Sedimentary facies distribution Impact on heavy oil production in a Llanos Basin field, eastern Colombia.

ilustraciones

Autores:
Betancur Soto, Ángela María
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79932
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79932
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Geología - Métodos estadísticos
Petróleo
Litofacies
Semilla
Incertidumbre
Aleatorio
Correlación de permeabilidad relativa para crudo pesado
Predictibilidad
Precisión
Lithofacies
Seed
Uncertainty
Random
Heavy oil relative permeability correlation
Predictability
Precision
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_cbea09b27bc955d374998a5aec78be12
oai_identifier_str oai:repositorio.unal.edu.co:unal/79932
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Sedimentary facies distribution Impact on heavy oil production in a Llanos Basin field, eastern Colombia.
dc.title.translated.spa.fl_str_mv Impacto de la distribución de las facies sedimentarias en la producción de crudo pesado en un campo de la Cuenca Llanos, oriente de Colombia.
title Sedimentary facies distribution Impact on heavy oil production in a Llanos Basin field, eastern Colombia.
spellingShingle Sedimentary facies distribution Impact on heavy oil production in a Llanos Basin field, eastern Colombia.
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Geología - Métodos estadísticos
Petróleo
Litofacies
Semilla
Incertidumbre
Aleatorio
Correlación de permeabilidad relativa para crudo pesado
Predictibilidad
Precisión
Lithofacies
Seed
Uncertainty
Random
Heavy oil relative permeability correlation
Predictability
Precision
title_short Sedimentary facies distribution Impact on heavy oil production in a Llanos Basin field, eastern Colombia.
title_full Sedimentary facies distribution Impact on heavy oil production in a Llanos Basin field, eastern Colombia.
title_fullStr Sedimentary facies distribution Impact on heavy oil production in a Llanos Basin field, eastern Colombia.
title_full_unstemmed Sedimentary facies distribution Impact on heavy oil production in a Llanos Basin field, eastern Colombia.
title_sort Sedimentary facies distribution Impact on heavy oil production in a Llanos Basin field, eastern Colombia.
dc.creator.fl_str_mv Betancur Soto, Ángela María
dc.contributor.advisor.none.fl_str_mv Gutierrez Granados, Zorel
Cardona Molina, Agustín
dc.contributor.author.none.fl_str_mv Betancur Soto, Ángela María
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Geología - Métodos estadísticos
Petróleo
Litofacies
Semilla
Incertidumbre
Aleatorio
Correlación de permeabilidad relativa para crudo pesado
Predictibilidad
Precisión
Lithofacies
Seed
Uncertainty
Random
Heavy oil relative permeability correlation
Predictability
Precision
dc.subject.lemb.none.fl_str_mv Geología - Métodos estadísticos
Petróleo
dc.subject.proposal.spa.fl_str_mv Litofacies
Semilla
Incertidumbre
Aleatorio
Correlación de permeabilidad relativa para crudo pesado
Predictibilidad
Precisión
dc.subject.proposal.eng.fl_str_mv Lithofacies
Seed
Uncertainty
Random
Heavy oil relative permeability correlation
Predictability
Precision
description ilustraciones
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-08-12T20:32:03Z
dc.date.available.none.fl_str_mv 2021-08-12T20:32:03Z
dc.date.issued.none.fl_str_mv 2021-07-01
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79932
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79932
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Alfaro, C., & Alvarado, I. (2014). Heat Flow Evaluation at Eastern Llanos Sedimentary Basin , Colombia.
Archer, J., & Wall, C. (1992). Petroleum Engineering Principles and Practice. London: Graham and Trotman.
Bahar, A. (2014, November 18). Integrated 3D Reservoir Modelling-Practical Workshop. Bogotá: Next.
Barca, E., Bruno, D., Lay-Ekuakille, A., Maggi, S., & Passarella, G. (2016). Heuristic Rules for a Reliable Variogram Parameters Tuning. Symposium on Environmental Instrumentation and Measurements. Reggio Calabria.
