Modelación geoquímica de los fluidos del sistema periférico del Volcán Stromboli y su relación con la actividad volcánica reciente

ilustraciones, gráficas, tablas

Autores:
Copete Murillo, Iliana Karen
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80951
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80951
https://repositorio.unal.edu.co/
Palabra clave:
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Seismic zones
Intrusions (Geology)
Geology, structural
Zonas de actividad sísmica
Intrusiones (Geología)
Geotecnia
Stromboli
Acuífero termal
Mezclas
Gases disueltos
Isótopos
Intrusión marina
Stromboli
Thermal aquifer
Mixtures
Dissolved gases
Isotopes
Marine intrusion
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_cc416a06e17501b01a15a27b33330925
oai_identifier_str oai:repositorio.unal.edu.co:unal/80951
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Modelación geoquímica de los fluidos del sistema periférico del Volcán Stromboli y su relación con la actividad volcánica reciente
dc.title.translated.eng.fl_str_mv Geochemical modeling of the fluids of the peripheral system of the Stromboli Volcano and its relationship with recent volcanic activity
title Modelación geoquímica de los fluidos del sistema periférico del Volcán Stromboli y su relación con la actividad volcánica reciente
spellingShingle Modelación geoquímica de los fluidos del sistema periférico del Volcán Stromboli y su relación con la actividad volcánica reciente
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Seismic zones
Intrusions (Geology)
Geology, structural
Zonas de actividad sísmica
Intrusiones (Geología)
Geotecnia
Stromboli
Acuífero termal
Mezclas
Gases disueltos
Isótopos
Intrusión marina
Stromboli
Thermal aquifer
Mixtures
Dissolved gases
Isotopes
Marine intrusion
title_short Modelación geoquímica de los fluidos del sistema periférico del Volcán Stromboli y su relación con la actividad volcánica reciente
title_full Modelación geoquímica de los fluidos del sistema periférico del Volcán Stromboli y su relación con la actividad volcánica reciente
title_fullStr Modelación geoquímica de los fluidos del sistema periférico del Volcán Stromboli y su relación con la actividad volcánica reciente
title_full_unstemmed Modelación geoquímica de los fluidos del sistema periférico del Volcán Stromboli y su relación con la actividad volcánica reciente
title_sort Modelación geoquímica de los fluidos del sistema periférico del Volcán Stromboli y su relación con la actividad volcánica reciente
dc.creator.fl_str_mv Copete Murillo, Iliana Karen
dc.contributor.advisor.spa.fl_str_mv Inguaggiato, Salvatore
Cadena Sánchez, Ariel Oswaldo
dc.contributor.author.spa.fl_str_mv Copete Murillo, Iliana Karen
dc.subject.ddc.spa.fl_str_mv 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
topic 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Seismic zones
Intrusions (Geology)
Geology, structural
Zonas de actividad sísmica
Intrusiones (Geología)
Geotecnia
Stromboli
Acuífero termal
Mezclas
Gases disueltos
Isótopos
Intrusión marina
Stromboli
Thermal aquifer
Mixtures
Dissolved gases
Isotopes
Marine intrusion
dc.subject.lemb.eng.fl_str_mv Seismic zones
Intrusions (Geology)
Geology, structural
dc.subject.lemb.spa.fl_str_mv Zonas de actividad sísmica
Intrusiones (Geología)
Geotecnia
dc.subject.proposal.spa.fl_str_mv Stromboli
Acuífero termal
Mezclas
Gases disueltos
Isótopos
Intrusión marina
dc.subject.proposal.ita.fl_str_mv Stromboli
dc.subject.proposal.eng.fl_str_mv Thermal aquifer
Mixtures
Dissolved gases
Isotopes
Marine intrusion
description ilustraciones, gráficas, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-02-11T18:57:05Z
dc.date.available.none.fl_str_mv 2022-02-11T18:57:05Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
Workflow
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80951
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80951
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aiuppa, A., Moretti, R., Federico, C., Giudice, G., Gurrieri, S., Liuzzo, M., ... & Valenza, M. (2007). Forecasting Etna eruptions by real-time observation of volcanic gas composition. Geology, 35(12), 1115-1118.
Aiuppa, A., Federico, C., Giudice, G., Giuffrida, G., Guida, R., Gurrieri, S., ... & Papale, P. (2009). The 2007 eruption of Stromboli volcano: insights from real-time measurement of the volcanic gas plume CO2/SO2 ratio. Journal of Volcanology and Geothermal Research, 182(3-4), 221-230.
Aiuppa, A., Bertagnini, A., Métrich, N., Moretti, R., Di Muro, A., Liuzzo, M., & Tamburello, G. (2010). A model of degassing for Stromboli volcano. Earth and Planetary Science Letters, 295(1-2), 195-204.
André, L., Franceschi, M., Pouchan, P., & Atteia, O. (2005). Using geochemical data and modelling to enhance the understanding of groundwater flow in a regional deep aquifer, Aquitaine Basin, south-west of France. Journal of Hydrology, 305(1-4), 40-62.
Appelo, C. A. J., & Postma, D. (2004). Geochemistry, groundwater and pollution. CRC press
Askri, B. (2015). Hydrochemical processes regulating groundwater quality in the coastal plain of Al Musanaah, Sultanate of Oman. Journal of African Earth Sciences, 106, 87-98.
Batista, R. (2019). Interacción fluido-roca, isotopía y modelación geoquímica de zonas geotérmicas del margen este de la Península de Baja California y el norte del Golfo de California.Tesis doctoral
Bigeleisen, J. (1965). Chemistry of Isotopes: Isotope chemistry has opened new areas of chemical physics, geochemistry, and molecular biology. Science, 147(3657), 463-471.
Bigeleisen, J., & Wolfsberg, M. (1958). Theoretical and experimental aspects of isotope effects in chemical kinetics: Advances in Chemical Physio, v. 1.
Bellia, C., Gallardo, A. H., Yasuhara, M., & Kazahaya, K. (2015). Geochemical characterization of groundwater in a volcanic system. Resources, 4(2), 358-377.
Burton, M., Allard, P., Mure, F., La Spina, A., 2007. Magmatic gas composition reveals the source depth of slug-driven Strombolian explosive activity. Science317, 227–230.
Burton,M.R., Caltabiano, T., Murè, F., Salerno, G., Randazzo, D., 2009. SO2 flux fromStromboli during the 2007 eruption: results from the FLAME network and traverse measurements. J. Volcanol. Geotherm. Res. 182, 214–220.
Bricker, O. P., Jones, B. F., & Bowser, C. J. (2003). Mass-balance approach to interpreting weathering reactions in watershed systems. Treatise on geochemistry, 5, 605.
Bowser, C. J., & Jones, B. F. (2002). Mineralogic controls on the composition of natural waters dominated by silicate hydrolysis. American Journal of Science, 302(7), 582-662.
Capasso, G., & Inguaggiato, S. (1998). A simple method for the determination of dissolved gases in natural waters. An application to thermal waters from Vulcano Island. Applied Geochemistry, 13(5), 631-642.
Capasso, G., Carapezza, M. L., Federico, C., Inguaggiato, S., & Rizzo, A. (2005). Geochemical monitoring of the 2002–2003 eruption at Stromboli volcano (Italy): precursory changes in the carbon and helium isotopic composition of fumarole gases and thermal waters. Bulletin of volcanology, 68(2), 118-134.
Carapezza, M. L., and S. Inguaggiato (2001). Interaction between thermal waters and CO2-rich fluids at Stromboli, in Proceedingsmof the Tenth International Symposium on Water-Rock Interaction, vol. 2, edited by R. Cidu, pp. 791–794, A. A. Balkema, The Netherlands.
Carapezza, M. L., Inguaggiato, S., Brusca, L., & Longo, M. (2004). Geochemical precursors of the activity of an open‐conduit volcano: The Stromboli 2002–2003 eruptive events. Geophysical Research Letters, 31(7).
Chiodini, G., & Cioni, R. (1989). Gas geobarometry for hydrothermal systems and its application to some Italian geothermal areas. Applied geochemistry, 4(5), 465-472.
Custodio, E., & Llamas, M. R. (1976). 1983. Hidrología subterránea. Ediciones Omega. Barcelona, 3 Vols, 1-2350.
Clark, I. D., & Fritz, P. (1997). Environmental isotopes in hydrogeology. CRC press.
Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133(3465), 1702-1703.
Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16(4), 436-468.
Delmelle, P., Kusakabe, M., Bernard, A., Fischer, T., De Brouwer, S., & Del Mundo, E. (1998). Geochemical and isotopic evidence for seawater contamination of the hydrothermal system of Taal Volcano, Luzon, the Philippines. Bulletin of volcanology, 59(8), 562-576.
Drever, J. I. (1997). The geochemistry of natural waters: surface and groundwater environments
Drever, J. I. (1988). The geochemistry of natural waters (Vol. 437). Englewood Cliffs: prentice Hall.
Ellis, A. J. (1957). Chemical equilibrium in magmatic gases. American Journal of Science, 255(6), 416-431.
Ellis, AI., 1962. Interpretation of gas analysis from the Wairakei hydrothermal area. N.Z. 1. Sci., 5, 434-452.
Ellis, A. J., & Mahon, W. A. J. (1964). Natural hydrothermal systems and experimental hot-water/rock interactions. Geochimica et Cosmochimica Acta, 28(8), 1323-1357.
Ellis, A. J., & Mahon, W. A. J. (1967). Natural hydrothermal systems and experimental hot water/rock interactions (Part II). Geochimica et Cosmochimica Acta, 31(4), 519-538.
Ellis, A. J. (1970). Quantitative interpretation of chemical characteristics of hydrothermal systems. Geothermics, 2, 516-528.
Fagundo, J.R. (1990). "Evolución química y relacionesempíricas en aguas naturales. 1- Estudio mediante si-mulación química del efecto de la litología". VoluntadHidráulica, Vol. 82, pp. 28-37. La Habana
Favalli, M., Karátson, D., Mazzuoli, R., Pareschi, M. T., & Ventura, G. (2005). Volcanic geomorphology and tectonics of the Aeolian archipelago (Southern Italy) based on integrated DEM data. Bulletin of Volcanology, 68(2), 157-170.
Finizola, A., Sortino, F., Lénat, J. F., & Valenza, M. (2002). Fluid circulation at Stromboli volcano (Aeolian Islands, Italy) from self-potential and CO2 surveys. Journal of Volcanology and Geothermal Research, 116(1-2), 1-18.
Finizola, A., Aubert, M., Revil, A., Schütze, C., & Sortino, F. (2009). Importance of structural history in the summit area of Stromboli during the 2002–2003 eruptive crisis inferred from temperature, soil CO2, self-potential, and electrical resistivity tomography. Journal of volcanology and Geothermal Research, 183(3-4), 213-227.
Fischer, T. P., & Chiodini, G. (2015). Volcanic, magmatic and hydrothermal gases. In The encyclopedia of volcanoes (pp. 779-797). Academic Press.
Fournier, R. O., & Rowe, J. J. (1966). Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells. American Journal of Science, 264(9), 685-697.
Fournier, R. O., & Truesdell, A. H. (1970). Chemical indicators of subsurface temperature applied to hot spring waters of Yellowstone National Park, Wyoming, USA. Geothermics, 2, 529-535.
Fournier, R. O., & Truesdell, A. H. (1973). An empirical Na+ K+ Ca geothermometer for natural waters. Geochimica et Cosmochimica acta, 37(5), 1255-1275.
Fournier, R. O., White, D. E., & Truesdell, A. H. (1974). Geochemical indicators of subsurface temperature part 1, basic assumptions. Jour. Research US Geol. Survey, 2, 259-262
Fournier, R. O. (1979). A revised equation for the Na/K geothermometer. Transactions of the Geothermal Resources Council, 3, 221-224.
Fournier, R. O., & Potter Ii, R. W. (1979). Magnesium correction to the Na- K- Ca chemical geothermometer. Geochimica et Cosmochimica Acta, 43(9), 1543-1550.
Fournier, R. O., & Truesdell, A. H. (1970). Chemical indicators of subsurface temperature applied to hot spring waters of Yellowstone National Park, Wyoming, USA. Geothermics, 2, 529-535.
Fournier, R. O. (1989). Lectures on geochemical interpretation of hydrothermal waters (No. 10). UNU Geothermal Training Programme
Francalanci, L., Lucchi, F., Keller, J., De Astis, G., & Tranne, C. A. (2013). Eruptive, volcano-tectonic and magmatic history of the Stromboli volcano (north-eastern Aeolian archipelago). Geological Society, London, Memoirs, 37(1), 397-471.
Gasparini, C., Iannaccone, G., Scandone, P., & Scarpa, R. (1982). Seismotectonics of the Calabrian arc. Tectonophysics, 84(2-4), 267-286.
Giggenbach, W. F. (1980). Geothermal gas equilibria. Geochimica et Cosmochimica Acta, 44(12), 2021-2032.
Giggenbach, W. F. (1986, November). Graphical techniques for the evaluation of water/rock equilibration conditions by use of Na+, K+, Mg2+ and Ca2+ contents of discharge waters. In Proc. 8th New Zealand Geothermal Workshop (pp. 37-44).
