Symmetries and reductions of Dirac-Jacobi structures

In this manuscript we study reductions of Dirac-Jacobi structures on a smooth manifold under the presence of symmetries given by the action of a connected Lie group. The main tools we used are the called "homogenization trick" and the well known reduction of Dirac structures. We show two p...

Full description

Autores:
Yela Rosero, Darlyn Yamid
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80403
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80403
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas::516 - Geometría
Physics
Quantum theory
Física
Teoría cuántica
Dirac-Jacobi structures
Dirac structures
Dirac-ization trick
Homogenization trick
Reduction
Estructuras Dirac-Jacobi
Estructuras Dirac
Truco de homogenización
Truco de Dirac-ización
Reducción
Geometría
Geometry
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_cbefab4c08b7eb1fc8f93c4599f1a7eb
oai_identifier_str oai:repositorio.unal.edu.co:unal/80403
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Symmetries and reductions of Dirac-Jacobi structures
dc.title.translated.spa.fl_str_mv Simetrías y reducciones de estructuras Dirac-Jacobi
title Symmetries and reductions of Dirac-Jacobi structures
spellingShingle Symmetries and reductions of Dirac-Jacobi structures
510 - Matemáticas::516 - Geometría
Physics
Quantum theory
Física
Teoría cuántica
Dirac-Jacobi structures
Dirac structures
Dirac-ization trick
Homogenization trick
Reduction
Estructuras Dirac-Jacobi
Estructuras Dirac
Truco de homogenización
Truco de Dirac-ización
Reducción
Geometría
Geometry
title_short Symmetries and reductions of Dirac-Jacobi structures
title_full Symmetries and reductions of Dirac-Jacobi structures
title_fullStr Symmetries and reductions of Dirac-Jacobi structures
title_full_unstemmed Symmetries and reductions of Dirac-Jacobi structures
title_sort Symmetries and reductions of Dirac-Jacobi structures
dc.creator.fl_str_mv Yela Rosero, Darlyn Yamid
dc.contributor.advisor.none.fl_str_mv Martínez Alba, Nicolás
dc.contributor.author.none.fl_str_mv Yela Rosero, Darlyn Yamid
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas::516 - Geometría
topic 510 - Matemáticas::516 - Geometría
Physics
Quantum theory
Física
Teoría cuántica
Dirac-Jacobi structures
Dirac structures
Dirac-ization trick
Homogenization trick
Reduction
Estructuras Dirac-Jacobi
Estructuras Dirac
Truco de homogenización
Truco de Dirac-ización
Reducción
Geometría
Geometry
dc.subject.lemb.eng.fl_str_mv Physics
Quantum theory
dc.subject.lemb.spa.fl_str_mv Física
Teoría cuántica
dc.subject.proposal.eng.fl_str_mv Dirac-Jacobi structures
Dirac structures
Dirac-ization trick
Homogenization trick
Reduction
dc.subject.proposal.spa.fl_str_mv Estructuras Dirac-Jacobi
Estructuras Dirac
Truco de homogenización
Truco de Dirac-ización
Reducción
dc.subject.unesco.spa.fl_str_mv Geometría
dc.subject.unesco.eng.fl_str_mv Geometry
description In this manuscript we study reductions of Dirac-Jacobi structures on a smooth manifold under the presence of symmetries given by the action of a connected Lie group. The main tools we used are the called "homogenization trick" and the well known reduction of Dirac structures. We show two particular cases, namely, reduction by moment map and the case when the base manifold is endowed with a contact 1-form.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-06T19:34:26Z
dc.date.available.none.fl_str_mv 2021-10-06T19:34:26Z
dc.date.issued.none.fl_str_mv 2021-10-04
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80403
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80403
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv A. A. Belavin and V. G. Drinfeld, Solutions of the classical Yang–Baxter equa- tion for simple Lie algebras, Funktsional’nyi Analiz i ego Prilozheniya, 16 (1982), pp. 1–29.
H. Bursztyn, A brief introduction to Dirac manifolds, Geometric and topological methods for quantum field theory, (2013), pp. 4–38.
H. Bursztyn, G. R. Cavalcanti, and M. Gualtieri, Reduction of Courant algebroids and generalized complex structures, Advances in Mathematics, 211 (2007), pp. 726–765.
J. Costa and F. Petalidou, Twisted Jacobi manifolds, twisted Dirac-Jacobi structures and quasi-Jacobi bialgebroids, Journal of Physics. A, Mathematical and General, 39 (2006).
T. J. Courant, Dirac manifolds, Transactions of the American Mathematical Society, 319 (1990), pp. 631–661.
M. Gualtieri, Generalized complex geometry, PhD thesis, University of Oxford, 2003.
D. Iglesias-Ponte and J. C. Marrero, Lie algebroid foliations and E1(m)-Dirac structures, Journal of Physics A: Mathematical and General, 35 (2002), p. 4085.
D. Iglesias-Ponte and A. Wade, Contact manifolds and generalized complex structures, Journal of Geometry and Physics, 53 (2005), pp. 249–258.
D. Iglesias-Ponte and A. Wade, Integration of Dirac–Jacobi structures, Journal of Physics A: Mathematical and General, 39 (2006), p. 4181.
J. M. Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics, 218 (2003).
K. C. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math- ematical Journal, 73 (1994), pp. 415–452.
M. A. Salazar and D. Sepe, Contact isotropic realisations of Jacobi manifolds via Spencer operators, SIGMA, 13 (2017), p. 033.
L. Vitagliano, Dirac–Jacobi bundles, Journal of Symplectic Geometry, 16 (2018), pp. 485–561.
A. Wade, Conformal Dirac structures, Letters in Mathematical Physics, 53 (2000), pp. 331–348.
A. Weinstein, M. Zambon, C. Molitor-Braun, N. Poncin, and M. Schlichenmaier, Variations on prequantization, Travaux math´ematiques, (2005), pp. 187–219.
M. Zambon and C. Zhu, On the geometry of prequantization spaces, Journal of Geometry and Physics, 57 (2007), pp. 2372–2397.
C. Zapata-Carratala, Landscape of Hamiltonian phase spaces: on the foundations and generalizations of one of the most powerful ideas of modern science, PhD thesis, The University of Edinburgh, 2019.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 71 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Matemáticas
dc.publisher.department.spa.fl_str_mv Departamento de Matemáticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80403/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80403/3/1088731960.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80403/4/1088731960.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
30d419dc7df1f1bda34a22e2532b9d08
c9a5aea2e60921d7e9613d9bbe00f500
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089554275074048
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Martínez Alba, Nicoláse706ea684c96a0e4898ee7ffb47ef9e4Yela Rosero, Darlyn Yamidca18d5b0ddcf9c2d8d1a4d7188ddfe2d2021-10-06T19:34:26Z2021-10-06T19:34:26Z2021-10-04https://repositorio.unal.edu.co/handle/unal/80403Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/In this manuscript we study reductions of Dirac-Jacobi structures on a smooth manifold under the presence of symmetries given by the action of a connected Lie group. The main tools we used are the called "homogenization trick" and the well known reduction of Dirac structures. We show two particular cases, namely, reduction by moment map and the case when the base manifold is endowed with a contact 1-form.En el presente texto se estudia la reducción de estructuras Dirac-Jacobi sobre una variedad diferenciable bajo la presencia de simetrías dadas por la acción de un grupo de Lie conexo. La herramienta principal que se usa es el llamado "truco de homogenización" y las reducciones de Dirac ya conocidas. Se muestran dos casos particulares de reducción Dirac-Jacobi; cuando hay presencia de una aplicación momento y el caso cuando la variedad base está dotada de una 1-forma de contacto. (Texto tomado de la fuente).MaestríaMagíster en Ciencias - MatemáticasGeometría diferencial71 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MatemáticasDepartamento de MatemáticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas::516 - GeometríaPhysicsQuantum theoryFísicaTeoría cuánticaDirac-Jacobi structuresDirac structuresDirac-ization trickHomogenization trickReductionEstructuras Dirac-JacobiEstructuras DiracTruco de homogenizaciónTruco de Dirac-izaciónReducciónGeometríaGeometrySymmetries and reductions of Dirac-Jacobi structuresSimetrías y reducciones de estructuras Dirac-JacobiTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMA. A. Belavin and V. G. Drinfeld, Solutions of the classical Yang–Baxter equa- tion for simple Lie algebras, Funktsional’nyi Analiz i ego Prilozheniya, 16 (1982), pp. 1–29.H. Bursztyn, A brief introduction to Dirac manifolds, Geometric and topological methods for quantum field theory, (2013), pp. 4–38.H. Bursztyn, G. R. Cavalcanti, and M. Gualtieri, Reduction of Courant algebroids and generalized complex structures, Advances in Mathematics, 211 (2007), pp. 726–765.J. Costa and F. Petalidou, Twisted Jacobi manifolds, twisted Dirac-Jacobi structures and quasi-Jacobi bialgebroids, Journal of Physics. A, Mathematical and General, 39 (2006).T. J. Courant, Dirac manifolds, Transactions of the American Mathematical Society, 319 (1990), pp. 631–661.M. Gualtieri, Generalized complex geometry, PhD thesis, University of Oxford, 2003.D. Iglesias-Ponte and J. C. Marrero, Lie algebroid foliations and E1(m)-Dirac structures, Journal of Physics A: Mathematical and General, 35 (2002), p. 4085.D. Iglesias-Ponte and A. Wade, Contact manifolds and generalized complex structures, Journal of Geometry and Physics, 53 (2005), pp. 249–258.D. Iglesias-Ponte and A. Wade, Integration of Dirac–Jacobi structures, Journal of Physics A: Mathematical and General, 39 (2006), p. 4181.J. M. Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics, 218 (2003).K. C. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math- ematical Journal, 73 (1994), pp. 415–452.M. A. Salazar and D. Sepe, Contact isotropic realisations of Jacobi manifolds via Spencer operators, SIGMA, 13 (2017), p. 033.L. Vitagliano, Dirac–Jacobi bundles, Journal of Symplectic Geometry, 16 (2018), pp. 485–561.A. Wade, Conformal Dirac structures, Letters in Mathematical Physics, 53 (2000), pp. 331–348.A. Weinstein, M. Zambon, C. Molitor-Braun, N. Poncin, and M. Schlichenmaier, Variations on prequantization, Travaux math´ematiques, (2005), pp. 187–219.M. Zambon and C. Zhu, On the geometry of prequantization spaces, Journal of Geometry and Physics, 57 (2007), pp. 2372–2397.C. Zapata-Carratala, Landscape of Hamiltonian phase spaces: on the foundations and generalizations of one of the most powerful ideas of modern science, PhD thesis, The University of Edinburgh, 2019.EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80403/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1088731960.2021.pdf1088731960.2021.pdfTesis de Maestría en Ciencias - Matemáticasapplication/pdf550921https://repositorio.unal.edu.co/bitstream/unal/80403/3/1088731960.2021.pdf30d419dc7df1f1bda34a22e2532b9d08MD53THUMBNAIL1088731960.2021.pdf.jpg1088731960.2021.pdf.jpgGenerated Thumbnailimage/jpeg3902https://repositorio.unal.edu.co/bitstream/unal/80403/4/1088731960.2021.pdf.jpgc9a5aea2e60921d7e9613d9bbe00f500MD54unal/80403oai:repositorio.unal.edu.co:unal/804032023-07-29 23:03:42.508Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==