Symmetries and reductions of Dirac-Jacobi structures
In this manuscript we study reductions of Dirac-Jacobi structures on a smooth manifold under the presence of symmetries given by the action of a connected Lie group. The main tools we used are the called "homogenization trick" and the well known reduction of Dirac structures. We show two p...
- Autores:
-
Yela Rosero, Darlyn Yamid
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80403
- Palabra clave:
- 510 - Matemáticas::516 - Geometría
Physics
Quantum theory
Física
Teoría cuántica
Dirac-Jacobi structures
Dirac structures
Dirac-ization trick
Homogenization trick
Reduction
Estructuras Dirac-Jacobi
Estructuras Dirac
Truco de homogenización
Truco de Dirac-ización
Reducción
Geometría
Geometry
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_cbefab4c08b7eb1fc8f93c4599f1a7eb |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80403 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Symmetries and reductions of Dirac-Jacobi structures |
dc.title.translated.spa.fl_str_mv |
Simetrías y reducciones de estructuras Dirac-Jacobi |
title |
Symmetries and reductions of Dirac-Jacobi structures |
spellingShingle |
Symmetries and reductions of Dirac-Jacobi structures 510 - Matemáticas::516 - Geometría Physics Quantum theory Física Teoría cuántica Dirac-Jacobi structures Dirac structures Dirac-ization trick Homogenization trick Reduction Estructuras Dirac-Jacobi Estructuras Dirac Truco de homogenización Truco de Dirac-ización Reducción Geometría Geometry |
title_short |
Symmetries and reductions of Dirac-Jacobi structures |
title_full |
Symmetries and reductions of Dirac-Jacobi structures |
title_fullStr |
Symmetries and reductions of Dirac-Jacobi structures |
title_full_unstemmed |
Symmetries and reductions of Dirac-Jacobi structures |
title_sort |
Symmetries and reductions of Dirac-Jacobi structures |
dc.creator.fl_str_mv |
Yela Rosero, Darlyn Yamid |
dc.contributor.advisor.none.fl_str_mv |
Martínez Alba, Nicolás |
dc.contributor.author.none.fl_str_mv |
Yela Rosero, Darlyn Yamid |
dc.subject.ddc.spa.fl_str_mv |
510 - Matemáticas::516 - Geometría |
topic |
510 - Matemáticas::516 - Geometría Physics Quantum theory Física Teoría cuántica Dirac-Jacobi structures Dirac structures Dirac-ization trick Homogenization trick Reduction Estructuras Dirac-Jacobi Estructuras Dirac Truco de homogenización Truco de Dirac-ización Reducción Geometría Geometry |
dc.subject.lemb.eng.fl_str_mv |
Physics Quantum theory |
dc.subject.lemb.spa.fl_str_mv |
Física Teoría cuántica |
dc.subject.proposal.eng.fl_str_mv |
Dirac-Jacobi structures Dirac structures Dirac-ization trick Homogenization trick Reduction |
dc.subject.proposal.spa.fl_str_mv |
Estructuras Dirac-Jacobi Estructuras Dirac Truco de homogenización Truco de Dirac-ización Reducción |
dc.subject.unesco.spa.fl_str_mv |
Geometría |
dc.subject.unesco.eng.fl_str_mv |
Geometry |
description |
In this manuscript we study reductions of Dirac-Jacobi structures on a smooth manifold under the presence of symmetries given by the action of a connected Lie group. The main tools we used are the called "homogenization trick" and the well known reduction of Dirac structures. We show two particular cases, namely, reduction by moment map and the case when the base manifold is endowed with a contact 1-form. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-10-06T19:34:26Z |
dc.date.available.none.fl_str_mv |
2021-10-06T19:34:26Z |
dc.date.issued.none.fl_str_mv |
2021-10-04 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80403 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80403 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
A. A. Belavin and V. G. Drinfeld, Solutions of the classical Yang–Baxter equa- tion for simple Lie algebras, Funktsional’nyi Analiz i ego Prilozheniya, 16 (1982), pp. 1–29. H. Bursztyn, A brief introduction to Dirac manifolds, Geometric and topological methods for quantum field theory, (2013), pp. 4–38. H. Bursztyn, G. R. Cavalcanti, and M. Gualtieri, Reduction of Courant algebroids and generalized complex structures, Advances in Mathematics, 211 (2007), pp. 726–765. J. Costa and F. Petalidou, Twisted Jacobi manifolds, twisted Dirac-Jacobi structures and quasi-Jacobi bialgebroids, Journal of Physics. A, Mathematical and General, 39 (2006). T. J. Courant, Dirac manifolds, Transactions of the American Mathematical Society, 319 (1990), pp. 631–661. M. Gualtieri, Generalized complex geometry, PhD thesis, University of Oxford, 2003. D. Iglesias-Ponte and J. C. Marrero, Lie algebroid foliations and E1(m)-Dirac structures, Journal of Physics A: Mathematical and General, 35 (2002), p. 4085. D. Iglesias-Ponte and A. Wade, Contact manifolds and generalized complex structures, Journal of Geometry and Physics, 53 (2005), pp. 249–258. D. Iglesias-Ponte and A. Wade, Integration of Dirac–Jacobi structures, Journal of Physics A: Mathematical and General, 39 (2006), p. 4181. J. M. Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics, 218 (2003). K. C. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math- ematical Journal, 73 (1994), pp. 415–452. M. A. Salazar and D. Sepe, Contact isotropic realisations of Jacobi manifolds via Spencer operators, SIGMA, 13 (2017), p. 033. L. Vitagliano, Dirac–Jacobi bundles, Journal of Symplectic Geometry, 16 (2018), pp. 485–561. A. Wade, Conformal Dirac structures, Letters in Mathematical Physics, 53 (2000), pp. 331–348. A. Weinstein, M. Zambon, C. Molitor-Braun, N. Poncin, and M. Schlichenmaier, Variations on prequantization, Travaux math´ematiques, (2005), pp. 187–219. M. Zambon and C. Zhu, On the geometry of prequantization spaces, Journal of Geometry and Physics, 57 (2007), pp. 2372–2397. C. Zapata-Carratala, Landscape of Hamiltonian phase spaces: on the foundations and generalizations of one of the most powerful ideas of modern science, PhD thesis, The University of Edinburgh, 2019. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
71 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Matemáticas |
dc.publisher.department.spa.fl_str_mv |
Departamento de Matemáticas |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80403/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/80403/3/1088731960.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/80403/4/1088731960.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 30d419dc7df1f1bda34a22e2532b9d08 c9a5aea2e60921d7e9613d9bbe00f500 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089554275074048 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Martínez Alba, Nicoláse706ea684c96a0e4898ee7ffb47ef9e4Yela Rosero, Darlyn Yamidca18d5b0ddcf9c2d8d1a4d7188ddfe2d2021-10-06T19:34:26Z2021-10-06T19:34:26Z2021-10-04https://repositorio.unal.edu.co/handle/unal/80403Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/In this manuscript we study reductions of Dirac-Jacobi structures on a smooth manifold under the presence of symmetries given by the action of a connected Lie group. The main tools we used are the called "homogenization trick" and the well known reduction of Dirac structures. We show two particular cases, namely, reduction by moment map and the case when the base manifold is endowed with a contact 1-form.En el presente texto se estudia la reducción de estructuras Dirac-Jacobi sobre una variedad diferenciable bajo la presencia de simetrías dadas por la acción de un grupo de Lie conexo. La herramienta principal que se usa es el llamado "truco de homogenización" y las reducciones de Dirac ya conocidas. Se muestran dos casos particulares de reducción Dirac-Jacobi; cuando hay presencia de una aplicación momento y el caso cuando la variedad base está dotada de una 1-forma de contacto. (Texto tomado de la fuente).MaestríaMagíster en Ciencias - MatemáticasGeometría diferencial71 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MatemáticasDepartamento de MatemáticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas::516 - GeometríaPhysicsQuantum theoryFísicaTeoría cuánticaDirac-Jacobi structuresDirac structuresDirac-ization trickHomogenization trickReductionEstructuras Dirac-JacobiEstructuras DiracTruco de homogenizaciónTruco de Dirac-izaciónReducciónGeometríaGeometrySymmetries and reductions of Dirac-Jacobi structuresSimetrías y reducciones de estructuras Dirac-JacobiTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMA. A. Belavin and V. G. Drinfeld, Solutions of the classical Yang–Baxter equa- tion for simple Lie algebras, Funktsional’nyi Analiz i ego Prilozheniya, 16 (1982), pp. 1–29.H. Bursztyn, A brief introduction to Dirac manifolds, Geometric and topological methods for quantum field theory, (2013), pp. 4–38.H. Bursztyn, G. R. Cavalcanti, and M. Gualtieri, Reduction of Courant algebroids and generalized complex structures, Advances in Mathematics, 211 (2007), pp. 726–765.J. Costa and F. Petalidou, Twisted Jacobi manifolds, twisted Dirac-Jacobi structures and quasi-Jacobi bialgebroids, Journal of Physics. A, Mathematical and General, 39 (2006).T. J. Courant, Dirac manifolds, Transactions of the American Mathematical Society, 319 (1990), pp. 631–661.M. Gualtieri, Generalized complex geometry, PhD thesis, University of Oxford, 2003.D. Iglesias-Ponte and J. C. Marrero, Lie algebroid foliations and E1(m)-Dirac structures, Journal of Physics A: Mathematical and General, 35 (2002), p. 4085.D. Iglesias-Ponte and A. Wade, Contact manifolds and generalized complex structures, Journal of Geometry and Physics, 53 (2005), pp. 249–258.D. Iglesias-Ponte and A. Wade, Integration of Dirac–Jacobi structures, Journal of Physics A: Mathematical and General, 39 (2006), p. 4181.J. M. Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics, 218 (2003).K. C. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math- ematical Journal, 73 (1994), pp. 415–452.M. A. Salazar and D. Sepe, Contact isotropic realisations of Jacobi manifolds via Spencer operators, SIGMA, 13 (2017), p. 033.L. Vitagliano, Dirac–Jacobi bundles, Journal of Symplectic Geometry, 16 (2018), pp. 485–561.A. Wade, Conformal Dirac structures, Letters in Mathematical Physics, 53 (2000), pp. 331–348.A. Weinstein, M. Zambon, C. Molitor-Braun, N. Poncin, and M. Schlichenmaier, Variations on prequantization, Travaux math´ematiques, (2005), pp. 187–219.M. Zambon and C. Zhu, On the geometry of prequantization spaces, Journal of Geometry and Physics, 57 (2007), pp. 2372–2397.C. Zapata-Carratala, Landscape of Hamiltonian phase spaces: on the foundations and generalizations of one of the most powerful ideas of modern science, PhD thesis, The University of Edinburgh, 2019.EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80403/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1088731960.2021.pdf1088731960.2021.pdfTesis de Maestría en Ciencias - Matemáticasapplication/pdf550921https://repositorio.unal.edu.co/bitstream/unal/80403/3/1088731960.2021.pdf30d419dc7df1f1bda34a22e2532b9d08MD53THUMBNAIL1088731960.2021.pdf.jpg1088731960.2021.pdf.jpgGenerated Thumbnailimage/jpeg3902https://repositorio.unal.edu.co/bitstream/unal/80403/4/1088731960.2021.pdf.jpgc9a5aea2e60921d7e9613d9bbe00f500MD54unal/80403oai:repositorio.unal.edu.co:unal/804032023-07-29 23:03:42.508Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |