Remarks on da costa's paraconsistent set theories
In this paper we analyse da Costa's paraconsistent set theories, i.e., the set theories constructed over da Costa's paraconsistent logics C=n, 1 ≤ n ≤ ω. The main results presented here are the following. In any da Costa paraconsistent set theory of type NF the axiom schema of abstraction...
- Autores:
-
Arruda, Ayda Ignez
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 1985
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/42874
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/42874
http://bdigital.unal.edu.co/32971/
- Palabra clave:
- theories of sets
paraconsistent logics
theory da Costa
Russell set
universal set
schemes
axiom of separation
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_cc0612b10eaa23ae7b341d684894cc60 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/42874 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Arruda, Ayda Ignezbabdb193-b9c0-4b5c-97a0-a8da48e962803002019-06-28T11:17:02Z2019-06-28T11:17:02Z1985https://repositorio.unal.edu.co/handle/unal/42874http://bdigital.unal.edu.co/32971/In this paper we analyse da Costa's paraconsistent set theories, i.e., the set theories constructed over da Costa's paraconsistent logics C=n, 1 ≤ n ≤ ω. The main results presented here are the following. In any da Costa paraconsistent set theory of type NF the axiom schema of abstraction must be formulated exactly as in NF; for, in the contrary, some paradoxes are derivable that invalidate the theory. In any da Costa paraconsistent set theory with Russell's set [Formula Matemática] UUR is the universal set. In any da Costa paraconsistent set theory the existence of Russell's set is incompatible with a general (for all sets) formulation of the axiom schemata of separation and replacement.application/pdfspaUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticashttp://revistas.unal.edu.co/index.php/recolma/article/view/32576Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRevista Colombiana de Matemáticas; Vol. 19, núm. 1-2 (1985); 9-24 0034-7426Arruda, Ayda Ignez (1985) Remarks on da costa's paraconsistent set theories. Revista Colombiana de Matemáticas; Vol. 19, núm. 1-2 (1985); 9-24 0034-7426 .Remarks on da costa's paraconsistent set theoriesArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTtheories of setsparaconsistent logicstheory da CostaRussell setuniversal setschemesaxiom of separationORIGINAL32576-120523-1-PB.pdfapplication/pdf5331547https://repositorio.unal.edu.co/bitstream/unal/42874/1/32576-120523-1-PB.pdf35e2d4f12e3896afca7a840360d132abMD51THUMBNAIL32576-120523-1-PB.pdf.jpg32576-120523-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg6418https://repositorio.unal.edu.co/bitstream/unal/42874/2/32576-120523-1-PB.pdf.jpg32397efa49dabdc42a9cfb66db5a9636MD52unal/42874oai:repositorio.unal.edu.co:unal/428742024-02-07 23:08:49.618Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Remarks on da costa's paraconsistent set theories |
title |
Remarks on da costa's paraconsistent set theories |
spellingShingle |
Remarks on da costa's paraconsistent set theories theories of sets paraconsistent logics theory da Costa Russell set universal set schemes axiom of separation |
title_short |
Remarks on da costa's paraconsistent set theories |
title_full |
Remarks on da costa's paraconsistent set theories |
title_fullStr |
Remarks on da costa's paraconsistent set theories |
title_full_unstemmed |
Remarks on da costa's paraconsistent set theories |
title_sort |
Remarks on da costa's paraconsistent set theories |
dc.creator.fl_str_mv |
Arruda, Ayda Ignez |
dc.contributor.author.spa.fl_str_mv |
Arruda, Ayda Ignez |
dc.subject.proposal.spa.fl_str_mv |
theories of sets paraconsistent logics theory da Costa Russell set universal set schemes axiom of separation |
topic |
theories of sets paraconsistent logics theory da Costa Russell set universal set schemes axiom of separation |
description |
In this paper we analyse da Costa's paraconsistent set theories, i.e., the set theories constructed over da Costa's paraconsistent logics C=n, 1 ≤ n ≤ ω. The main results presented here are the following. In any da Costa paraconsistent set theory of type NF the axiom schema of abstraction must be formulated exactly as in NF; for, in the contrary, some paradoxes are derivable that invalidate the theory. In any da Costa paraconsistent set theory with Russell's set [Formula Matemática] UUR is the universal set. In any da Costa paraconsistent set theory the existence of Russell's set is incompatible with a general (for all sets) formulation of the axiom schemata of separation and replacement. |
publishDate |
1985 |
dc.date.issued.spa.fl_str_mv |
1985 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-28T11:17:02Z |
dc.date.available.spa.fl_str_mv |
2019-06-28T11:17:02Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/42874 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/32971/ |
url |
https://repositorio.unal.edu.co/handle/unal/42874 http://bdigital.unal.edu.co/32971/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
http://revistas.unal.edu.co/index.php/recolma/article/view/32576 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas Revista Colombiana de Matemáticas |
dc.relation.ispartofseries.none.fl_str_mv |
Revista Colombiana de Matemáticas; Vol. 19, núm. 1-2 (1985); 9-24 0034-7426 |
dc.relation.references.spa.fl_str_mv |
Arruda, Ayda Ignez (1985) Remarks on da costa's paraconsistent set theories. Revista Colombiana de Matemáticas; Vol. 19, núm. 1-2 (1985); 9-24 0034-7426 . |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacuional de Colombia; Sociedad Colombiana de matemáticas |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/42874/1/32576-120523-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/42874/2/32576-120523-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
35e2d4f12e3896afca7a840360d132ab 32397efa49dabdc42a9cfb66db5a9636 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090221242810368 |