Variación de la brecha de energía electrónica del fosforeno con el número de capas, campo eléctrico externo y presión
ilustraciones, graficas
- Autores:
-
Ospina Domínguez, Nestar Santiago
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82881
- Palabra clave:
- 500 - Ciencias naturales y matemáticas
530 - Física
FOSFORO
Phosphorus
NO METALES
Fosforeno
Capas
Campo Eléctrico
Presión
Fósforo negro
Multi-capas
Brecha electrónica
Phosphorene
Black-phosphorus
Multilayers
Electronic gap
Electric field
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_cc334a30af349649f0f3c382753a4ba9 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82881 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Variación de la brecha de energía electrónica del fosforeno con el número de capas, campo eléctrico externo y presión |
dc.title.translated.zho.fl_str_mv |
磷烯的电子能隙随层数、外电场和压力的变化 |
dc.title.translated.fra.fl_str_mv |
Variation de la bande interdite d'énergie électronique du phosphorène avec le nombre de couches, le champ électrique externe et la pression |
dc.title.translated.eng.fl_str_mv |
Variation of the electronic breach of phosphorene with layer number, external electric field and pressure |
title |
Variación de la brecha de energía electrónica del fosforeno con el número de capas, campo eléctrico externo y presión |
spellingShingle |
Variación de la brecha de energía electrónica del fosforeno con el número de capas, campo eléctrico externo y presión 500 - Ciencias naturales y matemáticas 530 - Física FOSFORO Phosphorus NO METALES Fosforeno Capas Campo Eléctrico Presión Fósforo negro Multi-capas Brecha electrónica Phosphorene Black-phosphorus Multilayers Electronic gap Electric field |
title_short |
Variación de la brecha de energía electrónica del fosforeno con el número de capas, campo eléctrico externo y presión |
title_full |
Variación de la brecha de energía electrónica del fosforeno con el número de capas, campo eléctrico externo y presión |
title_fullStr |
Variación de la brecha de energía electrónica del fosforeno con el número de capas, campo eléctrico externo y presión |
title_full_unstemmed |
Variación de la brecha de energía electrónica del fosforeno con el número de capas, campo eléctrico externo y presión |
title_sort |
Variación de la brecha de energía electrónica del fosforeno con el número de capas, campo eléctrico externo y presión |
dc.creator.fl_str_mv |
Ospina Domínguez, Nestar Santiago |
dc.contributor.advisor.none.fl_str_mv |
Rey González, Rafael Ramón |
dc.contributor.author.none.fl_str_mv |
Ospina Domínguez, Nestar Santiago |
dc.contributor.datamanager.none.fl_str_mv |
Del Valle, Carlos Andrés |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Óptica e Información Cuántica Grupo de Materiales Nanoestructurados y sus Aplicaciones |
dc.subject.ddc.spa.fl_str_mv |
500 - Ciencias naturales y matemáticas 530 - Física |
topic |
500 - Ciencias naturales y matemáticas 530 - Física FOSFORO Phosphorus NO METALES Fosforeno Capas Campo Eléctrico Presión Fósforo negro Multi-capas Brecha electrónica Phosphorene Black-phosphorus Multilayers Electronic gap Electric field |
dc.subject.lemb.none.fl_str_mv |
FOSFORO Phosphorus NO METALES |
dc.subject.proposal.spa.fl_str_mv |
Fosforeno Capas Campo Eléctrico Presión Fósforo negro Multi-capas Brecha electrónica |
dc.subject.proposal.eng.fl_str_mv |
Phosphorene Black-phosphorus Multilayers Electronic gap Electric field |
description |
ilustraciones, graficas |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-12-12 |
dc.date.accessioned.none.fl_str_mv |
2023-01-11T20:31:29Z |
dc.date.available.none.fl_str_mv |
2023-01-11T20:31:29Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82881 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82881 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and P. D. Ye. Phosphorene: An unexplored 2d semiconductor with a high hole mobility. ACS Nano, Vol 8:pgs. 4033–4041, 2014. doi: 10.1021/nn501226z. K. S.Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov. Two dimentional gas of massless dirac fermions in graphene. Nature, 438, 2005. doi: 10.1038/nature04233. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis. Single-layer mos2 transistors. Nature Nanotechnology, 6, 2011. doi: 10.1038/nnano.2010.279. [ Angela Marcela Rojas Cuervo. Propiedades estructurales y electrónicas de monocapas hexagonales de Si, Ge, GaN, y GaAs. Un estudio ab initio. Master’s thesis, Universidad Nacional de Colombia, 2012. URLhttp://www.bdigital.unal.edu.co/8943/ 1/835221.2012.pdf. A. M. Rojas-Cuervo, K. M. Fonseca-Romero, and R. R. Rey-González. Anisotropic Dirac cones in monatomic hexagonal lattices. A DFT study. 87:67, 2014. doi: 10.1140/ epjb/e2014-40894-9. Xiao-Qin Feng, Hong-Xia Lu, Da-Ning Shi, Jian-Ming Jia, and Chang-Shun Wang. Semiconductor-metal transition induced by combined electric field and external strain in bilayer phosphorene. Solid State Communications, 337, 2021. doi: https: //doi.org/10.1016/j.ssc.2021.114434. P. Majumder, S. Rani, S. Nair, A. K. Kumari, K. Kamalakar, M. Venkata, and S. J. Ray. High efficiency spin filtering in magnetic phosphorene. Phys. Chem., Vol 22(issue 10): pgs. 5893–5901, 2020. doi: 10.1039/C9CP05390E. P. D. Taylor, S. A.Tawfik, and M. J. S. Spencer. Interplay of mechanical and chemical tunability of phosphorene for flexible nanoelectronic applications. J. Phys. Chem. C, Vol 124(44):pgs. 24391–24399, 2020. doi: https://doi.org/10.1021/acs Expanding our 2d vision. Nat. Rev. Mater., Vol 1(44):pg. 16089, 2016. doi: https://doi. org/10.1038/natrevmats.2016.89. A.M. Rojas-Cuervo and R.R. Rey-Gonzĺez. Electronic band gap on graphene induced by interaction with hydrogen cyanide. an dft analysis. Chemical Physics, page 111744, 2022. ISSN 0301-0104. doi: https://doi.org/10.1016/j.chemphys.2022. 111744. URL https://www.sciencedirect.com/science/article/pii/ S030101042200297X. Meng Zhang, Gill M. Biesold, and Zhiqun Lin. A multifunctional 2d black phosphorene-based platform for improved photovoltaics. Chem. Soc. Rev., 50:13346– 13371, 2021. doi: 10.1039/D1CS00847A. URL http://dx.doi.org/10.1039/ D1CS00847A. J. Qiao, X. Kong, Z. X. Hu, F. Yang, andW. Ji. High mobility transport anisotropy and linear dichroism in few layer black phosphorus. Nature Communications, Vol 5(X): pgs. 4475, 2014. doi: https://doi.org/10.1038/ncomms5475. Wenzhe Zhou, Hui Zou, Xiang Xiong, Yu Zhou, Rutie Liu, and Fangping Ouyang. Doping effects on the electronic properties of armchair phosphorene nanoribbons: A first principles study. Physica E: Low-dimensional Systems and Nanostructures, 94:53–58, 2017. doi: https://doi.org/10.1016/j.physe.2017.07.015. Vy Tran, Ryan Soklaski, Yufeng Liang, and Li Yang. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B, 89, 2014. doi: 10.1103/PhysRevB.89.235319. URL https://link.aps.org/doi/10.1103/ PhysRevB.89.235319. Deniz Çak ır, Hasan Sahin, and François M. Peeters. Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Phys. Rev. B, 90, 2014. doi: 10.1103/PhysRevB.90.205421. URL https://link.aps.org/doi/10.1103/ PhysRevB.90.205421. Huynh V. Phuc, Nguyen N. Hieu, Victor V. Ilyasov, Le T.T. Phuong, and Chuong V. Nguyen. First principles study of the electronic properties and band gap modulation of two-dimensional phosphorene monolayer: Effect of strain engineering. Superlattices and Microstructures, 118:289–297, 2018. doi: https://doi.org/10.1016/j.spmi.2018.04. 018. Yonghong Zeng and Zhinan Guo. Synthesis and stabilization of black phosphorus and phosphorene: Recent progress and perspectives. iScience, 24, 2021. doi: https: //doi.org/10.1016/j.isci.2021.103116. Yanwen Zhang, Xiayue Liu Hongxia Yan, Xingwu Zhai, Xianjun Sui, Guixian Ge, and Jueming Yang. Highly anisotropic and tunable charge carrier of monolayer phosphorus allotropes by bi-axial strain. Physics Letter A, 384, 2020. doi: https: //doi.org/10.1016/j.physleta.2020.126896. Cheng Liu, Xinpeng Han, Yu Cao, Shiyu Zhang, Yiming Zhang, and Jie Sun. Topological construction of phosphorus and carbon composite and its applications in energy storage. Energy Storage Materials, 20, 2019. doi: https://doi.org/10.1016/j.ensm. 2018.10.021. P. W. Bridgman. Two new modifications of phosphorus. J. Am. Chem. Soc., Vol 36 (Issue 7):pgs. 1344–1363, 1914. doi: https://doi.org/10.1021/ja02184a002 Han Liu, Yuchen Du, Yexin Deng, and Peide D. Ye. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chemical Society Reviews, Vol 44(Issue 9):pgs. 2732–2743, 2015. doi: 10.1039/C4CS00257A. 52 R. Keyes. The electrical properties of black phosphorus. Phys. Rev, Vol 92:pg. 580, 1953. doi: https://doi.org/10.1103/PhysRev.92.580. D.Warschauer. Electrical and optical properties of crystalline black phosphorus. Journal of Applied Physics, Vol 34(Issue 1853):pg. 580, 1963. doi: https://doi.org/10.1063/1. 1729699. Y. Akahama, S. Endo, and S. Narita. Electrical properties of single-crystal black phosphorus under pressure. Physica B, Vol 139-140:pgs. 397–400., 1986. doi: https: //doi.org/10.1016/0378-4363(86)90606-6. M. Baba, F. Izumida, Y. Takeda, K. Shibata, A. Morita, Y. Koike, and T. Fukase. Two-dimensional anderson localization in black phosphorus crystals prepared by bismuth-flux method. Phys. Soc. Jpn., Vol 60(Issue 9):pgs. 3777–3783, 1991. doi: https://doi.org/10.1143/JPSJ.60.3777. S. Takeyama, N. Miura, Y. Akahama, and S. Endo. Far-infrared magneto-optical investigation of p-black phosphorus in pulsed high magnetic fields. J. Phys. Soc. Jpn., Vol 59(Issue 9):pgs. 2400–2408, 1990. doi: https://doi.org/10.1143/JPSJ.59.2400. M. Baba, F. Izumida, A. Morita, Y. Koike, and T. Fukase. Electrical properties of black phosphorus single crystals prepared by the bismuth-flux method. Jpn. J. Appl. Phys., Vol 30(Issue 9):pgs. 1753–1758, 1991. doi: 10.1143/JJAP.30.1753 M. Baba, Y. Nakamura, Y. Takeda, K. Shibata, A. Morita, Y. Koike, and T. Fukase. Hall effect and two-dimensional electron gas in black phosphorus. J. Phys.: Condens. Matter, Vol 4(Issue 9):pgs. 1535–1544, 1992. doi: 10.1088/0953-8984/4/6/018. J. Wittig and B. T. Matthias. Superconducting phosphorus. Science, Vol 160(Issue 3831):pgs. 994–995, 1968. doi: 10.1126/science.160.3831.994. 53 H. Kawamura, I. Shirotani, and K. Tachikawa. Anomalous superconductivity in black phosphorus under high pressures. Solid State Commun., Vol 49(X):pgs. 879–881, 1984. doi: https://doi.org/10.1016/0038-1098(84)90444-7. F. Xia, H.Wang, and Y. Jia. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, Vol 5:pg. 4458, 2014. doi: DOI:10.1038/ncomms5458. A.Kokalj. Xcrysden–a newprogram for displaying crystalline structures and electron densities. J. Mol. Graphics Modelling, Vol 17(21):pgs. 176–179, 1999. doi: 10.1016/ s1093-3263(99)00028-5. URL http://www.xcrysden.org/. A. Chaves, W. Ji, Jesse Maassen, Traian Dumitrica, and Tony Low. Theoretical overview of black phosphorus. Cambridge University Press, Vol 3(21):pgs. 381–412, 2017. doi: https://doi.org/10.1017/9781316681619.022. Meng Zhang, Gill M. Biesold, and Zhiqun Lin. Ab initio studies on atomic and electronic structures of black phosphorus. Journal of applied physics, 107, 2010. doi: 10.1063/1.3386509. M. Born and R. Oppenheimer. On the quantum theory of molecules. Annalen der physik, Vol 389(20):pgs. 457–484, 1927. doi: https://doi.org/10.1002/andp.19273892002. P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136(3B):B864– B871, 1964. doi: 10.1103/PhysRev.136.B864. A. M. Rojas Cuervo. Interacción de átomos o moléculas con sistemas bidimensionales hexagonales. Un estudio DFT. PhD thesis,UniversidadNacional de Colombia, Sede Bogotá, 2019. W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140(4A):A1133–A1138, 1965. doi: 10.1103/PhysRev.140.A1133. M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist. Van der waals density functional for general geometries. Phys. Rev., Vol 92-24(X):pgs. 246401, 2004. doi: https://doi.org/10.1103/PhysRevLett.92.246401. L. Liang, w. Lin, B.G. Sumpter, V. Meunier, and M. Pan. Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett., 14(11):6400–6, 2014. doi: 10.1021/nl502892t. A. Castellanos-Gomez. Black phosphorus: Narrow gap, wide applications. J. Phys. Chem. Lett., Vol 6(21):pgs.4280–4291, 2015. doi: https://doi.org/10.1021/acs.jpclett. 5b01686. Jiong Yang, Renjing Xu, Jiajie Pei, Ye Win Myint, Fan Wang, Zhu Wang, Shuang Zhang, Zongfu Yu, and Yueriu Lu. Optical tuning of exciton and trion emissions in monolayer phosphorene. Light: Science and Applications, 4(7):2047–7538, 2015. doi: 10.1038/lsa.2015.85. José M Soler, Emilio Artacho, Julian D Gale, Alberto García, Javier Junquera, Pablo Ordejón, and Daniel Sánchez-Portal. The siesta method for ab initio order-n materials simulation. Journal of Physics: Condensed Matter, Vol 14(11):2745–2779, 2002. doi: 10.1088/0953-8984/14/11/302. K. Lee, E. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth. Higher-accuracy van der waals density functional. Phys. Rev. B, 82:081101, 2010. doi: 10.1103/PhysRevB.82. 081101. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
55 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Física |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82881/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/82881/4/1016078617.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/82881/5/1016078617.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a c420dc0fd8e44becbb8b7e10cfe4f72f b4e8ff41da5c02cf4ed6001d5857a136 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090223649292288 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rey González, Rafael Ramónb0d8611f499207fe6d4ef02c2ac1b983Ospina Domínguez, Nestar Santiago4534085b13360d4f27ab4606d2cd5b61Del Valle, Carlos AndrésGrupo de Óptica e Información CuánticaGrupo de Materiales Nanoestructurados y sus Aplicaciones2023-01-11T20:31:29Z2023-01-11T20:31:29Z2022-12-12https://repositorio.unal.edu.co/handle/unal/82881Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasEsta investigación se realiza con el fin de caracterizar el fosforeno multicapa con efectos externos por medio de la teoría del funcional de la densidad (DFT). Esto se hace para encontrar la brecha de energía electrónica de manera teórica. Para obtener estos valores de brecha electrónica se hace uso del paquete SIESTA ("Spanish Initiative for Simulations with Thousands of Atoms"). Se calculan valores de la brecha de energía para los sistemas de múltiple lámina apilada de fosforeno, el sistema 3D del fósforo negro, el sistema de múltiples capas con campo eléctrico, y el fosforeno con presión tangencial. Se implementaron los funcionales GGA-PBE y VDW-DRSLL para obtener el valor de la brecha en las multiláminas. Nuestros principales resultados muestran una disminución de la brecha al aumentar el número de láminas, así como una disminución aplicando campo eléctrico externo, siendo la disminución simétrica respecto al signo de este campo. Involucrando dos o más láminas de fosforeno el material presenta una transición de semiconductor a metal y de nuevo a semiconductor. Aplicando presión tangencial uniaxial o biaxial se presenta la disminución y aumento de la brecha según se estire o comprima la lámina (Texto tomado de la fuente).This work searches to caracterize multilayer phosphorene with external effects using Density Functional Theory (DFT). By doing so, we search to obtain the electronic breach theoretically. We shall obtain this values of electronic breach using the package SIESTA ("Spanish Initiative for Simulations with Thousands of Atoms"). We do this for the system of multiple layers of phosphorene, the 3D bulk system of black phosphorus, and the multilayer system with external electric field and tangent pressure. The implemented functionals are GGA-PBE, VDW-DRSLL and VDW-LMKLL. Our main results show the disminution of the breach when adding more layers. The breach also diminishes with external electric field, being the response symmetrical with respect to the sign of the electric field. Adding more layers combined with electric field makes the multilayered system reach a transition from semiconductor to metal to semiconductor. With the presence of external tangent pressure the response of the breach is to decrease when the layers are stretched and to increase when they are compressed. This is true when applying uniaxial or biaxial pressure.MaestríaMagíster en Ciencias - Física55 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá500 - Ciencias naturales y matemáticas530 - FísicaFOSFOROPhosphorusNO METALESFosforenoCapasCampo EléctricoPresiónFósforo negroMulti-capasBrecha electrónicaPhosphoreneBlack-phosphorusMultilayersElectronic gapElectric fieldVariación de la brecha de energía electrónica del fosforeno con el número de capas, campo eléctrico externo y presión磷烯的电子能隙随层数、外电场和压力的变化Variation de la bande interdite d'énergie électronique du phosphorène avec le nombre de couches, le champ électrique externe et la pressionVariation of the electronic breach of phosphorene with layer number, external electric field and pressureTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMH. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and P. D. Ye. Phosphorene: An unexplored 2d semiconductor with a high hole mobility. ACS Nano, Vol 8:pgs. 4033–4041, 2014. doi: 10.1021/nn501226z.K. S.Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov. Two dimentional gas of massless dirac fermions in graphene. Nature, 438, 2005. doi: 10.1038/nature04233.B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis. Single-layer mos2 transistors. Nature Nanotechnology, 6, 2011. doi: 10.1038/nnano.2010.279. [Angela Marcela Rojas Cuervo. Propiedades estructurales y electrónicas de monocapas hexagonales de Si, Ge, GaN, y GaAs. Un estudio ab initio. Master’s thesis, Universidad Nacional de Colombia, 2012. URLhttp://www.bdigital.unal.edu.co/8943/ 1/835221.2012.pdf.A. M. Rojas-Cuervo, K. M. Fonseca-Romero, and R. R. Rey-González. Anisotropic Dirac cones in monatomic hexagonal lattices. A DFT study. 87:67, 2014. doi: 10.1140/ epjb/e2014-40894-9.Xiao-Qin Feng, Hong-Xia Lu, Da-Ning Shi, Jian-Ming Jia, and Chang-Shun Wang. Semiconductor-metal transition induced by combined electric field and external strain in bilayer phosphorene. Solid State Communications, 337, 2021. doi: https: //doi.org/10.1016/j.ssc.2021.114434.P. Majumder, S. Rani, S. Nair, A. K. Kumari, K. Kamalakar, M. Venkata, and S. J. Ray. High efficiency spin filtering in magnetic phosphorene. Phys. Chem., Vol 22(issue 10): pgs. 5893–5901, 2020. doi: 10.1039/C9CP05390E.P. D. Taylor, S. A.Tawfik, and M. J. S. Spencer. Interplay of mechanical and chemical tunability of phosphorene for flexible nanoelectronic applications. J. Phys. Chem. C, Vol 124(44):pgs. 24391–24399, 2020. doi: https://doi.org/10.1021/acsExpanding our 2d vision. Nat. Rev. Mater., Vol 1(44):pg. 16089, 2016. doi: https://doi. org/10.1038/natrevmats.2016.89.A.M. Rojas-Cuervo and R.R. Rey-Gonzĺez. Electronic band gap on graphene induced by interaction with hydrogen cyanide. an dft analysis. Chemical Physics, page 111744, 2022. ISSN 0301-0104. doi: https://doi.org/10.1016/j.chemphys.2022. 111744. URL https://www.sciencedirect.com/science/article/pii/ S030101042200297X.Meng Zhang, Gill M. Biesold, and Zhiqun Lin. A multifunctional 2d black phosphorene-based platform for improved photovoltaics. Chem. Soc. Rev., 50:13346– 13371, 2021. doi: 10.1039/D1CS00847A. URL http://dx.doi.org/10.1039/ D1CS00847A.J. Qiao, X. Kong, Z. X. Hu, F. Yang, andW. Ji. High mobility transport anisotropy and linear dichroism in few layer black phosphorus. Nature Communications, Vol 5(X): pgs. 4475, 2014. doi: https://doi.org/10.1038/ncomms5475.Wenzhe Zhou, Hui Zou, Xiang Xiong, Yu Zhou, Rutie Liu, and Fangping Ouyang. Doping effects on the electronic properties of armchair phosphorene nanoribbons: A first principles study. Physica E: Low-dimensional Systems and Nanostructures, 94:53–58, 2017. doi: https://doi.org/10.1016/j.physe.2017.07.015.Vy Tran, Ryan Soklaski, Yufeng Liang, and Li Yang. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B, 89, 2014. doi: 10.1103/PhysRevB.89.235319. URL https://link.aps.org/doi/10.1103/ PhysRevB.89.235319.Deniz Çak ır, Hasan Sahin, and François M. Peeters. Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Phys. Rev. B, 90, 2014. doi: 10.1103/PhysRevB.90.205421. URL https://link.aps.org/doi/10.1103/ PhysRevB.90.205421.Huynh V. Phuc, Nguyen N. Hieu, Victor V. Ilyasov, Le T.T. Phuong, and Chuong V. Nguyen. First principles study of the electronic properties and band gap modulation of two-dimensional phosphorene monolayer: Effect of strain engineering. Superlattices and Microstructures, 118:289–297, 2018. doi: https://doi.org/10.1016/j.spmi.2018.04. 018.Yonghong Zeng and Zhinan Guo. Synthesis and stabilization of black phosphorus and phosphorene: Recent progress and perspectives. iScience, 24, 2021. doi: https: //doi.org/10.1016/j.isci.2021.103116.Yanwen Zhang, Xiayue Liu Hongxia Yan, Xingwu Zhai, Xianjun Sui, Guixian Ge, and Jueming Yang. Highly anisotropic and tunable charge carrier of monolayer phosphorus allotropes by bi-axial strain. Physics Letter A, 384, 2020. doi: https: //doi.org/10.1016/j.physleta.2020.126896.Cheng Liu, Xinpeng Han, Yu Cao, Shiyu Zhang, Yiming Zhang, and Jie Sun. Topological construction of phosphorus and carbon composite and its applications in energy storage. Energy Storage Materials, 20, 2019. doi: https://doi.org/10.1016/j.ensm. 2018.10.021.P. W. Bridgman. Two new modifications of phosphorus. J. Am. Chem. Soc., Vol 36 (Issue 7):pgs. 1344–1363, 1914. doi: https://doi.org/10.1021/ja02184a002Han Liu, Yuchen Du, Yexin Deng, and Peide D. Ye. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chemical Society Reviews, Vol 44(Issue 9):pgs. 2732–2743, 2015. doi: 10.1039/C4CS00257A. 52R. Keyes. The electrical properties of black phosphorus. Phys. Rev, Vol 92:pg. 580, 1953. doi: https://doi.org/10.1103/PhysRev.92.580.D.Warschauer. Electrical and optical properties of crystalline black phosphorus. Journal of Applied Physics, Vol 34(Issue 1853):pg. 580, 1963. doi: https://doi.org/10.1063/1. 1729699.Y. Akahama, S. Endo, and S. Narita. Electrical properties of single-crystal black phosphorus under pressure. Physica B, Vol 139-140:pgs. 397–400., 1986. doi: https: //doi.org/10.1016/0378-4363(86)90606-6.M. Baba, F. Izumida, Y. Takeda, K. Shibata, A. Morita, Y. Koike, and T. Fukase. Two-dimensional anderson localization in black phosphorus crystals prepared by bismuth-flux method. Phys. Soc. Jpn., Vol 60(Issue 9):pgs. 3777–3783, 1991. doi: https://doi.org/10.1143/JPSJ.60.3777.S. Takeyama, N. Miura, Y. Akahama, and S. Endo. Far-infrared magneto-optical investigation of p-black phosphorus in pulsed high magnetic fields. J. Phys. Soc. Jpn., Vol 59(Issue 9):pgs. 2400–2408, 1990. doi: https://doi.org/10.1143/JPSJ.59.2400.M. Baba, F. Izumida, A. Morita, Y. Koike, and T. Fukase. Electrical properties of black phosphorus single crystals prepared by the bismuth-flux method. Jpn. J. Appl. Phys., Vol 30(Issue 9):pgs. 1753–1758, 1991. doi: 10.1143/JJAP.30.1753M. Baba, Y. Nakamura, Y. Takeda, K. Shibata, A. Morita, Y. Koike, and T. Fukase. Hall effect and two-dimensional electron gas in black phosphorus. J. Phys.: Condens. Matter, Vol 4(Issue 9):pgs. 1535–1544, 1992. doi: 10.1088/0953-8984/4/6/018.J. Wittig and B. T. Matthias. Superconducting phosphorus. Science, Vol 160(Issue 3831):pgs. 994–995, 1968. doi: 10.1126/science.160.3831.994. 53H. Kawamura, I. Shirotani, and K. Tachikawa. Anomalous superconductivity in black phosphorus under high pressures. Solid State Commun., Vol 49(X):pgs. 879–881, 1984. doi: https://doi.org/10.1016/0038-1098(84)90444-7.F. Xia, H.Wang, and Y. Jia. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, Vol 5:pg. 4458, 2014. doi: DOI:10.1038/ncomms5458.A.Kokalj. Xcrysden–a newprogram for displaying crystalline structures and electron densities. J. Mol. Graphics Modelling, Vol 17(21):pgs. 176–179, 1999. doi: 10.1016/ s1093-3263(99)00028-5. URL http://www.xcrysden.org/.A. Chaves, W. Ji, Jesse Maassen, Traian Dumitrica, and Tony Low. Theoretical overview of black phosphorus. Cambridge University Press, Vol 3(21):pgs. 381–412, 2017. doi: https://doi.org/10.1017/9781316681619.022.Meng Zhang, Gill M. Biesold, and Zhiqun Lin. Ab initio studies on atomic and electronic structures of black phosphorus. Journal of applied physics, 107, 2010. doi: 10.1063/1.3386509.M. Born and R. Oppenheimer. On the quantum theory of molecules. Annalen der physik, Vol 389(20):pgs. 457–484, 1927. doi: https://doi.org/10.1002/andp.19273892002.P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136(3B):B864– B871, 1964. doi: 10.1103/PhysRev.136.B864.A. M. Rojas Cuervo. Interacción de átomos o moléculas con sistemas bidimensionales hexagonales. Un estudio DFT. PhD thesis,UniversidadNacional de Colombia, Sede Bogotá, 2019.W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140(4A):A1133–A1138, 1965. doi: 10.1103/PhysRev.140.A1133.M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist. Van der waals density functional for general geometries. Phys. Rev., Vol 92-24(X):pgs. 246401, 2004. doi: https://doi.org/10.1103/PhysRevLett.92.246401.L. Liang, w. Lin, B.G. Sumpter, V. Meunier, and M. Pan. Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett., 14(11):6400–6, 2014. doi: 10.1021/nl502892t.A. Castellanos-Gomez. Black phosphorus: Narrow gap, wide applications. J. Phys. Chem. Lett., Vol 6(21):pgs.4280–4291, 2015. doi: https://doi.org/10.1021/acs.jpclett. 5b01686.Jiong Yang, Renjing Xu, Jiajie Pei, Ye Win Myint, Fan Wang, Zhu Wang, Shuang Zhang, Zongfu Yu, and Yueriu Lu. Optical tuning of exciton and trion emissions in monolayer phosphorene. Light: Science and Applications, 4(7):2047–7538, 2015. doi: 10.1038/lsa.2015.85.José M Soler, Emilio Artacho, Julian D Gale, Alberto García, Javier Junquera, Pablo Ordejón, and Daniel Sánchez-Portal. The siesta method for ab initio order-n materials simulation. Journal of Physics: Condensed Matter, Vol 14(11):2745–2779, 2002. doi: 10.1088/0953-8984/14/11/302.K. Lee, E. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth. Higher-accuracy van der waals density functional. Phys. Rev. B, 82:081101, 2010. doi: 10.1103/PhysRevB.82. 081101.EstudiantesLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82881/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1016078617.2022.pdf1016078617.2022.pdfSe encuentra la variación de la brecha de energía electrónica del fosforeno con número de capas, campo eléctrico externo y presiónapplication/pdf4725320https://repositorio.unal.edu.co/bitstream/unal/82881/4/1016078617.2022.pdfc420dc0fd8e44becbb8b7e10cfe4f72fMD54THUMBNAIL1016078617.2022.pdf.jpg1016078617.2022.pdf.jpgGenerated Thumbnailimage/jpeg5672https://repositorio.unal.edu.co/bitstream/unal/82881/5/1016078617.2022.pdf.jpgb4e8ff41da5c02cf4ed6001d5857a136MD55unal/82881oai:repositorio.unal.edu.co:unal/828812023-08-11 23:04:42.364Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |