Cuantificación del efecto del clima en el aislamiento poblacional de especies de aves neotropicales (Orden Paseriformes)
ilustraciones, diagramas, mapas, tablas
- Autores:
-
Gutierrez Toro, Juan Camilo
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86917
- Palabra clave:
- 570 - Biología::576 - Genética y evolución
MECANISMOS DE AISLAMIENTO (BIOLOGIA)
Isolating mechanisms
Diversidad genética
Aves neotropicales
Aislamiento geográfico
Resistencia climática
Genetic Diversity
Neotropical Birds
Geographic Isolation
Climatic Resistance
Conservation
Climate change and ecosystems
cell differentiation
cambio climático y ecosistemas
diferenciación celular
- Rights
- openAccess
- License
- Atribución-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_cc70e9231bce3991f122bce06212390b |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86917 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Cuantificación del efecto del clima en el aislamiento poblacional de especies de aves neotropicales (Orden Paseriformes) |
dc.title.translated.eng.fl_str_mv |
Quantification of the effect of climate on population isolation of neotropical bird species (Order Passeriformes) |
title |
Cuantificación del efecto del clima en el aislamiento poblacional de especies de aves neotropicales (Orden Paseriformes) |
spellingShingle |
Cuantificación del efecto del clima en el aislamiento poblacional de especies de aves neotropicales (Orden Paseriformes) 570 - Biología::576 - Genética y evolución MECANISMOS DE AISLAMIENTO (BIOLOGIA) Isolating mechanisms Diversidad genética Aves neotropicales Aislamiento geográfico Resistencia climática Genetic Diversity Neotropical Birds Geographic Isolation Climatic Resistance Conservation Climate change and ecosystems cell differentiation cambio climático y ecosistemas diferenciación celular |
title_short |
Cuantificación del efecto del clima en el aislamiento poblacional de especies de aves neotropicales (Orden Paseriformes) |
title_full |
Cuantificación del efecto del clima en el aislamiento poblacional de especies de aves neotropicales (Orden Paseriformes) |
title_fullStr |
Cuantificación del efecto del clima en el aislamiento poblacional de especies de aves neotropicales (Orden Paseriformes) |
title_full_unstemmed |
Cuantificación del efecto del clima en el aislamiento poblacional de especies de aves neotropicales (Orden Paseriformes) |
title_sort |
Cuantificación del efecto del clima en el aislamiento poblacional de especies de aves neotropicales (Orden Paseriformes) |
dc.creator.fl_str_mv |
Gutierrez Toro, Juan Camilo |
dc.contributor.advisor.none.fl_str_mv |
Campos Mosos, Héctor Aníbal |
dc.contributor.author.none.fl_str_mv |
Gutierrez Toro, Juan Camilo |
dc.contributor.orcid.spa.fl_str_mv |
Gutierrez Toro, Juan Camilo [0000-0003-1554-5217] |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::576 - Genética y evolución |
topic |
570 - Biología::576 - Genética y evolución MECANISMOS DE AISLAMIENTO (BIOLOGIA) Isolating mechanisms Diversidad genética Aves neotropicales Aislamiento geográfico Resistencia climática Genetic Diversity Neotropical Birds Geographic Isolation Climatic Resistance Conservation Climate change and ecosystems cell differentiation cambio climático y ecosistemas diferenciación celular |
dc.subject.lemb.spa.fl_str_mv |
MECANISMOS DE AISLAMIENTO (BIOLOGIA) |
dc.subject.lemb.eng.fl_str_mv |
Isolating mechanisms |
dc.subject.proposal.spa.fl_str_mv |
Diversidad genética Aves neotropicales Aislamiento geográfico Resistencia climática |
dc.subject.proposal.eng.fl_str_mv |
Genetic Diversity Neotropical Birds Geographic Isolation Climatic Resistance Conservation |
dc.subject.wikidata.eng.fl_str_mv |
Climate change and ecosystems cell differentiation |
dc.subject.wikidata.spa.fl_str_mv |
cambio climático y ecosistemas diferenciación celular |
description |
ilustraciones, diagramas, mapas, tablas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-10-09T13:23:55Z |
dc.date.available.none.fl_str_mv |
2024-10-09T13:23:55Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86917 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86917 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38(5), 541–545. https://doi.org/https://doi.org/10.1111/ecog.01132 Alcaide, M., Serrano, D., Negro, J. J., Tella, J. L., Laaksonen, T., Müller, C., Gal, A., & Korpimäki, E. (2009). Population fragmentation leads to isolation by distance but not genetic impoverishment in the philopatric Lesser Kestrel: A comparison with the widespread and sympatric Eurasian Kestrel. Heredity, 102(2), 190–198. https://doi.org/10.1038/hdy.2008.107 Anderson, J. T., Inouye, D. W., McKinney, A. M., Colautti, R. I., & Mitchell-Olds, T. (2012). Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proceedings of the Royal Society B: Biological Sciences, 279(1743), 3843–3852. https://doi.org/10.1098/RSPB.2012.1051 Araújo, M. B., & New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22(1), 42–47. https://doi.org/10.1016/j.tree.2006.09.010 Arnold, M. L., Ballerini, E. S., & Brothers, A. N. (2012). Hybrid fitness, adaptation and evolutionary diversification: lessons learned from Louisiana Irises. Heredity, 108(3), 159. https://doi.org/10.1038/HDY.2011.65 Arslan, N. A., & Martin, T. E. (2019). Reproductive biology of Grey-breasted Wood-Wren (Henicorhina leucophrys): A comparative study of tropical and temperate wrens. The Wilson Journal of Ornithology, 131(1), 1–11. https://doi.org/10.1676/18-12 Ayala, F. J., Tracey, M. L., Hedgecock, D., & Richmond, R. C. (1974). Genetic Differentiation During the Speciation Process in Drosophila. Evolution, 28(4), 576–592. https://doi.org/10.2307/2407283 Bailey, L. D., van de Pol, M., Adriaensen, F., Arct, A., Barba, E., Bellamy, P. E., Bonamour, S., Bouvier, J. C., Burgess, M. D., Charmantier, A., Cusimano, C., Doligez, B., Drobniak, S. M., Dubiec, A., Eens, M., Eeva, T., Ferns, P. N., Goodenough, A. E., Hartley, I. R., … Visser, M. E. (2022). Bird populations most exposed to climate change are less sensitive to climatic variation. Nature Communications 2022 13:1, 13(1), 1–10. https://doi.org/10.1038/s41467-022-29635-4 Baird, S. F. (1865). Review of American birds in the Museum of the Smithsonian Institution (Vol. 1). Balkenhol, N., Waits, L. P., & Dezzani, R. J. (2009). Statistical approaches in landscape genetics: An evaluation of methods for linking landscape and genetic data. Ecography, 32(5), 818–830. https://doi.org/10.1111/J.1600-0587.2009.05807.X Barber, B. R., & Klicka, J. (2010). Two pulses of diversification across the Isthmus of Tehuantepec in a montane Mexican bird fauna. Proceedings of the Royal Society B: Biological Sciences, 277(1694), 2675–2681. https://doi.org/10.1098/rspb.2010.0343 Barnagaud, J. Y., Barbaro, L., Hampe, A., Jiguet, F., & Archaux, F. (2013). Species’ thermal preferences affect forest bird communities along landscape and local scale habitat gradients. Ecography, 36(11), 1218–1226. https://doi.org/10.1111/J.1600-0587.2012.00227.X Barnagaud, J. Y., Barbaro, L., Hampe, A., Jiguet, F., & Archaux, F. (2013). Species’ thermal preferences affect forest bird communities along landscape and local scale habitat gradients. Ecography, 36(11), 1218–1226. https://doi.org/10.1111/J.1600-0587.2012.00227.X Barrier, E., Velasquillo, L., Chavez, M., & Gaulon, R. (1998). Neotectonic evolution of the Isthmus of Tehuantepec (southeastern Mexico). Tectonophysics, 287(1), 77–96. https://doi.org/https://doi.org/10.1016/S0040-1951(98)80062-0 Bates, J. M., Haffer, J., & Grismer, E. (2004). Avian mitochondrial DNA sequence divergence across a headwater stream of the Rio Tapajós, a major Amazonian River. Journal of Ornithology, 145(3), 199–205. https://doi.org/10.1007/S10336-004-0039-4/METRICS Bay, R. A., Harrigan, R. J., Underwood, V. Le, Gibbs, H. L., Smith, T. B., & Ruegg, K. (2018). Genomic signals of selection predict climate-driven population declines in a migratory bird. Science, 359(6371), 83–86. https://doi.org/10.1126/science.aan4380 Bay, R. A., Karp, D. S., Saracco, J. F., Anderegg, W. R. L., Frishkoff, L. O., Wiedenfeld, D., Smith, T. B., & Ruegg, K. (2021). Genetic variation reveals individual-level climate tracking across the annual cycle of a migratory bird. Ecology Letters, 24(4), 819–828. https://doi.org/10.1111/ELE.13706 Benítez-Benítez, C., Sanz-Arnal, M., Urbani, M., Jiménez-Mejías, P., & Martín-Bravo, S. (2022). Dramatic impact of future climate change on the genetic diversity and distribution of ecologically relevant Western Mediterranean Carex (Cyperaceae). PeerJ, 10. https://doi.org/10.7717/peerj.13464 Blair, C., Weigel, D. E., Balazik, M., Keeley, A. T. H., Walker, F. M., Landguth, E., Cushman, S., Murphy, M., Waits, L., & Balkenhol, N. (2012). A simulation-based evaluation of methods for inferring linear barriers to gene flow. Molecular Ecology Resources, 12(5), 822–833. https://doi.org/10.1111/J.1755-0998.2012.03151.X Bohonak, A. (1999). Dispersal, Gee flow, and Population Structure. The Quarterly Review of Biology, 74(1), 21–45. http://www.journals.uchicago.edu/t-and-c Bollen, K. A. (2002). Latent variables in psychology and the social sciences. Annual Review of Psychology, 53(1), 605–634. Bolnick, D. I., & Otto, S. P. (2013). The magnitude of local adaptation under genotype‐dependent dispersal. Ecology and Evolution, 3(14), 4722–4735. https://doi.org/10.1002/ece3.850 Bonaccorso, E., Navarro-Sigüenza, A. G., Sánchez-González, L. A., Townsend Peterson, A., & García-Moreno, J. (2008). Genetic differentiation of the Chlorospingus ophthalmicus complex in Mexico and Central America. Journal of Avian Biology, 39(3), 311–321. https://doi.org/https://doi.org/10.1111/j.0908-8857.2008.04233.x Bonamour, S., Chevin, L. M., Charmantier, A., & Teplitsky, C. (2019). Phenotypic plasticity in response to climate change: the importance of cue variation. Philosophical Transactions of the Royal Society B, 374(1768). https://doi.org/10.1098/RSTB.2018.0178 Botero-Delgadillo, E., Quirici, V., Poblete, Y., Cuevas, É., Kuhn, S., Girg, A., Teltscher, K., Poulin, E., Kempenaers, B., & Vásquez, R. A. (2017). Variation in fine-scale genetic structure and local dispersal patterns between peripheral populations of a South American passerine bird. Ecology and Evolution, 7(20), 8363–8378. https://doi.org/10.1002/ece3.3342 Bradburd, G. S., Ralph, P. L., & Coop, G. M. (2013). Disentangling the effects of geographic and ecological isolation on genetic differentiation. Evolution, 67(11), 3258–3273. https://doi.org/10.1111/evo.12193 Broquet, T., Ray, N., Petit, E., Fryxell, J. M., & Burel, F. (2006). Genetic isolation by distance and landscape connectivity in the American marten (Martes americana). Landscape Ecology, 21(6), 877–889. https://doi.org/10.1007/S10980-005-5956-Y/METRICS Brown, J. H., & Kodric-Brown, A. (1977). Turnover Rates in Insular Biogeography: Effect of Immigration on Extinction. Ecology, 58(2), 445–449. https://doi.org/10.2307/1935620 Brown, J. L., & Yoder, A. D. (2015). Shifting ranges and conservation challenges for lemurs in the face of climate change. Ecology and Evolution, 5(6), 1131–1142. https://doi.org/10.1002/ECE3.1418 Brown, L. M., Ramey, R. R., Tamburini, B., & Gavin, T. A. (2004). Population structure and mitochondrial DNA variation in sedentary Neotropical birds isolated by forest fragmentation. Conservation Genetics, 5(6), 743–757. https://doi.org/10.1007/S10592-004-1865-X/METRICS Bruggeman, D. J., Wiegand, T., & FernÁndez, N. (2010). The relative effects of habitat loss and fragmentation on population genetic variation in the red-cockaded woodpecker (Picoides borealis). Molecular Ecology, 19(17), 3679–3691. https://doi.org/10.1111/J.1365-294X.2010.04659.X Brumfield, R. T. (2012). Inferring the Origins of Lowland Neotropical Birds. The Auk, 129(3), 367–376. https://doi.org/10.1525/AUK.2012.129.3.367 Bründl, A. C., Sallé, L., Lejeune, L. A., Sorato, E., Thiney, A. C., Chaine, A. S., & Russell, A. F. (2020). Elevational Gradients as a Model for Understanding Associations Among Temperature, Breeding Phenology and Success. Frontiers in Ecology and Evolution, 8, 563377. https://doi.org/10.3389/FEVO.2020.563377/BIBTEX Burney, C. W., & Brumfield, R. T. (2009). Ecology Predicts Levels of Genetic Differentiation in Neotropical Birds. Https://Doi.Org/10.1086/603613, 174(3), 358–368. https://doi.org/10.1086/603613 Butterfield, J. E. L., & Coulson, J. C. (1997). Terrestrial invertebrates and climate change: Physiological and life-cycle adaptations. Past and Future Rapid Environmental Changes, 401–412. https://doi.org/10.1007/978-3-642-60599-4_31 Cab-Sulub, L., & Álvarez-Castañeda, S. T. (2022). Genetic isolation between conspecific populations and their relationship to climate heterogeneity. Acta Oecologica, 116. https://doi.org/10.1016/j.actao.2022.103847 Cadena, C. D., Klicka, J., & Ricklefs, R. E. (2007). Evolutionary differentiation in the Neotropical montane region: Molecular phylogenetics and phylogeography of Buarremon brush-finches (Aves, Emberizidae). Molecular Phylogenetics and Evolution, 44(3), 993–1016. https://doi.org/https://doi.org/10.1016/j.ympev.2006.12.012 Cadena, C. D., Pérez-Emán, J. L., Cuervo, A. M., Céspedes, L. N., Epperly, K. L., & Klicka, J. T. (2019). Extreme genetic structure and dynamic range evolution in a montane passerine bird: implications for tropical diversification. In Biological Journal of the Linnean Society (Vol. 126). https://academic.oup.com/biolinnean/article/126/3/487/5306478 Caro, L. M., Caycedo-Rosales, P. C., Bowie, R. C. K., Slabbekoorn, H., & Cadena, C. D. (2013). Ecological speciation along an elevational gradient in a tropical passerine bird? Journal of Evolutionary Biology, 26(2), 357–374. https://doi.org/10.1111/jeb.12055 Carvalho, S. B., Torres, J., Tarroso, P., & Velo‐Antón, G. (2019). Genes on the edge: A framework to detect genetic diversity imperiled by climate change. Global Change Biology, 25(12), 4034–4047. https://doi.org/10.1111/gcb.14740 Chan, K. O., Alexander, A. M., Grismer, L. L., Su, Y.-C., Grismer, J. L., Quah, E. S. H., & Brown, R. M. (2017). Species delimitation with gene flow: A methodological comparison and population genomics approach to elucidate cryptic species boundaries in Malaysian Torrent Frogs. Molecular Ecology, 26(20), 5435–5450. https://doi.org/https://doi.org/10.1111/mec.14296 Charlesworth, B., Charlesworth, D., & Barton, N. H. (2003). The Effects of Genetic and Geographic Structure on Neutral Variation. Annual Review of Ecology, Evolution, and Systematics, 34, 99–125. https://doi.org/10.1146/annurev.ecolsys.34.011802.132359 Claramunt, S., Derryberry, E. P., Remsen, J. V., & Brumfield, R. T. (2012). High dispersal ability inhibits speciation in a continental radiation of passerine birds. Proceedings of the Royal Society B: Biological Sciences, 279(1733), 1567–1574. https://doi.org/10.1098/rspb.2011.1922 Coelho, M. T. P., Barreto, E., Rangel, T. F., Diniz-Filho, J. A. F., Wüest, R. O., Bach, W., Skeels, A., McFadden, I. R., Roberts, D. W., Pellissier, L., Zimmermann, N. E., & Graham, C. H. (2023). The geography of climate and the global patterns of species diversity. Nature 2023, 1–8. https://doi.org/10.1038/s41586-023-06577-5 Cortés-Rodríguez, N., Hernández-Baños, B. E., Navarro-Sigüenza, A. G., Townsend Peterson, A., & García-Moreno, J. (2008). Phylogeography and population genetics of the Amethyst-throated Hummingbird (Lampornis amethystinus). Molecular Phylogenetics and Evolution, 48(1), 1–11. https://doi.org/https://doi.org/10.1016/j.ympev.2008.02.005 Costa, M. da S. G., Batista, R. de C., & Gurgel-Gonçalves, R. (2014). Predicting geographic distributions of Phacellodomus species (Aves: Furnariidae) in South America based on ecological niche modeling. Acta Scientiarum. Biological Sciences, 36(3), 299–306. https://doi.org/10.4025/actascibiolsci.v36i3.22165 Coulon, A., Cosson, J. F., Angibault, J. M., Cargnelutti, B., Galan, M., Morellet, N., Petit, E., Aulagnier, S., & Hewison, A. J. M. (2004). Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual–based approach. Molecular Ecology, 13(9), 2841–2850. https://doi.org/10.1111/J.1365-294X.2004.02253.X Coulon, A., Guillot, G., Cosson, J. F., Angibault, J. M. A., Aulagnier, S., Cargnelutti, B., Galan, M., & Hewison, A. J. M. (2006). Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. Molecular Ecology, 15(6), 1669–1679. https://doi.org/10.1111/J.1365-294X.2006.02861.X Cowley, E., & Siriwardena, G. M. (2005). Long-term variation in survival rates of Sand Martins Riparia riparia: dependence on breeding and wintering ground weather, age and sex, and their population consequences. Bird Study, 52(3), 237–251. https://doi.org/10.1080/00063650509461397 Crispo, E., Bentzen, P., Reznick, D. N., Kinnison, M. T., & Hendry, A. P. (2006). The relative influence of natural selection and geography on gene flow in guppies. Molecular Ecology, 15(1), 49–62. https://doi.org/https://doi.org/10.1111/j.1365-294X.2005.02764.x Cuervo, P. F., Flores, F. S., Venzal, J. M., & Nava, S. (2021). Niche divergence among closely related taxa provides insight on evolutionary patterns of ticks. Journal of Biogeography, 48(11), 2865–2876. https://doi.org/10.1111/JBI.14245 Cuervo, P. F., Flores, F. S., Venzal, J. M., & Nava, S. (2021). Niche divergence among closely related taxa provides insight on evolutionary patterns of ticks. Journal of Biogeography, 48(11), 2865–2876. https://doi.org/10.1111/JBI.14245 Cushman, S. A., McKelvey, K. S., Hayden, J., & Schwartz, M. K. (2006). Gene Flow in Complex Landscapes: Testing Multiple Hypotheses with Causal Modeling. The American Naturalist, 168(4), 486–499. https://doi.org/10.1086/506976 Cushman, S. A., Wasserman, T. N., Landguth, E. L., & Shirk, A. J. (2013). Re-Evaluating Causal Modeling with Mantel Tests in Landscape Genetics. Diversity 2013, Vol. 5, Pages 51-72, 5(1), 51–72. https://doi.org/10.3390/D5010051 Dattalo, P. (2013). Choosing among Procedures for the Analysis of Multiple Dependent Variables. Analysis of Multiple Dependent Variables, 149–156. https://doi.org/10.1093/ACPROF:OSO/9780199773596.003.0006 Davis, J. M., & Stamps, J. A. (2004). The effect of natal experience on habitat preferences. Trends in Ecology & Evolution, 19(8), 411–416. https://doi.org/10.1016/j.tree.2004.04.006 Davis, M. B., & Shaw, R. G. (2001). Range Shifts and Adaptive Responses to Quaternary Climate Change. Science, 292(5517), 673–679. https://doi.org/10.1126/SCIENCE.292.5517.673 de Souza, M. S., Barcellos, S. A., Costa, A. L., Kretschmer, R., Garnero, A. D. V., & Gunski, R. J. (2019). Polymorphism of Sooty-fronted Spinetail (Synallaxis frontalis Aves: Furnariidae): Evidence of chromosomal rearrangements by pericentric inversion in autosomal macrochromosomes. Genetics and Molecular Biology, 42(1), 62–67. https://doi.org/10.1590/1678-4685-GMB-2018-0039 Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., D’Amen, M., Randin, C., Engler, R., Pottier, J., Pio, D., Dubuis, A., Pellissier, L., Mateo, R. G., Hordijk, W., Salamin, N., & Guisan, A. (2017). ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40(6), 774–787. https://doi.org/https://doi.org/10.1111/ecog.02671 Dingle, C., Halfwerk, W., & Slabbekoorn, H. (2008). Habitat-dependent song divergence at subspecies level in the grey-breasted wood-wren. Journal of Evolutionary Biology, 21(4), 1079–1089. https://doi.org/10.1111/J.1420-9101.2008.01536.X Dingle, C., Lovette, I. J., Canaday, C., & Smith, T. B. (2006). Elevational Zonation and the Phylogenetic Relationships of the Henicorhina Wood-Wrens. The Auk, 123(1), 119–134. https://doi.org/10.1093/AUK/123.1.119 Dingle, C., Lovette, I. J., Canaday, C., & Smith, T. B. (2006). Elevational Zonation and the Phylogenetic Relationships of the Henicorhina Wood-Wrens. The Auk, 123(1), 119–134. https://doi.org/10.1093/AUK/123.1.119 Dupanloup, I., Schneider, S., & Excoffier, L. (2002). A simulated annealing approach to define the genetic structure of populations. Molecular Ecology, 11, 2571–2581. Durant, S. E., Hopkins, W. A., Hepp, G. R., & Walters, J. R. (2013). Ecological, evolutionary, and conservation implications of incubation temperature-dependent phenotypes in birds. Biological Reviews, 88(2), 499–509. https://doi.org/10.1111/BRV.12015 Durant, S. E., Hopkins, W. A., Wilson, A. F., & Hepp, G. R. (2012). Incubation temperature affects the metabolic cost of thermoregulation in a young precocial bird. Functional Ecology, 26(2), 416–422. https://doi.org/10.1111/J.1365-2435.2011.01945.X Edelaar, P., & Bolnick, D. I. (2012). Non-random gene flow: An underappreciated force in evolution and ecology. Trends in Ecology and Evolution, 27(12), 659–665. https://doi.org/10.1016/j.tree.2012.07.009 Edelaar, P., Siepielski, A. M., & Clobert, J. (2008). Matching habitat choice causes directed gene flow: A neglected dimension in evolution and ecology. In Evolution (Vol. 62, Issue 10, pp. 2462–2472). https://doi.org/10.1111/j.1558-5646.2008.00459.x Edwards, S. V., Jennings, W. B., & Shedlock, A. M. (2005). Phylogenetics of modern birds in the era of genomics. Proceedings of the Royal Society B: Biological Sciences, 272(1567), 979–992. https://doi.org/10.1098/rspb.2004.3035 Epperson, B. K., McRae, B. H., Scribner, K., Cushman, S. A., Rosenberg, M. S., Fortin, M. J., James, P. M. A., Murphy, M., Manel, S., Legendre, P., & Dale, M. R. T. (2010). Utility of computer simulations in landscape genetics. Molecular Ecology, 19(17), 3549–3564. https://doi.org/10.1111/J.1365-294X.2010.04678.X Espíndola, A., Pellissier, L., Maiorano, L., Hordijk, W., Guisan, A., & Alvarez, N. (2012). Predicting present and future intra-specific genetic structure through niche hindcasting across 24 millennia. Ecology Letters, 15(7), 649–657. https://doi.org/https://doi.org/10.1111/j.1461-0248.2012.01779.x Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.org/https://doi.org/10.1111/j.1365-294X.2005.02553.x Excoffier, L., & Lischer, H. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. https://doi.org/https://doi.org/10.1111/j.1755-0998.2010.02847.x Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of Molecular Variance Inferred From Metric Distances Among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data. Genetics, 131, 479–491. Fahrig, L., Pedlar, J. H., Pope, S. E., Taylor, P. D., & Wegner, J. F. (1995). Effect of road traffic on amphibian density. Biological Conservation, 73(3), 177–182. https://doi.org/10.1016/0006-3207(94)00102-V Fan, D., Lei, S., Liang, H., Yao, Q., Kou, Y., Cheng, S., Yang, Y., Qiu, Y., & Zhang, Z. (2022). More opportunities more species: Pleistocene differentiation and northward expansion of an evergreen broad-leaved tree species Machilus thunbergii (Lauraceae) in Southeast China. BMC Plant Biology, 22(1). https://doi.org/10.1186/s12870-021-03420-9 Feder, J. L., Egan, S. P., & Nosil, P. (2012a). The genomics of speciation-with-gene-flow. Trends in Genetics, 28(7), 342–350. https://doi.org/10.1016/j.tig.2012.03.009 Feder, J. L., & Forbes, A. A. (2007). Habitat avoidance and speciation for phytophagous insect specialists. Functional Ecology, 21(3), 585–597. https://doi.org/10.1111/j.1365-2435.2007.01232.x Feder, J. L., & Nosil, P. (2010). The efficacy of divergence hitchhiking in generating genomic islands during ecological speciation. Evolution; International Journal of Organic Evolution, 64(6), 1729–1747. https://doi.org/10.1111/j.1558-5646.2010.00943.x Fernandes, A. M., Gonzalez, J., Wink, M., & Aleixo, A. (2013). Multilocus phylogeography of the Wedge-billed Woodcreeper Glyphorynchus spirurus (Aves, Furnariidae) in lowland Amazonia: Widespread cryptic diversity and paraphyly reveal a complex diversification pattern. Molecular Phylogenetics and Evolution, 66(1), 270–282. https://doi.org/10.1016/j.ympev.2012.09.033 Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/https://doi.org/10.1002/joc.5086 Fierro-Calderón, K., Estela, F. A., & Chacón-Ulloa, P. (2006). Observaciones sobre las dietas de algunas aves de la cordillera Oriental de Colombia a partir del análisis de contenidos estomacales. Ornitología Colombiana, 4, 6–15. https://asociacioncolombianadeornitologia.org/ojs/index.php/roc/article/view/89 Flaxman, S. M., Feder, J. L., & Nosil, P. (2013). Genetic hitchhiking and the dynamic buildup of genomic divergence during speciation with gene flow. Evolution, 67(9), 2577–2591. https://doi.org/10.1111/EVO.12055 Francis, R. M. (2017). pophelper: an R package and web app to analyse and visualize population structure. Molecular Ecology Resources, 17(1), 27–32. https://doi.org/https://doi.org/10.1111/1755-0998.12509 Funk, D. J., Egan, S. P., & Nosil, P. (2011). Isolation by adaptation in Neochlamisus leaf beetles: host-related selection promotes neutral genomic divergence. Molecular Ecology, 20(22), 4671–4682. https://doi.org/10.1111/J.1365-294X.2011.05311.X Funk, D. J., Nosil, P., & Etges, W. J. (2006). Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proceedings of the National Academy of Sciences of the United States of America, 103(9), 3209–3213. https://doi.org/10.1073/PNAS.0508653103/SUPPL_FILE/INDEX.HTML Gaitán, J. J., Oliva, G. E., Bran, D. E., Maestre, F. T., Aguiar, M. R., Jobbágy, E. G., Buono, G. G., Ferrante, D., Nakamatsu, V. B., Ciari, G., Salomone, J. M., & Massara, V. (2014). Vegetation structure is as important as climate for explaining ecosystem function across Patagonian rangelands. Journal of Ecology, 102(6), 1419–1428. https://doi.org/10.1111/1365-2745.12273 Gavrilets, S. (2003). Perspective: models of speciation: what have we learned in 40 years? Evolution, 57(10), 2197–2215. https://doi.org/10.1111/J.0014-3820.2003.TB00233.X Gibbs, J. P. (1998). Amphibian Movements in Response to Forest Edges, Roads, and Streambeds in Southern New England. The Journal of Wildlife Management, 62(2), 584. https://doi.org/10.2307/3802333 González, C., Ornelas, J. F., & Gutiérrez-Rodríguez, C. (2011). Selection and geographic isolation influence hummingbird speciation: genetic, acoustic and morphological divergence in the wedge-tailed sabrewing (Campylopterus curvipennis). BMC Evolutionary Biology, 11(1), 38. https://doi.org/10.1186/1471-2148-11-38 Grace, J. B. (2006). Part I - A beginning. In Structural Equation Modeling and Natural Systems (pp. 3–33). Guan, B. cai, Liu, X., Gong, X., Cai, Q. ying, & Ge, G. (2019). Genetic landscape and landscape connectivity of Ceratopteris thalictroides, an endangered aquatic fern. Ecological Informatics, 53, 100973. https://doi.org/10.1016/J.ECOINF.2019.100973 Guan, B., Gao, J., Chen, W., Gong, X., & Ge, G. (2021). The Effects of Climate Change on Landscape Connectivity and Genetic Clusters in a Small Subtropical and Warm-Temperate Tree. Frontiers in Plant Science, 12, 671336. https://doi.org/10.3389/FPLS.2021.671336/BIBTEX Guillot, G., & Rousset, F. (2013). Dismantling the Mantel tests. Methods in Ecology and Evolution, 4(4), 336–344. https://doi.org/https://doi.org/10.1111/2041-210x.12018 Gutiérrez-Pinto, N., Cuervo, A. M., Miranda, J., Pérez-Emán, J. L., Brumfield, R. T., & Cadena, C. D. (2012). Non-monophyly and deep genetic differentiation across low-elevation barriers in a Neotropical montane bird (Basileuterus tristriatus; Aves: Parulidae). Molecular Phylogenetics and Evolution, 64(1), 156–165. https://doi.org/https://doi.org/10.1016/j.ympev.2012.03.011 Halffter, G. (1987). Biogeography of the Montane Entomofauna of Mexico and Central America. Annual Review of Entomology, 32(1), 95–114. https://doi.org/10.1146/annurev.en.32.010187.000523 Harpending, H., & Rogers, A. (1987). On Wright’s Mechanism for Intergroup Selection. J. Theor. Biol, 127, 51–61. Harrison, S. (1991). Local extinction in a metapopulation context: an empirical evaluation. Biological Journal of the Linnean Society, 42(1–2), 73–88. https://doi.org/10.1111/j.1095-8312.1991.tb00552.x Harte, J., & Shaw, R. (1995). Shifting Dominance Within a Montane Vegetation Community: Results of a Climate-Warming Experiment. Science, 267(5199), 876–880. https://doi.org/10.1126/SCIENCE.267.5199.876 Hartl, D. L., & Clark, G. C. (1997). Principles of Population Genetics. Sinauer Associates. Hartlaub, G. (1852). Descriptions de quelques nouvelles especes d’Oiseaux. In F.-É. Guérin-Méneville (Ed.), Revue et magasin de zoologie pure et appliquée (Vol. 2, p. 5). Bureau de la revue et magasin de zoologie. Hausdorf, B., & Hennig, C. (2020). Species delimitation and geography. Molecular Ecology Resources, 20(4), 950–960. https://doi.org/https://doi.org/10.1111/1755-0998.13184 Hausfather, Z., & Peters, G. P. (2020a). Emissions – the ‘business as usual’ story is misleading. Nature 2021 577:7792, 577(7792), 618–620. https://doi.org/10.1038/d41586-020-00177-3 Hausfather, Z., & Peters, G. P. (2020b). RCP8.5 is a problematic scenario for near-term emissions. Proceedings of the National Academy of Sciences, 117(45), 27791–27792. https://doi.org/10.1073/pnas.2017124117 Hawkins, E., & Sutton, R. (2009). The Potential to Narrow Uncertainty in Regional Climate Predictions. Bulletin of the American Meteorological Society, 90(8), 1095–1108. https://doi.org/10.1175/2009BAMS2607.1 Hendry, A. P. (2004). Selection against migrants contributes to the rapid evolution of ecologically dependent reproductive isolation. Evolutionary Ecology Research, 6, 1219–1236. Hendry, A. P. (2009). Ecological speciation! Or the lack thereof? Canadian Journal of Fisheries and Aquatic Sciences, 66(8), 1383–1398. https://doi.org/10.1139/F09-074 Hendry, A. P., Nosil, P., & Rieseberg, L. H. (2007). The speed of ecological speciation. Functional Ecology, 21(3), 455. https://doi.org/10.1111/J.1365-2435.2006.01240.X Hewitt, G. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society, 58(3), 247–276. https://doi.org/10.1006/BIJL.1996.0035 Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. Nature 2000 405:6789, 405(6789), 907–913. https://doi.org/10.1038/35016000 Hickling, R., Roy, D. B., Hill, J. K., Fox, R., & Thomas, C. D. (2006). The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology, 12(3), 450–455. https://doi.org/10.1111/J.1365-2486.2006.01116.X Hidalgo Aranzamendi, N., Hall, M. L., Kingma, S. A., van de Pol, M., & Peters, A. (2019). Rapid plastic breeding response to rain matches peak prey abundance in a tropical savanna bird. Journal of Animal Ecology, 88(11), 1799–1811. https://doi.org/10.1111/1365-2656.13068 Hijmans, R. J., Van Etten, J., Cheng, J., Mattiuzzi, M., Sumner, M., Greenberg, J. A., Lamigueiro, O. P., Bevan, A., Racine, E. B., & Shortridge, A. (2015). Package ‘raster’. R Package, 734, 473. Hoffmann, A. A., & Sgró, C. M. (2011). Climate change and evolutionary adaptation. Nature 2011 470:7335, 470(7335), 479–485. https://doi.org/10.1038/nature09670 Holsinger, K. E. (2001). Natural Selection. In S. Brenner & J. H. Miller (Eds.), Encyclopedia of Genetics (pp. 1291–1297). Elsevier. https://doi.org/10.1006/rwgn.2001.1161 Holt, R. D., & Gaines, M. S. (1992). Analysis of adaptation in heterogeneous landscapes: Implications for the evolution of fundamental niches. Evolutionary Ecology, 6(5), 433–447. https://doi.org/10.1007/BF02270702/METRICS Hua, X., & Wiens, J. J. (2013). How does climate influence speciation? American Naturalist, 182(1), 1–12. https://doi.org/10.1086/670690 Huang, Q., Wu, L.-Y., & Zhang, X.-S. (2013). Corbi: a new R package for biological network alignment and querying. BMC Systems Biology, 7(2), S6. https://doi.org/10.1186/1752-0509-7-S2-S6 Huidobro, L., Morrone, J. J., Villalobos, J. L., & Álvarez, F. (2006). Distributional patterns of freshwater taxa (fishes, crustaceans and plants) from the Mexican Transition Zone. Journal of Biogeography, 33(4), 731–741. https://doi.org/https://doi.org/10.1111/j.1365-2699.2005.01400.x Hutchison, D. W., & Templeton, A. R. (1999). Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution, 53(6), 1898–1914. https://doi.org/10.1111/J.1558-5646.1999.TB04571.X Inoue, K., & Berg, D. J. (2017). Predicting the effects of climate change on population connectivity and genetic diversity of an imperiled freshwater mussel, Cumberlandia monodonta (Bivalvia: Margaritiferidae), in riverine systems. Global Change Biology, 23(1), 94–107. https://doi.org/10.1111/GCB.13369 Janes, J. K., & Batista, P. D. (2016). The Role of Population Genetic Structure in Understanding and Managing Pine Beetles. In Advances in Insect Physiology (Vol. 50, pp. 75–100). Academic Press Inc. https://doi.org/10.1016/bs.aiip.2016.01.001 Jenkins, D. G., Carey, M., Czerniewska, J., Fletcher, J., Hether, T., Jones, A., Knight, S., Knox, J., Long, T., Mannino, M., Mcguire, M., Riffle, A., Segelsky, S., Shappell, L., Sterner, A., Strickler, T., Tursi, R., Jenkins, D. G., Carey, M., … Tursi, R. (2010). A meta-analysis of isolation by distance: relic or reference standard for landscape genetics? Ecography, 33(2), 315–320. https://doi.org/10.1111/J.1600-0587.2010.06285.X Jiménez-Valverde, A. (2012). Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecology and Biogeography, 21(4), 498–507. https://doi.org/https://doi.org/10.1111/j.1466-8238.2011.00683.x Johnson, J. S., Gaddis, K. D., Cairns, D. M., Konganti, K., & Krutovsky, K. V. (2017). Landscape genomic insights into the historic migration of mountain hemlock in response to Holocene climate change. American Journal of Botany, 104(3), 439–450. https://doi.org/10.3732/AJB.1600262 Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genetics, 11. https://doi.org/10.1186/1471-2156-11-94 Jorgensen, T. H., Richardson, D. S., & Andersson, S. (2006). Comparative Analyses of Population Structure in Two Subspecies of Nigella degenii: Evidence for Diversifying Selection on Pollen-Color Dimorphisms. Evolution, 60(3), 518–528. http://www.jstor.org/stable/4095314 Karl, S. A., Toonen, R. J., Grant, W. S., & Bowen, B. W. (2012). Common misconceptions in molecular ecology: echoes of the modern synthesis. Molecular Ecology, 21(17), 4171–4189. https://doi.org/10.1111/J.1365-294X.2012.05576.X Kass, J. M., Muscarella, R., Galante, P. J., Bohl, C. L., Pinilla-Buitrago, G. E., Boria, R. A., Soley-Guardia, M., & Anderson, R. P. (2021). ENMeval 2.0: Redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods in Ecology and Evolution, 12(9), 1602–1608. https://doi.org/https://doi.org/10.1111/2041-210X.13628 Kessler Rios, M., Londoño, G., & Biancucci, A. (2008). Notes on birds that follow army ants in the northern Andes. ORNITOLOGIA NEOTROPICAL, 19. Kim, D., Taylor, A. T., & Near, T. J. (2022). Phylogenomics and species delimitation of the economically important Black Basses (Micropterus). Scientific Reports, 12(1), 9113. https://doi.org/10.1038/s41598-022-11743-2 Kimura, M., & Weisss, G. H. (1964). The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics, 49, 561–576. Kozakiewicz, C. P., Carver, S., & Burridge, C. P. (2018). Under-representation of avian studies in landscape genetics. Ibis, 160(1), 1–12. https://doi.org/10.1111/ibi.12532 Kremer, A., Ronce, O., Robledo-Arnuncio, J. J., Guillaume, F., Bohrer, G., Nathan, R., Bridle, J. R., Gomulkiewicz, R., Klein, E. K., Ritland, K., Kuparinen, A., Gerber, S., & Schueler, S. (2012). Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecology Letters, 15(4), 378–392. https://doi.org/10.1111/J.1461-0248.2012.01746.X Landguth, E. L., & Cushman, S. A. (2010). cdpop: A spatially explicit cost distance population genetics program. Molecular Ecology Resources, 10(1), 156–161. https://doi.org/10.1111/J.1755-0998.2009.02719.X Lee, C. R., & Mitchell-Olds, T. (2011). Quantifying effects of environmental and geographical factors on patterns of genetic differentiation. Molecular Ecology, 20(22), 4631–4642. https://doi.org/10.1111/j.1365-294X.2011.05310.x Legendre, P., & Fortin, M.-J. (2010). Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Molecular Ecology Resources, 10(5), 831–844. https://doi.org/https://doi.org/10.1111/j.1755-0998.2010.02866.x Legendre, P., & Troussellier, M. (1988). Aquatic heterotrophic bacteria: Modeling in the presence of spatial autocorrelation. Limnology and Oceanography, 33(5), 1055–1067. https://doi.org/10.4319/lo.1988.33.5.1055 Lenoir, J., Gégout, J. C., Marquet, P. A., De Ruffray, P., & Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 320(5884), 1768–1771. https://doi.org/10.1126/SCIENCE.1156831/SUPPL_FILE/LENOIR.SOM.PDF Leonardi, S., Gentilesca, T., Guerrieri, R., Ripullone, F., Magnani, F., Mencuccini, M., Noije, T. V., & Borghetti, M. (2012). Assessing the effects of nitrogen deposition and climate on carbon isotope discrimination and intrinsic water-use efficiency of angiosperm and conifer trees under rising CO2 conditions. Global Change Biology, 18(9), 2925–2944. https://doi.org/10.1111/J.1365-2486.2012.02757.X Lobo, J. M., Jiménez-Valverde, A., & Real, R. (2008). AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17(2), 145–151. https://doi.org/https://doi.org/10.1111/j.1466-8238.2007.00358.x Lovette, I. J., Pérez-Emán, J. L., Sullivan, J. P., Banks, R. C., Fiorentino, I., Córdoba-Córdoba, S., Echeverry-Galvis, M., Barker, F. K., Burns, K. J., Klicka, J., Lanyon, S. M., & Bermingham, E. (2010). A comprehensive multilocus phylogeny for the wood-warblers and a revised classification of the Parulidae (Aves). Molecular Phylogenetics and Evolution, 57(2), 753–770. https://doi.org/10.1016/j.ympev.2010.07.018 Lozano-Fuentes, S., Fernandez-Salas, I., de Lourdes Munoz, M., Garcia-Rejon, J., Olson, K. E., Beaty, B. J., & Black IV, W. C. (2009). The Neovolcanic Axis Is a Barrier to Gene Flow among Aedes aegypti Populations in Mexico That Differ in Vector Competence for Dengue 2 Virus. PLOS Neglected Tropical Diseases, 3(6), e468-. https://doi.org/10.1371/journal.pntd.0000468 Lu, G., & Bernatchez, L. (1999). Correlated trophic specialization and genetic divergence in sympatric lake whitefish ecotypes (Coregonus clupeaformis): support for the ecological speciation hypothesis. Evolution, 53(5), 1491–1505. https://doi.org/10.1111/j.1558-5646.1999.tb05413.x Lurwanu, Y., Wang, Y. P., Wu, E. J., He, D. C., Waheed, A., Nkurikiyimfura, O., Wang, Z., Shang, L. P., Yang, L. N., & Zhan, J. (2021). Increasing temperature elevates the variation and spatial differentiation of pesticide tolerance in a plant pathogen. Evolutionary Applications, 14(5), 1274–1285. https://doi.org/10.1111/EVA.13197 Maassen, G. H., & Bakker, A. B. (2001). Suppressor Variables in Path Models: Definitions and Interpretations. Sociological Methods & Research, 30(2), 241–270. https://doi.org/10.1177/0049124101030002004 Machado-Stredel, F., & Pérez-Emán, J. L. (2017). Using morphometrics to determine sex in a neotropical passerine: the gray‐breasted wood‐wren (Henicorhina leucophrys). Ornitología Neotropical, 28, 147–153. https://doi.org/10.58843/ornneo.v28i0.240 Mainwaring, M. C., Nord, A., & Sharp, S. P. (2021). Editorial: The Impact of Weather on the Behavior and Ecology of Birds. In Frontiers in Ecology and Evolution (Vol. 9). Frontiers Media S.A. https://doi.org/10.3389/fevo.2021.777478 Mallet, J. (1995). A species definition for the modern synthesis. Trends in Ecology & Evolution, 10(7), 294–299. https://doi.org/https://doi.org/10.1016/0169-5347(95)90031-4 Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research. Manthey, J. D., & Moyle, R. G. (2015). Isolation by environment in White‐breasted Nuthatches ( Sitta carolinensis ) of the Madrean Archipelago sky islands: a landscape genomics approach. Molecular Ecology, 24(14), 3628–3638. https://doi.org/10.1111/mec.13258 Mapelli, F. J., Mora, M. S., Mirol, P. M., & Kittlein, M. J. (2012). Population structure and landscape genetics in the endangered subterranean rodent Ctenomys porteousi. Conservation Genetics, 13(1), 165–181. https://doi.org/10.1007/S10592-011-0273-2/METRICS Marcondes, R. S., & Brumfield, R. T. (2019). Fifty shades of brown: Macroevolution of plumage brightness in the Furnariida, a large clade of drab Neotropical passerines. Evolution, 73(4), 704–719. https://doi.org/10.1111/evo.13707 Marcondes, R. S., Nations, J. A., Seeholzer, G. F., & Brumfield, R. T. (2021). Rethinking Gloger’s Rule: Climate, Light Environments, and Color in a Large Family of Tropical Birds (Furnariidae). Https://Doi.Org/10.1086/713386, 197(5), 592–606. https://doi.org/10.1086/713386 Martin, T. E., Oteyza, J. C., Boyce, A. J., Lloyd, P., & Ton, R. (2015). Adult Mortality Probability and Nest Predation Rates Explain Parental Effort in Warming Eggs with Consequences for Embryonic Development Time. Https://Doi.Org/10.1086/681986, 186(2), 223–236. https://doi.org/10.1086/681986 Martínez-Cruz, B., Godoy, J. A., & Negro, J. J. (2007). Population fragmentation leads to spatial and temporal genetic structure in the endangered Spanish imperial eagle. Molecular Ecology, 16(3), 477–486. https://doi.org/10.1111/j.1365-294X.2007.03147.x McBride, C. S., & Singer, M. C. (2010). Field Studies Reveal Strong Postmating Isolation between Ecologically Divergent Butterfly Populations. PLoS Biology, 8(10), e1000529. https://doi.org/10.1371/journal.pbio.1000529 McCairns, R. J. S., & Bernatchez, L. (2008). Landscape genetic analyses reveal cryptic population structure and putative selection gradients in a large-scale estuarine environment. Molecular Ecology, 17(17), 3901–3916. https://doi.org/10.1111/J.1365-294X.2008.03884.X McDonald, P. G., Olsen, P. D., & Cockburn, A. (2004). Weather dictates reproductive success and survival in the Australian brown falcon Falco berigora. Journal of Animal Ecology, 73(4), 683–692. https://doi.org/10.1111/J.0021-8790.2004.00842.X McGowan, A., Sharp, S. P., & Hatchwell, B. J. (2004). The Structure and Function of Nests of Long-Tailed Tits Aegithalos caudatus. Functional Ecology, 18(4), 578–583. http://www.jstor.org/stable/3599074 McIntyre, N. E., Wright, C. K., Swain, S., Hayhoe, K., Liu, G., Schwartz, F. W., & Henebry, G. M. (2014). Climate forcing of wetland landscape connectivity in the Great Plains. Frontiers in Ecology and the Environment, 12(1), 59–64. https://doi.org/10.1890/120369 McRae, B. H. (2006). Isolation by resistance. Evolution, 60(8), 1551. https://doi.org/10.1554/05-321.1 McRae, B. H., & Beier, P. (2007). Circuit theory predicts gene flow in plant and animal populations. Proceedings of the National Academy of Sciences, 104(50), 19885–19890. https://doi.org/10.1073/pnas.0706568104 Mendoza, A. M., Bolívar-García, W., Vázquez-Domínguez, E., Ibáñez, R., & Parra Olea, G. (2019). The role of Central American barriers in shaping the evolutionary history of the northernmost glassfrog, Hyalinobatrachium fleischmanni (Anura: Centrolenidae). PeerJ, 7, e6115. https://doi.org/10.7717/peerj.6115 Michels, E., Cottenie, K., Neys, L., De Gelas, K., Coppin, P., & De Meester, L. (2001). Geographical and genetic distances among zooplankton populations in a set of interconnected ponds: a plea for using GIS modelling of the effective geographical distance. Molecular Ecology, 10(8), 1929–1938. https://doi.org/10.1046/J.1365-294X.2001.01340.X Mira, S., Arnaud-Haond, S., Palma, L., Cancela, M. L., & Beja, P. (2013). Large-scale population genetic structure in Bonelli’s Eagle Aquila fasciata. Ibis, 155(3), 485–498. https://doi.org/10.1111/ibi.12065 Monge, O., Maggini, I., Schulze, C. H., Dullinger, S., & Fusani, L. (2023). Physiologically vulnerable or resilient? Tropical birds, global warming, and redistributions. Ecology and Evolution, 13(4), e9985. https://doi.org/10.1002/ECE3.9985 Moreno-Contreras, I., Sánchez-González, L. A., Arizmendi, M. del C., Prieto-Torres, D. A., & Navarro-Sigüenza, A. G. (2020). Climatic Niche Evolution in the Arremon brunneinucha Complex (Aves: Passerellidae) in a Mesoamerican Landscape. Evolutionary Biology, 47(2), 123–132. https://doi.org/10.1007/s11692-020-09498-7 Moritz, C. (1994). Defining ‘Evolutionarily Significant Units’ for conservation. Trends in Ecology & Evolution, 9(10), 373–375. https://doi.org/10.1016/0169-5347(94)90057-4 Mosca, E., Eckert, A. J., Di Pierro, E. A., Rocchini, D., La Porta, N., Belletti, P., & Neale, D. B. (2012). The geographical and environmental determinants of genetic diversity for four alpine conifers of the European Alps. Molecular Ecology, 21(22), 5530–5545. https://doi.org/10.1111/MEC.12043 Moss, R., Babiker, M., Brinkman, S., Calvo, E., Carter, T., Edmonds, J., Elgizouli, I., Emori, S., Erda, L., Hibbard, K., Jones, R., Kainuma, M., Kelleher, J., Lamarque, J. F., Manning, M., Matthews, B., Meehl, J., Meyer, L., Mitchell, J., … Zurek, M. (2008). Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts and Response Strategies. https://archive.ipcc.ch/pdf/supporting-material/expert-meeting-report-scenarios.pdf Mumme, R. L. (2002). Scare tactics in a neotropical warbler: white tail feathers enhance flush-pursuit foraging performance in the slate-throated redstart (Myioborus miniatus). The Auk, 119(4), 1024–1035. https://academic.oup.com/auk/article/119/4/1024/5562101 Mumme, R. L. (2015). Demography of Slate-throated Redstarts (Myioborus miniatus): A non-migratory Neotropical warbler. Journal of Field Ornithology, 86(2), 89–102. https://doi.org/10.1111/jofo.12093 Muscarella, R., Galante, P. J., Soley-Guardia, M., Boria, R. A., Kass, J. M., Uriarte, M., & Anderson, R. P. (2014). ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution, 5(11), 1198–1205. https://doi.org/https://doi.org/10.1111/2041-210X.12261 Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling? Ecography, 37(2), 191–203. https://doi.org/10.1111/j.1600-0587.2013.00205.x Nanninga, G., Saenz-Agudelo, P., Manica, A., & Berumen, M. (2013). Environmental gradients predict the genetic structure of a coral reef fish in the Red Sea. Molecular Ecology, 23. https://doi.org/10.1111/mec.12623 Nei, M., & Nozawa, M. (2011). Roles of Mutation and Selection in Speciation: From Hugo de Vries to the Modern Genomic Era. Genome Biology and Evolution, 3(1), 812–829. https://doi.org/10.1093/GBE/EVR028 Nilsson, A. L. K., Reitan, T., Skaugen, T., L’Abée-Lund, J. H., Gamelon, M., Jerstad, K., Røstad, O. W., Slagsvold, T., Stenseth, N. C., Vøllestad, L. A., & Walseng, B. (2020). Location Is Everything, but Climate Gets a Share: Analyzing Small-Scale Environmental Influences on Breeding Success in the White-Throated Dipper. Frontiers in Ecology and Evolution, 8, 542846. https://doi.org/10.3389/FEVO.2020.542846/BIBTEX Nosil, P. (2004). Reproductive isolation caused by visual predation on migrants between divergent environments. Proceedings of the Royal Society B: Biological Sciences, 271(1547), 1521–1528. https://doi.org/10.1098/rspb.2004.2751 Nyári, Á. S., & Reddy, S. (2013). Comparative Phyloclimatic Analysis and Evolution of Ecological Niches in the Scimitar Babblers (Aves: Timaliidae: Pomatorhinus). PLOS ONE, 8(2), e55629. https://doi.org/10.1371/JOURNAL.PONE.0055629 Öberg, M., Arlt, D., Pärt, T., Laugen, A. T., Eggers, S., & Low, M. (2015). Rainfall during parental care reduces reproductive and survival components of fitness in a passerine bird. Ecology and Evolution, 5(2), 345. https://doi.org/10.1002/ECE3.1345 O’donnell, M. S., & Ignizio, D. A. (2012). Bioclimatic Predictors for Supporting Ecological Applications in the Conterminous United States. http://www.usgs.gov/pubprod Oksanen, J. (2013). Vegan: ecological diversity. R Project, 368, 1–11. Ornelas, J. F., González, C., Hernández-Baños, B. E., & García-Moreno, J. (2016). Molecular and iridescent feather reflectance data reveal recent genetic diversification and phenotypic differentiation in a cloud forest hummingbird. Ecology and Evolution, 6(4), 1104–1127. https://doi.org/https://doi.org/10.1002/ece3.1950 Orsini, L., Vanoverbeke, J., Swillen, I., Mergeay, J., & De Meester, L. (2013). Drivers of population genetic differentiation in the wild: Isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Molecular Ecology, 22(24), 5983–5999. https://doi.org/10.1111/mec.12561 Ortiz-Rodriguez, A. E., Licona-Vera, Y., Vásquez-Aguilar, A. A., Hernández-Soto, M., López-Huicochea, E. A., & Ornelas, J. F. (2020). Genetic differentiation among Psittacanthus rhynchanthus (Loranthaceae) populations: novel phylogeographic patterns in the Mesoamerican tropical lowlands. Plant Systematics and Evolution, 306(1), 10. https://doi.org/10.1007/s00606-020-01638-y Parding, K. M., Dobler, A., McSweeney, C. F., Landgren, O. A., Benestad, R., Erlandsen, H. B., Mezghani, A., Gregow, H., Räty, O., Viktor, E., El Zohbi, J., Christensen, O. B., & Loukos, H. (2020). GCMeval – An interactive tool for evaluation and selection of climate model ensembles. Climate Services, 18, 100167. https://doi.org/10.1016/J.CLISER.2020.100167 Parisod, C., & Christin, P. A. (2008). Genome-wide association to fine-scale ecological heterogeneity within a continuous population of Biscutella laevigata (Brassicaceae). New Phytologist, 178(2), 436–447. https://doi.org/10.1111/J.1469-8137.2007.02361.X Parker, T. H., Becker, C. D., Sandercock, B. K., & Agreda, A. E. (2006). Apparent Survival Estimates for Five Species of Tropical Birds in an Endangered Forest Habitat in Western Ecuador. Biotropica, 38(6), 764–769. https://doi.org/10.1111/j.1744-7429.2006.00210.x Parmesan, C. (2006). Ecological and Evolutionary Responses to Recent Climate Change. Https://Doi.Org/10.1146/Annurev.Ecolsys.37.091305.110100, 37, 637–669. https://doi.org/10.1146/ANNUREV.ECOLSYS.37.091305.110100 Paulo, P., Teófilo, F. H., Bertuol, C., Polo, É., Moncrieff, A. E., Bandeira, L. N., Nuñez-Penichet, C., Fernandes, I. Y., Bosholn, M., Machado, A. F., Luna, L. W., Peçanha, W. T., Rampini, A. P., Hashimoto, S., Dias, C., Araripe, J., Aleixo, A., do Rêgo, P. S., Hrbek, T., … Anciães, M. (2023). Geographic Drivers of Genetic and Plumage Color Diversity in the Blue-Crowned Manakin. Evolutionary Biology 2023, 1–19. https://doi.org/10.1007/S11692-023-09613-4 Peakall, R., Ruibal, M., & Lindenmayer, D. B. (2003). Spatial Autocorrelation Analysis Offers New Insights into Gene Flow in the Australian Bush Rat, Rattus fuscipes. In Source: Evolution (Vol. 57, Issue 5). Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics, 28(19), 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12(5), 361–371. https://doi.org/10.1046/J.1466-822X.2003.00042.X Pease, K. M., Freedman, A. H., Pollinger, J. P., McCormack, J. E., Buermann, W., Rodzen, J., Banks, J., Meredith, E., Bleich, V. C., Schaefer, R. J., Jones, K., & Wayne, R. K. (2009). Landscape genetics of California mule deer (Odocoileus hemionus): The roles of ecological and historical factors in generating differentiation. Molecular Ecology, 18(9), 1848–1862. https://doi.org/10.1111/j.1365-294X.2009.04112.x Pérez-Emán, J. L. (2005). Molecular phylogenetics and biogeography of the Neotropical redstarts (Myioborus; Aves, Parulinae). Molecular Phylogenetics and Evolution, 37(2), 511–528. https://doi.org/10.1016/j.ympev.2005.04.013 Pérez-Emán, J. L., Mumme, R. L., & Jabłonński, P. G. (2010). Phylogeography and Adaptive Plumage Evolution in Central American Subspecies of the Slate-Throated Redstart (Myioborus miniatus). Ornithological Monographs, 67(1), 90–102. https://doi.org/10.1525/om.2010.67.1.90 Pérez-Rodríguez, R., Esquivel-Bobadilla, S., Orozco-Ruíz, A. M., Olivas-Hernández, J. L., & García-De León, F. J. (2021). Genetic structure and historical and contemporary gene flow of Astyanax mexicanus in the Gulf of Mexico slope: a microsatellite-based analysis. PeerJ, 9, e10784. https://doi.org/10.7717/peerj.10784 Petkova, D., Novembre, J., & Stephens, M. (2015). Visualizing spatial population structure with estimated effective migration surfaces. Nature Genetics, 48(1), 94–100. https://doi.org/10.1038/ng.3464 Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: an open-source release of Maxent. Ecography, 40(7), 887–893. https://doi.org/10.1111/ecog.03049 Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31(2), 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x Pilot, M., Jedrzejewski, W., Branicki, W., Sidorovich, V. E., Jedrzejewska, B., Stachura, K., & Funk, S. M. (2006). Ecological factors influence population genetic structure of European grey wolves. Molecular Ecology, 15(14), 4533–4553. https://doi.org/10.1111/J.1365-294X.2006.03110.X Pollock, H. S., Brawn, J. D., & Cheviron, Z. A. (2021). Heat tolerances of temperate and tropical birds and their implications for susceptibility to climate warming. Functional Ecology, 35(1), 93–104. https://doi.org/10.1111/1365-2435.13693/SUPPINFO Popovic, D., Acanski, J., Djan, M., Obreht, D., Vujic, A., & Radenkovic, S. (2015). Sibling species delimitation and nomenclature of the Merodon avidus complex (Diptera: Syrphidae). Europuean Journal of Entomology, 112(4), 790–809. https://www.eje.cz/artkey/eje-201504-0025.php Porter, A. H. (1990). Testing Nominal Species Boundaries Using Gene Flow Statistics: The Taxonomy of Two Hybridizing Admiral Butterflies (Limenitis: Nymphalidae). Systematic Zoology, 39(2), 131–147. https://doi.org/10.2307/2992451 Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics, 945–959. http://www.stats.ox.ac.uk/pritch/home.html. Provan, J., & Bennett, K. D. (2008). Phylogeographic insights into cryptic glacial refugia. Trends in Ecology & Evolution, 23(10), 564–571. https://doi.org/10.1016/J.TREE.2008.06.010 Quiroga-Carmona, M., & D’Elía, G. (2022). Climate influences the genetic structure and niche differentiation among populations of the olive field mouse Abrothrix olivacea (Cricetidae: Abrotrichini). Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-26937-x Ralston, J., & Kirchman, J. J. (2013). Predicted range shifts in North American boreal forest birds and the effect of climate change on genetic diversity in blackpoll warblers (Setophaga striata). Conservation Genetics, 14(2), 543–555. https://doi.org/10.1007/s10592-012-0418-y Rancilhac, L., Miralles, A., Geniez, P., Mendez-Aranda, D., Beddek, M., Brito, J. C., Leblois, R., & Crochet, P.-A. (2023). Phylogeographic breaks and how to find them: An empirical attempt at separating vicariance from isolation by distance in a lizard with restricted dispersal. BioRxiv, 2022.09.30.510256. https://doi.org/10.1101/2022.09.30.510256 Rannala, B. (2015). The art and science of species delimitation. Current Zoology, 61(5), 846–853. https://doi.org/10.1093/czoolo/61.5.846 Räsänen, K., & Hendry, A. P. (2008). Disentangling interactions between adaptive divergence and gene flow when ecology drives diversification. Ecology Letters, 11(6), 624–636. https://doi.org/10.1111/J.1461-0248.2008.01176.X Reh, W., & Seitz, A. (1990). The influence of land use on the genetic structure of populations of the common frog Rana temporaria. Biological Conservation, 54(3), 239–249. https://doi.org/10.1016/0006-3207(90)90054-S Reneerkens, J., Schmidt, N. M., Gilg, O., Hansen, J., Hansen, L. H., Moreau, J., & Piersma, T. (2016). Effects of food abundance and early clutch predation on reproductive timing in a high Arctic shorebird exposed to advancements in arthropod abundance. Ecology and Evolution, 6(20), 7375–7386. https://doi.org/10.1002/ECE3.2361 Rizvanovic, M., Kennedy, J. D., Nogués-Bravo, D., & Marske, K. A. (2019). Persistence of genetic diversity and phylogeographic structure of three New Zealand forest beetles under climate change. Diversity and Distributions, 25(1), 142–153. https://doi.org/https://doi.org/10.1111/ddi.12834 Ronce, O. (2007). How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annual Review of Ecology, Evolution, and Systematics, 38, 231–253. https://doi.org/10.1146/annurev.ecolsys.38.091206.095611 Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1–36. https://doi.org/10.18637/jss.v048.i02 Rovito, S. M., Parra-Olea, G., Recuero, E., & Wake, D. B. (2015). Diversification and biogeographical history of Neotropical plethodontid salamanders. Zoological Journal of the Linnean Society, 175(1), 167–188. https://doi.org/10.1111/zoj.12271 Rueda-M, N., Salgado-Roa, F. C., Gantiva-Q, C. H., Pardo-Díaz, C., & Salazar, C. (2021). Environmental Drivers of Diversification and Hybridization in Neotropical Butterflies. Frontiers in Ecology and Evolution, 9. https://doi.org/10.3389/fevo.2021.750703 Ruiz Miñano, M., While, G. M., Yang, W., Burridge, C. P., Salvi, D., & Uller, T. (2022). Population genetic differentiation and genomic signatures of adaptation to climate in an abundant lizard. Heredity 2022 128:4, 128(4), 271–278. https://doi.org/10.1038/s41437-022-00518-0 Ruiz-Sanchez, E., & Ornelas, J. F. (2014). Phylogeography of Liquidambar styraciflua (Altingiaceae) in Mesoamerica: survivors of a Neogene widespread temperate forest (or cloud forest) in North America? Ecology and Evolution, 4(4), 311–328. https://doi.org/https://doi.org/10.1002/ece3.938 Rundle, H. D., & Nosil, P. (2005). Ecological speciation. Ecology Letters, 8(3), 336–352. https://doi.org/10.1111/j.1461-0248.2004.00715.x Sampson, J., & Byrne, M. (2022). Genetic Differentiation among Subspecies of Banksia nivea (Proteaceae) Associated with Expansion and Habitat Specialization. Diversity 2022, Vol. 14, Page 98, 14(2), 98. https://doi.org/10.3390/D14020098 Sasaki, M. C., & Dam, H. G. (2020). Genetic differentiation underlies seasonal variation in thermal tolerance, body size, and plasticity in a short-lived copepod. Ecology and Evolution, 10(21), 12200–12210. https://doi.org/10.1002/ECE3.6851 Schluter, D. (2009). Evidence for ecological speciation and its alternative. Science, 323(5915), 737–741. https://doi.org/10.1126/SCIENCE.1160006/SUPPL_FILE/SCHLUTER.SOM.PDF Schluter, D. (2000). The ecology of adaptive radiation. Oxford University Press. https://global.oup.com/academic/product/the-ecology-of-adaptive-radiation-9780198505228 Schoener, T. W. (1968). The Anolis Lizards of Bimini: Resource Partitioning in a Complex Fauna. Ecology, 49(4), 704–726. https://doi.org/https://doi.org/10.2307/1935534 Schwartz, M. K., & McKelvey, K. S. (2009). Why sampling scheme matters: The effect of sampling scheme on landscape genetic results. Conservation Genetics, 10(2), 441–452. https://doi.org/10.1007/S10592-008-9622-1/METRICS Scotta, M. I., Margris, L., Sellier, N., Warot, S., Gatti, F., Siccardi, F., Gibert, P., Vercken, E., & Ris, N. (2021). Genetic variability, population differentiation, and correlations for thermal tolerance indices in the minute wasp, trichogramma cacoeciae. Insects, 12(11), 1013. https://doi.org/10.3390/INSECTS12111013/S1 Seeholzer, G. F., Claramunt, S., & Brumfield, R. T. (2017). Niche evolution and diversification in a Neotropical radiation of birds (Aves: Furnariidae). Evolution, 71(3), 702–715. https://doi.org/10.1111/EVO.13177 Semlitsch, R. D., & Bodie, J. R. (1998). Are Small, Isolated Wetlands Expendable? Conservation Biology, 12(5), 1129–1133. https://doi.org/10.1046/j.1523-1739.1998.98166.x Sexton, J. P., Hangartner, S. B., & Hoffmann, A. A. (2014). Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution, 68(1), 1–15. https://doi.org/10.1111/evo.12258 Shafer, A. B. A., Côté, S. D., & Coltman, D. W. (2011a). Hot spots of genetic diversity descended from multiple pleistocene refugia in an alpine ungulate. Evolution, 65(1), 125–138. http://www.jstor.org/stable/27920037 Shafer, A. B. A., Côté, S. D., & Coltman, D. W. (2011b). Hot spots of genetic diversity descended from multiple pleistocene refugia in an alpine ungulate. Evolution, 65(1), 125–138. https://doi.org/10.1111/j.1558-5646.2010.01109.x Shafer, A. B. A., & Wolf, J. B. W. (2013). Widespread evidence for incipient ecological speciation: A meta-analysis of isolation-by-ecology. Ecology Letters, 16(7), 940–950. https://doi.org/10.1111/ele.12120 Sheffield, J., & Wood, E. F. (2008). Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dynamics, 31(1), 79–105. https://doi.org/10.1007/S00382-007-0340-Z/METRICS Shi, M. M., Michalski, S. G., Chen, X. Y., & Durka, W. (2011). Isolation by Elevation: Genetic Structure at Neutral and Putatively Non-Neutral Loci in a Dominant Tree of Subtropical Forests, Castanopsis eyrei. PLOS ONE, 6(6), e21302. https://doi.org/10.1371/JOURNAL.PONE.0021302 Shirk, A. J., & Cushman, S. A. (2011). sGD: software for estimating spatially explicit indices of genetic diversity. Molecular Ecology Resources, 11(5), 922–934. https://doi.org/10.1111/j.1755-0998.2011.03035.x Shirk, A. J., & Cushman, S. A. (2014). Spatially-explicit estimation of Wright’s neighborhood size in continuous populations. Frontiers in Ecology and Evolution, 2(OCT), 101846. https://doi.org/10.3389/FEVO.2014.00062/BIBTEX Siepielski, A. M., Morrissey, M. B., Buoro, M., Carlson, S. M., Caruso, C. M., Clegg, S. M., Coulson, T., DiBattista, J., Gotanda, K. M., Francis, C. D., Hereford, J., Kingsolver, J. G., Augustine, K. E., Kruuk, L. E. B., Martin, R. A., Sheldon, B. C., Sletvold, N., Svensson, E. I., Wade, M. J., & MacColl, A. D. C. (2017). Precipitation drives global variation in natural selection. Science, 355(6328), 959–962. https://doi.org/10.1126/SCIENCE.AAG2773/SUPPL_FILE/SIEPIELSKI.SM_CORRECTED.PDF Slatkin, M. (1987). Gene Flow and the Geographic Structure of Natural Populations. Science, 236, 787–792. http://science.sciencemag.org/ Smith, B. T., McCormack, J. E., Cuervo, A. M., Hickerson, M. J., Aleixo, A., Cadena, C. D., Pérez-Emán, J., Burney, C. W., Xie, X., Harvey, M. G., Faircloth, B. C., Glenn, T. C., Derryberry, E. P., Prejean, J., Fields, S., & Brumfield, R. T. (2014). The drivers of tropical speciation. Nature, 515(7527), 406–409. https://doi.org/10.1038/nature13687 Smouse, P. E., Long, J. C., & Sokal, R. R. (1986). Multiple Regression and Correlation Extensions of the Mantel Test of Matrix Correspondence. Systematic Biology, 35(4), 627–632. https://doi.org/10.2307/2413122 Smouse, P. E., & Peakall, R. (1999). Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity, 82, 561–573. Sobel, J. M., Chen, G. F., Watt, L. R., & Schemske, D. W. (2010). The biology of speciation. Evolution, 64(2), 295–315. https://doi.org/10.1111/J.1558-5646.2009.00877.X Spear, S. F., Balkenhol, N., Fortin, M. J., McRae, B. H., & Scribner, K. (2010). Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Molecular Ecology, 19(17), 3576–3591. https://doi.org/10.1111/J.1365-294X.2010.04657.X Springer, C. J., & Ward, J. K. (2007). Flowering time and elevated atmospheric CO2. New Phytologist, 176(2), 243–255. https://doi.org/10.1111/J.1469-8137.2007.02196.X Srikanthan, P., & Burg, T. (2023). Environmental drivers behind the genetic differentiation in mountain chickadees (Poecile gambeli). BioRxiv, 2023.02.25.529994. https://doi.org/10.1101/2023.02.25.529994 Stech, M., Veldman, S., Larraín, J., Muñoz, J., Quandt, D., Hassel, K., & Kruijer, H. (2013). Molecular Species Delimitation in the Racomitrium canescens Complex (Grimmiaceae) and Implications for DNA Barcoding of Species Complexes in Mosses. PLOS ONE, 8(1), e53134-. https://doi.org/10.1371/journal.pone.0053134 Stevens, V. M., Polus, E., Wesselingh, R. A., Schtickzelle, N., & Baguette, M. (2004). Quantifying functional connectivity: experimental evidence for patch-specific resistance in the Natterjack toad (Bufo calamita). Landscape Ecology, 19(8), 829–842. https://doi.org/10.1007/s10980-004-0166-6 Stevens, V. M., Verkenne, C., Vandewoestijne, S., Wesselingh, R. A., & Baguette, M. (2006). Gene flow and functional connectivity in the natterjack toad. Molecular Ecology, 15(9), 2333–2344. https://doi.org/10.1111/J.1365-294X.2006.02936.X Stokke, B. G., Møller, A. P., Sæther, B.-E., Rheinwald, G., & Gutscher, H. (2005). Weather in The Breeding Area and During Migration Affects the Demography of a Small Long-Distance Passerine Migrant. The Auk, 122(2), 637–647. https://doi.org/10.1093/AUK/122.2.637 Storfer, A., Murphy, M. A., Evans, J. S., Goldberg, C. S., Robinson, S., Spear, S. F., Dezzani, R., Delmelle, E., Vierling, L., & Waits, L. P. (2006). Putting the ‘landscape’ in landscape genetics. Heredity 2007 98:3, 98(3), 128–142. https://doi.org/10.1038/sj.hdy.6800917 Storfer, A., Murphy, M. A., Spear, S. F., Holderegger, R., & Waits, L. P. (2010). Landscape genetics: where are we now? Molecular Ecology, 19(17), 3496–3514. https://doi.org/10.1111/J.1365-294X.2010.04691.X Surget-Groba, Y., Johansson, H., & Thorpe, R. S. (2012). Synergy between Allopatry and Ecology in Population Differentiation and Speciation. International Journal of Ecology, 2012, 1–10. https://doi.org/10.1155/2012/273413 Swainson, W. (1827). A synopsis of the Birds discovered in Mexico by W. Bullock, F.L.S. and H.S. and Mr. William Bullock. In R. Taylor & R. Phillips (Eds.), The Philosophical magazine : or Annals of chemistry, mathematics, astronomy, natural history and general science (p. 368). Richard Taylor and Co. https://www.biodiversitylibrary.org/bibliography/58331 Taberlet, P., Fumagalli, L., Wust-Saucy, A. G., & Cosson, J. F. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7(4), 453–464. https://doi.org/10.1046/J.1365-294X.1998.00289.X Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10(3), 512–526. https://doi.org/10.1093/OXFORDJOURNALS.MOLBEV.A040023 Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120 Taubmann, J., Theissinger, K., Feldheim, K. A., Laube, I., Graf, W., Haase, P., Johannesen, J., & Pauls, S. U. (2011). Modelling range shifts and assessing genetic diversity distribution of the montane aquatic mayfly Ameletus inopinatus in Europe under climate change scenarios. Conservation Genetics, 12(2), 503–515. https://doi.org/10.1007/S10592-010-0157-X/METRICS Temunović, M., Franjić, J., Satovic, Z., Grgurev, M., Frascaria-Lacoste, N., & Fernández-Manjarrés, J. F. (2012). Environmental Heterogeneity Explains the Genetic Structure of Continental and Mediterranean Populations of Fraxinus angustifolia Vahl. PLOS ONE, 7(8), e42764. https://doi.org/10.1371/JOURNAL.PONE.0042764 Thibert-Plante, X., & Hendry, A. P. (2010). When can ecological speciation be detected with neutral loci? Molecular Ecology, 19(11), 2301–2314. https://doi.org/10.1111/j.1365-294X.2010.04641.x Thibert-Plante, X., & Hendry, A. P. (2011). The consequences of phenotypic plasticity for ecological speciation. Journal of Evolutionary Biology, 24(2), 326–342. https://doi.org/10.1111/J.1420-9101.2010.02169.X Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., Ferreira De Siqueira, M., Grainger, A., Hannah, L., Hughes, L., Huntley, B., Van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L., & Williams, S. E. (2004). Extinction risk from climate change. Nature 2003 427:6970, 427(6970), 145–148. https://doi.org/10.1038/nature02121 Thorpe, R. S., Surget-Groba, Y., & Johansson, H. (2008). The relative importance of ecology and geographic isolation for speciation in anoles. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1506), 3071–3081. https://doi.org/10.1098/rstb.2008.0077 Vaissi, S., & Rezaei, S. (2022). Niche Divergence at Intraspecific Level in the Hyrcanian Wood Frog, Rana pseudodalmatina: A Phylogenetic, Climatic, and Environmental Survey. Frontiers in Ecology and Evolution, 10, 774481. https://doi.org/10.3389/FEVO.2022.774481/BIBTEX Vallely, A. (2001). Foraging at army ant swarms by fifty bird species in the highlands of Costa Rica. Ornitologia Neotropical, 12. Van Buskirk, J., & Jansen van Rensburg, A. (2020). Relative importance of isolation-by-environment and other determinants of gene flow in an alpine amphibian. Evolution; International Journal of Organic Evolution, 74(5), 962–978. https://doi.org/10.1111/evo.13955 van Etten, J. (2017). R Package gdistance: Distances and Routes on Geographical Grids. Journal of Statistical Software, 76(1), 1–21. https://doi.org/10.18637/JSS.V076.I13 Via, S., & Hawthorne, D. J. (2002). The Genetic Architecture of Ecological Specialization: Correlated Gene Effects on Host Use and Habitat Choice in Pea Aphids. Https://Doi.Org/10.1086/338374, 159(S3), S76–S88. https://doi.org/10.1086/338374 Visser, M. E., & Gienapp, P. (2019). Evolutionary and demographic consequences of phenological mismatches. Nature Ecology & Evolution 2019 3:6, 3(6), 879–885. https://doi.org/10.1038/s41559-019-0880-8 Wagner, C. E., & McCune, A. R. (2009). Contrasting Patterns of Spatial Genetic Structure in Sympatric Rock-Dwelling Cichlid Fishes. Evolution, 63(5), 1312–1326. http://www.jstor.org/stable/25483678 Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J. M., Hoegh-Guldberg, O., & Bairlein, F. (2002). Ecological responses to recent climate change. Nature 2002 416:6879, 416(6879), 389–395. https://doi.org/10.1038/416389a Wan, H. Y., Cushman, S. A., & Ganey, J. L. (2018). Habitat Fragmentation Reduces Genetic Diversity and Connectivity of the Mexican Spotted Owl: A Simulation Study Using Empirical Resistance Models. Genes 2018, Vol. 9, Page 403, 9(8), 403. https://doi.org/10.3390/GENES9080403 Wang, I. J. (2013). Examining the full effects of landscape heterogeneity on spatial genetic variation: A multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution, 67(12), 3403–3411. https://doi.org/10.1111/evo.12134 Wang, I. J., & Bradburd, G. S. (2014). Isolation by environment. Molecular Ecology, 23(23), 5649–5662. https://doi.org/10.1111/mec.12938 Wang, I. J., Glor, R. E., & Losos, J. B. (2013). Quantifying the roles of ecology and geography in spatial genetic divergence. Ecology Letters, 16(2), 175–182. https://doi.org/10.1111/ele.12025 Wang, I. J., Savage, W. K., & Bradley Shaffer, H. (2009). Landscape genetics and least-cost path analysis reveal unexpected dispersal routes in the California tiger salamander (Ambystoma californiense). Molecular Ecology, 18(7), 1365–1374. https://doi.org/10.1111/J.1365-294X.2009.04122.X Wang, I. J., & Summers, K. (2010). Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison-dart frog. Molecular Ecology, 19(3), 447–458. https://doi.org/10.1111/j.1365-294X.2009.04465.x Wang, P., Liu, Y., Liu, Y., Chang, Y., Wang, N., & Zhang, Z. (2017). The role of niche divergence and geographic arrangement in the speciation of Eared Pheasants (Crossoptilon, Hodgson 1938). Molecular Phylogenetics and Evolution, 113, 1–8. https://doi.org/10.1016/J.YMPEV.2017.05.003 Waples, R. S., & England, P. R. (2011). Estimating Contemporary Effective Population Size on the Basis of Linkage Disequilibrium in the Face of Migration. Genetics, 189(2), 633–644. https://doi.org/10.1534/GENETICS.111.132233 Waples, R. S., Luikart, G., Faulkner, J. R., & Tallmon, D. A. (2013). Simple life-history traits explain key effective population size ratios across diverse taxa. Proceedings of the Royal Society B: Biological Sciences, 280(1768). https://doi.org/10.1098/RSPB.2013.1339 Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution, 62(11), 2868–2883. https://doi.org/https://doi.org/10.1111/j.1558-5646.2008.00482.x Wasserman, T. N., Cushman, S. A., Littell, J. S., Shirk, A. J., & Landguth, E. L. (2013). Population connectivity and genetic diversity of American marten (Martes americana) in the United States northern Rocky Mountains in a climate change context. Conservation Genetics, 14(2), 529–541. https://doi.org/10.1007/s10592-012-0336-z Wasserman, T. N., Cushman, S. A., Schwartz, M. K., & Wallin, D. O. (2010). Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landscape Ecology, 25(10), 1601–1612. https://doi.org/10.1007/s10980-010-9525-7 Wasserman, T. N., Cushman, S. A., Shirk, A. S., Landguth, E. L., & Littell, J. S. (2012). Simulating the effects of climate change on population connectivity of American marten (Martes americana) in the northern Rocky Mountains, USA. Landscape Ecology, 27(2), 211–225. https://doi.org/10.1007/s10980-011-9653-8 Weir, J. T. (2006). Divergent timing and patterns of species accumulation in lowland and highland neotropical birds. Evolution; International Journal of Organic Evolution, 60(4), 842–855. http://www.ncbi.nlm.nih.gov/pubmed/16739464 Weir, J. T., Bermingham, E., & Schluter, D. (2009). The Great American Biotic Interchange in birds. Proceedings of the National Academy of Sciences of the United States of America, 106(51), 21737–21742. https://doi.org/10.1073/PNAS.0903811106/SUPPL_FILE/SD1.XLS Weir, J. T., Faccio, M. S., Pulido-Santacruz, P., Barrera-Guzmán, A. O., & Aleixo, A. (2015). Hybridization in headwater regions, and the role of rivers as drivers of speciation in Amazonian birds. Evolution, 69(7), 1823–1834. https://doi.org/10.1111/EVO.12696 Weir, J. T., & Price, M. (2011). Andean uplift promotes lowland speciation through vicariance and dispersal in Dendrocincla woodcreepers. Molecular Ecology, 20(21), 4550–4563. https://doi.org/10.1111/J.1365-294X.2011.05294.X Wetmore, A. (1942). Descriptions of three additional Birds from southern Vera Cruz. Proceedings of The Biological Society of Washington, 55, 105–108. Wetmore, A. (1944). A collection of birds from northern Guanacaste, Costa Rica. Proceedings of the United States National Museum, 95(3179), 25–80, 4 pls. https://doi.org/10.5479/SI.00963801.95-3179.25 White, T. A., Stamford, J., & Rus Hoelzel, A. (2010). Local selection and population structure in a deep-sea fish, the roundnose grenadier (Coryphaenoides rupestris). Molecular Ecology, 19(2), 216–226. https://doi.org/10.1111/J.1365-294X.2009.04446.X Whitlock, M. C. (2004). Selection and Drift in Metapopulations. In I. Hanski & O. E. Gaggiotti (Eds.), Ecology, Genetics and Evolution of Metapopulations (pp. 153–173). Elsevier. https://doi.org/10.1016/B978-012323448-3/50009-X Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis Second Edition. http://www.springer.com/series/6991 Wiens, J. J. (2004). Speciation and ecology revisited: Pylogenetic niche conservatism and the origin of species. Evolution, 58(1), 193–197. https://doi.org/10.1111/j.0014-3820.2004.tb01586.x Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V, Damschen, E. I., Jonathan Davies, T., Grytnes, J.-A., Harrison, S. P., Hawkins, B. A., Holt, R. D., McCain, C. M., & Stephens, P. R. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 13(10), 1310–1324. https://doi.org/10.1111/j.1461-0248.2010.01515.x Wiens, J. J., & Graham, C. H. (2005). Niche Conservatism: Integrating Evolution, Ecology, and Conservation Biology. Annual Review of Ecology, Evolution, and Systematics, 36(1), 519–539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431 Wiley, E. M., & Ridley, A. R. (2016). The effects of temperature on offspring provisioning in a cooperative breeder. Animal Behaviour, 117, 187–195. https://doi.org/10.1016/J.ANBEHAV.2016.05.009 Williams, J. B., & Tieleman, B. I. (2005). Physiological Adaptation in Desert Birds. BioScience, 55(5), 416–425. https://doi.org/10.1641/0006-3568(2005)055[0416:PAIDB]2.0.CO;2 Willis, C. G., Ruhfel, B., Primack, R. B., Miller-Rushing, A. J., & Davis, C. C. (2008). Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change. Proceedings of the National Academy of Sciences of the United States of America, 105(44), 17029–17033. https://doi.org/10.1073/PNAS.0806446105/SUPPL_FILE/0806446105SI.PDF Wilson, P. J., & Provan, J. (2003). Effect of habitat fragmentation on levels and patterns of genetic diversity in natural populations of the peat moss Polytrichum commune. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1517), 881–886. https://doi.org/10.1098/RSPB.2002.2324 Woodward, F. I. (1988). Temperature and the distribution of plant species. Symposia of the Society for Experimental Biology, 42, 59–75. https://europepmc.org/article/med/3270209 Wright, L. I., Tregenza, T., & Hosken, D. J. (2008). Inbreeding, inbreeding depression and extinction. Conservation Genetics, 9(4), 833–843. https://doi.org/10.1007/S10592-007-9405-0/METRICS Wright, S. (1943). Isolation by distance. Genetics, 28(114), 114–138. https://academic.oup.com/genetics/article/28/2/114/6033172 Wróblewska, A., & Mirski, P. (2018). From past to future: impact of climate change on range shifts and genetic diversity patterns of circumboreal plants. Regional Environmental Change, 18(2), 409–424. https://doi.org/10.1007/S10113-017-1208-3/FIGURES/3 Wu, C. I., & Ting, C. T. (2004). Genes and speciation. Nature Reviews Genetics 2004 5:2, 5(2), 114–122. https://doi.org/10.1038/nrg1269 Wu, Y., Colwell, R. K., Rahbek, C., Zhang, C., Quan, Q., Wang, C., & Lei, F. (2013). Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains. Journal of Biogeography, 40(12), 2310–2323. https://doi.org/10.1111/JBI.12177 Youngblut, J. M. (1994). A consumer’s guide to causal modeling: Part I. Journal of Pediatric Nursing, 9(4), 268–271. http://www.ncbi.nlm.nih.gov/pubmed/7965594 Yuan, S., Ma, L., Guo, C., & Wang, R. (2016). What drives phenotypic divergence in Leymus chinensis (Poaceae) on large-scale gradient, climate or genetic differentiation? Scientific Reports 2016 6:1, 6(1), 1–11. https://doi.org/10.1038/srep26288 Zamudio-Beltrán, L. E., Ornelas, J. F., Malpica, A., & Hernández-Baños, B. E. (2020). Genetic and morphological differentiation among populations of the Rivoli’s Hummingbird (Eugenes fulgens) species complex (Aves: Trochilidae). The Auk, 137(4), ukaa032. https://doi.org/10.1093/auk/ukaa032 Zhang, G., Li, C., Li, Q., Li, B., Larkin, D. M., Lee, C., Storz, J. F., Antunes, A., Greenwold, M. J., Meredith, R. W., Ödeen, A., Cui, J., Zhou, Q., Xu, L., Pan, H., Wang, Z., Jin, L., Zhang, P., Hu, H., … Wang, J. (2014). Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 346(6215), 1311–1320. www.sciencemag.org Zhang, Y. H., Wang, I. J., Comes, H. P., Peng, H., & Qiu, Y. X. (2016). Contributions of historical and contemporary geographic and environmental factors to phylogeographic structure in a Tertiary relict species, Emmenopterys henryi (Rubiaceae). Scientific Reports 2016 6:1, 6(1), 1–14. https://doi.org/10.1038/srep24041 Zink, R. M., & Barrowclough, G. F. (2008). Mitochondrial DNA under siege in avian phylogeography. Molecular Ecology, 17(9), 2107–2121. https://doi.org/10.1111/J.1365-294X.2008.03737.X Zizka, A., Silvestro, D., Andermann, T., Azevedo, J., Duarte Ritter, C., Edler, D., Farooq, H., Herdean, A., Ariza, M., Scharn, R., Svantesson, S., Wengström, N., Zizka, V., & Antonelli, A. (2019). CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods in Ecology and Evolution, 10(5), 744–751. https://doi.org/https://doi.org/10.1111/2041-210X.13152 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xix, 126 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Biología |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86917/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86917/2/1144101977.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86917/3/1144101977.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 2175bf6d5a9e27d393b242bb50e9066f db75cc5d59c72378a2338a100cd64a18 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089754968326144 |
spelling |
Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Campos Mosos, Héctor Aníbalc266ace65b02f0fe09e4fe94e8975c60Gutierrez Toro, Juan Camilo05db9881758cd752f4284fa96d399b3bGutierrez Toro, Juan Camilo [0000-0003-1554-5217]2024-10-09T13:23:55Z2024-10-09T13:23:55Z2024https://repositorio.unal.edu.co/handle/unal/86917Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapas, tablasEsta investigación se centra en identificar los factores determinantes de la divergencia genética en aves neotropicales del orden paseriforme. El objetivo principal es analizar cómo la distancia geográfica y la disimilitud climática influyen en la diferenciación genética de estas poblaciones. Contrariamente a la creencia anterior sobre la predominancia de factores ecológicos, los hallazgos subrayan la relevancia crucial del aislamiento geográfico en las poblaciones estudiadas. A pesar de considerar la distancia geográfica, se observa la persistencia del aislamiento ambiental, indicando posibles adaptaciones locales, probablemente atribuibles a la selección natural divergente o barreras reproductivas. Se examina detalladamente la influencia de la resistencia climática en la diferenciación genética, resaltando el costo del movimiento entre poblaciones como un posible determinante de estas diferencias genéticas. La compleja interacción entre factores geográficos y ambientales destaca la necesidad de un enfoque holístico en la comprensión de estos procesos. Desde una perspectiva de conservación, a pesar del cambio climático, se evidencia una resiliencia genética que sugiere un impacto limitado en estas especies, posiblemente debido a sus amplias distribuciones geográficas. Se destaca la importancia de preservar hábitats existentes y la implementación de estrategias de conservación. En resumen, esta investigación aporta significativamente a la comprensión de los factores clave que impulsan la diversidad genética en aves neotropicales, enfatizando la importancia de la geografía y el aislamiento geográfico, con importantes implicaciones para la conservación y la adaptabilidad en un entorno de cambios ambientales. (Texto tomado de la fuente)This research focuses on identifying the determining factors of genetic divergence in neotropical passerine birds. The main objective is to analyze how geographical distance and climatic dissimilarity influence the genetic differentiation of these populations. Contrary to previous beliefs regarding the predominance of ecological factors, the findings underscore the crucial relevance of geographic isolation in the studied populations. Despite accounting for geographical distance, the persistence of environmental isolation is seen, indicating possible local adaptations, likely attributable to divergent natural selection or reproductive barriers. The influence of climatic resistance on genetic differentiation is examined in detail, emphasizing the cost of movement between populations as a potential determinant of these genetic differences. The complex interaction between geographical and environmental factors highlights the need for a comprehensive approach in understanding these processes. From a conservation perspective, despite climate change, genetic resilience is clear, suggesting limited impact on these species, possibly due to their broad geographical distributions. The importance of preserving existing habitats and implementing conservation strategies is emphasized. In summary, this research significantly contributes to understanding the key factors driving genetic diversity in neotropical birds, emphasizing the importance of geography and geographic isolation, with significant implications for conservation and adaptability in an environment of environmental changes.MaestríaMagíster en Ciencias - BiologíaGenética de poblacionesxix, 126 páginasapplication/pdfspa570 - Biología::576 - Genética y evoluciónMECANISMOS DE AISLAMIENTO (BIOLOGIA)Isolating mechanismsDiversidad genéticaAves neotropicalesAislamiento geográficoResistencia climáticaGenetic DiversityNeotropical BirdsGeographic IsolationClimatic ResistanceConservationClimate change and ecosystemscell differentiationcambio climático y ecosistemasdiferenciación celularCuantificación del efecto del clima en el aislamiento poblacional de especies de aves neotropicales (Orden Paseriformes)Quantification of the effect of climate on population isolation of neotropical bird species (Order Passeriformes)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotá - Ciencias - Maestría en Ciencias - BiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáAiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography, 38(5), 541–545. https://doi.org/https://doi.org/10.1111/ecog.01132Alcaide, M., Serrano, D., Negro, J. J., Tella, J. L., Laaksonen, T., Müller, C., Gal, A., & Korpimäki, E. (2009). Population fragmentation leads to isolation by distance but not genetic impoverishment in the philopatric Lesser Kestrel: A comparison with the widespread and sympatric Eurasian Kestrel. Heredity, 102(2), 190–198. https://doi.org/10.1038/hdy.2008.107Anderson, J. T., Inouye, D. W., McKinney, A. M., Colautti, R. I., & Mitchell-Olds, T. (2012). Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proceedings of the Royal Society B: Biological Sciences, 279(1743), 3843–3852. https://doi.org/10.1098/RSPB.2012.1051Araújo, M. B., & New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22(1), 42–47. https://doi.org/10.1016/j.tree.2006.09.010Arnold, M. L., Ballerini, E. S., & Brothers, A. N. (2012). Hybrid fitness, adaptation and evolutionary diversification: lessons learned from Louisiana Irises. Heredity, 108(3), 159. https://doi.org/10.1038/HDY.2011.65Arslan, N. A., & Martin, T. E. (2019). Reproductive biology of Grey-breasted Wood-Wren (Henicorhina leucophrys): A comparative study of tropical and temperate wrens. The Wilson Journal of Ornithology, 131(1), 1–11. https://doi.org/10.1676/18-12Ayala, F. J., Tracey, M. L., Hedgecock, D., & Richmond, R. C. (1974). Genetic Differentiation During the Speciation Process in Drosophila. Evolution, 28(4), 576–592. https://doi.org/10.2307/2407283Bailey, L. D., van de Pol, M., Adriaensen, F., Arct, A., Barba, E., Bellamy, P. E., Bonamour, S., Bouvier, J. C., Burgess, M. D., Charmantier, A., Cusimano, C., Doligez, B., Drobniak, S. M., Dubiec, A., Eens, M., Eeva, T., Ferns, P. N., Goodenough, A. E., Hartley, I. R., … Visser, M. E. (2022). Bird populations most exposed to climate change are less sensitive to climatic variation. Nature Communications 2022 13:1, 13(1), 1–10. https://doi.org/10.1038/s41467-022-29635-4Baird, S. F. (1865). Review of American birds in the Museum of the Smithsonian Institution (Vol. 1).Balkenhol, N., Waits, L. P., & Dezzani, R. J. (2009). Statistical approaches in landscape genetics: An evaluation of methods for linking landscape and genetic data. Ecography, 32(5), 818–830. https://doi.org/10.1111/J.1600-0587.2009.05807.XBarber, B. R., & Klicka, J. (2010). Two pulses of diversification across the Isthmus of Tehuantepec in a montane Mexican bird fauna. Proceedings of the Royal Society B: Biological Sciences, 277(1694), 2675–2681. https://doi.org/10.1098/rspb.2010.0343Barnagaud, J. Y., Barbaro, L., Hampe, A., Jiguet, F., & Archaux, F. (2013). Species’ thermal preferences affect forest bird communities along landscape and local scale habitat gradients. Ecography, 36(11), 1218–1226. https://doi.org/10.1111/J.1600-0587.2012.00227.XBarnagaud, J. Y., Barbaro, L., Hampe, A., Jiguet, F., & Archaux, F. (2013). Species’ thermal preferences affect forest bird communities along landscape and local scale habitat gradients. Ecography, 36(11), 1218–1226. https://doi.org/10.1111/J.1600-0587.2012.00227.XBarrier, E., Velasquillo, L., Chavez, M., & Gaulon, R. (1998). Neotectonic evolution of the Isthmus of Tehuantepec (southeastern Mexico). Tectonophysics, 287(1), 77–96. https://doi.org/https://doi.org/10.1016/S0040-1951(98)80062-0Bates, J. M., Haffer, J., & Grismer, E. (2004). Avian mitochondrial DNA sequence divergence across a headwater stream of the Rio Tapajós, a major Amazonian River. Journal of Ornithology, 145(3), 199–205. https://doi.org/10.1007/S10336-004-0039-4/METRICSBay, R. A., Harrigan, R. J., Underwood, V. Le, Gibbs, H. L., Smith, T. B., & Ruegg, K. (2018). Genomic signals of selection predict climate-driven population declines in a migratory bird. Science, 359(6371), 83–86. https://doi.org/10.1126/science.aan4380Bay, R. A., Karp, D. S., Saracco, J. F., Anderegg, W. R. L., Frishkoff, L. O., Wiedenfeld, D., Smith, T. B., & Ruegg, K. (2021). Genetic variation reveals individual-level climate tracking across the annual cycle of a migratory bird. Ecology Letters, 24(4), 819–828. https://doi.org/10.1111/ELE.13706Benítez-Benítez, C., Sanz-Arnal, M., Urbani, M., Jiménez-Mejías, P., & Martín-Bravo, S. (2022). Dramatic impact of future climate change on the genetic diversity and distribution of ecologically relevant Western Mediterranean Carex (Cyperaceae). PeerJ, 10. https://doi.org/10.7717/peerj.13464Blair, C., Weigel, D. E., Balazik, M., Keeley, A. T. H., Walker, F. M., Landguth, E., Cushman, S., Murphy, M., Waits, L., & Balkenhol, N. (2012). A simulation-based evaluation of methods for inferring linear barriers to gene flow. Molecular Ecology Resources, 12(5), 822–833. https://doi.org/10.1111/J.1755-0998.2012.03151.XBohonak, A. (1999). Dispersal, Gee flow, and Population Structure. The Quarterly Review of Biology, 74(1), 21–45. http://www.journals.uchicago.edu/t-and-cBollen, K. A. (2002). Latent variables in psychology and the social sciences. Annual Review of Psychology, 53(1), 605–634.Bolnick, D. I., & Otto, S. P. (2013). The magnitude of local adaptation under genotype‐dependent dispersal. Ecology and Evolution, 3(14), 4722–4735. https://doi.org/10.1002/ece3.850Bonaccorso, E., Navarro-Sigüenza, A. G., Sánchez-González, L. A., Townsend Peterson, A., & García-Moreno, J. (2008). Genetic differentiation of the Chlorospingus ophthalmicus complex in Mexico and Central America. Journal of Avian Biology, 39(3), 311–321. https://doi.org/https://doi.org/10.1111/j.0908-8857.2008.04233.xBonamour, S., Chevin, L. M., Charmantier, A., & Teplitsky, C. (2019). Phenotypic plasticity in response to climate change: the importance of cue variation. Philosophical Transactions of the Royal Society B, 374(1768). https://doi.org/10.1098/RSTB.2018.0178Botero-Delgadillo, E., Quirici, V., Poblete, Y., Cuevas, É., Kuhn, S., Girg, A., Teltscher, K., Poulin, E., Kempenaers, B., & Vásquez, R. A. (2017). Variation in fine-scale genetic structure and local dispersal patterns between peripheral populations of a South American passerine bird. Ecology and Evolution, 7(20), 8363–8378. https://doi.org/10.1002/ece3.3342Bradburd, G. S., Ralph, P. L., & Coop, G. M. (2013). Disentangling the effects of geographic and ecological isolation on genetic differentiation. Evolution, 67(11), 3258–3273. https://doi.org/10.1111/evo.12193Broquet, T., Ray, N., Petit, E., Fryxell, J. M., & Burel, F. (2006). Genetic isolation by distance and landscape connectivity in the American marten (Martes americana). Landscape Ecology, 21(6), 877–889. https://doi.org/10.1007/S10980-005-5956-Y/METRICSBrown, J. H., & Kodric-Brown, A. (1977). Turnover Rates in Insular Biogeography: Effect of Immigration on Extinction. Ecology, 58(2), 445–449. https://doi.org/10.2307/1935620Brown, J. L., & Yoder, A. D. (2015). Shifting ranges and conservation challenges for lemurs in the face of climate change. Ecology and Evolution, 5(6), 1131–1142. https://doi.org/10.1002/ECE3.1418Brown, L. M., Ramey, R. R., Tamburini, B., & Gavin, T. A. (2004). Population structure and mitochondrial DNA variation in sedentary Neotropical birds isolated by forest fragmentation. Conservation Genetics, 5(6), 743–757. https://doi.org/10.1007/S10592-004-1865-X/METRICSBruggeman, D. J., Wiegand, T., & FernÁndez, N. (2010). The relative effects of habitat loss and fragmentation on population genetic variation in the red-cockaded woodpecker (Picoides borealis). Molecular Ecology, 19(17), 3679–3691. https://doi.org/10.1111/J.1365-294X.2010.04659.XBrumfield, R. T. (2012). Inferring the Origins of Lowland Neotropical Birds. The Auk, 129(3), 367–376. https://doi.org/10.1525/AUK.2012.129.3.367Bründl, A. C., Sallé, L., Lejeune, L. A., Sorato, E., Thiney, A. C., Chaine, A. S., & Russell, A. F. (2020). Elevational Gradients as a Model for Understanding Associations Among Temperature, Breeding Phenology and Success. Frontiers in Ecology and Evolution, 8, 563377. https://doi.org/10.3389/FEVO.2020.563377/BIBTEXBurney, C. W., & Brumfield, R. T. (2009). Ecology Predicts Levels of Genetic Differentiation in Neotropical Birds. Https://Doi.Org/10.1086/603613, 174(3), 358–368. https://doi.org/10.1086/603613Butterfield, J. E. L., & Coulson, J. C. (1997). Terrestrial invertebrates and climate change: Physiological and life-cycle adaptations. Past and Future Rapid Environmental Changes, 401–412. https://doi.org/10.1007/978-3-642-60599-4_31Cab-Sulub, L., & Álvarez-Castañeda, S. T. (2022). Genetic isolation between conspecific populations and their relationship to climate heterogeneity. Acta Oecologica, 116. https://doi.org/10.1016/j.actao.2022.103847Cadena, C. D., Klicka, J., & Ricklefs, R. E. (2007). Evolutionary differentiation in the Neotropical montane region: Molecular phylogenetics and phylogeography of Buarremon brush-finches (Aves, Emberizidae). Molecular Phylogenetics and Evolution, 44(3), 993–1016. https://doi.org/https://doi.org/10.1016/j.ympev.2006.12.012Cadena, C. D., Pérez-Emán, J. L., Cuervo, A. M., Céspedes, L. N., Epperly, K. L., & Klicka, J. T. (2019). Extreme genetic structure and dynamic range evolution in a montane passerine bird: implications for tropical diversification. In Biological Journal of the Linnean Society (Vol. 126). https://academic.oup.com/biolinnean/article/126/3/487/5306478Caro, L. M., Caycedo-Rosales, P. C., Bowie, R. C. K., Slabbekoorn, H., & Cadena, C. D. (2013). Ecological speciation along an elevational gradient in a tropical passerine bird? Journal of Evolutionary Biology, 26(2), 357–374. https://doi.org/10.1111/jeb.12055Carvalho, S. B., Torres, J., Tarroso, P., & Velo‐Antón, G. (2019). Genes on the edge: A framework to detect genetic diversity imperiled by climate change. Global Change Biology, 25(12), 4034–4047. https://doi.org/10.1111/gcb.14740Chan, K. O., Alexander, A. M., Grismer, L. L., Su, Y.-C., Grismer, J. L., Quah, E. S. H., & Brown, R. M. (2017). Species delimitation with gene flow: A methodological comparison and population genomics approach to elucidate cryptic species boundaries in Malaysian Torrent Frogs. Molecular Ecology, 26(20), 5435–5450. https://doi.org/https://doi.org/10.1111/mec.14296Charlesworth, B., Charlesworth, D., & Barton, N. H. (2003). The Effects of Genetic and Geographic Structure on Neutral Variation. Annual Review of Ecology, Evolution, and Systematics, 34, 99–125. https://doi.org/10.1146/annurev.ecolsys.34.011802.132359Claramunt, S., Derryberry, E. P., Remsen, J. V., & Brumfield, R. T. (2012). High dispersal ability inhibits speciation in a continental radiation of passerine birds. Proceedings of the Royal Society B: Biological Sciences, 279(1733), 1567–1574. https://doi.org/10.1098/rspb.2011.1922Coelho, M. T. P., Barreto, E., Rangel, T. F., Diniz-Filho, J. A. F., Wüest, R. O., Bach, W., Skeels, A., McFadden, I. R., Roberts, D. W., Pellissier, L., Zimmermann, N. E., & Graham, C. H. (2023). The geography of climate and the global patterns of species diversity. Nature 2023, 1–8. https://doi.org/10.1038/s41586-023-06577-5Cortés-Rodríguez, N., Hernández-Baños, B. E., Navarro-Sigüenza, A. G., Townsend Peterson, A., & García-Moreno, J. (2008). Phylogeography and population genetics of the Amethyst-throated Hummingbird (Lampornis amethystinus). Molecular Phylogenetics and Evolution, 48(1), 1–11. https://doi.org/https://doi.org/10.1016/j.ympev.2008.02.005Costa, M. da S. G., Batista, R. de C., & Gurgel-Gonçalves, R. (2014). Predicting geographic distributions of Phacellodomus species (Aves: Furnariidae) in South America based on ecological niche modeling. Acta Scientiarum. Biological Sciences, 36(3), 299–306. https://doi.org/10.4025/actascibiolsci.v36i3.22165Coulon, A., Cosson, J. F., Angibault, J. M., Cargnelutti, B., Galan, M., Morellet, N., Petit, E., Aulagnier, S., & Hewison, A. J. M. (2004). Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual–based approach. Molecular Ecology, 13(9), 2841–2850. https://doi.org/10.1111/J.1365-294X.2004.02253.XCoulon, A., Guillot, G., Cosson, J. F., Angibault, J. M. A., Aulagnier, S., Cargnelutti, B., Galan, M., & Hewison, A. J. M. (2006). Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. Molecular Ecology, 15(6), 1669–1679. https://doi.org/10.1111/J.1365-294X.2006.02861.XCowley, E., & Siriwardena, G. M. (2005). Long-term variation in survival rates of Sand Martins Riparia riparia: dependence on breeding and wintering ground weather, age and sex, and their population consequences. Bird Study, 52(3), 237–251. https://doi.org/10.1080/00063650509461397Crispo, E., Bentzen, P., Reznick, D. N., Kinnison, M. T., & Hendry, A. P. (2006). The relative influence of natural selection and geography on gene flow in guppies. Molecular Ecology, 15(1), 49–62. https://doi.org/https://doi.org/10.1111/j.1365-294X.2005.02764.xCuervo, P. F., Flores, F. S., Venzal, J. M., & Nava, S. (2021). Niche divergence among closely related taxa provides insight on evolutionary patterns of ticks. Journal of Biogeography, 48(11), 2865–2876. https://doi.org/10.1111/JBI.14245Cuervo, P. F., Flores, F. S., Venzal, J. M., & Nava, S. (2021). Niche divergence among closely related taxa provides insight on evolutionary patterns of ticks. Journal of Biogeography, 48(11), 2865–2876. https://doi.org/10.1111/JBI.14245Cushman, S. A., McKelvey, K. S., Hayden, J., & Schwartz, M. K. (2006). Gene Flow in Complex Landscapes: Testing Multiple Hypotheses with Causal Modeling. The American Naturalist, 168(4), 486–499. https://doi.org/10.1086/506976Cushman, S. A., Wasserman, T. N., Landguth, E. L., & Shirk, A. J. (2013). Re-Evaluating Causal Modeling with Mantel Tests in Landscape Genetics. Diversity 2013, Vol. 5, Pages 51-72, 5(1), 51–72. https://doi.org/10.3390/D5010051Dattalo, P. (2013). Choosing among Procedures for the Analysis of Multiple Dependent Variables. Analysis of Multiple Dependent Variables, 149–156. https://doi.org/10.1093/ACPROF:OSO/9780199773596.003.0006Davis, J. M., & Stamps, J. A. (2004). The effect of natal experience on habitat preferences. Trends in Ecology & Evolution, 19(8), 411–416. https://doi.org/10.1016/j.tree.2004.04.006Davis, M. B., & Shaw, R. G. (2001). Range Shifts and Adaptive Responses to Quaternary Climate Change. Science, 292(5517), 673–679. https://doi.org/10.1126/SCIENCE.292.5517.673de Souza, M. S., Barcellos, S. A., Costa, A. L., Kretschmer, R., Garnero, A. D. V., & Gunski, R. J. (2019). Polymorphism of Sooty-fronted Spinetail (Synallaxis frontalis Aves: Furnariidae): Evidence of chromosomal rearrangements by pericentric inversion in autosomal macrochromosomes. Genetics and Molecular Biology, 42(1), 62–67. https://doi.org/10.1590/1678-4685-GMB-2018-0039Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., D’Amen, M., Randin, C., Engler, R., Pottier, J., Pio, D., Dubuis, A., Pellissier, L., Mateo, R. G., Hordijk, W., Salamin, N., & Guisan, A. (2017). ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography, 40(6), 774–787. https://doi.org/https://doi.org/10.1111/ecog.02671Dingle, C., Halfwerk, W., & Slabbekoorn, H. (2008). Habitat-dependent song divergence at subspecies level in the grey-breasted wood-wren. Journal of Evolutionary Biology, 21(4), 1079–1089. https://doi.org/10.1111/J.1420-9101.2008.01536.XDingle, C., Lovette, I. J., Canaday, C., & Smith, T. B. (2006). Elevational Zonation and the Phylogenetic Relationships of the Henicorhina Wood-Wrens. The Auk, 123(1), 119–134. https://doi.org/10.1093/AUK/123.1.119Dingle, C., Lovette, I. J., Canaday, C., & Smith, T. B. (2006). Elevational Zonation and the Phylogenetic Relationships of the Henicorhina Wood-Wrens. The Auk, 123(1), 119–134. https://doi.org/10.1093/AUK/123.1.119Dupanloup, I., Schneider, S., & Excoffier, L. (2002). A simulated annealing approach to define the genetic structure of populations. Molecular Ecology, 11, 2571–2581.Durant, S. E., Hopkins, W. A., Hepp, G. R., & Walters, J. R. (2013). Ecological, evolutionary, and conservation implications of incubation temperature-dependent phenotypes in birds. Biological Reviews, 88(2), 499–509. https://doi.org/10.1111/BRV.12015Durant, S. E., Hopkins, W. A., Wilson, A. F., & Hepp, G. R. (2012). Incubation temperature affects the metabolic cost of thermoregulation in a young precocial bird. Functional Ecology, 26(2), 416–422. https://doi.org/10.1111/J.1365-2435.2011.01945.XEdelaar, P., & Bolnick, D. I. (2012). Non-random gene flow: An underappreciated force in evolution and ecology. Trends in Ecology and Evolution, 27(12), 659–665. https://doi.org/10.1016/j.tree.2012.07.009Edelaar, P., Siepielski, A. M., & Clobert, J. (2008). Matching habitat choice causes directed gene flow: A neglected dimension in evolution and ecology. In Evolution (Vol. 62, Issue 10, pp. 2462–2472). https://doi.org/10.1111/j.1558-5646.2008.00459.xEdwards, S. V., Jennings, W. B., & Shedlock, A. M. (2005). Phylogenetics of modern birds in the era of genomics. Proceedings of the Royal Society B: Biological Sciences, 272(1567), 979–992. https://doi.org/10.1098/rspb.2004.3035Epperson, B. K., McRae, B. H., Scribner, K., Cushman, S. A., Rosenberg, M. S., Fortin, M. J., James, P. M. A., Murphy, M., Manel, S., Legendre, P., & Dale, M. R. T. (2010). Utility of computer simulations in landscape genetics. Molecular Ecology, 19(17), 3549–3564. https://doi.org/10.1111/J.1365-294X.2010.04678.XEspíndola, A., Pellissier, L., Maiorano, L., Hordijk, W., Guisan, A., & Alvarez, N. (2012). Predicting present and future intra-specific genetic structure through niche hindcasting across 24 millennia. Ecology Letters, 15(7), 649–657. https://doi.org/https://doi.org/10.1111/j.1461-0248.2012.01779.xEvanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.org/https://doi.org/10.1111/j.1365-294X.2005.02553.xExcoffier, L., & Lischer, H. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. https://doi.org/https://doi.org/10.1111/j.1755-0998.2010.02847.xExcoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of Molecular Variance Inferred From Metric Distances Among DNA Haplotypes: Application to Human Mitochondrial DNA Restriction Data. Genetics, 131, 479–491.Fahrig, L., Pedlar, J. H., Pope, S. E., Taylor, P. D., & Wegner, J. F. (1995). Effect of road traffic on amphibian density. Biological Conservation, 73(3), 177–182. https://doi.org/10.1016/0006-3207(94)00102-VFan, D., Lei, S., Liang, H., Yao, Q., Kou, Y., Cheng, S., Yang, Y., Qiu, Y., & Zhang, Z. (2022). More opportunities more species: Pleistocene differentiation and northward expansion of an evergreen broad-leaved tree species Machilus thunbergii (Lauraceae) in Southeast China. BMC Plant Biology, 22(1). https://doi.org/10.1186/s12870-021-03420-9Feder, J. L., Egan, S. P., & Nosil, P. (2012a). The genomics of speciation-with-gene-flow. Trends in Genetics, 28(7), 342–350. https://doi.org/10.1016/j.tig.2012.03.009Feder, J. L., & Forbes, A. A. (2007). Habitat avoidance and speciation for phytophagous insect specialists. Functional Ecology, 21(3), 585–597. https://doi.org/10.1111/j.1365-2435.2007.01232.xFeder, J. L., & Nosil, P. (2010). The efficacy of divergence hitchhiking in generating genomic islands during ecological speciation. Evolution; International Journal of Organic Evolution, 64(6), 1729–1747. https://doi.org/10.1111/j.1558-5646.2010.00943.xFernandes, A. M., Gonzalez, J., Wink, M., & Aleixo, A. (2013). Multilocus phylogeography of the Wedge-billed Woodcreeper Glyphorynchus spirurus (Aves, Furnariidae) in lowland Amazonia: Widespread cryptic diversity and paraphyly reveal a complex diversification pattern. Molecular Phylogenetics and Evolution, 66(1), 270–282. https://doi.org/10.1016/j.ympev.2012.09.033Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/https://doi.org/10.1002/joc.5086Fierro-Calderón, K., Estela, F. A., & Chacón-Ulloa, P. (2006). Observaciones sobre las dietas de algunas aves de la cordillera Oriental de Colombia a partir del análisis de contenidos estomacales. Ornitología Colombiana, 4, 6–15. https://asociacioncolombianadeornitologia.org/ojs/index.php/roc/article/view/89Flaxman, S. M., Feder, J. L., & Nosil, P. (2013). Genetic hitchhiking and the dynamic buildup of genomic divergence during speciation with gene flow. Evolution, 67(9), 2577–2591. https://doi.org/10.1111/EVO.12055Francis, R. M. (2017). pophelper: an R package and web app to analyse and visualize population structure. Molecular Ecology Resources, 17(1), 27–32. https://doi.org/https://doi.org/10.1111/1755-0998.12509Funk, D. J., Egan, S. P., & Nosil, P. (2011). Isolation by adaptation in Neochlamisus leaf beetles: host-related selection promotes neutral genomic divergence. Molecular Ecology, 20(22), 4671–4682. https://doi.org/10.1111/J.1365-294X.2011.05311.XFunk, D. J., Nosil, P., & Etges, W. J. (2006). Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proceedings of the National Academy of Sciences of the United States of America, 103(9), 3209–3213. https://doi.org/10.1073/PNAS.0508653103/SUPPL_FILE/INDEX.HTMLGaitán, J. J., Oliva, G. E., Bran, D. E., Maestre, F. T., Aguiar, M. R., Jobbágy, E. G., Buono, G. G., Ferrante, D., Nakamatsu, V. B., Ciari, G., Salomone, J. M., & Massara, V. (2014). Vegetation structure is as important as climate for explaining ecosystem function across Patagonian rangelands. Journal of Ecology, 102(6), 1419–1428. https://doi.org/10.1111/1365-2745.12273Gavrilets, S. (2003). Perspective: models of speciation: what have we learned in 40 years? Evolution, 57(10), 2197–2215. https://doi.org/10.1111/J.0014-3820.2003.TB00233.XGibbs, J. P. (1998). Amphibian Movements in Response to Forest Edges, Roads, and Streambeds in Southern New England. The Journal of Wildlife Management, 62(2), 584. https://doi.org/10.2307/3802333González, C., Ornelas, J. F., & Gutiérrez-Rodríguez, C. (2011). Selection and geographic isolation influence hummingbird speciation: genetic, acoustic and morphological divergence in the wedge-tailed sabrewing (Campylopterus curvipennis). BMC Evolutionary Biology, 11(1), 38. https://doi.org/10.1186/1471-2148-11-38Grace, J. B. (2006). Part I - A beginning. In Structural Equation Modeling and Natural Systems (pp. 3–33).Guan, B. cai, Liu, X., Gong, X., Cai, Q. ying, & Ge, G. (2019). Genetic landscape and landscape connectivity of Ceratopteris thalictroides, an endangered aquatic fern. Ecological Informatics, 53, 100973. https://doi.org/10.1016/J.ECOINF.2019.100973Guan, B., Gao, J., Chen, W., Gong, X., & Ge, G. (2021). The Effects of Climate Change on Landscape Connectivity and Genetic Clusters in a Small Subtropical and Warm-Temperate Tree. Frontiers in Plant Science, 12, 671336. https://doi.org/10.3389/FPLS.2021.671336/BIBTEXGuillot, G., & Rousset, F. (2013). Dismantling the Mantel tests. Methods in Ecology and Evolution, 4(4), 336–344. https://doi.org/https://doi.org/10.1111/2041-210x.12018Gutiérrez-Pinto, N., Cuervo, A. M., Miranda, J., Pérez-Emán, J. L., Brumfield, R. T., & Cadena, C. D. (2012). Non-monophyly and deep genetic differentiation across low-elevation barriers in a Neotropical montane bird (Basileuterus tristriatus; Aves: Parulidae). Molecular Phylogenetics and Evolution, 64(1), 156–165. https://doi.org/https://doi.org/10.1016/j.ympev.2012.03.011Halffter, G. (1987). Biogeography of the Montane Entomofauna of Mexico and Central America. Annual Review of Entomology, 32(1), 95–114. https://doi.org/10.1146/annurev.en.32.010187.000523Harpending, H., & Rogers, A. (1987). On Wright’s Mechanism for Intergroup Selection. J. Theor. Biol, 127, 51–61.Harrison, S. (1991). Local extinction in a metapopulation context: an empirical evaluation. Biological Journal of the Linnean Society, 42(1–2), 73–88. https://doi.org/10.1111/j.1095-8312.1991.tb00552.xHarte, J., & Shaw, R. (1995). Shifting Dominance Within a Montane Vegetation Community: Results of a Climate-Warming Experiment. Science, 267(5199), 876–880. https://doi.org/10.1126/SCIENCE.267.5199.876Hartl, D. L., & Clark, G. C. (1997). Principles of Population Genetics. Sinauer Associates.Hartlaub, G. (1852). Descriptions de quelques nouvelles especes d’Oiseaux. In F.-É. Guérin-Méneville (Ed.), Revue et magasin de zoologie pure et appliquée (Vol. 2, p. 5). Bureau de la revue et magasin de zoologie.Hausdorf, B., & Hennig, C. (2020). Species delimitation and geography. Molecular Ecology Resources, 20(4), 950–960. https://doi.org/https://doi.org/10.1111/1755-0998.13184Hausfather, Z., & Peters, G. P. (2020a). Emissions – the ‘business as usual’ story is misleading. Nature 2021 577:7792, 577(7792), 618–620. https://doi.org/10.1038/d41586-020-00177-3Hausfather, Z., & Peters, G. P. (2020b). RCP8.5 is a problematic scenario for near-term emissions. Proceedings of the National Academy of Sciences, 117(45), 27791–27792. https://doi.org/10.1073/pnas.2017124117Hawkins, E., & Sutton, R. (2009). The Potential to Narrow Uncertainty in Regional Climate Predictions. Bulletin of the American Meteorological Society, 90(8), 1095–1108. https://doi.org/10.1175/2009BAMS2607.1Hendry, A. P. (2004). Selection against migrants contributes to the rapid evolution of ecologically dependent reproductive isolation. Evolutionary Ecology Research, 6, 1219–1236.Hendry, A. P. (2009). Ecological speciation! Or the lack thereof? Canadian Journal of Fisheries and Aquatic Sciences, 66(8), 1383–1398. https://doi.org/10.1139/F09-074Hendry, A. P., Nosil, P., & Rieseberg, L. H. (2007). The speed of ecological speciation. Functional Ecology, 21(3), 455. https://doi.org/10.1111/J.1365-2435.2006.01240.XHewitt, G. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society, 58(3), 247–276. https://doi.org/10.1006/BIJL.1996.0035Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. Nature 2000 405:6789, 405(6789), 907–913. https://doi.org/10.1038/35016000Hickling, R., Roy, D. B., Hill, J. K., Fox, R., & Thomas, C. D. (2006). The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology, 12(3), 450–455. https://doi.org/10.1111/J.1365-2486.2006.01116.XHidalgo Aranzamendi, N., Hall, M. L., Kingma, S. A., van de Pol, M., & Peters, A. (2019). Rapid plastic breeding response to rain matches peak prey abundance in a tropical savanna bird. Journal of Animal Ecology, 88(11), 1799–1811. https://doi.org/10.1111/1365-2656.13068Hijmans, R. J., Van Etten, J., Cheng, J., Mattiuzzi, M., Sumner, M., Greenberg, J. A., Lamigueiro, O. P., Bevan, A., Racine, E. B., & Shortridge, A. (2015). Package ‘raster’. R Package, 734, 473.Hoffmann, A. A., & Sgró, C. M. (2011). Climate change and evolutionary adaptation. Nature 2011 470:7335, 470(7335), 479–485. https://doi.org/10.1038/nature09670Holsinger, K. E. (2001). Natural Selection. In S. Brenner & J. H. Miller (Eds.), Encyclopedia of Genetics (pp. 1291–1297). Elsevier. https://doi.org/10.1006/rwgn.2001.1161Holt, R. D., & Gaines, M. S. (1992). Analysis of adaptation in heterogeneous landscapes: Implications for the evolution of fundamental niches. Evolutionary Ecology, 6(5), 433–447. https://doi.org/10.1007/BF02270702/METRICSHua, X., & Wiens, J. J. (2013). How does climate influence speciation? American Naturalist, 182(1), 1–12. https://doi.org/10.1086/670690Huang, Q., Wu, L.-Y., & Zhang, X.-S. (2013). Corbi: a new R package for biological network alignment and querying. BMC Systems Biology, 7(2), S6. https://doi.org/10.1186/1752-0509-7-S2-S6Huidobro, L., Morrone, J. J., Villalobos, J. L., & Álvarez, F. (2006). Distributional patterns of freshwater taxa (fishes, crustaceans and plants) from the Mexican Transition Zone. Journal of Biogeography, 33(4), 731–741. https://doi.org/https://doi.org/10.1111/j.1365-2699.2005.01400.xHutchison, D. W., & Templeton, A. R. (1999). Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution, 53(6), 1898–1914. https://doi.org/10.1111/J.1558-5646.1999.TB04571.XInoue, K., & Berg, D. J. (2017). Predicting the effects of climate change on population connectivity and genetic diversity of an imperiled freshwater mussel, Cumberlandia monodonta (Bivalvia: Margaritiferidae), in riverine systems. Global Change Biology, 23(1), 94–107. https://doi.org/10.1111/GCB.13369Janes, J. K., & Batista, P. D. (2016). The Role of Population Genetic Structure in Understanding and Managing Pine Beetles. In Advances in Insect Physiology (Vol. 50, pp. 75–100). Academic Press Inc. https://doi.org/10.1016/bs.aiip.2016.01.001Jenkins, D. G., Carey, M., Czerniewska, J., Fletcher, J., Hether, T., Jones, A., Knight, S., Knox, J., Long, T., Mannino, M., Mcguire, M., Riffle, A., Segelsky, S., Shappell, L., Sterner, A., Strickler, T., Tursi, R., Jenkins, D. G., Carey, M., … Tursi, R. (2010). A meta-analysis of isolation by distance: relic or reference standard for landscape genetics? Ecography, 33(2), 315–320. https://doi.org/10.1111/J.1600-0587.2010.06285.XJiménez-Valverde, A. (2012). Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecology and Biogeography, 21(4), 498–507. https://doi.org/https://doi.org/10.1111/j.1466-8238.2011.00683.xJohnson, J. S., Gaddis, K. D., Cairns, D. M., Konganti, K., & Krutovsky, K. V. (2017). Landscape genomic insights into the historic migration of mountain hemlock in response to Holocene climate change. American Journal of Botany, 104(3), 439–450. https://doi.org/10.3732/AJB.1600262Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genetics, 11. https://doi.org/10.1186/1471-2156-11-94Jorgensen, T. H., Richardson, D. S., & Andersson, S. (2006). Comparative Analyses of Population Structure in Two Subspecies of Nigella degenii: Evidence for Diversifying Selection on Pollen-Color Dimorphisms. Evolution, 60(3), 518–528. http://www.jstor.org/stable/4095314Karl, S. A., Toonen, R. J., Grant, W. S., & Bowen, B. W. (2012). Common misconceptions in molecular ecology: echoes of the modern synthesis. Molecular Ecology, 21(17), 4171–4189. https://doi.org/10.1111/J.1365-294X.2012.05576.XKass, J. M., Muscarella, R., Galante, P. J., Bohl, C. L., Pinilla-Buitrago, G. E., Boria, R. A., Soley-Guardia, M., & Anderson, R. P. (2021). ENMeval 2.0: Redesigned for customizable and reproducible modeling of species’ niches and distributions. Methods in Ecology and Evolution, 12(9), 1602–1608. https://doi.org/https://doi.org/10.1111/2041-210X.13628Kessler Rios, M., Londoño, G., & Biancucci, A. (2008). Notes on birds that follow army ants in the northern Andes. ORNITOLOGIA NEOTROPICAL, 19.Kim, D., Taylor, A. T., & Near, T. J. (2022). Phylogenomics and species delimitation of the economically important Black Basses (Micropterus). Scientific Reports, 12(1), 9113. https://doi.org/10.1038/s41598-022-11743-2Kimura, M., & Weisss, G. H. (1964). The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics, 49, 561–576.Kozakiewicz, C. P., Carver, S., & Burridge, C. P. (2018). Under-representation of avian studies in landscape genetics. Ibis, 160(1), 1–12. https://doi.org/10.1111/ibi.12532Kremer, A., Ronce, O., Robledo-Arnuncio, J. J., Guillaume, F., Bohrer, G., Nathan, R., Bridle, J. R., Gomulkiewicz, R., Klein, E. K., Ritland, K., Kuparinen, A., Gerber, S., & Schueler, S. (2012). Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecology Letters, 15(4), 378–392. https://doi.org/10.1111/J.1461-0248.2012.01746.XLandguth, E. L., & Cushman, S. A. (2010). cdpop: A spatially explicit cost distance population genetics program. Molecular Ecology Resources, 10(1), 156–161. https://doi.org/10.1111/J.1755-0998.2009.02719.XLee, C. R., & Mitchell-Olds, T. (2011). Quantifying effects of environmental and geographical factors on patterns of genetic differentiation. Molecular Ecology, 20(22), 4631–4642. https://doi.org/10.1111/j.1365-294X.2011.05310.xLegendre, P., & Fortin, M.-J. (2010). Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Molecular Ecology Resources, 10(5), 831–844. https://doi.org/https://doi.org/10.1111/j.1755-0998.2010.02866.xLegendre, P., & Troussellier, M. (1988). Aquatic heterotrophic bacteria: Modeling in the presence of spatial autocorrelation. Limnology and Oceanography, 33(5), 1055–1067. https://doi.org/10.4319/lo.1988.33.5.1055Lenoir, J., Gégout, J. C., Marquet, P. A., De Ruffray, P., & Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 320(5884), 1768–1771. https://doi.org/10.1126/SCIENCE.1156831/SUPPL_FILE/LENOIR.SOM.PDFLeonardi, S., Gentilesca, T., Guerrieri, R., Ripullone, F., Magnani, F., Mencuccini, M., Noije, T. V., & Borghetti, M. (2012). Assessing the effects of nitrogen deposition and climate on carbon isotope discrimination and intrinsic water-use efficiency of angiosperm and conifer trees under rising CO2 conditions. Global Change Biology, 18(9), 2925–2944. https://doi.org/10.1111/J.1365-2486.2012.02757.XLobo, J. M., Jiménez-Valverde, A., & Real, R. (2008). AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17(2), 145–151. https://doi.org/https://doi.org/10.1111/j.1466-8238.2007.00358.xLovette, I. J., Pérez-Emán, J. L., Sullivan, J. P., Banks, R. C., Fiorentino, I., Córdoba-Córdoba, S., Echeverry-Galvis, M., Barker, F. K., Burns, K. J., Klicka, J., Lanyon, S. M., & Bermingham, E. (2010). A comprehensive multilocus phylogeny for the wood-warblers and a revised classification of the Parulidae (Aves). Molecular Phylogenetics and Evolution, 57(2), 753–770. https://doi.org/10.1016/j.ympev.2010.07.018Lozano-Fuentes, S., Fernandez-Salas, I., de Lourdes Munoz, M., Garcia-Rejon, J., Olson, K. E., Beaty, B. J., & Black IV, W. C. (2009). The Neovolcanic Axis Is a Barrier to Gene Flow among Aedes aegypti Populations in Mexico That Differ in Vector Competence for Dengue 2 Virus. PLOS Neglected Tropical Diseases, 3(6), e468-. https://doi.org/10.1371/journal.pntd.0000468Lu, G., & Bernatchez, L. (1999). Correlated trophic specialization and genetic divergence in sympatric lake whitefish ecotypes (Coregonus clupeaformis): support for the ecological speciation hypothesis. Evolution, 53(5), 1491–1505. https://doi.org/10.1111/j.1558-5646.1999.tb05413.xLurwanu, Y., Wang, Y. P., Wu, E. J., He, D. C., Waheed, A., Nkurikiyimfura, O., Wang, Z., Shang, L. P., Yang, L. N., & Zhan, J. (2021). Increasing temperature elevates the variation and spatial differentiation of pesticide tolerance in a plant pathogen. Evolutionary Applications, 14(5), 1274–1285. https://doi.org/10.1111/EVA.13197Maassen, G. H., & Bakker, A. B. (2001). Suppressor Variables in Path Models: Definitions and Interpretations. Sociological Methods & Research, 30(2), 241–270. https://doi.org/10.1177/0049124101030002004Machado-Stredel, F., & Pérez-Emán, J. L. (2017). Using morphometrics to determine sex in a neotropical passerine: the gray‐breasted wood‐wren (Henicorhina leucophrys). Ornitología Neotropical, 28, 147–153. https://doi.org/10.58843/ornneo.v28i0.240Mainwaring, M. C., Nord, A., & Sharp, S. P. (2021). Editorial: The Impact of Weather on the Behavior and Ecology of Birds. In Frontiers in Ecology and Evolution (Vol. 9). Frontiers Media S.A. https://doi.org/10.3389/fevo.2021.777478Mallet, J. (1995). A species definition for the modern synthesis. Trends in Ecology & Evolution, 10(7), 294–299. https://doi.org/https://doi.org/10.1016/0169-5347(95)90031-4Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research.Manthey, J. D., & Moyle, R. G. (2015). Isolation by environment in White‐breasted Nuthatches ( Sitta carolinensis ) of the Madrean Archipelago sky islands: a landscape genomics approach. Molecular Ecology, 24(14), 3628–3638. https://doi.org/10.1111/mec.13258Mapelli, F. J., Mora, M. S., Mirol, P. M., & Kittlein, M. J. (2012). Population structure and landscape genetics in the endangered subterranean rodent Ctenomys porteousi. Conservation Genetics, 13(1), 165–181. https://doi.org/10.1007/S10592-011-0273-2/METRICSMarcondes, R. S., & Brumfield, R. T. (2019). Fifty shades of brown: Macroevolution of plumage brightness in the Furnariida, a large clade of drab Neotropical passerines. Evolution, 73(4), 704–719. https://doi.org/10.1111/evo.13707Marcondes, R. S., Nations, J. A., Seeholzer, G. F., & Brumfield, R. T. (2021). Rethinking Gloger’s Rule: Climate, Light Environments, and Color in a Large Family of Tropical Birds (Furnariidae). Https://Doi.Org/10.1086/713386, 197(5), 592–606. https://doi.org/10.1086/713386Martin, T. E., Oteyza, J. C., Boyce, A. J., Lloyd, P., & Ton, R. (2015). Adult Mortality Probability and Nest Predation Rates Explain Parental Effort in Warming Eggs with Consequences for Embryonic Development Time. Https://Doi.Org/10.1086/681986, 186(2), 223–236. https://doi.org/10.1086/681986Martínez-Cruz, B., Godoy, J. A., & Negro, J. J. (2007). Population fragmentation leads to spatial and temporal genetic structure in the endangered Spanish imperial eagle. Molecular Ecology, 16(3), 477–486. https://doi.org/10.1111/j.1365-294X.2007.03147.xMcBride, C. S., & Singer, M. C. (2010). Field Studies Reveal Strong Postmating Isolation between Ecologically Divergent Butterfly Populations. PLoS Biology, 8(10), e1000529. https://doi.org/10.1371/journal.pbio.1000529McCairns, R. J. S., & Bernatchez, L. (2008). Landscape genetic analyses reveal cryptic population structure and putative selection gradients in a large-scale estuarine environment. Molecular Ecology, 17(17), 3901–3916. https://doi.org/10.1111/J.1365-294X.2008.03884.XMcDonald, P. G., Olsen, P. D., & Cockburn, A. (2004). Weather dictates reproductive success and survival in the Australian brown falcon Falco berigora. Journal of Animal Ecology, 73(4), 683–692. https://doi.org/10.1111/J.0021-8790.2004.00842.XMcGowan, A., Sharp, S. P., & Hatchwell, B. J. (2004). The Structure and Function of Nests of Long-Tailed Tits Aegithalos caudatus. Functional Ecology, 18(4), 578–583. http://www.jstor.org/stable/3599074McIntyre, N. E., Wright, C. K., Swain, S., Hayhoe, K., Liu, G., Schwartz, F. W., & Henebry, G. M. (2014). Climate forcing of wetland landscape connectivity in the Great Plains. Frontiers in Ecology and the Environment, 12(1), 59–64. https://doi.org/10.1890/120369McRae, B. H. (2006). Isolation by resistance. Evolution, 60(8), 1551. https://doi.org/10.1554/05-321.1McRae, B. H., & Beier, P. (2007). Circuit theory predicts gene flow in plant and animal populations. Proceedings of the National Academy of Sciences, 104(50), 19885–19890. https://doi.org/10.1073/pnas.0706568104Mendoza, A. M., Bolívar-García, W., Vázquez-Domínguez, E., Ibáñez, R., & Parra Olea, G. (2019). The role of Central American barriers in shaping the evolutionary history of the northernmost glassfrog, Hyalinobatrachium fleischmanni (Anura: Centrolenidae). PeerJ, 7, e6115. https://doi.org/10.7717/peerj.6115Michels, E., Cottenie, K., Neys, L., De Gelas, K., Coppin, P., & De Meester, L. (2001). Geographical and genetic distances among zooplankton populations in a set of interconnected ponds: a plea for using GIS modelling of the effective geographical distance. Molecular Ecology, 10(8), 1929–1938. https://doi.org/10.1046/J.1365-294X.2001.01340.XMira, S., Arnaud-Haond, S., Palma, L., Cancela, M. L., & Beja, P. (2013). Large-scale population genetic structure in Bonelli’s Eagle Aquila fasciata. Ibis, 155(3), 485–498. https://doi.org/10.1111/ibi.12065Monge, O., Maggini, I., Schulze, C. H., Dullinger, S., & Fusani, L. (2023). Physiologically vulnerable or resilient? Tropical birds, global warming, and redistributions. Ecology and Evolution, 13(4), e9985. https://doi.org/10.1002/ECE3.9985Moreno-Contreras, I., Sánchez-González, L. A., Arizmendi, M. del C., Prieto-Torres, D. A., & Navarro-Sigüenza, A. G. (2020). Climatic Niche Evolution in the Arremon brunneinucha Complex (Aves: Passerellidae) in a Mesoamerican Landscape. Evolutionary Biology, 47(2), 123–132. https://doi.org/10.1007/s11692-020-09498-7Moritz, C. (1994). Defining ‘Evolutionarily Significant Units’ for conservation. Trends in Ecology & Evolution, 9(10), 373–375. https://doi.org/10.1016/0169-5347(94)90057-4Mosca, E., Eckert, A. J., Di Pierro, E. A., Rocchini, D., La Porta, N., Belletti, P., & Neale, D. B. (2012). The geographical and environmental determinants of genetic diversity for four alpine conifers of the European Alps. Molecular Ecology, 21(22), 5530–5545. https://doi.org/10.1111/MEC.12043Moss, R., Babiker, M., Brinkman, S., Calvo, E., Carter, T., Edmonds, J., Elgizouli, I., Emori, S., Erda, L., Hibbard, K., Jones, R., Kainuma, M., Kelleher, J., Lamarque, J. F., Manning, M., Matthews, B., Meehl, J., Meyer, L., Mitchell, J., … Zurek, M. (2008). Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts and Response Strategies. https://archive.ipcc.ch/pdf/supporting-material/expert-meeting-report-scenarios.pdfMumme, R. L. (2002). Scare tactics in a neotropical warbler: white tail feathers enhance flush-pursuit foraging performance in the slate-throated redstart (Myioborus miniatus). The Auk, 119(4), 1024–1035. https://academic.oup.com/auk/article/119/4/1024/5562101Mumme, R. L. (2015). Demography of Slate-throated Redstarts (Myioborus miniatus): A non-migratory Neotropical warbler. Journal of Field Ornithology, 86(2), 89–102. https://doi.org/10.1111/jofo.12093Muscarella, R., Galante, P. J., Soley-Guardia, M., Boria, R. A., Kass, J. M., Uriarte, M., & Anderson, R. P. (2014). ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution, 5(11), 1198–1205. https://doi.org/https://doi.org/10.1111/2041-210X.12261Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling? Ecography, 37(2), 191–203. https://doi.org/10.1111/j.1600-0587.2013.00205.xNanninga, G., Saenz-Agudelo, P., Manica, A., & Berumen, M. (2013). Environmental gradients predict the genetic structure of a coral reef fish in the Red Sea. Molecular Ecology, 23. https://doi.org/10.1111/mec.12623Nei, M., & Nozawa, M. (2011). Roles of Mutation and Selection in Speciation: From Hugo de Vries to the Modern Genomic Era. Genome Biology and Evolution, 3(1), 812–829. https://doi.org/10.1093/GBE/EVR028Nilsson, A. L. K., Reitan, T., Skaugen, T., L’Abée-Lund, J. H., Gamelon, M., Jerstad, K., Røstad, O. W., Slagsvold, T., Stenseth, N. C., Vøllestad, L. A., & Walseng, B. (2020). Location Is Everything, but Climate Gets a Share: Analyzing Small-Scale Environmental Influences on Breeding Success in the White-Throated Dipper. Frontiers in Ecology and Evolution, 8, 542846. https://doi.org/10.3389/FEVO.2020.542846/BIBTEXNosil, P. (2004). Reproductive isolation caused by visual predation on migrants between divergent environments. Proceedings of the Royal Society B: Biological Sciences, 271(1547), 1521–1528. https://doi.org/10.1098/rspb.2004.2751Nyári, Á. S., & Reddy, S. (2013). Comparative Phyloclimatic Analysis and Evolution of Ecological Niches in the Scimitar Babblers (Aves: Timaliidae: Pomatorhinus). PLOS ONE, 8(2), e55629. https://doi.org/10.1371/JOURNAL.PONE.0055629Öberg, M., Arlt, D., Pärt, T., Laugen, A. T., Eggers, S., & Low, M. (2015). Rainfall during parental care reduces reproductive and survival components of fitness in a passerine bird. Ecology and Evolution, 5(2), 345. https://doi.org/10.1002/ECE3.1345O’donnell, M. S., & Ignizio, D. A. (2012). Bioclimatic Predictors for Supporting Ecological Applications in the Conterminous United States. http://www.usgs.gov/pubprodOksanen, J. (2013). Vegan: ecological diversity. R Project, 368, 1–11.Ornelas, J. F., González, C., Hernández-Baños, B. E., & García-Moreno, J. (2016). Molecular and iridescent feather reflectance data reveal recent genetic diversification and phenotypic differentiation in a cloud forest hummingbird. Ecology and Evolution, 6(4), 1104–1127. https://doi.org/https://doi.org/10.1002/ece3.1950Orsini, L., Vanoverbeke, J., Swillen, I., Mergeay, J., & De Meester, L. (2013). Drivers of population genetic differentiation in the wild: Isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Molecular Ecology, 22(24), 5983–5999. https://doi.org/10.1111/mec.12561Ortiz-Rodriguez, A. E., Licona-Vera, Y., Vásquez-Aguilar, A. A., Hernández-Soto, M., López-Huicochea, E. A., & Ornelas, J. F. (2020). Genetic differentiation among Psittacanthus rhynchanthus (Loranthaceae) populations: novel phylogeographic patterns in the Mesoamerican tropical lowlands. Plant Systematics and Evolution, 306(1), 10. https://doi.org/10.1007/s00606-020-01638-yParding, K. M., Dobler, A., McSweeney, C. F., Landgren, O. A., Benestad, R., Erlandsen, H. B., Mezghani, A., Gregow, H., Räty, O., Viktor, E., El Zohbi, J., Christensen, O. B., & Loukos, H. (2020). GCMeval – An interactive tool for evaluation and selection of climate model ensembles. Climate Services, 18, 100167. https://doi.org/10.1016/J.CLISER.2020.100167Parisod, C., & Christin, P. A. (2008). Genome-wide association to fine-scale ecological heterogeneity within a continuous population of Biscutella laevigata (Brassicaceae). New Phytologist, 178(2), 436–447. https://doi.org/10.1111/J.1469-8137.2007.02361.XParker, T. H., Becker, C. D., Sandercock, B. K., & Agreda, A. E. (2006). Apparent Survival Estimates for Five Species of Tropical Birds in an Endangered Forest Habitat in Western Ecuador. Biotropica, 38(6), 764–769. https://doi.org/10.1111/j.1744-7429.2006.00210.xParmesan, C. (2006). Ecological and Evolutionary Responses to Recent Climate Change. Https://Doi.Org/10.1146/Annurev.Ecolsys.37.091305.110100, 37, 637–669. https://doi.org/10.1146/ANNUREV.ECOLSYS.37.091305.110100Paulo, P., Teófilo, F. H., Bertuol, C., Polo, É., Moncrieff, A. E., Bandeira, L. N., Nuñez-Penichet, C., Fernandes, I. Y., Bosholn, M., Machado, A. F., Luna, L. W., Peçanha, W. T., Rampini, A. P., Hashimoto, S., Dias, C., Araripe, J., Aleixo, A., do Rêgo, P. S., Hrbek, T., … Anciães, M. (2023). Geographic Drivers of Genetic and Plumage Color Diversity in the Blue-Crowned Manakin. Evolutionary Biology 2023, 1–19. https://doi.org/10.1007/S11692-023-09613-4Peakall, R., Ruibal, M., & Lindenmayer, D. B. (2003). Spatial Autocorrelation Analysis Offers New Insights into Gene Flow in the Australian Bush Rat, Rattus fuscipes. In Source: Evolution (Vol. 57, Issue 5).Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics, 28(19), 2537–2539. https://doi.org/10.1093/bioinformatics/bts460Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12(5), 361–371. https://doi.org/10.1046/J.1466-822X.2003.00042.XPease, K. M., Freedman, A. H., Pollinger, J. P., McCormack, J. E., Buermann, W., Rodzen, J., Banks, J., Meredith, E., Bleich, V. C., Schaefer, R. J., Jones, K., & Wayne, R. K. (2009). Landscape genetics of California mule deer (Odocoileus hemionus): The roles of ecological and historical factors in generating differentiation. Molecular Ecology, 18(9), 1848–1862. https://doi.org/10.1111/j.1365-294X.2009.04112.xPérez-Emán, J. L. (2005). Molecular phylogenetics and biogeography of the Neotropical redstarts (Myioborus; Aves, Parulinae). Molecular Phylogenetics and Evolution, 37(2), 511–528. https://doi.org/10.1016/j.ympev.2005.04.013Pérez-Emán, J. L., Mumme, R. L., & Jabłonński, P. G. (2010). Phylogeography and Adaptive Plumage Evolution in Central American Subspecies of the Slate-Throated Redstart (Myioborus miniatus). Ornithological Monographs, 67(1), 90–102. https://doi.org/10.1525/om.2010.67.1.90Pérez-Rodríguez, R., Esquivel-Bobadilla, S., Orozco-Ruíz, A. M., Olivas-Hernández, J. L., & García-De León, F. J. (2021). Genetic structure and historical and contemporary gene flow of Astyanax mexicanus in the Gulf of Mexico slope: a microsatellite-based analysis. PeerJ, 9, e10784. https://doi.org/10.7717/peerj.10784Petkova, D., Novembre, J., & Stephens, M. (2015). Visualizing spatial population structure with estimated effective migration surfaces. Nature Genetics, 48(1), 94–100. https://doi.org/10.1038/ng.3464Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: an open-source release of Maxent. Ecography, 40(7), 887–893. https://doi.org/10.1111/ecog.03049Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31(2), 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.xPilot, M., Jedrzejewski, W., Branicki, W., Sidorovich, V. E., Jedrzejewska, B., Stachura, K., & Funk, S. M. (2006). Ecological factors influence population genetic structure of European grey wolves. Molecular Ecology, 15(14), 4533–4553. https://doi.org/10.1111/J.1365-294X.2006.03110.XPollock, H. S., Brawn, J. D., & Cheviron, Z. A. (2021). Heat tolerances of temperate and tropical birds and their implications for susceptibility to climate warming. Functional Ecology, 35(1), 93–104. https://doi.org/10.1111/1365-2435.13693/SUPPINFOPopovic, D., Acanski, J., Djan, M., Obreht, D., Vujic, A., & Radenkovic, S. (2015). Sibling species delimitation and nomenclature of the Merodon avidus complex (Diptera: Syrphidae). Europuean Journal of Entomology, 112(4), 790–809. https://www.eje.cz/artkey/eje-201504-0025.phpPorter, A. H. (1990). Testing Nominal Species Boundaries Using Gene Flow Statistics: The Taxonomy of Two Hybridizing Admiral Butterflies (Limenitis: Nymphalidae). Systematic Zoology, 39(2), 131–147. https://doi.org/10.2307/2992451Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics, 945–959. http://www.stats.ox.ac.uk/pritch/home.html.Provan, J., & Bennett, K. D. (2008). Phylogeographic insights into cryptic glacial refugia. Trends in Ecology & Evolution, 23(10), 564–571. https://doi.org/10.1016/J.TREE.2008.06.010Quiroga-Carmona, M., & D’Elía, G. (2022). Climate influences the genetic structure and niche differentiation among populations of the olive field mouse Abrothrix olivacea (Cricetidae: Abrotrichini). Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-26937-xRalston, J., & Kirchman, J. J. (2013). Predicted range shifts in North American boreal forest birds and the effect of climate change on genetic diversity in blackpoll warblers (Setophaga striata). Conservation Genetics, 14(2), 543–555. https://doi.org/10.1007/s10592-012-0418-yRancilhac, L., Miralles, A., Geniez, P., Mendez-Aranda, D., Beddek, M., Brito, J. C., Leblois, R., & Crochet, P.-A. (2023). Phylogeographic breaks and how to find them: An empirical attempt at separating vicariance from isolation by distance in a lizard with restricted dispersal. BioRxiv, 2022.09.30.510256. https://doi.org/10.1101/2022.09.30.510256Rannala, B. (2015). The art and science of species delimitation. Current Zoology, 61(5), 846–853. https://doi.org/10.1093/czoolo/61.5.846Räsänen, K., & Hendry, A. P. (2008). Disentangling interactions between adaptive divergence and gene flow when ecology drives diversification. Ecology Letters, 11(6), 624–636. https://doi.org/10.1111/J.1461-0248.2008.01176.XReh, W., & Seitz, A. (1990). The influence of land use on the genetic structure of populations of the common frog Rana temporaria. Biological Conservation, 54(3), 239–249. https://doi.org/10.1016/0006-3207(90)90054-SReneerkens, J., Schmidt, N. M., Gilg, O., Hansen, J., Hansen, L. H., Moreau, J., & Piersma, T. (2016). Effects of food abundance and early clutch predation on reproductive timing in a high Arctic shorebird exposed to advancements in arthropod abundance. Ecology and Evolution, 6(20), 7375–7386. https://doi.org/10.1002/ECE3.2361Rizvanovic, M., Kennedy, J. D., Nogués-Bravo, D., & Marske, K. A. (2019). Persistence of genetic diversity and phylogeographic structure of three New Zealand forest beetles under climate change. Diversity and Distributions, 25(1), 142–153. https://doi.org/https://doi.org/10.1111/ddi.12834Ronce, O. (2007). How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annual Review of Ecology, Evolution, and Systematics, 38, 231–253. https://doi.org/10.1146/annurev.ecolsys.38.091206.095611Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1–36. https://doi.org/10.18637/jss.v048.i02Rovito, S. M., Parra-Olea, G., Recuero, E., & Wake, D. B. (2015). Diversification and biogeographical history of Neotropical plethodontid salamanders. Zoological Journal of the Linnean Society, 175(1), 167–188. https://doi.org/10.1111/zoj.12271Rueda-M, N., Salgado-Roa, F. C., Gantiva-Q, C. H., Pardo-Díaz, C., & Salazar, C. (2021). Environmental Drivers of Diversification and Hybridization in Neotropical Butterflies. Frontiers in Ecology and Evolution, 9. https://doi.org/10.3389/fevo.2021.750703Ruiz Miñano, M., While, G. M., Yang, W., Burridge, C. P., Salvi, D., & Uller, T. (2022). Population genetic differentiation and genomic signatures of adaptation to climate in an abundant lizard. Heredity 2022 128:4, 128(4), 271–278. https://doi.org/10.1038/s41437-022-00518-0Ruiz-Sanchez, E., & Ornelas, J. F. (2014). Phylogeography of Liquidambar styraciflua (Altingiaceae) in Mesoamerica: survivors of a Neogene widespread temperate forest (or cloud forest) in North America? Ecology and Evolution, 4(4), 311–328. https://doi.org/https://doi.org/10.1002/ece3.938Rundle, H. D., & Nosil, P. (2005). Ecological speciation. Ecology Letters, 8(3), 336–352. https://doi.org/10.1111/j.1461-0248.2004.00715.xSampson, J., & Byrne, M. (2022). Genetic Differentiation among Subspecies of Banksia nivea (Proteaceae) Associated with Expansion and Habitat Specialization. Diversity 2022, Vol. 14, Page 98, 14(2), 98. https://doi.org/10.3390/D14020098Sasaki, M. C., & Dam, H. G. (2020). Genetic differentiation underlies seasonal variation in thermal tolerance, body size, and plasticity in a short-lived copepod. Ecology and Evolution, 10(21), 12200–12210. https://doi.org/10.1002/ECE3.6851Schluter, D. (2009). Evidence for ecological speciation and its alternative. Science, 323(5915), 737–741. https://doi.org/10.1126/SCIENCE.1160006/SUPPL_FILE/SCHLUTER.SOM.PDFSchluter, D. (2000). The ecology of adaptive radiation. Oxford University Press. https://global.oup.com/academic/product/the-ecology-of-adaptive-radiation-9780198505228Schoener, T. W. (1968). The Anolis Lizards of Bimini: Resource Partitioning in a Complex Fauna. Ecology, 49(4), 704–726. https://doi.org/https://doi.org/10.2307/1935534Schwartz, M. K., & McKelvey, K. S. (2009). Why sampling scheme matters: The effect of sampling scheme on landscape genetic results. Conservation Genetics, 10(2), 441–452. https://doi.org/10.1007/S10592-008-9622-1/METRICSScotta, M. I., Margris, L., Sellier, N., Warot, S., Gatti, F., Siccardi, F., Gibert, P., Vercken, E., & Ris, N. (2021). Genetic variability, population differentiation, and correlations for thermal tolerance indices in the minute wasp, trichogramma cacoeciae. Insects, 12(11), 1013. https://doi.org/10.3390/INSECTS12111013/S1Seeholzer, G. F., Claramunt, S., & Brumfield, R. T. (2017). Niche evolution and diversification in a Neotropical radiation of birds (Aves: Furnariidae). Evolution, 71(3), 702–715. https://doi.org/10.1111/EVO.13177Semlitsch, R. D., & Bodie, J. R. (1998). Are Small, Isolated Wetlands Expendable? Conservation Biology, 12(5), 1129–1133. https://doi.org/10.1046/j.1523-1739.1998.98166.xSexton, J. P., Hangartner, S. B., & Hoffmann, A. A. (2014). Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution, 68(1), 1–15. https://doi.org/10.1111/evo.12258Shafer, A. B. A., Côté, S. D., & Coltman, D. W. (2011a). Hot spots of genetic diversity descended from multiple pleistocene refugia in an alpine ungulate. Evolution, 65(1), 125–138. http://www.jstor.org/stable/27920037Shafer, A. B. A., Côté, S. D., & Coltman, D. W. (2011b). Hot spots of genetic diversity descended from multiple pleistocene refugia in an alpine ungulate. Evolution, 65(1), 125–138. https://doi.org/10.1111/j.1558-5646.2010.01109.xShafer, A. B. A., & Wolf, J. B. W. (2013). Widespread evidence for incipient ecological speciation: A meta-analysis of isolation-by-ecology. Ecology Letters, 16(7), 940–950. https://doi.org/10.1111/ele.12120Sheffield, J., & Wood, E. F. (2008). Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dynamics, 31(1), 79–105. https://doi.org/10.1007/S00382-007-0340-Z/METRICSShi, M. M., Michalski, S. G., Chen, X. Y., & Durka, W. (2011). Isolation by Elevation: Genetic Structure at Neutral and Putatively Non-Neutral Loci in a Dominant Tree of Subtropical Forests, Castanopsis eyrei. PLOS ONE, 6(6), e21302. https://doi.org/10.1371/JOURNAL.PONE.0021302Shirk, A. J., & Cushman, S. A. (2011). sGD: software for estimating spatially explicit indices of genetic diversity. Molecular Ecology Resources, 11(5), 922–934. https://doi.org/10.1111/j.1755-0998.2011.03035.xShirk, A. J., & Cushman, S. A. (2014). Spatially-explicit estimation of Wright’s neighborhood size in continuous populations. Frontiers in Ecology and Evolution, 2(OCT), 101846. https://doi.org/10.3389/FEVO.2014.00062/BIBTEXSiepielski, A. M., Morrissey, M. B., Buoro, M., Carlson, S. M., Caruso, C. M., Clegg, S. M., Coulson, T., DiBattista, J., Gotanda, K. M., Francis, C. D., Hereford, J., Kingsolver, J. G., Augustine, K. E., Kruuk, L. E. B., Martin, R. A., Sheldon, B. C., Sletvold, N., Svensson, E. I., Wade, M. J., & MacColl, A. D. C. (2017). Precipitation drives global variation in natural selection. Science, 355(6328), 959–962. https://doi.org/10.1126/SCIENCE.AAG2773/SUPPL_FILE/SIEPIELSKI.SM_CORRECTED.PDFSlatkin, M. (1987). Gene Flow and the Geographic Structure of Natural Populations. Science, 236, 787–792. http://science.sciencemag.org/Smith, B. T., McCormack, J. E., Cuervo, A. M., Hickerson, M. J., Aleixo, A., Cadena, C. D., Pérez-Emán, J., Burney, C. W., Xie, X., Harvey, M. G., Faircloth, B. C., Glenn, T. C., Derryberry, E. P., Prejean, J., Fields, S., & Brumfield, R. T. (2014). The drivers of tropical speciation. Nature, 515(7527), 406–409. https://doi.org/10.1038/nature13687Smouse, P. E., Long, J. C., & Sokal, R. R. (1986). Multiple Regression and Correlation Extensions of the Mantel Test of Matrix Correspondence. Systematic Biology, 35(4), 627–632. https://doi.org/10.2307/2413122Smouse, P. E., & Peakall, R. (1999). Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity, 82, 561–573.Sobel, J. M., Chen, G. F., Watt, L. R., & Schemske, D. W. (2010). The biology of speciation. Evolution, 64(2), 295–315. https://doi.org/10.1111/J.1558-5646.2009.00877.XSpear, S. F., Balkenhol, N., Fortin, M. J., McRae, B. H., & Scribner, K. (2010). Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Molecular Ecology, 19(17), 3576–3591. https://doi.org/10.1111/J.1365-294X.2010.04657.XSpringer, C. J., & Ward, J. K. (2007). Flowering time and elevated atmospheric CO2. New Phytologist, 176(2), 243–255. https://doi.org/10.1111/J.1469-8137.2007.02196.XSrikanthan, P., & Burg, T. (2023). Environmental drivers behind the genetic differentiation in mountain chickadees (Poecile gambeli). BioRxiv, 2023.02.25.529994. https://doi.org/10.1101/2023.02.25.529994Stech, M., Veldman, S., Larraín, J., Muñoz, J., Quandt, D., Hassel, K., & Kruijer, H. (2013). Molecular Species Delimitation in the Racomitrium canescens Complex (Grimmiaceae) and Implications for DNA Barcoding of Species Complexes in Mosses. PLOS ONE, 8(1), e53134-. https://doi.org/10.1371/journal.pone.0053134Stevens, V. M., Polus, E., Wesselingh, R. A., Schtickzelle, N., & Baguette, M. (2004). Quantifying functional connectivity: experimental evidence for patch-specific resistance in the Natterjack toad (Bufo calamita). Landscape Ecology, 19(8), 829–842. https://doi.org/10.1007/s10980-004-0166-6Stevens, V. M., Verkenne, C., Vandewoestijne, S., Wesselingh, R. A., & Baguette, M. (2006). Gene flow and functional connectivity in the natterjack toad. Molecular Ecology, 15(9), 2333–2344. https://doi.org/10.1111/J.1365-294X.2006.02936.XStokke, B. G., Møller, A. P., Sæther, B.-E., Rheinwald, G., & Gutscher, H. (2005). Weather in The Breeding Area and During Migration Affects the Demography of a Small Long-Distance Passerine Migrant. The Auk, 122(2), 637–647. https://doi.org/10.1093/AUK/122.2.637Storfer, A., Murphy, M. A., Evans, J. S., Goldberg, C. S., Robinson, S., Spear, S. F., Dezzani, R., Delmelle, E., Vierling, L., & Waits, L. P. (2006). Putting the ‘landscape’ in landscape genetics. Heredity 2007 98:3, 98(3), 128–142. https://doi.org/10.1038/sj.hdy.6800917Storfer, A., Murphy, M. A., Spear, S. F., Holderegger, R., & Waits, L. P. (2010). Landscape genetics: where are we now? Molecular Ecology, 19(17), 3496–3514. https://doi.org/10.1111/J.1365-294X.2010.04691.XSurget-Groba, Y., Johansson, H., & Thorpe, R. S. (2012). Synergy between Allopatry and Ecology in Population Differentiation and Speciation. International Journal of Ecology, 2012, 1–10. https://doi.org/10.1155/2012/273413Swainson, W. (1827). A synopsis of the Birds discovered in Mexico by W. Bullock, F.L.S. and H.S. and Mr. William Bullock. In R. Taylor & R. Phillips (Eds.), The Philosophical magazine : or Annals of chemistry, mathematics, astronomy, natural history and general science (p. 368). Richard Taylor and Co. https://www.biodiversitylibrary.org/bibliography/58331Taberlet, P., Fumagalli, L., Wust-Saucy, A. G., & Cosson, J. F. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7(4), 453–464. https://doi.org/10.1046/J.1365-294X.1998.00289.XTamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10(3), 512–526. https://doi.org/10.1093/OXFORDJOURNALS.MOLBEV.A040023Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120Taubmann, J., Theissinger, K., Feldheim, K. A., Laube, I., Graf, W., Haase, P., Johannesen, J., & Pauls, S. U. (2011). Modelling range shifts and assessing genetic diversity distribution of the montane aquatic mayfly Ameletus inopinatus in Europe under climate change scenarios. Conservation Genetics, 12(2), 503–515. https://doi.org/10.1007/S10592-010-0157-X/METRICSTemunović, M., Franjić, J., Satovic, Z., Grgurev, M., Frascaria-Lacoste, N., & Fernández-Manjarrés, J. F. (2012). Environmental Heterogeneity Explains the Genetic Structure of Continental and Mediterranean Populations of Fraxinus angustifolia Vahl. PLOS ONE, 7(8), e42764. https://doi.org/10.1371/JOURNAL.PONE.0042764Thibert-Plante, X., & Hendry, A. P. (2010). When can ecological speciation be detected with neutral loci? Molecular Ecology, 19(11), 2301–2314. https://doi.org/10.1111/j.1365-294X.2010.04641.xThibert-Plante, X., & Hendry, A. P. (2011). The consequences of phenotypic plasticity for ecological speciation. Journal of Evolutionary Biology, 24(2), 326–342. https://doi.org/10.1111/J.1420-9101.2010.02169.XThomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., Ferreira De Siqueira, M., Grainger, A., Hannah, L., Hughes, L., Huntley, B., Van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L., & Williams, S. E. (2004). Extinction risk from climate change. Nature 2003 427:6970, 427(6970), 145–148. https://doi.org/10.1038/nature02121Thorpe, R. S., Surget-Groba, Y., & Johansson, H. (2008). The relative importance of ecology and geographic isolation for speciation in anoles. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1506), 3071–3081. https://doi.org/10.1098/rstb.2008.0077Vaissi, S., & Rezaei, S. (2022). Niche Divergence at Intraspecific Level in the Hyrcanian Wood Frog, Rana pseudodalmatina: A Phylogenetic, Climatic, and Environmental Survey. Frontiers in Ecology and Evolution, 10, 774481. https://doi.org/10.3389/FEVO.2022.774481/BIBTEXVallely, A. (2001). Foraging at army ant swarms by fifty bird species in the highlands of Costa Rica. Ornitologia Neotropical, 12.Van Buskirk, J., & Jansen van Rensburg, A. (2020). Relative importance of isolation-by-environment and other determinants of gene flow in an alpine amphibian. Evolution; International Journal of Organic Evolution, 74(5), 962–978. https://doi.org/10.1111/evo.13955van Etten, J. (2017). R Package gdistance: Distances and Routes on Geographical Grids. Journal of Statistical Software, 76(1), 1–21. https://doi.org/10.18637/JSS.V076.I13Via, S., & Hawthorne, D. J. (2002). The Genetic Architecture of Ecological Specialization: Correlated Gene Effects on Host Use and Habitat Choice in Pea Aphids. Https://Doi.Org/10.1086/338374, 159(S3), S76–S88. https://doi.org/10.1086/338374Visser, M. E., & Gienapp, P. (2019). Evolutionary and demographic consequences of phenological mismatches. Nature Ecology & Evolution 2019 3:6, 3(6), 879–885. https://doi.org/10.1038/s41559-019-0880-8Wagner, C. E., & McCune, A. R. (2009). Contrasting Patterns of Spatial Genetic Structure in Sympatric Rock-Dwelling Cichlid Fishes. Evolution, 63(5), 1312–1326. http://www.jstor.org/stable/25483678Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J. M., Hoegh-Guldberg, O., & Bairlein, F. (2002). Ecological responses to recent climate change. Nature 2002 416:6879, 416(6879), 389–395. https://doi.org/10.1038/416389aWan, H. Y., Cushman, S. A., & Ganey, J. L. (2018). Habitat Fragmentation Reduces Genetic Diversity and Connectivity of the Mexican Spotted Owl: A Simulation Study Using Empirical Resistance Models. Genes 2018, Vol. 9, Page 403, 9(8), 403. https://doi.org/10.3390/GENES9080403Wang, I. J. (2013). Examining the full effects of landscape heterogeneity on spatial genetic variation: A multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution, 67(12), 3403–3411. https://doi.org/10.1111/evo.12134Wang, I. J., & Bradburd, G. S. (2014). Isolation by environment. Molecular Ecology, 23(23), 5649–5662. https://doi.org/10.1111/mec.12938Wang, I. J., Glor, R. E., & Losos, J. B. (2013). Quantifying the roles of ecology and geography in spatial genetic divergence. Ecology Letters, 16(2), 175–182. https://doi.org/10.1111/ele.12025Wang, I. J., Savage, W. K., & Bradley Shaffer, H. (2009). Landscape genetics and least-cost path analysis reveal unexpected dispersal routes in the California tiger salamander (Ambystoma californiense). Molecular Ecology, 18(7), 1365–1374. https://doi.org/10.1111/J.1365-294X.2009.04122.XWang, I. J., & Summers, K. (2010). Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison-dart frog. Molecular Ecology, 19(3), 447–458. https://doi.org/10.1111/j.1365-294X.2009.04465.xWang, P., Liu, Y., Liu, Y., Chang, Y., Wang, N., & Zhang, Z. (2017). The role of niche divergence and geographic arrangement in the speciation of Eared Pheasants (Crossoptilon, Hodgson 1938). Molecular Phylogenetics and Evolution, 113, 1–8. https://doi.org/10.1016/J.YMPEV.2017.05.003Waples, R. S., & England, P. R. (2011). Estimating Contemporary Effective Population Size on the Basis of Linkage Disequilibrium in the Face of Migration. Genetics, 189(2), 633–644. https://doi.org/10.1534/GENETICS.111.132233Waples, R. S., Luikart, G., Faulkner, J. R., & Tallmon, D. A. (2013). Simple life-history traits explain key effective population size ratios across diverse taxa. Proceedings of the Royal Society B: Biological Sciences, 280(1768). https://doi.org/10.1098/RSPB.2013.1339Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution, 62(11), 2868–2883. https://doi.org/https://doi.org/10.1111/j.1558-5646.2008.00482.xWasserman, T. N., Cushman, S. A., Littell, J. S., Shirk, A. J., & Landguth, E. L. (2013). Population connectivity and genetic diversity of American marten (Martes americana) in the United States northern Rocky Mountains in a climate change context. Conservation Genetics, 14(2), 529–541. https://doi.org/10.1007/s10592-012-0336-zWasserman, T. N., Cushman, S. A., Schwartz, M. K., & Wallin, D. O. (2010). Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landscape Ecology, 25(10), 1601–1612. https://doi.org/10.1007/s10980-010-9525-7Wasserman, T. N., Cushman, S. A., Shirk, A. S., Landguth, E. L., & Littell, J. S. (2012). Simulating the effects of climate change on population connectivity of American marten (Martes americana) in the northern Rocky Mountains, USA. Landscape Ecology, 27(2), 211–225. https://doi.org/10.1007/s10980-011-9653-8Weir, J. T. (2006). Divergent timing and patterns of species accumulation in lowland and highland neotropical birds. Evolution; International Journal of Organic Evolution, 60(4), 842–855. http://www.ncbi.nlm.nih.gov/pubmed/16739464Weir, J. T., Bermingham, E., & Schluter, D. (2009). The Great American Biotic Interchange in birds. Proceedings of the National Academy of Sciences of the United States of America, 106(51), 21737–21742. https://doi.org/10.1073/PNAS.0903811106/SUPPL_FILE/SD1.XLSWeir, J. T., Faccio, M. S., Pulido-Santacruz, P., Barrera-Guzmán, A. O., & Aleixo, A. (2015). Hybridization in headwater regions, and the role of rivers as drivers of speciation in Amazonian birds. Evolution, 69(7), 1823–1834. https://doi.org/10.1111/EVO.12696Weir, J. T., & Price, M. (2011). Andean uplift promotes lowland speciation through vicariance and dispersal in Dendrocincla woodcreepers. Molecular Ecology, 20(21), 4550–4563. https://doi.org/10.1111/J.1365-294X.2011.05294.XWetmore, A. (1942). Descriptions of three additional Birds from southern Vera Cruz. Proceedings of The Biological Society of Washington, 55, 105–108.Wetmore, A. (1944). A collection of birds from northern Guanacaste, Costa Rica. Proceedings of the United States National Museum, 95(3179), 25–80, 4 pls. https://doi.org/10.5479/SI.00963801.95-3179.25White, T. A., Stamford, J., & Rus Hoelzel, A. (2010). Local selection and population structure in a deep-sea fish, the roundnose grenadier (Coryphaenoides rupestris). Molecular Ecology, 19(2), 216–226. https://doi.org/10.1111/J.1365-294X.2009.04446.XWhitlock, M. C. (2004). Selection and Drift in Metapopulations. In I. Hanski & O. E. Gaggiotti (Eds.), Ecology, Genetics and Evolution of Metapopulations (pp. 153–173). Elsevier. https://doi.org/10.1016/B978-012323448-3/50009-XWickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis Second Edition. http://www.springer.com/series/6991Wiens, J. J. (2004). Speciation and ecology revisited: Pylogenetic niche conservatism and the origin of species. Evolution, 58(1), 193–197. https://doi.org/10.1111/j.0014-3820.2004.tb01586.xWiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V, Damschen, E. I., Jonathan Davies, T., Grytnes, J.-A., Harrison, S. P., Hawkins, B. A., Holt, R. D., McCain, C. M., & Stephens, P. R. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 13(10), 1310–1324. https://doi.org/10.1111/j.1461-0248.2010.01515.xWiens, J. J., & Graham, C. H. (2005). Niche Conservatism: Integrating Evolution, Ecology, and Conservation Biology. Annual Review of Ecology, Evolution, and Systematics, 36(1), 519–539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431Wiley, E. M., & Ridley, A. R. (2016). The effects of temperature on offspring provisioning in a cooperative breeder. Animal Behaviour, 117, 187–195. https://doi.org/10.1016/J.ANBEHAV.2016.05.009Williams, J. B., & Tieleman, B. I. (2005). Physiological Adaptation in Desert Birds. BioScience, 55(5), 416–425. https://doi.org/10.1641/0006-3568(2005)055[0416:PAIDB]2.0.CO;2Willis, C. G., Ruhfel, B., Primack, R. B., Miller-Rushing, A. J., & Davis, C. C. (2008). Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change. Proceedings of the National Academy of Sciences of the United States of America, 105(44), 17029–17033. https://doi.org/10.1073/PNAS.0806446105/SUPPL_FILE/0806446105SI.PDFWilson, P. J., & Provan, J. (2003). Effect of habitat fragmentation on levels and patterns of genetic diversity in natural populations of the peat moss Polytrichum commune. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1517), 881–886. https://doi.org/10.1098/RSPB.2002.2324Woodward, F. I. (1988). Temperature and the distribution of plant species. Symposia of the Society for Experimental Biology, 42, 59–75. https://europepmc.org/article/med/3270209Wright, L. I., Tregenza, T., & Hosken, D. J. (2008). Inbreeding, inbreeding depression and extinction. Conservation Genetics, 9(4), 833–843. https://doi.org/10.1007/S10592-007-9405-0/METRICSWright, S. (1943). Isolation by distance. Genetics, 28(114), 114–138. https://academic.oup.com/genetics/article/28/2/114/6033172Wróblewska, A., & Mirski, P. (2018). From past to future: impact of climate change on range shifts and genetic diversity patterns of circumboreal plants. Regional Environmental Change, 18(2), 409–424. https://doi.org/10.1007/S10113-017-1208-3/FIGURES/3Wu, C. I., & Ting, C. T. (2004). Genes and speciation. Nature Reviews Genetics 2004 5:2, 5(2), 114–122. https://doi.org/10.1038/nrg1269Wu, Y., Colwell, R. K., Rahbek, C., Zhang, C., Quan, Q., Wang, C., & Lei, F. (2013). Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains. Journal of Biogeography, 40(12), 2310–2323. https://doi.org/10.1111/JBI.12177Youngblut, J. M. (1994). A consumer’s guide to causal modeling: Part I. Journal of Pediatric Nursing, 9(4), 268–271. http://www.ncbi.nlm.nih.gov/pubmed/7965594Yuan, S., Ma, L., Guo, C., & Wang, R. (2016). What drives phenotypic divergence in Leymus chinensis (Poaceae) on large-scale gradient, climate or genetic differentiation? Scientific Reports 2016 6:1, 6(1), 1–11. https://doi.org/10.1038/srep26288Zamudio-Beltrán, L. E., Ornelas, J. F., Malpica, A., & Hernández-Baños, B. E. (2020). Genetic and morphological differentiation among populations of the Rivoli’s Hummingbird (Eugenes fulgens) species complex (Aves: Trochilidae). The Auk, 137(4), ukaa032. https://doi.org/10.1093/auk/ukaa032Zhang, G., Li, C., Li, Q., Li, B., Larkin, D. M., Lee, C., Storz, J. F., Antunes, A., Greenwold, M. J., Meredith, R. W., Ödeen, A., Cui, J., Zhou, Q., Xu, L., Pan, H., Wang, Z., Jin, L., Zhang, P., Hu, H., … Wang, J. (2014). Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 346(6215), 1311–1320. www.sciencemag.orgZhang, Y. H., Wang, I. J., Comes, H. P., Peng, H., & Qiu, Y. X. (2016). Contributions of historical and contemporary geographic and environmental factors to phylogeographic structure in a Tertiary relict species, Emmenopterys henryi (Rubiaceae). Scientific Reports 2016 6:1, 6(1), 1–14. https://doi.org/10.1038/srep24041Zink, R. M., & Barrowclough, G. F. (2008). Mitochondrial DNA under siege in avian phylogeography. Molecular Ecology, 17(9), 2107–2121. https://doi.org/10.1111/J.1365-294X.2008.03737.XZizka, A., Silvestro, D., Andermann, T., Azevedo, J., Duarte Ritter, C., Edler, D., Farooq, H., Herdean, A., Ariza, M., Scharn, R., Svantesson, S., Wengström, N., Zizka, V., & Antonelli, A. (2019). CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods in Ecology and Evolution, 10(5), 744–751. https://doi.org/https://doi.org/10.1111/2041-210X.13152EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86917/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1144101977.2024.pdf1144101977.2024.pdfTesis de Maestría en Ciencias Biologíaapplication/pdf3029417https://repositorio.unal.edu.co/bitstream/unal/86917/2/1144101977.2024.pdf2175bf6d5a9e27d393b242bb50e9066fMD52THUMBNAIL1144101977.2024.pdf.jpg1144101977.2024.pdf.jpgGenerated Thumbnailimage/jpeg4940https://repositorio.unal.edu.co/bitstream/unal/86917/3/1144101977.2024.pdf.jpgdb75cc5d59c72378a2338a100cd64a18MD53unal/86917oai:repositorio.unal.edu.co:unal/869172024-10-10 00:18:36.201Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |