Biogeography, 48(11), 2865–2876. https://doi.org/10.1111/JBI.14245Cushman, S. A., McKelvey, K. S., Hayden, J., & Schwartz, M. K. (2006). Gene Flow in Complex Landscapes: Testing Multiple Hypotheses with Causal Modeling. The American Naturalist, 168(4), 486–499. https://doi.org/10.1086/506976Cushman, S. A., Wasserman, T. N., Landguth, E. L., & Shirk, A. J. (2013). Re-Evaluating Causal Modeling with Mantel Tests in Landscape Genetics. Diversity 2013, Vol. 5, Pages 51-72, 5(1), 51–72. https://doi.org/10.3390/D5010051Dattalo, P. (2013). Choosing among Procedures for the Analysis of Multiple Dependent Variables. Analysis of Multiple Dependent Variables, 149–156. https://doi.org/10.1093/ACPROF:OSO/9780199773596.003.0006Davis, J. M., & Stamps, J. A. (2004). The effect of natal experience on habitat preferences. Trends in Ecology & Evolution, 19(8), 411–416. https://doi.org/10.1016/j.tree.2004.04.006Davis, M. B., & Shaw, R. G. (2001). Range Shifts and Adaptive Responses to Quaternary Climate Change. Science, 292(5517), 673–679. https://doi.org/10.1126/SCIENCE.292.5517.673de Souza, M. S., Barcellos, S. A., Costa, A. L., Kretschmer, R., Garnero, A. D. V., & Gunski, R. J. (2019). Polymorphism of Sooty-fronted Spinetail (Synallaxis frontalis Aves: Furnariidae): Evidence of chromosomal rearrangements by pericentric inversion in autosomal macrochromosomes. Genetics and Molecular Biology, 42(1), 62–67. https://doi.org/10.1590/1678-4685-GMB-2018-0039Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., D’Amen, M., Randin, C., Engler, R., Pottier, J., Pio, D., Dubuis, A., Pellissier, L., Mateo, R. G., Hordijk, W., Salamin, N., & Guisan, A. (2017). ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40(6), 774–787. https://doi.org/https://doi.org/10.1111/ecog.02671Dingle, C., Halfwerk, W., & Slabbekoorn, H. (2008). Habitat-dependent song divergence at subspecies level in the grey-breasted wood-wren. Journal of Evolutionary Biology, 21(4), 1079–1089. https://doi.org/10.1111/J.1420-9101.2008.01536.XDingle, C., Lovette, I. J., Canaday, C., & Smith, T. B. (2006). Elevational Zonation and the Phylogenetic Relationships of the Henicorhina Wood-Wrens. The Auk, 123(1), 119–134. https://doi.org/10.1093/AUK/123.1.119Dingle, C., Lovette, I. J., Canaday, C., & Smith, T. B. (2006). Elevational Zonation and the Phylogenetic Relationships of the Henicorhina Wood-Wrens. The Auk, 123(1), 119–134. https://doi.org/10.1093/AUK/123.1.119Dupanloup, I., Schneider, S., & Excoffier, L. (2002). A simulated annealing approach to define the genetic structure of populations. Molecular Ecology, 11, 2571–2581.Durant, S. E., Hopkins, W. A., Hepp, G. R., & Walters, J. R. (2013). Ecological, evolutionary, and conservation implications of incubation temperature-dependent phenotypes in birds. Biological Reviews, 88(2), 499–509. https://doi.org/10.1111/BRV.12015Durant, S. E., Hopkins, W. A., Wilson, A. F., & Hepp, G. R. (2012). Incubation temperature affects the metabolic cost of thermoregulation in a young precocial bird. Functional Ecology, 26(2), 416–422. https://doi.org/10.1111/J.1365-2435.2011.01945.XEdelaar, P., & Bolnick, D. I. (2012). Non-random gene flow: An underappreciated force in evolution and ecology. Trends in Ecology and Evolution, 27(12), 659–665. https://doi.org/10.1016/j.tree.2012.07.009Edelaar, P., Siepielski, A. M., & Clobert, J. (2008). Matching habitat choice causes directed gene flow: A neglected dimension in evolution and ecology. In Evolution (Vol. 62, Issue 10, pp. 2462–2472). https://doi.org/10.1111/j.1558-5646.2008.00459.xEdwards, S. V., Jennings, W. B., & Shedlock, A. M. (2005). Phylogenetics of modern birds in the era of genomics. Proceedings of the Royal Society B: Biological Sciences, 272(1567), 979–992. https://doi.org/10.1098/rspb.2004.3035Epperson, B. K., McRae, B. H., Scribner, K., Cushman, S. A., Rosenberg, M. S., Fortin, M. J., James, P. M. A., Murphy, M., Manel, S., Legendre, P., & Dale, M. R. T. (2010). Utility of computer simulations in landscape genetics. Molecular Ecology, 19(17), 3549–3564. https://doi.org/10.1111/J.1365-294X.2010.04678.XEspíndola, A., Pellissier, L., Maiorano, L., Hordijk, W., Guisan, A., & Alvarez, N. (2012). Predicting present and future intra-specific genetic structure through niche hindcasting across 24 millennia. Ecology Letters, 15(7), 649–657. https://doi.org/https://doi.org/10.1111/j.1461-0248.2012.01779.xEvanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.org/https://doi.org/10.1111/j.1365-294X.2005.02553.xExcoffier, L., & Lischer, H. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. https://doi.org/https://doi.org/10.1111/j.1755-0998.2010.02847.xExcoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of Molecular Variance Inferred From Metric Distances Among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data. Genetics, 131, 479–491.Fahrig, L., Pedlar, J. H., Pope, S. E., Taylor, P. D., & Wegner, J. F. (1995). Effect of road traffic on amphibian density. Biological Conservation, 73(3), 177–182. https://doi.org/10.1016/0006-3207(94)00102-VFan, D., Lei, S., Liang, H., Yao, Q., Kou, Y., Cheng, S., Yang, Y., Qiu, Y., & Zhang, Z. (2022). More opportunities more species: Pleistocene differentiation and northward expansion of an evergreen broad-leaved tree species Machilus thunbergii (Lauraceae) in Southeast China. BMC Plant Biology, 22(1). https://doi.org/10.1186/s12870-021-03420-9Feder, J. L., Egan, S. P., & Nosil, P. (2012a). The genomics of speciation-with-gene-flow. Trends in Genetics, 28(7), 342–350. https://doi.org/10.1016/j.tig.2012.03.009Feder, J. L., & Forbes, A. A. (2007). Habitat avoidance and speciation for phytophagous insect specialists. Functional Ecology, 21(3), 585–597. https://doi.org/10.1111/j.1365-2435.2007.01232.xFeder, J. L., & Nosil, P. (2010). The efficacy of divergence hitchhiking in generating genomic islands during ecological speciation. Evolution; International Journal of Organic Evolution, 64(6), 1729–1747. https://doi.org/10.1111/j.1558-5646.2010.00943.xFernandes, A. M., Gonzalez, J., Wink, M., & Aleixo, A. (2013). Multilocus phylogeography of the Wedge-billed Woodcreeper Glyphorynchus spirurus (Aves, Furnariidae) in lowland Amazonia: Widespread cryptic diversity and paraphyly reveal a complex diversification pattern. Molecular Phylogenetics and Evolution, 66(1), 270–282. https://doi.org/10.1016/j.ympev.2012.09.033Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/https://doi.org/10.1002/joc.5086Fierro-Calderón, K., Estela, F. A., & Chacón-Ulloa, P. (2006). Observaciones sobre las dietas de algunas aves de la cordillera Oriental de Colombia a partir del análisis de contenidos estomacales. Ornitología Colombiana, 4, 6–15. https://asociacioncolombianadeornitologia.org/ojs/index.php/roc/article/view/89Flaxman, S. M., Feder, J. L., & Nosil, P. (2013). Genetic hitchhiking and the dynamic buildup of genomic divergence during speciation with gene flow. Evolution, 67(9), 2577–2591. https://doi.org/10.1111/EVO.12055Francis, R. M. (2017). pophelper: an R package and web app to analyse and visualize population structure. Molecular Ecology Resources, 17(1), 27–32. https://doi.org/https://doi.org/10.1111/1755-0998.12509Funk, D. J., Egan, S. P., & Nosil, P. (2011). Isolation by adaptation in Neochlamisus leaf beetles: host-related selection promotes neutral genomic divergence. Molecular Ecology, 20(22), 4671–4682. https://doi.org/10.1111/J.1365-294X.2011.05311.XFunk, D. J., Nosil, P., & Etges, W. J. (2006). Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proceedings of the National Academy of Sciences of the United States of America, 103(9), 3209–3213. https://doi.org/10.1073/PNAS.0508653103/SUPPL_FILE/INDEX.HTMLGaitán, J. J., Oliva, G. E., Bran, D. E., Maestre, F. T., Aguiar, M. R., Jobbágy, E. G., Buono, G. G., Ferrante, D., Nakamatsu, V. B., Ciari, G., Salomone, J. M., & Massara, V. (2014). Vegetation structure is as important as climate for explaining ecosystem function across Patagonian rangelands. Journal of Ecology, 102(6), 1419–1428. https://doi.org/10.1111/1365-2745.12273Gavrilets, S. (2003). Perspective: models of speciation: what have we learned in 40 years? Evolution, 57(10), 2197–2215. https://doi.org/10.1111/J.0014-3820.2003.TB00233.XGibbs, J. P. (1998). Amphibian Movements in Response to Forest Edges, Roads, and Streambeds in Southern New England. The Journal of Wildlife Management, 62(2), 584. https://doi.org/10.2307/3802333González, C., Ornelas, J. F., & Gutiérrez-Rodríguez, C. (2011). Selection and geographic isolation influence hummingbird speciation: genetic, acoustic and morphological divergence in the wedge-tailed sabrewing (Campylopterus curvipennis). BMC Evolutionary Biology, 11(1), 38. https://doi.org/10.1186/1471-2148-11-38Grace, J. B. (2006). Part I - A beginning. In Structural Equation Modeling and Natural Systems (pp. 3–33).Guan, B. cai, Liu, X., Gong, X., Cai, Q. ying, & Ge, G. (2019). Genetic landscape and landscape connectivity of Ceratopteris thalictroides, an endangered aquatic fern. Ecological Informatics, 53, 100973. https://doi.org/10.1016/J.ECOINF.2019.100973Guan, B., Gao, J., Chen, W., Gong, X., & Ge, G. (2021). The Effects of Climate Change on Landscape Connectivity and Genetic Clusters in a Small Subtropical and Warm-Temperate Tree. Frontiers in Plant Science, 12, 671336. https://doi.org/10.3389/FPLS.2021.671336/BIBTEXGuillot, G., & Rousset, F. (2013). Dismantling the Mantel tests. Methods in Ecology and Evolution, 4(4), 336–344. https://doi.org/https://doi.org/10.1111/2041-210x.12018Gutiérrez-Pinto, N., Cuervo, A. M., Miranda, J., Pérez-Emán, J. L., Brumfield, R. T., & Cadena, C. D. (2012). Non-monophyly and deep genetic differentiation across low-elevation barriers in a Neotropical montane bird (Basileuterus tristriatus; Aves: Parulidae). Molecular Phylogenetics and Evolution, 64(1), 156–165. https://doi.org/https://doi.org/10.1016/j.ympev.2012.03.011Halffter, G. (1987). Biogeography of the Montane Entomofauna of Mexico and Central America. Annual Review of Entomology, 32(1), 95–114. https://doi.org/10.1146/annurev.en.32.010187.000523Harpending, H., & Rogers, A. (1987). On Wright’s Mechanism for Intergroup Selection. J. Theor. Biol, 127, 51–61.Harrison, S. (1991). Local extinction in a metapopulation context: an empirical evaluation. Biological Journal of the Linnean Society, 42(1–2), 73–88. https://doi.org/10.1111/j.1095-8312.1991.tb00552.xHarte, J., & Shaw, R. (1995). Shifting Dominance Within a Montane Vegetation Community: Results of a Climate-Warming Experiment. Science, 267(5199), 876–880. https://doi.org/10.1126/SCIENCE.267.5199.876Hartl, D. L., & Clark, G. C. (1997). Principles of Population Genetics. Sinauer Associates.Hartlaub, G. (1852). Descriptions de quelques nouvelles especes d’Oiseaux. In F.-É. Guérin-Méneville (Ed.), Revue et magasin de zoologie pure et appliquée (Vol. 2, p. 5). Bureau de la revue et magasin de zoologie.Hausdorf, B., & Hennig, C. (2020). Species delimitation and geography. Molecular Ecology Resources, 20(4), 950–960. https://doi.org/https://doi.org/10.1111/1755-0998.13184Hausfather, Z., & Peters, G. P. (2020a). Emissions – the ‘business as usual’ story is misleading. Nature 2021 577:7792, 577(7792), 618–620. https://doi.org/10.1038/d41586-020-00177-3Hausfather, Z., & Peters, G. P. (2020b). RCP8.5 is a problematic scenario for near-term emissions. Proceedings of the National Academy of Sciences, 117(45), 27791–27792. https://doi.org/10.1073/pnas.2017124117Hawkins, E., & Sutton, R. (2009). The Potential to Narrow Uncertainty in Regional Climate Predictions. Bulletin of the American Meteorological Society, 90(8), 1095–1108. https://doi.org/10.1175/2009BAMS2607.1Hendry, A. P. (2004). Selection against migrants contributes to the rapid evolution of ecologically dependent reproductive isolation. Evolutionary Ecology Research, 6, 1219–1236.Hendry, A. P. (2009). Ecological speciation! Or the lack thereof? Canadian Journal of Fisheries and Aquatic Sciences, 66(8), 1383–1398. https://doi.org/10.1139/F09-074Hendry, A. P., Nosil, P., & Rieseberg, L. H. (2007). The speed of ecological speciation. Functional Ecology, 21(3), 455. https://doi.org/10.1111/J.1365-2435.2006.01240.XHewitt, G. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society, 58(3), 247–276. https://doi.org/10.1006/BIJL.1996.0035Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. Nature 2000 405:6789, 405(6789), 907–913. https://doi.org/10.1038/35016000Hickling, R., Roy, D. B., Hill, J. K., Fox, R., & Thomas, C. D. (2006). The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology, 12(3), 450–455. https://doi.org/10.1111/J.1365-2486.2006.01116.XHidalgo Aranzamendi, N., Hall, M. L., Kingma, S. A., van de Pol, M., & Peters, A. (2019). Rapid plastic breeding response to rain matches peak prey abundance in a tropical savanna bird. Journal of Animal Ecology, 88(11), 1799–1811. https://doi.org/10.1111/1365-2656.13068Hijmans, R. J., Van Etten, J., Cheng, J., Mattiuzzi, M., Sumner, M., Greenberg, J. A., Lamigueiro, O. P., Bevan, A., Racine, E. B., & Shortridge, A. (2015). Package ‘raster’. R Package, 734, 473.Hoffmann, A. A., & Sgró, C. M. (2011). Climate change and evolutionary adaptation. Nature 2011 470:7335, 470(7335), 479–485. https://doi.org/10.1038/nature09670Holsinger, K. E. (2001). Natural Selection. In S. Brenner & J. H. Miller (Eds.), Encyclopedia of Genetics (pp. 1291–1297). Elsevier. https://doi.org/10.1006/rwgn.2001.1161Holt, R. D., & Gaines, M. S. (1992). Analysis of adaptation in heterogeneous landscapes: Implications for the evolution of fundamental niches. Evolutionary Ecology, 6(5), 433–447. https://doi.org/10.1007/BF02270702/METRICSHua, X., & Wiens, J. J. (2013). How does climate influence speciation? American Naturalist, 182(1), 1–12. https://doi.org/10.1086/670690Huang, Q., Wu, L.-Y., & Zhang, X.-S. (2013). Corbi: a new R package for biological network alignment and querying. BMC Systems Biology, 7(2), S6. https://doi.org/10.1186/1752-0509-7-S2-S6Huidobro, L., Morrone, J. J., Villalobos, J. L., & Álvarez, F. (2006). Distributional patterns of freshwater taxa (fishes, crustaceans and plants) from the Mexican Transition Zone. Journal of Biogeography, 33(4), 731–741. https://doi.org/https://doi.org/10.1111/j.1365-2699.2005.01400.xHutchison, D. W., & Templeton, A. R. (1999). Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution, 53(6), 1898–1914. https://doi.org/10.1111/J.1558-5646.1999.TB04571.XInoue, K., & Berg, D. J. (2017). Predicting the effects of climate change on population connectivity and genetic diversity of an imperiled freshwater mussel, Cumberlandia monodonta (Bivalvia: Margaritiferidae), in riverine systems. Global Change Biology, 23(1), 94–107. https://doi.org/10.1111/GCB.13369Janes, J. K., & Batista, P. D. (2016). The Role of Population Genetic Structure in Understanding and Managing Pine Beetles. In Advances in Insect Physiology (Vol. 50, pp. 75–100). Academic Press Inc. https://doi.org/10.1016/bs.aiip.2016.01.001Jenkins, D. G., Carey, M., Czerniewska, J., Fletcher, J., Hether, T., Jones, A., Knight, S., Knox, J., Long, T., Mannino, M., Mcguire, M., Riffle, A., Segelsky, S., Shappell, L., Sterner, A., Strickler, T., Tursi, R., Jenkins, D. G., Carey, M., … Tursi, R. (2010). A meta-analysis of isolation by distance: relic or reference standard for landscape genetics? Ecography, 33(2), 315–320. https://doi.org/10.1111/J.1600-0587.2010.06285.XJiménez-Valverde, A. (2012). Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecology and Biogeography, 21(4), 498–507. https://doi.org/https://doi.org/10.1111/j.1466-8238.2011.00683.xJohnson, J. S., Gaddis, K. D., Cairns, D. M., Konganti, K., & Krutovsky, K. V. (2017). Landscape genomic insights into the historic migration of mountain hemlock in response to Holocene climate change. American Journal of Botany, 104(3), 439–450. https://doi.org/10.3732/AJB.1600262Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genetics, 11. https://doi.org/10.1186/1471-2156-11-94Jorgensen, T. H., Richardson, D. S., & Andersson, S. (2006). Comparative Analyses of Population Structure in Two Subspecies of Nigella degenii: Evidence for Diversifying Selection on Pollen-Color Dimorphisms. Evolution, 60(3), 518–528. http://www.jstor.org/stable/4095314Karl, S. A., Toonen, R. J., Grant, W. S., & Bowen, B. W. (2012). Common misconceptions in molecular ecology: echoes of the modern synthesis. Molecular Ecology, 21(17), 4171–4189. https://doi.org/10.1111/J.1365-294X.2012.05576.XKass, J. M., Muscarella, R., Galante, P. J., Bohl, C. L., Pinilla-Buitrago, G. E., Boria, R. A., Soley-Guardia, M., & Anderson, R. P. (2021). ENMeval 2.0: Redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods in Ecology and Evolution, 12(9), 1602–1608. https://doi.org/https://doi.org/10.1111/2041-210X.13628Kessler Rios, M., Londoño, G., & Biancucci, A. (2008). Notes on birds that follow army ants in the northern Andes. ORNITOLOGIA NEOTROPICAL, 19.Kim, D., Taylor, A. T., & Near, T. J. (2022). Phylogenomics and species delimitation of the economically important Black Basses (Micropterus). Scientific Reports, 12(1), 9113. https://doi.org/10.1038/s41598-022-11743-2Kimura, M., & Weisss, G. H. (1964). The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics, 49, 561–576.Kozakiewicz, C. P., Carver, S., & Burridge, C. P. (2018). Under-representation of avian studies in landscape genetics. Ibis, 160(1), 1–12. https://doi.org/10.1111/ibi.12532Kremer, A., Ronce, O., Robledo-Arnuncio, J. J., Guillaume, F., Bohrer, G., Nathan, R., Bridle, J. R., Gomulkiewicz, R., Klein, E. K., Ritland, K., Kuparinen, A., Gerber, S., & Schueler, S. (2012). Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecology Letters, 15(4), 378–392. https://doi.org/10.1111/J.1461-0248.2012.01746.XLandguth, E. L., & Cushman, S. A. (2010). cdpop: A spatially explicit cost distance population genetics program. Molecular Ecology Resources, 10(1), 156–161. https://doi.org/10.1111/J.1755-0998.2009.02719.XLee, C. R., & Mitchell-Olds, T. (2011). Quantifying effects of environmental and geographical factors on patterns of genetic differentiation. Molecular Ecology, 20(22), 4631–4642. https://doi.org/10.1111/j.1365-294X.2011.05310.xLegendre, P., & Fortin, M.-J. (2010). Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Molecular Ecology Resources, 10(5), 831–844. https://doi.org/https://doi.org/10.1111/j.1755-0998.2010.02866.xLegendre, P., & Troussellier, M. (1988). Aquatic heterotrophic bacteria: Modeling in the presence of spatial autocorrelation. Limnology and Oceanography, 33(5), 1055–1067. https://doi.org/10.4319/lo.1988.33.5.1055Lenoir, J., Gégout, J. C., Marquet, P. A., De Ruffray, P., & Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 320(5884), 1768–1771. https://doi.org/10.1126/SCIENCE.1156831/SUPPL_FILE/LENOIR.SOM.PDFLeonardi, S., Gentilesca, T., Guerrieri, R., Ripullone, F., Magnani, F., Mencuccini, M., Noije, T. V., & Borghetti, M. (2012). Assessing the effects of nitrogen deposition and climate on carbon isotope discrimination and intrinsic water-use efficiency of angiosperm and conifer trees under rising CO2 conditions. Global Change Biology, 18(9), 2925–2944. https://doi.org/10.1111/J.1365-2486.2012.02757.XLobo, J. M., Jiménez-Valverde, A., & Real, R. (2008). AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17(2), 145–151. https://doi.org/https://doi.org/10.1111/j.1466-8238.2007.00358.xLovette, I. J., Pérez-Emán, J. L., Sullivan, J. P., Banks, R. C., Fiorentino, I., Córdoba-Córdoba, S., Echeverry-Galvis, M., Barker, F. K., Burns, K. J., Klicka, J., Lanyon, S. M., & Bermingham, E. (2010). A comprehensive multilocus phylogeny for the wood-warblers and a revised classification of the Parulidae (Aves). Molecular Phylogenetics and Evolution, 57(2), 753–770. https://doi.org/10.1016/j.ympev.2010.07.018Lozano-Fuentes, S., Fernandez-Salas, I., de Lourdes Munoz, M., Garcia-Rejon, J., Olson, K. E., Beaty, B. J., & Black IV, W. C. (2009). The Neovolcanic Axis Is a Barrier to Gene Flow among Aedes aegypti Populations in Mexico That Differ in Vector Competence for Dengue 2 Virus. PLOS Neglected Tropical Diseases, 3(6), e468-. https://doi.org/10.1371/journal.pntd.0000468Lu, G., & Bernatchez, L. (1999). Correlated trophic specialization and genetic divergence in sympatric lake whitefish ecotypes (Coregonus clupeaformis): support for the ecological speciation hypothesis. Evolution, 53(5), 1491–1505. https://doi.org/10.1111/j.1558-5646.1999.tb05413.xLurwanu, Y., Wang, Y. P., Wu, E. J., He, D. C., Waheed, A., Nkurikiyimfura, O., Wang, Z., Shang, L. P., Yang, L. N., & Zhan, J. (2021). Increasing temperature elevates the variation and spatial differentiation of pesticide tolerance in a plant pathogen. Evolutionary Applications, 14(5), 1274–1285. https://doi.org/10.1111/EVA.13197Maassen, G. H., & Bakker, A. B. (2001). Suppressor Variables in Path Models: Definitions and Interpretations. Sociological Methods & Research, 30(2), 241–270. https://doi.org/10.1177/0049124101030002004Machado-Stredel, F., & Pérez-Emán, J. L. (2017). Using morphometrics to determine sex in a neotropical passerine: the gray‐breasted wood‐wren (Henicorhina leucophrys). Ornitología Neotropical, 28, 147–153. https://doi.org/10.58843/ornneo.v28i0.240Mainwaring, M. C., Nord, A., & Sharp, S. P. (2021). Editorial: The Impact of Weather on the Behavior and Ecology of Birds. In Frontiers in Ecology and Evolution (Vol. 9). Frontiers Media S.A. https://doi.org/10.3389/fevo.2021.777478Mallet, J. (1995). A species definition for the modern synthesis. Trends in Ecology & Evolution, 10(7), 294–299. https://doi.org/https://doi.org/10.1016/0169-5347(95)90031-4Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research.Manthey, J. D., & Moyle, R. G. (2015). Isolation by environment in White‐breasted Nuthatches ( Sitta carolinensis ) of the Madrean Archipelago sky islands: a landscape genomics approach. Molecular Ecology, 24(14), 3628–3638. https://doi.org/10.1111/mec.13258Mapelli, F. J., Mora, M. S., Mirol, P. M., & Kittlein, M. J. (2012). Population structure and landscape genetics in the endangered subterranean rodent Ctenomys porteousi. Conservation Genetics, 13(1), 165–181. https://doi.org/10.1007/S10592-011-0273-2/METRICSMarcondes, R. S., & Brumfield, R. T. (2019). Fifty shades of brown: Macroevolution of plumage brightness in the Furnariida, a large clade of drab Neotropical passerines. Evolution, 73(4), 704–719. https://doi.org/10.1111/evo.13707Marcondes, R. S., Nations, J. A., Seeholzer, G. F., & Brumfield, R. T. (2021). Rethinking Gloger’s Rule: Climate, Light Environments, and Color in a Large Family of Tropical Birds (Furnariidae). Https://Doi.Org/10.1086/713386, 197(5), 592–606. https://doi.org/10.1086/713386Martin, T. E., Oteyza, J. C., Boyce, A. J., Lloyd, P., & Ton, R. (2015). Adult Mortality Probability and Nest Predation Rates Explain Parental Effort in