Giggenbach, W. F. (1987). Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Applied Geochemistry, 2(2), 143-161.
Giggenbach, W. F. (1991). Chemical Techniques in Geothermal Explorations. En F. D ́amore, Aplications of Geochemistry in Geothermals Reservoir Development. Roma: United Nations Institute for Training and Research., 119- 144.
Gimeno, M. J., & Peña, J. (1994). Principios básicos de la modelización geoquímica directa e inversa. Estudios Geológicos, 50(5-6), 359-367
Grassa, F., Inguaggiato, S., & Liotta, M. (2008). Fluids Geochemistry of Stromboli. In Learning from Stromboli and its 2002-03 eruptive crisis. AGU.
Gupta, H. K., & Roy, S. (2006). Geothermal energy: an alternative resource for the 21st century. Elsevier
Henley, R. W., & Ellis, A. J. (1983). Geothermal systems ancient and modern: a geochemical review. Earth-science reviews, 19(1), 1-50.
Henley, R. W., Truesdell, A. H., Barton, P. B., & Whitney, J. A. (1984). Fluid-mineral equilibria in hydrothermal systems (Vol. 1). Yale: Society of Economic Geologists.
Hidalgo, M. C., & Cruz-Sanjulián, J. (2001). Groundwater composition, hydrochemical evolution and mass transfer in a regional detrital aquifer (Baza basin, southern Spain). Applied Geochemistry, 16(7-8), 745-758.
Instituto de hidrogeología, Meteorología y Estudios Ambientales http://www.ideam.gov.co/web/tiempo-y-clima/atmofera
Hornig-Kjarsgaard, I., Keller, J., Koberski, U., Stadlbauer, E., Francalanci, L. & Lenhart, R. 1993. Geology, stratigraphy and volcanological evolution of the island of Stromboli, Aeolian arc, Italy. Acta Vulcanologica, 3, 21–68.
Horita, J. 2005. Saline waters. En: Aggarwal, P.K., Gat, J.R., Froehlich, K.F. (Eds.), Isotopes in the water cycle: past, present and future of a developing science. Springer, New York, 271–287.
Capasso, G., & Inguaggiato, S. (1998). A simple method for the determination of dissolved gases in natural waters. An application to thermal waters from Vulcano Island. Applied Geochemistry, 13(5), 631-642.
Inguaggiato, S., & Rizzo, A. (2004). Dissolved helium isotope ratios in ground-waters: a new technique based on gas–water re-equilibration and its application to Stromboli volcanic system. Applied Geochemistry, 19(5), 665-673.
Inguaggiato, S., Mazot, A., & Ohba, T. (2011). Monitoring active volcanoes: The geochemical approach. Annals of Geophysics, 54 (2).
Inguaggiato, S., Calderone, L., Inguaggiato, C., Mazot, A., Morici, S., & Vita, F. (2012a). Long-time variation of soil CO 2 fluxes at the summit crater of Vulcano (Italy). Bulletin of volcanology, 74(8), 1859-1863.
Inguaggiato, C., Vita, F., Diliberto, I. S., & Calderone, L. (2016). The role of the aquifer in soil CO2 degassing in volcanic peripheral areas: A case study of Stromboli Island (Italy). Chemical Geology, 469, 110-116.
Inguaggiato, S., Mazzini, A., Vita, F., & Sciarra, A. (2018). The Arjuno-Welirang Volcanic Complex and the connected Lusi system: geochemical evidence. Marine and Petroleum Geology, 90, 67-76.
Inguaggiato, S., Vita, F., Cangemi, M., & Calderone, L. (2019). Increasing Summit Degassing at the Stromboli Volcano and Relationships with Volcanic Activity (2016–2018). Geosciences, 9(4), 176.
Jasim, A., Hemmings, B., Mayer, K., & Scheu, B. (2018). Groundwater flow and volcanic unrest. In Volcanic Unrest (pp. 83-99). Springer, Cham.
Kanroji, Y., Sato, K., & Tanaka, A. (1978). Chemical nature of thermal water and underground temperature of Atakawa Spa and neighboring area. J. Jpn. Geotherm. Energy Assoc.;(Japan), 15(4).
Karingithi, C. W. (2009). Chemical geothermometers for geothermal exploration. Short Course IV on Exploration for Geothermal Resources, 1-22.
Kennedy, B. M., & van Soest, M. C. (2006). A helium isotope perspective on the Dixie Valley, Nevada, hydrothermal system. Geothermics, 35(1), 26-43.
Klassen, J., Aleen, D. M., & Kirtse, D. (2014). Chemical indicators of saltwater intrusion for the Gulf Islands, British Columbia. Final Report, Department of Earth Sciences, Simon Rfaser University.
Kissling, W. M., & Weir, G. J. (2005). The spatial distribution of the geothermal fields in the Taupo Volcanic Zone, New Zealand. Journal of Volcanology and Geothermal Research, 145(1-2), 136-150.
Klein, F. W., Einarsson, P., & Wyss, M. (1977). The Reykjanes Peninsula, Iceland, earthquake swarm of September 1972 and its tectonic significance. Journal of Geophysical Research, 82(5), 865-888.
Liotta, M., Brusca, L., Grassa, F., Inguaggiato, S., Longo, M., & Madonia, P. (2006). Geochemistry of rainfall at Stromboli volcano (Aeolian Islands): Isotopic composition and plume‐rain interaction. Geochemistry, Geophysics, Geosystems, 7(7).
Lucchi, F. (2013). Stratigraphic methodology for the geological mapping of volcanic areas: insights from the Aeolian archipelago (southern Italy). Geological Society, London, Memoirs, 37(1), 37-53.
Mahon, W.A.J., 1966, Silica in hot water discharged from drillholes at Wairakei, New Zealand: New Zealand Jour. Sci., v. 9, p. 135-144.
Mahon, W. A. J., GD, M., & JB, F. (1980). Carbon dioxide: its role in geothermal systems.
Marreo, R., (2010). Modelo hidrogeoquímico del acuífero de las cañadas del teide, tenerife, islas canarias, tesis doctoral.
Martelli, M., Rizzo, A. L., Renzulli, A., Ridolfi, F., Arienzo, I., & Rosciglione, A. (2014). Noble-gas signature of magmas from a heterogeneous mantle wedge: The case of Stromboli volcano (Aeolian Islands, Italy). Chemical Geology, 368, 39-53.
MIE. (1985). Análisis metodológico de las técnicas geoquímicas empleadas en prospección geotérmica. ministerio de industria y energía, 417.
Mercalli, G. (1907). Vulcani attivi della terra: morfologia--dinamismo--prodotti--distribuzione geografica--cause... U. Hoepli.
Moeck, I. S. (2014). Catalog of geothermal play types based on geologic controls. Renewable and Sustainable Energy Reviews, 37, 867-882.
Morán Ramírez, J., & Ramos Leal, J. A. (2014). The VISHMOD methodology with hydrochemical modeling in intermountain (karstic) aquifers: case of the Sierra Madre Oriental, Mexico.
Morán Ramírez, J. (2016). Modelación hidrogeoquímica en tres ambientes naturales en México: cárstico, volcánico y cuenca sedimentaria.
Murray, K., & Wade, P. (1996). Checking anion-cation charge balance of water quality analyses: Limitations of the traditional method for non-potable waters.
Najib, S., Fadili, A., Mehdi, K., Riss, J., Makan, A., & Guessir, H. (2016). Salinization process and coastal groundwater quality in Chaouia, Morocco. Journal of African Earth Sciences, 115, 17-31.
Nicholson, K. (1993). Geothermal Fluids Chemistry and Exploration Techniques
Nicholson, K. (2012). Geothermal fluids: chemistry and exploration techniques. Springer Science & Business Media
ordstrom, D. K., & Munoz, J. L. (1986). Geochemical Thermodynamics, 477 pp.
Norton, D. L. (1984). Theory of hydrothermal systems. Annual Review of Earth and Planetary Sciences, 12, 155.
Ozima, M., & Podosek, F. A. (1983). Rare Gas Geochemistry, Cambridge.
Palandri, J. L., & Reed, M. H. (2001). Reconstruction of in situ composition of sedimentary formation waters. Geochimica et Cosmochimica Acta, 65(11), 1741-1767.
Parkhurst, D. L. Appelo. CAJ (1999). User’s Guide to Phreeqc (version 2)–A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. US Department of the Interior. US Geological Survey, Denver.
Pasquarè, G., Francalanci, L., Garduno, V. H., & Tibaldi, A. (1993). Structure and geologic evolution of the Stromboli volcano, Aeolian Islands, Italy. Acta Vulcanol, 3, 79-89.
Pichavant, M., Pompilio, M., D’Oriano, C., & Di Carlo, I. (2011). Petrography, mineralogy and geochemistry of a primitive pumice from Stromboli: implications for the deep feeding system. European Journal of Mineralogy, 23(4), 499-517.
Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water‐analyses. Eos, Transactions American Geophysical Union, 25(6), 914-928.
Plant, J. A., Whittaker, A., Demetriades, A., De Vivo, B., & Lexa, J. (2003). The geological and tectonic framework of Europe. Geochemical Atlas of Europe. Part, 1.
Roy, S., & Gupta, H. (2007). Geothermal Energy: An Alternative Resource for the 21 st Century
Plummer, N., & Back, W. (1980). The mass balance approach: application to interpreting the chemical evolution of hydrologic systems. American Journal of Science, 280(2), 130-142.
Plummer, L. N., Parkhurst, D. L., & Thorstenson, D. C. (1983). Development of reaction models for ground-water systems. Geochimica et cosmochimica Acta, 47(4), 665-685.
Reed, M., & Spycher, N. (1984). Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution. Geochimica et Cosmochimica Acta, 48(7), 1479-1492.
Revil A., V. N. (2003). Principles of electrography applied to self‐potential electrokinetic sources and hydrogeological applications. Water Resources Research.
Revil, A., Finizola, A., Ricci, T., Delcher, E., Peltier, A., Barde-Cabusson, S., ... & Tsang Hin Sun, E. (2011). Hydrogeology of Stromboli volcano, Aeolian Islands (Italy) from the interpretation of resistivity tomograms, self-potential, soil temperature and soil CO2 concentration measurements. Geophysical Journal International, 186(3), 1078-1094
Rizzo, A. L., Federico, C., Inguaggiato, S., Sollami, A., Tantillo, M., Vita, F., ... & Liuzzo, M. (2015). The 2014 effusive eruption at Stromboli volcano (Italy): Inferences from soil CO2 flux and 3He/4He ratio in thermal waters. Geophysical Research Letters, 42(7), 2235-2243.
Rosi, M., Pistolesi, M., Bertagnini, A., Landi, P., Pompilio, M., & Di Roberto, A. (2013). Stromboli volcano, Aeolian Islands (Italy): present eruptive activity and hazards. Geological Society, London, Memoirs, 37(1), 473-490.
Sonney, R., & Vuataz, F. D. (2010). Validation of chemical and isotopic geothermometers from low temperature deep fluids of northern Switzerland. In Proceedings World Geothermal Congress (Vol. 14, No. 1423, pp. 1-12). International Geothermal Association.
Spycher, N., Peiffer, L., Sonnenthal, E. L., Saldi, G., Reed, M. H., & Kennedy, B. M. (2014). Integrated multicomponent solute geothermometry. Geothermics, 51, 113-123.
Standard Methods (1992) Standard Methods for the Examinatiul1 of Water (lftd We slewater 18th edn.) American Public Health Association.
Tamburello, G., Aiuppa, A., Kantzas, E. P., McGonigle, A. J. S., & Ripepe, M. (2012). Passive vs. active degassing modes at an open-vent volcano (Stromboli, Italy). Earth and Planetary Science Letters, 359, 106-116.
Tibaldi, A. (2010). A new geological map of Stromboli volcano (Tyrrhenian Sea, Italy) based on application of lithostratigraphic and unconformity-bounded stratigraphic (UBS) units. GSA Spec. Pap, 464, 33-49.
Vaselli, O., Tassi, F., Duarte, E., Fernandez, E., Poreda, R. J., & Huertas, A. D. (2010). Evolution of fluid geochemistry at the Turrialba volcano (Costa Rica) from 1998 to 2008. Bulletin of Volcanology, 72(4), 397-410.
Verma, M. P. (2008). Qrtzgeotherm: An ActiveX component for the quartz solubility geothermometer. Computers & Geosciences, 34(12), 1918-1925
Vita, F., Inguaggiato, S., Bobrowski, N., Calderone, L., Galle, B., Parello, F., 2012. Continuous SO2 flux measurements at Vulcano Island, Italy. Ann. Geophys. 55, 301–308.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xv, 124 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Geología
dc.publisher.department.spa.fl_str_mv Departamento de Geociencias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80951/1/35852447.2021%20.pdf
https://repositorio.unal.edu.co/bitstream/unal/80951/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80951/3/35852447.2021%20.pdf.jpg
bitstream.checksum.fl_str_mv b37113b2611a66ab9a10c9353f5466c1
8153f7789df02f0a4c9e079953658ab2
71d5c022fee6c7898a4850bdba88438b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089430321856512
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Inguaggiato, Salvatore3ef24cbea2271d30a696971f97af1942600Cadena Sánchez, Ariel Oswaldode54fb890339f88a3a84902a66d86c76600Copete Murillo, Iliana Karen175f60656150f722d1486edca3708a102022-02-11T18:57:05Z2022-02-11T18:57:05Z2021https://repositorio.unal.edu.co/handle/unal/80951Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasEl área periférica de la isla de Stromboli cuenta con distintos ambientes naturales idóneos para la evaluación y monitoreo del sistema volcánico activo; en este caso el agua del acuífero termal se caracteriza por presentar temperaturas hasta de 50°C y altas concentraciones de CO2 disuelto como resultado de desgasificación del magma. Estos aspectos permitieron modelar el sistema hidrotermal, evaluar la composición química y la temperatura del sistema geotérmico que alimenta los fluidos superficiales a partir de pozos termales localizados sobre el acuifero. El sistema hidrotermal en general es una mezcla de agua de mar y agua geotérmica en diferentes porcentajes. El estudio de la composición química e isotópica de las aguas de los pozos ha permitido estimar los diferentes porcentajes de mezcla, la temperatura del sistema geotérmico en profundidad y evaluar la interaccion del agua del acuífero con las rocas del reservorio. La temperatura del sistema geotérmico es alrededor de 180°C ±10°C y la composición química de los iones mayores es gobernada por agua de mar modificada con porcentajes de Cl- de 150 meq/l aproximadamente y con altos contenidos de K+ y de HCO3- entre (8 y 13 meq/l respectivamente), debido a procesos de interacción agua/roca y disolución de CO2 en el agua termal. (Texto tomado de la fuente).Geochemical modeling of the fluids of the peripheral system of the Stromboli Volcano and its relationship with recent volcanic activity The peripheral area of the island of Stromboli has different natural environments suitable for the evaluation and monitoring of the active volcanic system, in this case the thermal aquifer is characterized by presenting wells that capture water with temperatures up to 50°C and high concentrations of CO2 dissolved as a result of magma degassing. These aspects allowed modeling the hydrothermal system and evaluating the chemical composition and temperature of the geothermal system that feeds the surface fluids. The hydrothermal system in general is a mixture of seawater and geothermal water in different percentages. The study of the chemical and isotopic composition of the water from the wells has made it possible to estimate the different percentages and the temperature of the deep geothermal system, characterizing and evaluating the seawater modified by interaction with the rocks of the reservoir. The temperature of the deep geothermal system is around 180°C ±10°C and the chemical composition of the major ions is governed by modified seawater with Cl- percentages of approximately 150 meq/l and with high K+ and HCO3- contents, (between 8 and 13 meq/l respectively), due to water/rock interaction processes and dissolution of CO2 in the thermal water.El Istituto Nazionale di Geofisica e Vulcanologia (INGV) ,es una de las mayores instituciones europeas de investigación en el campo de las ciencias de la Tierra. Es responsable del estudio de los fenómenos geofísicos y vulcanológicos y de la gestión de las respectivas redes nacionales de monitoreo de fenómenos sísmicos y volcánicos .MaestríaMagíster en Ciencias - Geologíaxv, 124 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - GeologíaDepartamento de GeocienciasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaSeismic zonesIntrusions (Geology)Geology, structuralZonas de actividad sísmicaIntrusiones (Geología)GeotecniaStromboliAcuífero termalMezclasGases disueltosIsótoposIntrusión marinaStromboliThermal aquiferMixturesDissolved gasesIsotopesMarine intrusionModelación geoquímica de los fluidos del sistema periférico del Volcán Stromboli y su relación con la actividad volcánica recienteGeochemical modeling of the fluids of the peripheral system of the Stromboli Volcano and its relationship with recent volcanic activityTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTextWorkflowhttp://purl.org/redcol/resource_type/TMAiuppa, A., Moretti, R., Federico, C., Giudice, G., Gurrieri, S., Liuzzo, M., ... & Valenza, M. (2007). Forecasting Etna eruptions by real-time observation of volcanic gas composition. Geology, 35(12), 1115-1118.Aiuppa, A., Federico, C., Giudice, G., Giuffrida, G., Guida, R., Gurrieri, S., ... & Papale, P. (2009). The 2007 eruption of Stromboli volcano: insights from real-time measurement of the volcanic gas plume CO2/SO2 ratio. Journal of Volcanology and Geothermal Research, 182(3-4), 221-230.Aiuppa, A., Bertagnini, A., Métrich, N., Moretti, R., Di Muro, A., Liuzzo, M., & Tamburello, G. (2010). A model of degassing for Stromboli volcano. Earth and Planetary Science Letters, 295(1-2), 195-204.André, L., Franceschi, M., Pouchan, P., & Atteia, O. (2005). Using geochemical data and modelling to enhance the understanding of groundwater flow in a regional deep aquifer, Aquitaine Basin, south-west of France. Journal of Hydrology, 305(1-4), 40-62.Appelo, C. A. J., & Postma, D. (2004). Geochemistry, groundwater and pollution. CRC pressAskri, B. (2015). Hydrochemical processes regulating groundwater quality in the coastal plain of Al Musanaah, Sultanate of Oman. Journal of African Earth Sciences, 106, 87-98.Batista, R. (2019). Interacción fluido-roca, isotopía y modelación geoquímica de zonas geotérmicas del margen este de la Península de Baja California y el norte del Golfo de California.Tesis doctoralBigeleisen, J. (1965). Chemistry of Isotopes: Isotope chemistry has opened new areas of chemical physics, geochemistry, and molecular biology. Science, 147(3657), 463-471.Bigeleisen, J., & Wolfsberg, M. (1958). Theoretical and experimental aspects of isotope effects in chemical kinetics: Advances in Chemical Physio, v. 1.Bellia, C., Gallardo, A. H., Yasuhara, M., & Kazahaya, K. (2015). Geochemical characterization of groundwater in a volcanic system. Resources, 4(2), 358-377.Burton, M., Allard, P., Mure, F., La Spina, A., 2007. Magmatic gas composition reveals the source depth of slug-driven Strombolian explosive activity. Science317, 227–230.Burton,M.R., Caltabiano, T., Murè, F., Salerno, G., Randazzo, D., 2009. SO2 flux fromStromboli during the 2007 eruption: results from the FLAME network and traverse measurements. J. Volcanol. Geotherm. Res. 182, 214–220.Bricker, O. P., Jones, B. F., & Bowser, C. J. (2003). Mass-balance approach to interpreting weathering reactions in watershed systems. Treatise on geochemistry, 5, 605.Bowser, C. J., & Jones, B. F. (2002). Mineralogic controls on the composition of natural waters dominated by silicate hydrolysis. American Journal of Science, 302(7), 582-662.Capasso, G., & Inguaggiato, S. (1998). A simple method for the determination of dissolved gases in natural waters. An application to thermal waters from Vulcano Island. Applied Geochemistry, 13(5), 631-642.Capasso, G., Carapezza, M. L., Federico, C., Inguaggiato, S., & Rizzo, A. (2005). Geochemical monitoring of the 2002–2003 eruption at Stromboli volcano (Italy): precursory changes in the carbon and helium isotopic composition of fumarole gases and thermal waters. Bulletin of volcanology, 68(2), 118-134.Carapezza, M. L., and S. Inguaggiato (2001). Interaction between thermal waters and CO2-rich fluids at Stromboli, in Proceedingsmof the Tenth International Symposium on Water-Rock Interaction, vol. 2, edited by R. Cidu, pp. 791–794, A. A. Balkema, The Netherlands.Carapezza, M. L., Inguaggiato, S., Brusca, L., & Longo, M. (2004). Geochemical precursors of the activity of an open‐conduit volcano: The Stromboli 2002–2003 eruptive events. Geophysical Research Letters, 31(7).Chiodini, G., & Cioni, R. (1989). Gas geobarometry for hydrothermal systems and its application to some Italian geothermal areas. Applied geochemistry, 4(5), 465-472.Custodio, E., & Llamas, M. R. (1976). 1983. Hidrología subterránea. Ediciones Omega. Barcelona, 3 Vols, 1-2350.Clark, I. D., & Fritz, P. (1997). Environmental isotopes in hydrogeology. CRC press.Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133(3465), 1702-1703.Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16(4), 436-468.Delmelle, P., Kusakabe, M., Bernard, A., Fischer, T., De Brouwer, S., & Del Mundo, E. (1998). Geochemical and isotopic evidence for seawater contamination of the hydrothermal system of Taal Volcano, Luzon, the Philippines. Bulletin of volcanology, 59(8), 562-576.Drever, J. I. (1997). The geochemistry of natural waters: surface and groundwater environmentsDrever, J. I. (1988). The geochemistry of natural waters (Vol. 437). Englewood Cliffs: prentice Hall.Ellis, A. J. (1957). Chemical equilibrium in magmatic gases. American Journal of Science, 255(6), 416-431.Ellis, AI., 1962. Interpretation of gas analysis from the Wairakei hydrothermal area. N.Z. 1. Sci., 5, 434-452.Ellis, A. J., & Mahon, W. A. J. (1964). Natural hydrothermal systems and experimental hot-water/rock interactions. Geochimica et Cosmochimica Acta, 28(8), 1323-1357.Ellis, A. J., & Mahon, W. A. J. (1967). Natural hydrothermal systems and experimental hot water/rock interactions (Part II). Geochimica et Cosmochimica Acta, 31(4), 519-538.Ellis, A. J. (1970). Quantitative interpretation of chemical characteristics of hydrothermal systems. Geothermics, 2, 516-528.Fagundo, J.R. (1990). "Evolución química y relacionesempíricas en aguas naturales. 1- Estudio mediante si-mulación química del efecto de la litología". VoluntadHidráulica, Vol. 82, pp. 28-37. La HabanaFavalli, M., Karátson, D., Mazzuoli, R., Pareschi, M. T., & Ventura, G. (2005). Volcanic geomorphology and tectonics of the Aeolian archipelago (Southern Italy) based on integrated DEM data. Bulletin of Volcanology, 68(2), 157-170.Finizola, A., Sortino, F., Lénat, J. F., & Valenza, M. (2002). Fluid circulation at Stromboli volcano (Aeolian Islands, Italy) from self-potential and CO2 surveys. Journal of Volcanology and Geothermal Research, 116(1-2), 1-18.Finizola, A., Aubert, M., Revil, A., Schütze, C., & Sortino, F. (2009). Importance of structural history in the summit area of Stromboli during the 2002–2003 eruptive crisis inferred from temperature, soil CO2, self-potential, and electrical resistivity tomography. Journal of volcanology and Geothermal Research, 183(3-4), 213-227.Fischer, T. P., & Chiodini, G. (2015). Volcanic, magmatic and hydrothermal gases. In The encyclopedia of volcanoes (pp. 779-797). Academic Press.Fournier, R. O., & Rowe, J. J. (1966). Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells. American Journal of Science, 264(9), 685-697.Fournier, R. O., & Truesdell, A. H. (1970). Chemical indicators of subsurface temperature applied to hot spring waters of Yellowstone National Park, Wyoming, USA. Geothermics, 2, 529-535.Fournier, R. O., & Truesdell, A. H. (1973). An empirical Na+ K+ Ca geothermometer for natural waters. Geochimica et Cosmochimica acta, 37(5), 1255-1275.Fournier, R. O., White, D. E., & Truesdell, A. H. (1974). Geochemical indicators of subsurface temperature part 1, basic assumptions. Jour. Research US Geol. Survey, 2, 259-262Fournier, R. O. (1979). A revised equation for the Na/K geothermometer. Transactions of the Geothermal Resources Council, 3, 221-224.Fournier, R. O., & Potter Ii, R. W. (1979). Magnesium correction to the Na- K- Ca chemical geothermometer. Geochimica et Cosmochimica Acta, 43(9), 1543-1550.Fournier, R. O., & Truesdell, A. H. (1970). Chemical indicators of subsurface temperature applied to hot spring waters of Yellowstone National Park, Wyoming, USA. Geothermics, 2, 529-535.Fournier, R. O. (1989). Lectures on geochemical interpretation of hydrothermal waters (No. 10). UNU Geothermal Training ProgrammeFrancalanci, L., Lucchi, F., Keller, J., De Astis, G., & Tranne, C. A. (2013). Eruptive, volcano-tectonic and magmatic history of the Stromboli volcano (north-eastern Aeolian archipelago). Geological Society, London, Memoirs, 37(1), 397-471.Gasparini, C., Iannaccone, G., Scandone, P., & Scarpa, R. (1982). Seismotectonics of the Calabrian arc. Tectonophysics, 84(2-4), 267-286.Giggenbach, W. F. (1980). Geothermal gas equilibria. Geochimica et Cosmochimica Acta, 44(12), 2021-2032.Giggenbach, W. F. (1986, November). Graphical techniques for the evaluation of water/rock equilibration conditions by use of Na+, K+, Mg2+ and Ca2+ contents of discharge waters. In Proc. 8th New Zealand Geothermal Workshop (pp. 37-44).Giggenbach, W. F. (1987). Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Applied Geochemistry, 2(2), 143-161.Giggenbach, W. F. (1991). Chemical Techniques in Geothermal Explorations. En F. D ́amore, Aplications of Geochemistry in Geothermals Reservoir Development. Roma: United Nations Institute for Training and Research., 119- 144.Gimeno, M. J., & Peña, J. (1994). Principios básicos de la modelización geoquímica directa e inversa. Estudios Geológicos, 50(5-6), 359-367Grassa, F., Inguaggiato, S., & Liotta, M. (2008). Fluids Geochemistry of Stromboli. In Learning from Stromboli and its 2002-03 eruptive crisis. AGU.Gupta, H. K., & Roy, S. (2006). Geothermal energy: an alternative resource for the 21st century. ElsevierHenley, R. W., & Ellis, A. J. (1983). Geothermal systems ancient and modern: a geochemical review. Earth-science reviews, 19(1), 1-50.Henley, R. W., Truesdell, A. H., Barton, P. B., & Whitney, J. A. (1984). Fluid-mineral equilibria in hydrothermal systems (Vol. 1). Yale: Society of Economic Geologists.Hidalgo, M. C., & Cruz-Sanjulián, J. (2001). Groundwater composition, hydrochemical evolution and mass transfer in a regional detrital aquifer (Baza basin, southern Spain). Applied Geochemistry, 16(7-8), 745-758.Instituto de hidrogeología, Meteorología y Estudios Ambientales http://www.ideam.gov.co/web/tiempo-y-clima/atmoferaHornig-Kjarsgaard, I., Keller, J., Koberski, U., Stadlbauer, E., Francalanci, L. & Lenhart, R. 1993. Geology, stratigraphy and volcanological evolution of the island of Stromboli, Aeolian arc, Italy. Acta Vulcanologica, 3, 21–68.Horita, J. 2005. Saline waters. En: Aggarwal, P.K., Gat, J.R., Froehlich, K.F. (Eds.), Isotopes in the water cycle: past, present and future of a developing science. Springer, New York, 271–287.Capasso, G., & Inguaggiato, S. (1998). A simple method for the determination of dissolved gases in natural waters. An application to thermal waters from Vulcano Island. Applied Geochemistry, 13(5), 631-642.Inguaggiato, S., & Rizzo, A. (2004). Dissolved helium isotope ratios in ground-waters: a new technique based on gas–water re-equilibration and its application to Stromboli volcanic system. Applied Geochemistry, 19(5), 665-673.Inguaggiato, S., Mazot, A., & Ohba, T. (2011). Monitoring active volcanoes: The geochemical approach. Annals of Geophysics, 54 (2).Inguaggiato, S., Calderone, L., Inguaggiato, C., Mazot, A., Morici, S., & Vita, F. (2012a). Long-time variation of soil CO 2 fluxes at the summit crater of Vulcano (Italy). Bulletin of volcanology, 74(8), 1859-1863.Inguaggiato, C., Vita, F., Diliberto, I. S., & Calderone, L. (2016). The role of the aquifer in soil CO2 degassing in volcanic peripheral areas: A case study of Stromboli Island (Italy). Chemical Geology, 469, 110-116.Inguaggiato, S., Mazzini, A., Vita, F., & Sciarra, A. (2018). The Arjuno-Welirang Volcanic Complex and the connected Lusi system: geochemical evidence. Marine and Petroleum Geology, 90, 67-76.Inguaggiato, S., Vita, F., Cangemi, M., & Calderone, L. (2019). Increasing Summit Degassing at the Stromboli Volcano and Relationships with Volcanic Activity (2016–2018). Geosciences, 9(4), 176.Jasim, A., Hemmings, B., Mayer, K., & Scheu, B. (2018). Groundwater flow and volcanic unrest. In Volcanic Unrest (pp. 83-99). Springer, Cham.Kanroji, Y., Sato, K., & Tanaka, A. (1978). Chemical nature of thermal water and underground temperature of Atakawa Spa and neighboring area. J. Jpn. Geotherm. Energy Assoc.;(Japan), 15(4).Karingithi, C. W. (2009). Chemical geothermometers for geothermal exploration. Short Course IV on Exploration for Geothermal Resources, 1-22.Kennedy, B. M., & van Soest, M. C. (2006). A helium isotope perspective on the Dixie Valley, Nevada, hydrothermal system. Geothermics, 35(1), 26-43.Klassen, J., Aleen, D. M., & Kirtse, D. (2014). Chemical indicators of saltwater intrusion for the Gulf Islands, British Columbia. Final Report, Department of Earth Sciences, Simon Rfaser University.Kissling, W. M., & Weir, G. J. (2005). The spatial distribution of the geothermal fields in the Taupo Volcanic Zone, New Zealand. Journal of Volcanology and Geothermal Research, 145(1-2), 136-150.Klein, F. W., Einarsson, P., & Wyss, M. (1977). The Reykjanes Peninsula, Iceland, earthquake swarm of September 1972 and its tectonic significance. Journal of Geophysical Research, 82(5), 865-888.Liotta, M., Brusca, L., Grassa, F., Inguaggiato, S., Longo, M., & Madonia, P. (2006). Geochemistry of rainfall at Stromboli volcano (Aeolian Islands): Isotopic composition and plume‐rain interaction. Geochemistry, Geophysics, Geosystems, 7(7).Lucchi, F. (2013). Stratigraphic methodology for the geological mapping of volcanic areas: insights from the Aeolian archipelago (southern Italy). Geological Society, London, Memoirs, 37(1), 37-53.Mahon, W.A.J., 1966, Silica in hot water discharged from drillholes at Wairakei, New Zealand: New Zealand Jour. Sci., v. 9, p. 135-144.Mahon, W. A. J., GD, M., & JB, F. (1980). Carbon dioxide: its role in geothermal systems.Marreo, R., (2010). Modelo hidrogeoquímico del acuífero de las cañadas del teide, tenerife, islas canarias, tesis doctoral.Martelli, M., Rizzo, A. L., Renzulli, A., Ridolfi, F., Arienzo, I., & Rosciglione, A. (2014). Noble-gas signature of magmas from a heterogeneous mantle wedge: The case of Stromboli volcano (Aeolian Islands, Italy). Chemical Geology, 368, 39-53.MIE. (1985). Análisis metodológico de las técnicas geoquímicas empleadas en prospección geotérmica. ministerio de industria y energía, 417.Mercalli, G. (1907). Vulcani attivi della terra: morfologia--dinamismo--prodotti--distribuzione geografica--cause... U. Hoepli.Moeck, I. S. (2014). Catalog of geothermal play types based on geologic controls. Renewable and Sustainable Energy Reviews, 37, 867-882.Morán Ramírez, J., & Ramos Leal, J. A. (2014). The VISHMOD methodology with hydrochemical modeling in intermountain (karstic) aquifers: case of the Sierra Madre Oriental, Mexico.Morán Ramírez, J. (2016). Modelación hidrogeoquímica en tres ambientes naturales en México: cárstico, volcánico y cuenca sedimentaria.Murray, K., & Wade, P. (1996). Checking anion-cation charge balance of water quality analyses: Limitations of the traditional method for non-potable waters.Najib, S., Fadili, A., Mehdi, K., Riss, J., Makan, A., & Guessir, H. (2016). Salinization process and coastal groundwater quality in Chaouia, Morocco. Journal of African Earth Sciences, 115, 17-31.Nicholson, K. (1993). Geothermal Fluids Chemistry and Exploration TechniquesNicholson, K. (2012). Geothermal fluids: chemistry and exploration techniques. Springer Science & Business Mediaordstrom, D. K., & Munoz, J. L. (1986). Geochemical Thermodynamics, 477 pp.Norton, D. L. (1984). Theory of hydrothermal systems. Annual Review of Earth and Planetary Sciences, 12, 155.Ozima, M., & Podosek, F. A. (1983). Rare Gas Geochemistry, Cambridge.Palandri, J. L., & Reed, M. H. (2001). Reconstruction of in situ composition of sedimentary formation waters. Geochimica et Cosmochimica Acta, 65(11), 1741-1767.Parkhurst, D. L. Appelo. CAJ (1999). User’s Guide to Phreeqc (version 2)–A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. US Department of the Interior. US Geological Survey, Denver.Pasquarè, G., Francalanci, L., Garduno, V. H., & Tibaldi, A. (1993). Structure and geologic evolution of the Stromboli volcano, Aeolian Islands, Italy. Acta Vulcanol, 3, 79-89.Pichavant, M., Pompilio, M., D’Oriano, C., & Di Carlo, I. (2011). Petrography, mineralogy and geochemistry of a primitive pumice from Stromboli: implications for the deep feeding system. European Journal of Mineralogy, 23(4), 499-517.Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water‐analyses. Eos, Transactions American Geophysical Union, 25(6), 914-928.Plant, J. A., Whittaker, A., Demetriades, A., De Vivo, B., & Lexa, J. (2003). The geological and tectonic framework of Europe. Geochemical Atlas of Europe. Part, 1.Roy, S., & Gupta, H. (2007). Geothermal Energy: An Alternative Resource for the 21 st CenturyPlummer, N., & Back, W. (1980). The mass balance approach: application to interpreting the chemical evolution of hydrologic systems. American Journal of Science, 280(2), 130-142.Plummer, L. N., Parkhurst, D. L., & Thorstenson, D. C. (1983). Development of reaction models for ground-water systems. Geochimica et cosmochimica Acta, 47(4), 665-685.Reed, M., & Spycher, N. (1984). Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution. Geochimica et Cosmochimica Acta, 48(7), 1479-1492.Revil A., V. N. (2003). Principles of electrography applied to self‐potential electrokinetic sources and hydrogeological applications. Water Resources Research.Revil, A., Finizola, A., Ricci, T., Delcher, E., Peltier, A., Barde-Cabusson, S., ... & Tsang Hin Sun, E. (2011). Hydrogeology of Stromboli volcano, Aeolian Islands (Italy) from the interpretation of resistivity tomograms, self-potential, soil temperature and soil CO2 concentration measurements. Geophysical Journal International, 186(3), 1078-1094Rizzo, A. L., Federico, C., Inguaggiato, S., Sollami, A., Tantillo, M., Vita, F., ... & Liuzzo, M. (2015). The 2014 effusive eruption at Stromboli volcano (Italy): Inferences from soil CO2 flux and 3He/4He ratio in thermal waters. Geophysical Research Letters, 42(7), 2235-2243.Rosi, M., Pistolesi, M., Bertagnini, A., Landi, P., Pompilio, M., & Di Roberto, A. (2013). Stromboli volcano, Aeolian Islands (Italy): present eruptive activity and hazards. Geological Society, London, Memoirs, 37(1), 473-490.Sonney, R., & Vuataz, F. D. (2010). Validation of chemical and isotopic geothermometers from low temperature deep fluids of northern Switzerland. In Proceedings World Geothermal Congress (Vol. 14, No. 1423, pp. 1-12). International Geothermal Association.Spycher, N., Peiffer, L., Sonnenthal, E. L., Saldi, G., Reed, M. H., & Kennedy, B. M. (2014). Integrated multicomponent solute geothermometry. Geothermics, 51, 113-123.Standard Methods (1992) Standard Methods for the Examinatiul1 of Water (lftd We slewater 18th edn.) American Public Health Association.Tamburello, G., Aiuppa, A., Kantzas, E. P., McGonigle, A. J. S., & Ripepe, M. (2012). Passive vs. active degassing modes at an open-vent volcano (Stromboli, Italy). Earth and Planetary Science Letters, 359, 106-116.Tibaldi, A. (2010). A new geological map of Stromboli volcano (Tyrrhenian Sea, Italy) based on application of lithostratigraphic and unconformity-bounded stratigraphic (UBS) units. GSA Spec. Pap, 464, 33-49.Vaselli, O., Tassi, F., Duarte, E., Fernandez, E., Poreda, R. J., & Huertas, A. D. (2010). Evolution of fluid geochemistry at the Turrialba volcano (Costa Rica) from 1998 to 2008. Bulletin of Volcanology, 72(4), 397-410.Verma, M. P. (2008). Qrtzgeotherm: An ActiveX component for the quartz solubility geothermometer. Computers & Geosciences, 34(12), 1918-1925Vita, F., Inguaggiato, S., Bobrowski, N., Calderone, L., Galle, B., Parello, F., 2012. Continuous SO2 flux measurements at Vulcano Island, Italy. Ann. Geophys. 55, 301–308.Istituto Nazionale di Geofisica e Vulcanologia (INGV) ,ItaliaEstudiantesInvestigadoresMaestrosORIGINAL35852447.2021 .pdf35852447.2021 .pdfTesis de Maestría en Ciencias - Geologíaapplication/pdf14139119https://repositorio.unal.edu.co/bitstream/unal/80951/1/35852447.2021%20.pdfb37113b2611a66ab9a10c9353f5466c1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80951/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL35852447.2021 .pdf.jpg35852447.2021 .pdf.jpgGenerated Thumbnailimage/jpeg5283https://repositorio.unal.edu.co/bitstream/unal/80951/3/35852447.2021%20.pdf.jpg71d5c022fee6c7898a4850bdba88438bMD53unal/80951oai:repositorio.unal.edu.co:unal/809512023-08-01 23:03:44.157Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK