Commensurator subgroups of surface groups

Let $M$ be a surface, and let $H$ be a subgroup of $\pi_{1}M$. In this paper we study the commensurator subgroup $C_{\pi_{1}M}(H)$ of $\pi_{1}M$, and we extend a result of L. Paris and D. Rolfsen \cite{Paris-Rolfsen}, when $H$ is a geometric subgroup of $\pi_{1}M$. We also give an application of com...

Full description

Autores:
Ocampo Uribe, Oscar Eduardo
Tipo de recurso:
Article of journal
Fecha de publicación:
2010
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/39797
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/39797
http://bdigital.unal.edu.co/29894/
Palabra clave:
Commensurator
Fundamental group
Surface
20F65
57M05
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_cc00871abf7bf66ddddcb163f9158eeb
oai_identifier_str oai:repositorio.unal.edu.co:unal/39797
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ocampo Uribe, Oscar Eduardoa59adf47-752c-4e5e-bc6d-ba8cde08638e3002019-06-28T04:28:07Z2019-06-28T04:28:07Z2010https://repositorio.unal.edu.co/handle/unal/39797http://bdigital.unal.edu.co/29894/Let $M$ be a surface, and let $H$ be a subgroup of $\pi_{1}M$. In this paper we study the commensurator subgroup $C_{\pi_{1}M}(H)$ of $\pi_{1}M$, and we extend a result of L. Paris and D. Rolfsen \cite{Paris-Rolfsen}, when $H$ is a geometric subgroup of $\pi_{1}M$. We also give an application of commensurator subgroups to group representation theory. Finally, by considering certain closed curves on the Klein bottle, we apply a classification of these curves to self-intersection Nielsen theory.application/pdfspaUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticashttp://revistas.unal.edu.co/index.php/recolma/article/view/28590Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRevista Colombiana de Matemáticas; Vol. 44, núm. 1 (2010); 1-13 0034-7426Ocampo Uribe, Oscar Eduardo (2010) Commensurator subgroups of surface groups. Revista Colombiana de Matemáticas; Vol. 44, núm. 1 (2010); 1-13 0034-7426 .Commensurator subgroups of surface groupsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTCommensuratorFundamental groupSurface20F6557M05ORIGINAL28590-102368-1-PB.pdfapplication/pdf186460https://repositorio.unal.edu.co/bitstream/unal/39797/1/28590-102368-1-PB.pdf19bef2fa87b905d2f258f371730daeefMD5128590-142423-1-PB.htmltext/html4666https://repositorio.unal.edu.co/bitstream/unal/39797/2/28590-142423-1-PB.htmla4f2a73433578b2f74dccc1f5fcdb2eaMD52THUMBNAIL28590-102368-1-PB.pdf.jpg28590-102368-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg4919https://repositorio.unal.edu.co/bitstream/unal/39797/3/28590-102368-1-PB.pdf.jpga55f134edf3454c09165a1c97be378b7MD53unal/39797oai:repositorio.unal.edu.co:unal/397972023-01-25 23:05:10.999Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Commensurator subgroups of surface groups
title Commensurator subgroups of surface groups
spellingShingle Commensurator subgroups of surface groups
Commensurator
Fundamental group
Surface
20F65
57M05
title_short Commensurator subgroups of surface groups
title_full Commensurator subgroups of surface groups
title_fullStr Commensurator subgroups of surface groups
title_full_unstemmed Commensurator subgroups of surface groups
title_sort Commensurator subgroups of surface groups
dc.creator.fl_str_mv Ocampo Uribe, Oscar Eduardo
dc.contributor.author.spa.fl_str_mv Ocampo Uribe, Oscar Eduardo
dc.subject.proposal.spa.fl_str_mv Commensurator
Fundamental group
Surface
20F65
57M05
topic Commensurator
Fundamental group
Surface
20F65
57M05
description Let $M$ be a surface, and let $H$ be a subgroup of $\pi_{1}M$. In this paper we study the commensurator subgroup $C_{\pi_{1}M}(H)$ of $\pi_{1}M$, and we extend a result of L. Paris and D. Rolfsen \cite{Paris-Rolfsen}, when $H$ is a geometric subgroup of $\pi_{1}M$. We also give an application of commensurator subgroups to group representation theory. Finally, by considering certain closed curves on the Klein bottle, we apply a classification of these curves to self-intersection Nielsen theory.
publishDate 2010
dc.date.issued.spa.fl_str_mv 2010
dc.date.accessioned.spa.fl_str_mv 2019-06-28T04:28:07Z
dc.date.available.spa.fl_str_mv 2019-06-28T04:28:07Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/39797
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/29894/
url https://repositorio.unal.edu.co/handle/unal/39797
http://bdigital.unal.edu.co/29894/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/recolma/article/view/28590
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas
Revista Colombiana de Matemáticas
dc.relation.ispartofseries.none.fl_str_mv Revista Colombiana de Matemáticas; Vol. 44, núm. 1 (2010); 1-13 0034-7426
dc.relation.references.spa.fl_str_mv Ocampo Uribe, Oscar Eduardo (2010) Commensurator subgroups of surface groups. Revista Colombiana de Matemáticas; Vol. 44, núm. 1 (2010); 1-13 0034-7426 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacuional de Colombia; Sociedad Colombiana de matemáticas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/39797/1/28590-102368-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/39797/2/28590-142423-1-PB.html
https://repositorio.unal.edu.co/bitstream/unal/39797/3/28590-102368-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 19bef2fa87b905d2f258f371730daeef
a4f2a73433578b2f74dccc1f5fcdb2ea
a55f134edf3454c09165a1c97be378b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089661567467520