Warming Eggs with Consequences for Embryonic Development Time. Https://Doi.Org/10.1086/681986, 186(2), 223–236. https://doi.org/10.1086/681986Martínez-Cruz, B., Godoy, J. A., & Negro, J. J. (2007). Population fragmentation leads to spatial and temporal genetic structure in the endangered Spanish imperial eagle. Molecular Ecology, 16(3), 477–486. https://doi.org/10.1111/j.1365-294X.2007.03147.xMcBride, C. S., & Singer, M. C. (2010). Field Studies Reveal Strong Postmating Isolation between Ecologically Divergent Butterfly Populations. PLoS Biology, 8(10), e1000529. https://doi.org/10.1371/journal.pbio.1000529McCairns, R. J. S., & Bernatchez, L. (2008). Landscape genetic analyses reveal cryptic population structure and putative selection gradients in a large-scale estuarine environment. Molecular Ecology, 17(17), 3901–3916. https://doi.org/10.1111/J.1365-294X.2008.03884.XMcDonald, P. G., Olsen, P. D., & Cockburn, A. (2004). Weather dictates reproductive success and survival in the Australian brown falcon Falco berigora. Journal of Animal Ecology, 73(4), 683–692. https://doi.org/10.1111/J.0021-8790.2004.00842.XMcGowan, A., Sharp, S. P., & Hatchwell, B. J. (2004). The Structure and Function of Nests of Long-Tailed Tits Aegithalos caudatus. Functional Ecology, 18(4), 578–583. http://www.jstor.org/stable/3599074McIntyre, N. E., Wright, C. K., Swain, S., Hayhoe, K., Liu, G., Schwartz, F. W., & Henebry, G. M. (2014). Climate forcing of wetland landscape connectivity in the Great Plains. Frontiers in Ecology and the Environment, 12(1), 59–64. https://doi.org/10.1890/120369McRae, B. H. (2006). Isolation by resistance. Evolution, 60(8), 1551. https://doi.org/10.1554/05-321.1McRae, B. H., & Beier, P. (2007). Circuit theory predicts gene flow in plant and animal populations. Proceedings of the National Academy of Sciences, 104(50), 19885–19890. https://doi.org/10.1073/pnas.0706568104Mendoza, A. M., Bolívar-García, W., Vázquez-Domínguez, E., Ibáñez, R., & Parra Olea, G. (2019). The role of Central American barriers in shaping the evolutionary history of the northernmost glassfrog, Hyalinobatrachium fleischmanni (Anura: Centrolenidae). PeerJ, 7, e6115. https://doi.org/10.7717/peerj.6115Michels, E., Cottenie, K., Neys, L., De Gelas, K., Coppin, P., & De Meester, L. (2001). Geographical and genetic distances among zooplankton populations in a set of interconnected ponds: a plea for using GIS modelling of the effective geographical distance. Molecular Ecology, 10(8), 1929–1938. https://doi.org/10.1046/J.1365-294X.2001.01340.XMira, S., Arnaud-Haond, S., Palma, L., Cancela, M. L., & Beja, P. (2013). Large-scale population genetic structure in Bonelli’s Eagle Aquila fasciata. Ibis, 155(3), 485–498. https://doi.org/10.1111/ibi.12065Monge, O., Maggini, I., Schulze, C. H., Dullinger, S., & Fusani, L. (2023). Physiologically vulnerable or resilient? Tropical birds, global warming, and redistributions. Ecology and Evolution, 13(4), e9985. https://doi.org/10.1002/ECE3.9985Moreno-Contreras, I., Sánchez-González, L. A., Arizmendi, M. del C., Prieto-Torres, D. A., & Navarro-Sigüenza, A. G. (2020). Climatic Niche Evolution in the Arremon brunneinucha Complex (Aves: Passerellidae) in a Mesoamerican Landscape. Evolutionary Biology, 47(2), 123–132. https://doi.org/10.1007/s11692-020-09498-7Moritz, C. (1994). Defining ‘Evolutionarily Significant Units’ for conservation. Trends in Ecology & Evolution, 9(10), 373–375. https://doi.org/10.1016/0169-5347(94)90057-4Mosca, E., Eckert, A. J., Di Pierro, E. A., Rocchini, D., La Porta, N., Belletti, P., & Neale, D. B. (2012). The geographical and environmental determinants of genetic diversity for four alpine conifers of the European Alps. Molecular Ecology, 21(22), 5530–5545. https://doi.org/10.1111/MEC.12043Moss, R., Babiker, M., Brinkman, S., Calvo, E., Carter, T., Edmonds, J., Elgizouli, I., Emori, S., Erda, L., Hibbard, K., Jones, R., Kainuma, M., Kelleher, J., Lamarque, J. F., Manning, M., Matthews, B., Meehl, J., Meyer, L., Mitchell, J., … Zurek, M. (2008). Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts and Response Strategies. https://archive.ipcc.ch/pdf/supporting-material/expert-meeting-report-scenarios.pdfMumme, R. L. (2002). Scare tactics in a neotropical warbler: white tail feathers enhance flush-pursuit foraging performance in the slate-throated redstart (Myioborus miniatus). The Auk, 119(4), 1024–1035. https://academic.oup.com/auk/article/119/4/1024/5562101Mumme, R. L. (2015). Demography of Slate-throated Redstarts (Myioborus miniatus): A non-migratory Neotropical warbler. Journal of Field Ornithology, 86(2), 89–102. https://doi.org/10.1111/jofo.12093Muscarella, R., Galante, P. J., Soley-Guardia, M., Boria, R. A., Kass, J. M., Uriarte, M., & Anderson, R. P. (2014). ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution, 5(11), 1198–1205. https://doi.org/https://doi.org/10.1111/2041-210X.12261Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling? Ecography, 37(2), 191–203. https://doi.org/10.1111/j.1600-0587.2013.00205.xNanninga, G., Saenz-Agudelo, P., Manica, A., & Berumen, M. (2013). Environmental gradients predict the genetic structure of a coral reef fish in the Red Sea. Molecular Ecology, 23. https://doi.org/10.1111/mec.12623Nei, M., & Nozawa, M. (2011). Roles of Mutation and Selection in Speciation: From Hugo de Vries to the Modern Genomic Era. Genome Biology and Evolution, 3(1), 812–829. https://doi.org/10.1093/GBE/EVR028Nilsson, A. L. K., Reitan, T., Skaugen, T., L’Abée-Lund, J. H., Gamelon, M., Jerstad, K., Røstad, O. W., Slagsvold, T., Stenseth, N. C., Vøllestad, L. A., & Walseng, B. (2020). Location Is Everything, but Climate Gets a Share: Analyzing Small-Scale Environmental Influences on Breeding Success in the White-Throated Dipper. Frontiers in Ecology and Evolution, 8, 542846. https://doi.org/10.3389/FEVO.2020.542846/BIBTEXNosil, P. (2004). Reproductive isolation caused by visual predation on migrants between divergent environments. Proceedings of the Royal Society B: Biological Sciences, 271(1547), 1521–1528. https://doi.org/10.1098/rspb.2004.2751Nyári, Á. S., & Reddy, S. (2013). Comparative Phyloclimatic Analysis and Evolution of Ecological Niches in the Scimitar Babblers (Aves: Timaliidae: Pomatorhinus). PLOS ONE, 8(2), e55629. https://doi.org/10.1371/JOURNAL.PONE.0055629Öberg, M., Arlt, D., Pärt, T., Laugen, A. T., Eggers, S., & Low, M. (2015). Rainfall during parental care reduces reproductive and survival components of fitness in a passerine bird. Ecology and Evolution, 5(2), 345. https://doi.org/10.1002/ECE3.1345O’donnell, M. S., & Ignizio, D. A. (2012). Bioclimatic Predictors for Supporting Ecological Applications in the Conterminous United States. http://www.usgs.gov/pubprodOksanen, J. (2013). Vegan: ecological diversity. R Project, 368, 1–11.Ornelas, J. F., González, C., Hernández-Baños, B. E., & García-Moreno, J. (2016). Molecular and iridescent feather reflectance data reveal recent genetic diversification and phenotypic differentiation in a cloud forest hummingbird. Ecology and Evolution, 6(4), 1104–1127. https://doi.org/https://doi.org/10.1002/ece3.1950Orsini, L., Vanoverbeke, J., Swillen, I., Mergeay, J., & De Meester, L. (2013). Drivers of population genetic differentiation in the wild: Isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Molecular Ecology, 22(24), 5983–5999. https://doi.org/10.1111/mec.12561Ortiz-Rodriguez, A. E., Licona-Vera, Y., Vásquez-Aguilar, A. A., Hernández-Soto, M., López-Huicochea, E. A., & Ornelas, J. F. (2020). Genetic differentiation among Psittacanthus rhynchanthus (Loranthaceae) populations: novel phylogeographic patterns in the Mesoamerican tropical lowlands. Plant Systematics and Evolution, 306(1), 10. https://doi.org/10.1007/s00606-020-01638-yParding, K. M., Dobler, A., McSweeney, C. F., Landgren, O. A., Benestad, R., Erlandsen, H. B., Mezghani, A., Gregow, H., Räty, O., Viktor, E., El Zohbi, J., Christensen, O. B., & Loukos, H. (2020). GCMeval – An interactive tool for evaluation and selection of climate model ensembles. Climate Services, 18, 100167. https://doi.org/10.1016/J.CLISER.2020.100167Parisod, C., & Christin, P. A. (2008). Genome-wide association to fine-scale ecological heterogeneity within a continuous population of Biscutella laevigata (Brassicaceae). New Phytologist, 178(2), 436–447. https://doi.org/10.1111/J.1469-8137.2007.02361.XParker, T. H., Becker, C. D., Sandercock, B. K., & Agreda, A. E. (2006). Apparent Survival Estimates for Five Species of Tropical Birds in an Endangered Forest Habitat in Western Ecuador. Biotropica, 38(6), 764–769. https://doi.org/10.1111/j.1744-7429.2006.00210.xParmesan, C. (2006). Ecological and Evolutionary Responses to Recent Climate Change. Https://Doi.Org/10.1146/Annurev.Ecolsys.37.091305.110100, 37, 637–669. https://doi.org/10.1146/ANNUREV.ECOLSYS.37.091305.110100Paulo, P., Teófilo, F. H., Bertuol, C., Polo, É., Moncrieff, A. E., Bandeira, L. N., Nuñez-Penichet, C., Fernandes, I. Y., Bosholn, M., Machado, A. F., Luna, L. W., Peçanha, W. T., Rampini, A. P., Hashimoto, S., Dias, C., Araripe, J., Aleixo, A., do Rêgo, P. S., Hrbek, T., … Anciães, M. (2023). Geographic Drivers of Genetic and Plumage Color Diversity in the Blue-Crowned Manakin. Evolutionary Biology 2023, 1–19. https://doi.org/10.1007/S11692-023-09613-4Peakall, R., Ruibal, M., & Lindenmayer, D. B. (2003). Spatial Autocorrelation Analysis Offers New Insights into Gene Flow in the Australian Bush Rat, Rattus fuscipes. In Source: Evolution (Vol. 57, Issue 5).Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics, 28(19), 2537–2539. https://doi.org/10.1093/bioinformatics/bts460Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12(5), 361–371. https://doi.org/10.1046/J.1466-822X.2003.00042.XPease, K. M., Freedman, A. H., Pollinger, J. P., McCormack, J. E., Buermann, W., Rodzen, J., Banks, J., Meredith, E., Bleich, V. C., Schaefer, R. J., Jones, K., & Wayne, R. K. (2009). Landscape genetics of California mule deer (Odocoileus hemionus): The roles of ecological and historical factors in generating differentiation. Molecular Ecology, 18(9), 1848–1862. https://doi.org/10.1111/j.1365-294X.2009.04112.xPérez-Emán, J. L. (2005). Molecular phylogenetics and biogeography of the Neotropical redstarts (Myioborus; Aves, Parulinae). Molecular Phylogenetics and Evolution, 37(2), 511–528. https://doi.org/10.1016/j.ympev.2005.04.013Pérez-Emán, J. L., Mumme, R. L., & Jabłonński, P. G. (2010). Phylogeography and Adaptive Plumage Evolution in Central American Subspecies of the Slate-Throated Redstart (Myioborus miniatus). Ornithological Monographs, 67(1), 90–102. https://doi.org/10.1525/om.2010.67.1.90Pérez-Rodríguez, R., Esquivel-Bobadilla, S., Orozco-Ruíz, A. M., Olivas-Hernández, J. L., & García-De León, F. J. (2021). Genetic structure and historical and contemporary gene flow of Astyanax mexicanus in the Gulf of Mexico slope: a microsatellite-based analysis. PeerJ, 9, e10784. https://doi.org/10.7717/peerj.10784Petkova, D., Novembre, J., & Stephens, M. (2015). Visualizing spatial population structure with estimated effective migration surfaces. Nature Genetics, 48(1), 94–100. https://doi.org/10.1038/ng.3464Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: an open-source release of Maxent. Ecography, 40(7), 887–893. https://doi.org/10.1111/ecog.03049Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31(2), 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.xPilot, M., Jedrzejewski, W., Branicki, W., Sidorovich, V. E., Jedrzejewska, B., Stachura, K., & Funk, S. M. (2006). Ecological factors influence population genetic structure of European grey wolves. Molecular Ecology, 15(14), 4533–4553. https://doi.org/10.1111/J.1365-294X.2006.03110.XPollock, H. S., Brawn, J. D., & Cheviron, Z. A. (2021). Heat tolerances of temperate and tropical birds and their implications for susceptibility to climate warming. Functional Ecology, 35(1), 93–104. https://doi.org/10.1111/1365-2435.13693/SUPPINFOPopovic, D., Acanski, J., Djan, M., Obreht, D., Vujic, A., & Radenkovic, S. (2015). Sibling species delimitation and nomenclature of the Merodon avidus complex (Diptera: Syrphidae). Europuean Journal of Entomology, 112(4), 790–809. https://www.eje.cz/artkey/eje-201504-0025.phpPorter, A. H. (1990). Testing Nominal Species Boundaries Using Gene Flow Statistics: The Taxonomy of Two Hybridizing Admiral Butterflies (Limenitis: Nymphalidae). Systematic Zoology, 39(2), 131–147. https://doi.org/10.2307/2992451Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics, 945–959. http://www.stats.ox.ac.uk/pritch/home.html.Provan, J., & Bennett, K. D. (2008). Phylogeographic insights into cryptic glacial refugia. Trends in Ecology & Evolution, 23(10), 564–571. https://doi.org/10.1016/J.TREE.2008.06.010Quiroga-Carmona, M., & D’Elía, G. (2022). Climate influences the genetic structure and niche differentiation among populations of the olive field mouse Abrothrix olivacea (Cricetidae: Abrotrichini). Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-26937-xRalston, J., & Kirchman, J. J. (2013). Predicted range shifts in North American boreal forest birds and the effect of climate change on genetic diversity in blackpoll warblers (Setophaga striata). Conservation Genetics, 14(2), 543–555. https://doi.org/10.1007/s10592-012-0418-yRancilhac, L., Miralles, A., Geniez, P., Mendez-Aranda, D., Beddek, M., Brito, J. C., Leblois, R., & Crochet, P.-A. (2023). Phylogeographic breaks and how to find them: An empirical attempt at separating vicariance from isolation by distance in a lizard with restricted dispersal. BioRxiv, 2022.09.30.510256. https://doi.org/10.1101/2022.09.30.510256Rannala, B. (2015). The art and science of species delimitation. Current Zoology, 61(5), 846–853. https://doi.org/10.1093/czoolo/61.5.846Räsänen, K., & Hendry, A. P. (2008). Disentangling interactions between adaptive divergence and gene flow when ecology drives diversification. Ecology Letters, 11(6), 624–636. https://doi.org/10.1111/J.1461-0248.2008.01176.XReh, W., & Seitz, A. (1990). The influence of land use on the genetic structure of populations of the common frog Rana temporaria. Biological Conservation, 54(3), 239–249. https://doi.org/10.1016/0006-3207(90)90054-SReneerkens, J., Schmidt, N. M., Gilg, O., Hansen, J., Hansen, L. H., Moreau, J., & Piersma, T. (2016). Effects of food abundance and early clutch predation on reproductive timing in a high Arctic shorebird exposed to advancements in arthropod abundance. Ecology and Evolution, 6(20), 7375–7386. https://doi.org/10.1002/ECE3.2361Rizvanovic, M., Kennedy, J. D., Nogués-Bravo, D., & Marske, K. A. (2019). Persistence of genetic diversity and phylogeographic structure of three New Zealand forest beetles under climate change. Diversity and Distributions, 25(1), 142–153. https://doi.org/https://doi.org/10.1111/ddi.12834Ronce, O. (2007). How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annual Review of Ecology, Evolution, and Systematics, 38, 231–253. https://doi.org/10.1146/annurev.ecolsys.38.091206.095611Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1–36. https://doi.org/10.18637/jss.v048.i02Rovito, S. M., Parra-Olea, G., Recuero, E., & Wake, D. B. (2015). Diversification and biogeographical history of Neotropical plethodontid salamanders. Zoological Journal of the Linnean Society, 175(1), 167–188. https://doi.org/10.1111/zoj.12271Rueda-M, N., Salgado-Roa, F. C., Gantiva-Q, C. H., Pardo-Díaz, C., & Salazar, C. (2021). Environmental Drivers of Diversification and Hybridization in Neotropical Butterflies. Frontiers in Ecology and Evolution, 9. https://doi.org/10.3389/fevo.2021.750703Ruiz Miñano, M., While, G. M., Yang, W., Burridge, C. P., Salvi, D., & Uller, T. (2022). Population genetic differentiation and genomic signatures of adaptation to climate in an abundant lizard. Heredity 2022 128:4, 128(4), 271–278. https://doi.org/10.1038/s41437-022-00518-0Ruiz-Sanchez, E., & Ornelas, J. F. (2014). Phylogeography of Liquidambar styraciflua (Altingiaceae) in Mesoamerica: survivors of a Neogene widespread temperate forest (or cloud forest) in North America? Ecology and Evolution, 4(4), 311–328. https://doi.org/https://doi.org/10.1002/ece3.938Rundle, H. D., & Nosil, P. (2005). Ecological speciation. Ecology Letters, 8(3), 336–352. https://doi.org/10.1111/j.1461-0248.2004.00715.xSampson, J., & Byrne, M. (2022). Genetic Differentiation among Subspecies of Banksia nivea (Proteaceae) Associated with Expansion and Habitat Specialization. Diversity 2022, Vol. 14, Page 98, 14(2), 98. https://doi.org/10.3390/D14020098Sasaki, M. C., & Dam, H. G. (2020). Genetic differentiation underlies seasonal variation in thermal tolerance, body size, and plasticity in a short-lived copepod. Ecology and Evolution, 10(21), 12200–12210. https://doi.org/10.1002/ECE3.6851Schluter, D. (2009). Evidence for ecological speciation and its alternative. Science, 323(5915), 737–741. https://doi.org/10.1126/SCIENCE.1160006/SUPPL_FILE/SCHLUTER.SOM.PDFSchluter, D. (2000). The ecology of adaptive radiation. Oxford University Press. https://global.oup.com/academic/product/the-ecology-of-adaptive-radiation-9780198505228Schoener, T. W. (1968). The Anolis Lizards of Bimini: Resource Partitioning in a Complex Fauna. Ecology, 49(4), 704–726. https://doi.org/https://doi.org/10.2307/1935534Schwartz, M. K., & McKelvey, K. S. (2009). Why sampling scheme matters: The effect of sampling scheme on landscape genetic results. Conservation Genetics, 10(2), 441–452. https://doi.org/10.1007/S10592-008-9622-1/METRICSScotta, M. I., Margris, L., Sellier, N., Warot, S., Gatti, F., Siccardi, F., Gibert, P., Vercken, E., & Ris, N. (2021). Genetic variability, population differentiation, and correlations for thermal tolerance indices in the minute wasp, trichogramma cacoeciae. Insects, 12(11), 1013. https://doi.org/10.3390/INSECTS12111013/S1Seeholzer, G. F., Claramunt, S., & Brumfield, R. T. (2017). Niche evolution and diversification in a Neotropical radiation of birds (Aves: Furnariidae). Evolution, 71(3), 702–715. https://doi.org/10.1111/EVO.13177Semlitsch, R. D., & Bodie, J. R. (1998). Are Small, Isolated Wetlands Expendable? Conservation Biology, 12(5), 1129–1133. https://doi.org/10.1046/j.1523-1739.1998.98166.xSexton, J. P., Hangartner, S. B., & Hoffmann, A. A. (2014). Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution, 68(1), 1–15. https://doi.org/10.1111/evo.12258Shafer, A. B. A., Côté, S. D., & Coltman, D. W. (2011a). Hot spots of genetic diversity descended from multiple pleistocene refugia in an alpine ungulate. Evolution, 65(1), 125–138. http://www.jstor.org/stable/27920037Shafer, A. B. A., Côté, S. D., & Coltman, D. W. (2011b). Hot spots of genetic diversity descended from multiple pleistocene refugia in an alpine ungulate. Evolution, 65(1), 125–138. https://doi.org/10.1111/j.1558-5646.2010.01109.xShafer, A. B. A., & Wolf, J. B. W. (2013). Widespread evidence for incipient ecological speciation: A meta-analysis of isolation-by-ecology. Ecology Letters, 16(7), 940–950. https://doi.org/10.1111/ele.12120Sheffield, J., & Wood, E. F. (2008). Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dynamics, 31(1), 79–105. https://doi.org/10.1007/S00382-007-0340-Z/METRICSShi, M. M., Michalski, S. G., Chen, X. Y., & Durka, W. (2011). Isolation by Elevation: Genetic Structure at Neutral and Putatively Non-Neutral Loci in a Dominant Tree of Subtropical Forests, Castanopsis eyrei. PLOS ONE, 6(6), e21302. https://doi.org/10.1371/JOURNAL.PONE.0021302Shirk, A. J., & Cushman, S. A. (2011). sGD: software for estimating spatially explicit indices of genetic diversity. Molecular Ecology Resources, 11(5), 922–934. https://doi.org/10.1111/j.1755-0998.2011.03035.xShirk, A. J., & Cushman, S. A. (2014). Spatially-explicit estimation of Wright’s neighborhood size in continuous populations. Frontiers in Ecology and Evolution, 2(OCT), 101846. https://doi.org/10.3389/FEVO.2014.00062/BIBTEXSiepielski, A. M., Morrissey, M. B., Buoro, M., Carlson, S. M., Caruso, C. M., Clegg, S. M., Coulson, T., DiBattista, J., Gotanda, K. M., Francis, C. D., Hereford, J., Kingsolver, J. G., Augustine, K. E., Kruuk, L. E. B., Martin, R. A., Sheldon, B. C., Sletvold, N., Svensson, E. I., Wade, M. J., & MacColl, A. D. C. (2017). Precipitation drives global variation in natural selection. Science, 355(6328), 959–962. https://doi.org/10.1126/SCIENCE.AAG2773/SUPPL_FILE/SIEPIELSKI.SM_CORRECTED.PDFSlatkin, M. (1987). Gene Flow and the Geographic Structure of Natural Populations. Science, 236, 787–792. http://science.sciencemag.org/Smith, B. T., McCormack, J. E., Cuervo, A. M., Hickerson, M. J., Aleixo, A., Cadena, C. D., Pérez-Emán, J., Burney, C. W., Xie, X., Harvey, M. G., Faircloth, B. C., Glenn, T. C., Derryberry, E. P., Prejean, J., Fields, S., & Brumfield, R. T. (2014). The drivers of tropical speciation. Nature, 515(7527), 406–409. https://doi.org/10.1038/nature13687Smouse, P. E., Long, J. C., & Sokal, R. R. (1986). Multiple Regression and Correlation Extensions of the Mantel Test of Matrix Correspondence. Systematic Biology, 35(4), 627–632. https://doi.org/10.2307/2413122Smouse, P. E., & Peakall, R. (1999). Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity, 82, 561–573.Sobel, J. M., Chen, G. F., Watt, L. R., & Schemske, D. W. (2010). The biology of speciation. Evolution, 64(2), 295–315. https://doi.org/10.1111/J.1558-5646.2009.00877.XSpear, S. F., Balkenhol, N., Fortin, M. J., McRae, B. H., & Scribner, K. (2010). Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Molecular Ecology, 19(17), 3576–3591. https://doi.org/10.1111/J.1365-294X.2010.04657.XSpringer, C. J., & Ward, J. K. (2007). Flowering time and elevated atmospheric CO2. New Phytologist, 176(2), 243–255. https://doi.org/10.1111/J.1469-8137.2007.02196.XSrikanthan, P., & Burg, T. (2023). Environmental drivers behind the genetic differentiation in mountain chickadees (Poecile gambeli). BioRxiv, 2023.02.25.529994. https://doi.org/10.1101/2023.02.25.529994Stech, M., Veldman, S., Larraín, J., Muñoz, J., Quandt, D., Hassel, K., & Kruijer, H. (2013). Molecular Species Delimitation in the Racomitrium canescens Complex (Grimmiaceae) and Implications for DNA Barcoding of Species Complexes in Mosses. PLOS ONE, 8(1), e53134-. https://doi.org/10.1371/journal.pone.0053134Stevens, V. M., Polus, E., Wesselingh, R. A., Schtickzelle, N., & Baguette, M. (2004). Quantifying functional connectivity: experimental evidence for patch-specific resistance in the Natterjack toad (Bufo calamita). Landscape Ecology, 19(8), 829–842. https://doi.org/10.1007/s10980-004-0166-6Stevens, V. M., Verkenne, C., Vandewoestijne, S., Wesselingh, R. A., & Baguette, M. (2006). Gene flow and functional connectivity in the natterjack toad. Molecular Ecology, 15(9), 2333–2344. https://doi.org/10.1111/J.1365-294X.2006.02936.XStokke, B. G., Møller, A. P., Sæther, B.-E., Rheinwald, G., & Gutscher, H. (2005). Weather in The Breeding Area and During Migration Affects the Demography of a Small Long-Distance Passerine Migrant. The Auk, 122(2), 637–647. https://doi.org/10.1093/AUK/122.2.637Storfer, A., Murphy, M. A., Evans, J. S., Goldberg, C. S., Robinson, S., Spear, S. F., Dezzani, R., Delmelle, E., Vierling, L., & Waits, L. P. (2006). Putting the ‘landscape’ in landscape genetics. Heredity 2007 98:3, 98(3), 128–142. https://doi.org/10.1038/sj.hdy.6800917Storfer, A., Murphy, M. A., Spear, S. F., Holderegger, R., & Waits, L. P. (2010). Landscape genetics: where are we now? Molecular Ecology, 19(17), 3496–3514. https://doi.org/10.1111/J.1365-294X.2010.04691.XSurget-Groba, Y., Johansson, H., & Thorpe, R. S. (2012). Synergy between Allopatry and Ecology in Population Differentiation and Speciation. International Journal of Ecology, 2012, 1–10. https://doi.org/10.1155/2012/273413Swainson, W. (1827). A synopsis of the Birds discovered in Mexico by W. Bullock, F.L.S. and H.S. and Mr. William Bullock. In R. Taylor & R. Phillips (Eds.), The Philosophical magazine : or Annals of chemistry, mathematics, astronomy, natural history and general science (p. 368). Richard Taylor and Co. https://www.biodiversitylibrary.org/bibliography/58331Taberlet, P., Fumagalli, L., Wust-Saucy, A. G., & Cosson, J. F. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7(4), 453–464. https://doi.org/10.1046/J.1365-294X.1998.00289.XTamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10(3), 512–526. https://doi.org/10.1093/OXFORDJOURNALS.MOLBEV.A040023Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120Taubmann, J., Theissinger, K., Feldheim, K. A., Laube, I., Graf, W., Haase, P., Johannesen, J., & Pauls, S. U. (2011). Modelling range shifts and assessing genetic diversity distribution of the montane aquatic mayfly Ameletus inopinatus in Europe under climate change scenarios. Conservation Genetics, 12(2), 503–515. https://doi.org/10.1007/S10592-010-0157-X/METRICSTemunović, M., Franjić, J., Satovic, Z., Grgurev, M., Frascaria-Lacoste, N., & Fernández-Manjarrés, J. F. (2012). Environmental Heterogeneity Explains the Genetic Structure of Continental and Mediterranean Populations of Fraxinus angustifolia Vahl. PLOS ONE, 7(8), e42764. https://doi.org/10.1371/JOURNAL.PONE.0042764Thibert-Plante, X., & Hendry, A. P. (2010). When can ecological speciation be detected with neutral loci? Molecular Ecology, 19(11), 2301–2314. https://doi.org/10.1111/j.1365-294X.2010.04641.xThibert-Plante, X., & Hendry, A. P. (2011). The consequences of phenotypic plasticity for ecological speciation. Journal of Evolutionary Biology, 24(2), 326–342. https://doi.org/10.1111/J.1420-9101.2010.02169.XThomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., Ferreira De Siqueira, M., Grainger, A., Hannah, L., Hughes, L., Huntley, B., Van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L., & Williams, S. E. (2004). Extinction risk from climate change. Nature 2003 427:6970, 427(6970), 145–148. https://doi.org/10.1038/nature02121Thorpe, R. S., Surget-Groba, Y., & Johansson, H. (2008). The relative importance of ecology and geographic isolation for speciation in anoles. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1506), 3071–3081. https://doi.org/10.1098/rstb.2008.0077Vaissi, S., & Rezaei, S. (2022). Niche Divergence at Intraspecific Level in the Hyrcanian Wood Frog, Rana pseudodalmatina: A Phylogenetic, Climatic, and Environmental Survey. Frontiers in Ecology and Evolution, 10, 774481. https://doi.org/10.3389/FEVO.2022.774481/BIBTEXVallely, A. (2001). Foraging at army ant swarms by fifty bird species in the highlands of Costa Rica. Ornitologia Neotropical, 12.Van Buskirk, J., & Jansen van Rensburg, A. (2020). Relative importance of isolation-by-environment and other determinants of gene flow in an alpine amphibian. Evolution; International Journal of Organic Evolution, 74(5), 962–978. https://doi.org/10.1111/evo.13955van Etten, J. (2017). R Package gdistance: Distances and Routes on Geographical Grids. Journal of Statistical Software, 76(1), 1–21. https://doi.org/10.18637/JSS.V076.I13Via, S., & Hawthorne, D. J. (2002). The Genetic Architecture of Ecological Specialization: Correlated Gene Effects on Host Use and Habitat Choice in Pea Aphids. Https://Doi.Org/10.1086/338374, 159(S3), S76–S88. https://doi.org/10.1086/338374Visser, M. E., & Gienapp, P. (2019). Evolutionary and demographic consequences of phenological mismatches. Nature Ecology & Evolution 2019 3:6, 3(6), 879–885. https://doi.org/10.1038/s41559-019-0880-8Wagner, C. E., & McCune, A. R. (2009). Contrasting Patterns of Spatial Genetic Structure in Sympatric Rock-Dwelling Cichlid Fishes. Evolution, 63(5), 1312–1326. http://www.jstor.org/stable/25483678Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J. M., Hoegh-Guldberg, O., & Bairlein, F. (2002). Ecological responses to recent climate change. Nature 2002 416:6879, 416(6879), 389–395. https://doi.org/10.1038/416389aWan, H. Y., Cushman, S. A., & Ganey, J. L. (2018). Habitat Fragmentation Reduces Genetic Diversity and Connectivity of the Mexican Spotted Owl: A Simulation Study Using Empirical Resistance Models. Genes 2018, Vol. 9, Page 403, 9(8), 403. https://doi.org/10.3390/GENES9080403Wang, I. J. (2013). Examining the full effects of landscape heterogeneity on spatial genetic variation: A multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution, 67(12), 3403–3411. https://doi.org/10.1111/evo.12134Wang, I. J., & Bradburd, G. S. (2014). Isolation by environment. Molecular Ecology, 23(23), 5649–5662. https://doi.org/10.1111/mec.12938Wang, I. J., Glor, R. E., & Losos, J. B. (2013). Quantifying the roles of ecology and geography in spatial genetic divergence. Ecology Letters, 16(2), 175–182. https://doi.org/10.1111/ele.12025Wang, I. J., Savage, W. K., & Bradley Shaffer, H. (2009). Landscape genetics and least-cost path analysis reveal unexpected dispersal routes in the California tiger salamander (Ambystoma californiense). Molecular Ecology, 18(7), 1365–1374. https://doi.org/10.1111/J.1365-294X.2009.04122.XWang, I. J., & Summers, K. (2010). Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison-dart frog. Molecular Ecology, 19(3), 447–458. https://doi.org/10.1111/j.1365-294X.2009.04465.xWang, P., Liu, Y., Liu, Y., Chang, Y., Wang, N., & Zhang, Z. (2017). The role of niche divergence and geographic arrangement in the speciation of Eared Pheasants (Crossoptilon, Hodgson 1938). Molecular Phylogenetics and Evolution, 113, 1–8. https://doi.org/10.1016/J.YMPEV.2017.05.003Waples, R. S., & England, P. R. (2011). Estimating Contemporary Effective Population Size on the Basis of Linkage Disequilibrium in the Face of Migration. Genetics, 189(2), 633–644. https://doi.org/10.1534/GENETICS.111.132233Waples, R. S., Luikart, G., Faulkner, J. R., & Tallmon, D. A. (2013). Simple life-history traits explain key effective population size ratios across diverse taxa. Proceedings of the Royal Society B: Biological Sciences, 280(1768). https://doi.org/10.1098/RSPB.2013.1339Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution, 62(11), 2868–2883. https://doi.org/https://doi.org/10.1111/j.1558-5646.2008.00482.xWasserman, T. N., Cushman, S. A., Littell, J. S., Shirk, A. J., & Landguth, E. L. (2013). Population connectivity and genetic diversity of American marten (Martes americana) in the United States northern Rocky Mountains in a climate change context. Conservation Genetics, 14(2), 529–541. https://doi.org/10.1007/s10592-012-0336-zWasserman, T. N., Cushman, S. A., Schwartz, M. K., & Wallin, D. O. (2010). Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landscape Ecology, 25(10), 1601–1612. https://doi.org/10.1007/s10980-010-9525-7Wasserman, T. N., Cushman, S. A., Shirk, A. S., Landguth, E. L., & Littell, J. S. (2012). Simulating the effects of climate change on population connectivity of American marten (Martes americana) in the northern Rocky Mountains, USA. Landscape Ecology, 27(2), 211–225. https://doi.org/10.1007/s10980-011-9653-8Weir, J. T. (2006). Divergent timing and patterns of species accumulation in lowland and highland neotropical birds. Evolution; International Journal of Organic Evolution, 60(4), 842–855. http://www.ncbi.nlm.nih.gov/pubmed/16739464Weir, J. T., Bermingham, E., & Schluter, D. (2009). The Great American Biotic Interchange in birds. Proceedings of the National Academy of Sciences of the United States of America, 106(51), 21737–21742. https://doi.org/10.1073/PNAS.0903811106/SUPPL_FILE/SD1.XLSWeir, J. T., Faccio, M. S., Pulido-Santacruz, P., Barrera-Guzmán, A. O., & Aleixo, A. (2015). Hybridization in headwater regions, and the role of rivers as drivers of speciation in Amazonian birds. Evolution, 69(7), 1823–1834. https://doi.org/10.1111/EVO.12696Weir, J. T., & Price, M. (2011). Andean uplift promotes lowland speciation through vicariance and dispersal in Dendrocincla woodcreepers. Molecular Ecology, 20(21), 4550–4563. https://doi.org/10.1111/J.1365-294X.2011.05294.XWetmore, A. (1942). Descriptions of three additional Birds from southern Vera Cruz. Proceedings of The Biological Society of Washington, 55, 105–108.Wetmore, A. (1944). A collection of birds from northern Guanacaste, Costa Rica. Proceedings of the United States National Museum, 95(3179), 25–80, 4 pls. https://doi.org/10.5479/SI.00963801.95-3179.25White, T. A., Stamford, J., & Rus Hoelzel, A. (2010). Local selection and population structure in a deep-sea fish, the roundnose grenadier (Coryphaenoides rupestris). Molecular Ecology, 19(2), 216–226. https://doi.org/10.1111/J.1365-294X.2009.04446.XWhitlock, M. C. (2004). Selection and Drift in Metapopulations. In I. Hanski & O. E. Gaggiotti (Eds.), Ecology, Genetics and Evolution of Metapopulations (pp. 153–173). Elsevier. https://doi.org/10.1016/B978-012323448-3/50009-XWickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis Second Edition. http://www.springer.com/series/6991Wiens, J. J. (2004). Speciation and ecology revisited: Pylogenetic niche conservatism and the origin of species. Evolution, 58(1), 193–197. https://doi.org/10.1111/j.0014-3820.2004.tb01586.xWiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V, Damschen, E. I., Jonathan Davies, T., Grytnes, J.-A., Harrison, S. P., Hawkins, B. A., Holt, R. D., McCain, C. M., & Stephens, P. R. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 13(10), 1310–1324. https://doi.org/10.1111/j.1461-0248.2010.01515.xWiens, J. J., & Graham, C. H. (2005). Niche Conservatism: Integrating Evolution, Ecology, and Conservation Biology. Annual Review of Ecology, Evolution, and Systematics, 36(1), 519–539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431Wiley, E. M., & Ridley, A. R. (2016). The effects of temperature on offspring provisioning in a cooperative breeder. Animal Behaviour, 117, 187–195. https://doi.org/10.1016/J.ANBEHAV.2016.05.009Williams, J. B., & Tieleman, B. I. (2005). Physiological Adaptation in Desert Birds. BioScience, 55(5), 416–425. https://doi.org/10.1641/0006-3568(2005)055[0416:PAIDB]2.0.CO;2Willis, C. G., Ruhfel, B., Primack, R. B., Miller-Rushing, A. J., & Davis, C. C. (2008). Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change. Proceedings of the National Academy of Sciences of the United States of America, 105(44), 17029–17033. https://doi.org/10.1073/PNAS.0806446105/SUPPL_FILE/0806446105SI.PDFWilson, P. J., & Provan, J. (2003). Effect of habitat fragmentation on levels and patterns of genetic diversity in natural populations of the peat moss Polytrichum commune. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1517), 881–886. https://doi.org/10.1098/RSPB.2002.2324Woodward, F. I. (1988). Temperature and the distribution of plant species. Symposia of the Society for Experimental Biology, 42, 59–75. https://europepmc.org/article/med/3270209Wright, L. I., Tregenza, T., & Hosken, D. J. (2008). Inbreeding, inbreeding depression and extinction. Conservation Genetics, 9(4), 833–843. https://doi.org/10.1007/S10592-007-9405-0/METRICSWright, S. (1943). Isolation by distance. Genetics, 28(114), 114–138. https://academic.oup.com/genetics/article/28/2/114/6033172Wróblewska, A., & Mirski, P. (2018). From past to future: impact of climate change on range shifts and genetic diversity patterns of circumboreal plants. Regional Environmental Change, 18(2), 409–424. https://doi.org/10.1007/S10113-017-1208-3/FIGURES/3Wu, C. I., & Ting, C. T. (2004). Genes and speciation. Nature Reviews Genetics 2004 5:2, 5(2), 114–122. https://doi.org/10.1038/nrg1269Wu, Y., Colwell, R. K., Rahbek, C., Zhang, C., Quan, Q., Wang, C., & Lei, F. (2013). Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains. Journal of Biogeography, 40(12), 2310–2323. https://doi.org/10.1111/JBI.12177Youngblut, J. M. (1994). A consumer’s guide to causal modeling: Part I. Journal of Pediatric Nursing, 9(4), 268–271. http://www.ncbi.nlm.nih.gov/pubmed/7965594Yuan, S., Ma, L., Guo, C., & Wang, R. (2016). What drives phenotypic divergence in Leymus chinensis (Poaceae) on large-scale gradient, climate or genetic differentiation? Scientific Reports 2016 6:1, 6(1), 1–11. https://doi.org/10.1038/srep26288Zamudio-Beltrán, L. E., Ornelas, J. F., Malpica, A., & Hernández-Baños, B. E. (2020). Genetic and morphological differentiation among populations of the Rivoli’s Hummingbird (Eugenes fulgens) species complex (Aves: Trochilidae). The Auk, 137(4), ukaa032. https://doi.org/10.1093/auk/ukaa032Zhang, G., Li, C., Li, Q., Li, B., Larkin, D. M., Lee, C., Storz, J. F., Antunes, A., Greenwold, M. J., Meredith, R. W., Ödeen, A., Cui, J., Zhou, Q., Xu, L., Pan, H., Wang, Z., Jin, L., Zhang, P., Hu, H., … Wang, J. (2014). Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 346(6215), 1311–1320. www.sciencemag.orgZhang, Y. H., Wang, I. J., Comes, H. P., Peng, H., & Qiu, Y. X. (2016). Contributions of historical and contemporary geographic and environmental factors to phylogeographic structure in a Tertiary relict species, Emmenopterys henryi (Rubiaceae). Scientific Reports 2016 6:1, 6(1), 1–14. https://doi.org/10.1038/srep24041Zink, R. M., & Barrowclough, G. F. (2008). Mitochondrial DNA under siege in avian phylogeography. Molecular Ecology, 17(9), 2107–2121. https://doi.org/10.1111/J.1365-294X.2008.03737.XZizka, A., Silvestro, D., Andermann, T., Azevedo, J., Duarte Ritter, C., Edler, D., Farooq, H., Herdean, A., Ariza, M., Scharn, R., Svantesson, S., Wengström, N., Zizka, V., & Antonelli, A. (2019). CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods in Ecology and Evolution, 10(5), 744–751. https://doi.org/https://doi.org/10.1111/2041-210X.13152EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86917/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1144101977.2024.pdf1144101977.2024.pdfTesis de Maestría en Ciencias Biologíaapplication/pdf3029417https://repositorio.unal.edu.co/bitstream/unal/86917/2/1144101977.2024.pdf2175bf6d5a9e27d393b242bb50e9066fMD52THUMBNAIL1144101977.2024.pdf.jpg1144101977.2024.pdf.jpgGenerated Thumbnailimage/jpeg4940https://repositorio.unal.edu.co/bitstream/unal/86917/3/1144101977.2024.pdf.jpgdb75cc5d59c72378a2338a100cd64a18MD53unal/86917oai:repositorio.unal.edu.co:unal/869172024-10-10 00:18:36.201Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=