Remarks on da costa's paraconsistent set theories

In this paper we analyse da Costa's paraconsistent set theories, i.e., the set theories constructed over da Costa's paraconsistent logics C=n, 1 ≤ n ≤ ω. The main results presented here are the following. In any da Costa paraconsistent set theory of type NF the axiom schema of abstraction...

Full description

Autores:
Arruda, Ayda Ignez
Tipo de recurso:
Article of journal
Fecha de publicación:
1985
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/42874
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/42874
http://bdigital.unal.edu.co/32971/
Palabra clave:
theories of sets
paraconsistent logics
theory da Costa
Russell set
universal set
schemes
axiom of separation
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_cc0612b10eaa23ae7b341d684894cc60
oai_identifier_str oai:repositorio.unal.edu.co:unal/42874
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Arruda, Ayda Ignezbabdb193-b9c0-4b5c-97a0-a8da48e962803002019-06-28T11:17:02Z2019-06-28T11:17:02Z1985https://repositorio.unal.edu.co/handle/unal/42874http://bdigital.unal.edu.co/32971/In this paper we analyse da Costa's paraconsistent set theories, i.e., the set theories constructed over da Costa's paraconsistent logics C=n, 1 ≤ n ≤ ω. The main results presented here are the following. In any da Costa paraconsistent set theory of type NF the axiom schema of abstraction must be formulated exactly as in NF; for, in the contrary, some paradoxes are derivable that invalidate the theory. In any da Costa paraconsistent set theory with Russell's set [Formula Matemática] UUR is the universal set. In any da Costa paraconsistent set theory the existence of Russell's set is incompatible with a general (for all sets) formulation of the axiom schemata of separation and replacement.application/pdfspaUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticashttp://revistas.unal.edu.co/index.php/recolma/article/view/32576Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRevista Colombiana de Matemáticas; Vol. 19, núm. 1-2 (1985); 9-24 0034-7426Arruda, Ayda Ignez (1985) Remarks on da costa's paraconsistent set theories. Revista Colombiana de Matemáticas; Vol. 19, núm. 1-2 (1985); 9-24 0034-7426 .Remarks on da costa's paraconsistent set theoriesArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTtheories of setsparaconsistent logicstheory da CostaRussell setuniversal setschemesaxiom of separationORIGINAL32576-120523-1-PB.pdfapplication/pdf5331547https://repositorio.unal.edu.co/bitstream/unal/42874/1/32576-120523-1-PB.pdf35e2d4f12e3896afca7a840360d132abMD51THUMBNAIL32576-120523-1-PB.pdf.jpg32576-120523-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg6418https://repositorio.unal.edu.co/bitstream/unal/42874/2/32576-120523-1-PB.pdf.jpg32397efa49dabdc42a9cfb66db5a9636MD52unal/42874oai:repositorio.unal.edu.co:unal/428742024-02-07 23:08:49.618Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Remarks on da costa's paraconsistent set theories
title Remarks on da costa's paraconsistent set theories
spellingShingle Remarks on da costa's paraconsistent set theories
theories of sets
paraconsistent logics
theory da Costa
Russell set
universal set
schemes
axiom of separation
title_short Remarks on da costa's paraconsistent set theories
title_full Remarks on da costa's paraconsistent set theories
title_fullStr Remarks on da costa's paraconsistent set theories
title_full_unstemmed Remarks on da costa's paraconsistent set theories
title_sort Remarks on da costa's paraconsistent set theories
dc.creator.fl_str_mv Arruda, Ayda Ignez
dc.contributor.author.spa.fl_str_mv Arruda, Ayda Ignez
dc.subject.proposal.spa.fl_str_mv theories of sets
paraconsistent logics
theory da Costa
Russell set
universal set
schemes
axiom of separation
topic theories of sets
paraconsistent logics
theory da Costa
Russell set
universal set
schemes
axiom of separation
description In this paper we analyse da Costa's paraconsistent set theories, i.e., the set theories constructed over da Costa's paraconsistent logics C=n, 1 ≤ n ≤ ω. The main results presented here are the following. In any da Costa paraconsistent set theory of type NF the axiom schema of abstraction must be formulated exactly as in NF; for, in the contrary, some paradoxes are derivable that invalidate the theory. In any da Costa paraconsistent set theory with Russell's set [Formula Matemática] UUR is the universal set. In any da Costa paraconsistent set theory the existence of Russell's set is incompatible with a general (for all sets) formulation of the axiom schemata of separation and replacement.
publishDate 1985
dc.date.issued.spa.fl_str_mv 1985
dc.date.accessioned.spa.fl_str_mv 2019-06-28T11:17:02Z
dc.date.available.spa.fl_str_mv 2019-06-28T11:17:02Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/42874
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/32971/
url https://repositorio.unal.edu.co/handle/unal/42874
http://bdigital.unal.edu.co/32971/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/recolma/article/view/32576
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas
Revista Colombiana de Matemáticas
dc.relation.ispartofseries.none.fl_str_mv Revista Colombiana de Matemáticas; Vol. 19, núm. 1-2 (1985); 9-24 0034-7426
dc.relation.references.spa.fl_str_mv Arruda, Ayda Ignez (1985) Remarks on da costa's paraconsistent set theories. Revista Colombiana de Matemáticas; Vol. 19, núm. 1-2 (1985); 9-24 0034-7426 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacuional de Colombia; Sociedad Colombiana de matemáticas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/42874/1/32576-120523-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/42874/2/32576-120523-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 35e2d4f12e3896afca7a840360d132ab
32397efa49dabdc42a9cfb66db5a9636
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090221242810368