Boggs, S. (2006). Principles of Sedimentology and Stratigraphy (Vol. Fourth Edition). (P. Lynch, Ed.) New Jersery: Pearson Prentice Hall.
Bohling, G. (2005). Introduction to Geostatistics and Variogram Analysis. Kansas: Kansas Geological Survey.
Campos, H., & Mann, P. (2015). Tectonostratigraphic Evolution of the Northern Llanos Foreland Basin of Colombia and Implications for its Hydrocarbon Potential. The American Association of Petroleum Geologists, 517-545.
Cannon, S. (2018). Reservoir Modelling: A Practical Guide. Hoboken, Nj: John Wiley & sons, Inc .
Cant, D.J. 1992. Subsurface facies analysis. In Facies Models: Response to Sea level Change (Walker, R.G.; James, N.P.; editors). Geological Association of Canada, p. 195-218.
Cao, R., Zee, Y. M., & Gomez, E. (2014). Geostatistical Applications in Petroleum Reservoir Modelling. South African Institute of Mining and Metallurgy.
Correia, U. M., Batezelli, A., & Pereira Leite, E. (2016). 3-D Geological Modelling: A Siliciclastic Reservoir Case Study from Campos Basin. REM- International Engineering Journal, vol.69 no.4.
Ecopetrol, S. (2017). Static Model Rubiales Field. Bogotá: Ecopetrol.
G.J, M. (1997). Sampling Space of Uncertainty Through Stochastic Modelling of Geological Facies. Society of petroleum engineers, 273-287.
Galloway, W. E., & Hobday, D. K. (1983). Terrigenous Clastic Depositional System. New York: Springer-Verlag. doi:10.1007/978-1-4684-0170-7.
García Lugo, R., & Eggenschwiler, M. (2001). How Fluid and Rock Properties Affect Production Rates in a Heavy Oil Reservoir. SPE, SPE69694.
Golan, M., & Whitson, C. H. (1991). Well performance, Second Edition. Trondheim: Prentice-Hall, Inc.
Henry, C., & Mann, P. (2015). Tectonostratigraphic Evolution of the Northern Llanos Foreland Basin of Colombia and Implications for Its Hydrocarbon Potential. AAPG, 517-546. Hussein, A., Joao, F., Taylor, S., Badry, R., Brough, B., Baker, A., . . . Calvo, R. (2006). Highlighting Heavy Oil. Oilfield Review, 34-53.
Isaacs, E. H., & Srivastava, R. M. (1989). Introduction to Applied Geostatistics. New York: Oxford University.
James, N. P., & Dalrymple, R. W. (2010). Facies Models 4. Kingtong, Canada: Geological Association of Canada.
Jassim M, A., & Mohammed S, A. (2019). Study of Different Geostatistical Methods to Model Formation Porosity (Cast Study of Zubair Formation in Luhais Oil Field). IOP. doi:10.1088/1757-899X/579/1/012031.
Jika, H., Onuoha, K., & Dim, C. (2019, October 15). Application of Geostatistics in Facies Modelling of Reservoir E, “Hatch Field” Offshore Niger Delta Basin, Nigeria. Petroleum Exploration and Production Technology. Retrieved from https://doi.org/10.1007/s13202-019-00788-1.
Journel, A., Gundeso, R., Gringarten, E., & Yao, T. (1998). Stochastic Modelling of a Fluvial Reservoir: A Comparative Review Algorithm. Journal of Petroleum Science and Engineering, 95-121.
Li, Y., Xin, X., Yu, G., Wang, W., Zhang, Z., Zhang, M., . . . Chen, Z. (2017). Non-Newtonian Flow Characteristics of Heavy Oil in the Bohai Bay Oilfield: Experimental and Simulation Studies. MDPI.
Madani, N., Biranvand, B., Naderi, A., & Keshavarz, N. (2019). Lithofacies Uncertainty Modelling in a Siliciclastic Reservoir Setting by Incorporating Geological Contacts and Seismic Information. Journal of Petroleum Exploration and Production Technology, 1-16.
Mai, A. (2008). Mechanisms of Heavy Oil Recovery by Waterflooding. Phd, Thesis, University of Calgary, Calgary.
Mariethoz, G., Renard, P., & Straubhaar, J. (2010). The Direct Sampling Method to Perform Multiple‐Point Geostatistical Simulations. Water Resources Research.
Menad, N. A., Noureddine, Z., Hemmati-Sarapardeh, A., Shamshirband, S., Mosavi, A., & Chau, K.-w. (2019). Modelling Temperature Dependency of Oil - Water Relative Permeability in Thermal Enhanced Oil Recovery Processes Using Group Method of Data Handling and Gene Expression Programming. Engineering Applications of Computational Fluid mechanics, 724-743.
Navas, G. A. (2016). Modelo Sedimentológico Rubiales. Bogotá: Ecopetrol S.A.
Nichols, G. (2009). Sedimentology and Stratigraphy (Vol. Second Edition). United Kingdom: Wiley- Blackwell. Ortiz, J., & Deutsh V, C. (n.d.). Testing Pseudo-random Number Generators. Alberta: Alberta University.
Paque, J., & Dercourt, J. (1985). Sedimentary Facies. In D. J. Paquet, Geology Principles & Methods (pp. 195-206). Springer, Dordecht. doi: https://doi.org/10.1007/978-94-009-4956-0_12
Park, H., Scheidt, C., Fenwick, D., Boucher, A., & Caers, J. (2013). History matching and uncertainty quantification of facies models with multiple geological interpretations. Springer.
Porta, J. d. (1974). Stratigraphic Lexicon. Colombia:(Part Two). Tertiary and Quaternary. Paris: Centre National de la Reserche Scientifique.
Posamentier, H. W., Jervey, M. T., & Vail, P. R. (1988). Eustatic Controls on Clastic Deposition I. Calgary: SEPM (Society of Economic paleontologists and mineralogits).
Pyrcz, M., & Deutsch, C. (2014). Geostatistical Reservoir Modelling (Vol. 2). New York, United States of America: Oxford University.
Ramirez, R. (2010). Informe Descripción de Corazones. Piedecuesta: Instituto Colombiano del Petróleo.
Ramon, G. H. (2002). Introducción a la Geoestadística Teoria y Aplicación. Bogotá: Universidad Nacional de Colombia.
Reading, H., & Levell, B. (1996). Controls on the Sedimentary Rock Record. In H. Reading, & H. Reading (Ed.), Sedimentary Environments: Process, Facies and Stratigraphy (Vol. Third edition, pp. 5-36). Wiley.
Sarmiento, L. F. (2011). Petroleum Geology of Colombia: Llanos Basin. Medellín: Universidad EAFIT.
Schlumberger. (2011). Multipoint and Conditional Facies Modelling. Houston: Schlumberger.
Seifert, D., & Jensen, J. L. (1999). Using Sequential Indicator Simulation as a Tool in Reservoir Description: Issues and Uncertainties. In Mathematical Geology (pp. 527-550).
Sisinni, V., Villarroel, V., McDougall, N., Victoria, M., Vallez, Y., & Garcia Mojonero, C. (2016). Facies Modelling Described by Probabilistic Patterns Using Multi-Point Statistics: An Application to the K-Field, Libya. AAPG/SEG International Conference & Exhibition. Barcelona.
Talabi, O., & Okazawa, T. (2003). Effect of Rate and Viscosity on Gas Mobility during Solution-Gas Drive in Heavy Oils. SPE, SPE84032.
Torabi, F., Mosavat, N., & Zarivnyy, O. (2016). Predicting Heavy Oil/Water Relative Permeability Using Modified Corey-Based Correlations. Elsevier, 196-204.
Walker, R. G. (2006). Facies Models Revisited. (H. W. Posamentier, & R. G. Walker, Eds.) SEPM (Society for Sedimentary Geology), 1-17. Yang, S., Li, S., Nie, X., & Cao, L. (2016). The Effect of Temperature and Rock Permeability on Oil-Water Relative Permeability Curves of Waxy Crude Oil. International Journal of Engineering Research and Applications, 16-21.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 160 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Ingeniería de Petróleos
dc.publisher.department.spa.fl_str_mv Departamento de Procesos y Energía
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79932/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79932/3/24347143.2021.RESULTS.pdf
https://repositorio.unal.edu.co/bitstream/unal/79932/4/24347143.2021.APPENDICES.pdf
https://repositorio.unal.edu.co/bitstream/unal/79932/6/24347143.2021.GENERAL.pdf
https://repositorio.unal.edu.co/bitstream/unal/79932/7/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79932/8/24347143.2021.RESULTS.pdf.jpg
https://repositorio.unal.edu.co/bitstream/unal/79932/9/24347143.2021.APPENDICES.pdf.jpg
https://repositorio.unal.edu.co/bitstream/unal/79932/10/24347143.2021.GENERAL.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
3bbc94fe6c3fc5255818fafe49ed0926
4b51ca7d283d9be22fde0e4452921ece
796d6968993243b35745d59fed77e4fe
4460e5956bc1d1639be9ae6146a50347
3bf9c57fc7a80ec199acad859c13bb58
11ab529e6b49bfae0e0973a9c1670886
828426ed06bac27ab0e687c444a796e6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089933092028416
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gutierrez Granados, Zorel45c586a3214207c3ec7c4c628fdb016aCardona Molina, Agustín765d759de5d84bc9085321c1634df535600Betancur Soto, Ángela María221fdf90d0c02fdfa3ce28f456c1becf2021-08-12T20:32:03Z2021-08-12T20:32:03Z2021-07-01https://repositorio.unal.edu.co/handle/unal/79932Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesHistorically, lithofacies modeling and its uncertainty has been Aquila’s ankle in achieving reservoir model objectives, as the uncertainty generally is evaluated through variogram sensitivity. Throughout this thesis a new workflow will focused on capturing lithofacies uncertainty and assess its impact on heavy oil production. The workflow combines static and dynamic properties into the three-dimensional grid without performing a dynamic simulation process. Seed is the starting point of a random number generator for geostatistical simulation. In disciplines outside of oil and gas industry this is well understood and researched. However, during geological modeling seeds are fixed as an input parameter, which ignore the effect on unsampled areas. The new proposed methodology assesses the impact of seed number on lithofacies uncertainty distribution. In the dynamic section, the thesis focus on the applicability of Darcy’s equation to QC the static model and proposed a modified heavy oil relative permeability correlation to calculate oil rate directly from static model. 1D analysis shows excellent results in vertical wells which gives confidence on static model. A 3D blind test of the integrated workflow shows precision of the lithofacies and potential oil rate prediction ranging between 50 and 80 % within the ±1 feet window. The results show the importance of seed input on the distribution of properties in unsampled areas, which has been ignored for decades, on reducing the uncertainty on lithofacies distribution which has significant impact on STOIIP, hydrocarbon productivity and sweet spots identification. By including the modified oil relative permeability correlation in the static reservoir modeling workflow, a geomodeler can highlight prospective oil areas (sweet spots) through heat maps. This novel methodology can be implemented to any static reservoir modeling project from dry gas up to heavy oil. (Tomado de la fuente)Históricamente, el modelamiento de las litofacies y su incertidumbre han sido el talón de Aquiles para lograr los objetivos del modelamiento de yacimientos, ya que la incertidumbre generalmente se evalúa a través de la sensibilidad del variograma. A lo largo de esta tesis, un nuevo flujo de trabajo se centrará en capturar la incertidumbre de las litofacies y evaluará su impacto en la producción de crudo pesado. El flujo de trabajo combina propiedades estáticas y dinámicas en la malla tridimensional sin realizar un proceso de simulación dinámica. La semilla es el punto de partida de un generador de números aleatorios para la simulación geoestadística. En disciplinas fuera de la industria del petróleo y el gas, esta está bien entendida e investigada. Sin embargo, durante el modelamiento geológico, las semillas se fijan como un parámetro de entrada, que ignora el efecto en las áreas no muestreadas. La nueva metodología propuesta evalúa el impacto de la semilla en la distribución de la incertidumbre de las litofacies. En la sección dinámica, la tesis se centra en la aplicabilidad de la ecuación de Darcy al control de calidad del modelo estático y se propone una correlación de permeabilidad relativa para petróleo pesado modificada para calcular la tasa de petróleo directamente a partir del modelo estático. El análisis 1D muestra excelentes resultados en pozos verticales, lo que brinda confianza en el modelo estático. Una prueba ciega en el flujo de trabajo 3D integrado muestra la precisión de la predicción de las litofacies y el potencial de la tasa de aceite, que varía entre el 50 y el 80% evaluado dentro de la ventana de ± 1 pie. Los resultados muestran la importancia de la entrada de la semilla en la distribución de propiedades en áreas no muestreadas, la cual ha sido ignorada durante décadas, en la reducción de la incertidumbre en la distribución de litofacies que tiene un impacto significativo en STOIIP, productividad de hidrocarburos e identificación de zonas de hidrocarburo prospectivas. Al incluir la correlación de la permeabilidad relativa del petróleo modificado en el flujo de trabajo de modelamiento de yacimientos estáticos, un geomodelador puede resaltar las posibles áreas de petróleo (Sweet spots) a través de mapas de prospectividad de aceite. Esta nueva metodología se puede implementar en cualquier proyecto de modelamiento de yacimientos estáticos, desde gas seco hasta petróleo pesado. (Tomado de la fuente)MaestríaMagíster en Ingeniería – Ingeniería de Petróleos160 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Ingeniería de PetróleosDepartamento de Procesos y EnergíaFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaGeología - Métodos estadísticosPetróleoLitofaciesSemillaIncertidumbreAleatorioCorrelación de permeabilidad relativa para crudo pesadoPredictibilidadPrecisiónLithofaciesSeedUncertaintyRandomHeavy oil relative permeability correlationPredictabilityPrecisionSedimentary facies distribution Impact on heavy oil production in a Llanos Basin field, eastern Colombia.Impacto de la distribución de las facies sedimentarias en la producción de crudo pesado en un campo de la Cuenca Llanos, oriente de Colombia.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAlfaro, C., & Alvarado, I. (2014). Heat Flow Evaluation at Eastern Llanos Sedimentary Basin , Colombia.Archer, J., & Wall, C. (1992). Petroleum Engineering Principles and Practice. London: Graham and Trotman.Bahar, A. (2014, November 18). Integrated 3D Reservoir Modelling-Practical Workshop. Bogotá: Next.Barca, E., Bruno, D., Lay-Ekuakille, A., Maggi, S., & Passarella, G. (2016). Heuristic Rules for a Reliable Variogram Parameters Tuning. Symposium on Environmental Instrumentation and Measurements. Reggio Calabria.Boggs, S. (2006). Principles of Sedimentology and Stratigraphy (Vol. Fourth Edition). (P. Lynch, Ed.) New Jersery: Pearson Prentice Hall.Bohling, G. (2005). Introduction to Geostatistics and Variogram Analysis. Kansas: Kansas Geological Survey.Campos, H., & Mann, P. (2015). Tectonostratigraphic Evolution of the Northern Llanos Foreland Basin of Colombia and Implications for its Hydrocarbon Potential. The American Association of Petroleum Geologists, 517-545.Cannon, S. (2018). Reservoir Modelling: A Practical Guide. Hoboken, Nj: John Wiley & sons, Inc .Cant, D.J. 1992. Subsurface facies analysis. In Facies Models: Response to Sea level Change (Walker, R.G.; James, N.P.; editors). Geological Association of Canada, p. 195-218.Cao, R., Zee, Y. M., & Gomez, E. (2014). Geostatistical Applications in Petroleum Reservoir Modelling. South African Institute of Mining and Metallurgy.Correia, U. M., Batezelli, A., & Pereira Leite, E. (2016). 3-D Geological Modelling: A Siliciclastic Reservoir Case Study from Campos Basin. REM- International Engineering Journal, vol.69 no.4.Ecopetrol, S. (2017). Static Model Rubiales Field. Bogotá: Ecopetrol.G.J, M. (1997). Sampling Space of Uncertainty Through Stochastic Modelling of Geological Facies. Society of petroleum engineers, 273-287.Galloway, W. E., & Hobday, D. K. (1983). Terrigenous Clastic Depositional System. New York: Springer-Verlag. doi:10.1007/978-1-4684-0170-7.García Lugo, R., & Eggenschwiler, M. (2001). How Fluid and Rock Properties Affect Production Rates in a Heavy Oil Reservoir. SPE, SPE69694.Golan, M., & Whitson, C. H. (1991). Well performance, Second Edition. Trondheim: Prentice-Hall, Inc.Henry, C., & Mann, P. (2015). Tectonostratigraphic Evolution of the Northern Llanos Foreland Basin of Colombia and Implications for Its Hydrocarbon Potential. AAPG, 517-546. Hussein, A., Joao, F., Taylor, S., Badry, R., Brough, B., Baker, A., . . . Calvo, R. (2006). Highlighting Heavy Oil. Oilfield Review, 34-53.Isaacs, E. H., & Srivastava, R. M. (1989). Introduction to Applied Geostatistics. New York: Oxford University.James, N. P., & Dalrymple, R. W. (2010). Facies Models 4. Kingtong, Canada: Geological Association of Canada.Jassim M, A., & Mohammed S, A. (2019). Study of Different Geostatistical Methods to Model Formation Porosity (Cast Study of Zubair Formation in Luhais Oil Field). IOP. doi:10.1088/1757-899X/579/1/012031.Jika, H., Onuoha, K., & Dim, C. (2019, October 15). Application of Geostatistics in Facies Modelling of Reservoir E, “Hatch Field” Offshore Niger Delta Basin, Nigeria. Petroleum Exploration and Production Technology. Retrieved from https://doi.org/10.1007/s13202-019-00788-1.Journel, A., Gundeso, R., Gringarten, E., & Yao, T. (1998). Stochastic Modelling of a Fluvial Reservoir: A Comparative Review Algorithm. Journal of Petroleum Science and Engineering, 95-121.Li, Y., Xin, X., Yu, G., Wang, W., Zhang, Z., Zhang, M., . . . Chen, Z. (2017). Non-Newtonian Flow Characteristics of Heavy Oil in the Bohai Bay Oilfield: Experimental and Simulation Studies. MDPI.Madani, N., Biranvand, B., Naderi, A., & Keshavarz, N. (2019). Lithofacies Uncertainty Modelling in a Siliciclastic Reservoir Setting by Incorporating Geological Contacts and Seismic Information. Journal of Petroleum Exploration and Production Technology, 1-16.Mai, A. (2008). Mechanisms of Heavy Oil Recovery by Waterflooding. Phd, Thesis, University of Calgary, Calgary.Mariethoz, G., Renard, P., & Straubhaar, J. (2010). The Direct Sampling Method to Perform Multiple‐Point Geostatistical Simulations. Water Resources Research.Menad, N. A., Noureddine, Z., Hemmati-Sarapardeh, A., Shamshirband, S., Mosavi, A., & Chau, K.-w. (2019). Modelling Temperature Dependency of Oil - Water Relative Permeability in Thermal Enhanced Oil Recovery Processes Using Group Method of Data Handling and Gene Expression Programming. Engineering Applications of Computational Fluid mechanics, 724-743.Navas, G. A. (2016). Modelo Sedimentológico Rubiales. Bogotá: Ecopetrol S.A.Nichols, G. (2009). Sedimentology and Stratigraphy (Vol. Second Edition). United Kingdom: Wiley- Blackwell. Ortiz, J., & Deutsh V, C. (n.d.). Testing Pseudo-random Number Generators. Alberta: Alberta University.Paque, J., & Dercourt, J. (1985). Sedimentary Facies. In D. J. Paquet, Geology Principles & Methods (pp. 195-206). Springer, Dordecht. doi: https://doi.org/10.1007/978-94-009-4956-0_12Park, H., Scheidt, C., Fenwick, D., Boucher, A., & Caers, J. (2013). History matching and uncertainty quantification of facies models with multiple geological interpretations. Springer.Porta, J. d. (1974). Stratigraphic Lexicon. Colombia:(Part Two). Tertiary and Quaternary. Paris: Centre National de la Reserche Scientifique.Posamentier, H. W., Jervey, M. T., & Vail, P. R. (1988). Eustatic Controls on Clastic Deposition I. Calgary: SEPM (Society of Economic paleontologists and mineralogits).Pyrcz, M., & Deutsch, C. (2014). Geostatistical Reservoir Modelling (Vol. 2). New York, United States of America: Oxford University.Ramirez, R. (2010). Informe Descripción de Corazones. Piedecuesta: Instituto Colombiano del Petróleo.Ramon, G. H. (2002). Introducción a la Geoestadística Teoria y Aplicación. Bogotá: Universidad Nacional de Colombia.Reading, H., & Levell, B. (1996). Controls on the Sedimentary Rock Record. In H. Reading, & H. Reading (Ed.), Sedimentary Environments: Process, Facies and Stratigraphy (Vol. Third edition, pp. 5-36). Wiley.Sarmiento, L. F. (2011). Petroleum Geology of Colombia: Llanos Basin. Medellín: Universidad EAFIT.Schlumberger. (2011). Multipoint and Conditional Facies Modelling. Houston: Schlumberger.Seifert, D., & Jensen, J. L. (1999). Using Sequential Indicator Simulation as a Tool in Reservoir Description: Issues and Uncertainties. In Mathematical Geology (pp. 527-550).Sisinni, V., Villarroel, V., McDougall, N., Victoria, M., Vallez, Y., & Garcia Mojonero, C. (2016). Facies Modelling Described by Probabilistic Patterns Using Multi-Point Statistics: An Application to the K-Field, Libya. AAPG/SEG International Conference & Exhibition. Barcelona.Talabi, O., & Okazawa, T. (2003). Effect of Rate and Viscosity on Gas Mobility during Solution-Gas Drive in Heavy Oils. SPE, SPE84032.Torabi, F., Mosavat, N., & Zarivnyy, O. (2016). Predicting Heavy Oil/Water Relative Permeability Using Modified Corey-Based Correlations. Elsevier, 196-204.Walker, R. G. (2006). Facies Models Revisited. (H. W. Posamentier, & R. G. Walker, Eds.) SEPM (Society for Sedimentary Geology), 1-17. Yang, S., Li, S., Nie, X., & Cao, L. (2016). The Effect of Temperature and Rock Permeability on Oil-Water Relative Permeability Curves of Waxy Crude Oil. International Journal of Engineering Research and Applications, 16-21.EspecializadaLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79932/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL24347143.2021.RESULTS.pdf24347143.2021.RESULTS.pdfTesis de Maestría en Ingeniería - Ingeniería de Petróleos.2application/pdf21434663https://repositorio.unal.edu.co/bitstream/unal/79932/3/24347143.2021.RESULTS.pdf3bbc94fe6c3fc5255818fafe49ed0926MD5324347143.2021.APPENDICES.pdf24347143.2021.APPENDICES.pdfTesis de Maestría en Ingeniería - Ingeniería de Petróleos.3application/pdf7748202https://repositorio.unal.edu.co/bitstream/unal/79932/4/24347143.2021.APPENDICES.pdf4b51ca7d283d9be22fde0e4452921eceMD5424347143.2021.GENERAL.pdf24347143.2021.GENERAL.pdfTesis de Maestría en Ingeniería - Ingeniería de Petróleos.1application/pdf4622452https://repositorio.unal.edu.co/bitstream/unal/79932/6/24347143.2021.GENERAL.pdf796d6968993243b35745d59fed77e4feMD56CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79932/7/license_rdf4460e5956bc1d1639be9ae6146a50347MD57THUMBNAIL24347143.2021.RESULTS.pdf.jpg24347143.2021.RESULTS.pdf.jpgGenerated Thumbnailimage/jpeg6779https://repositorio.unal.edu.co/bitstream/unal/79932/8/24347143.2021.RESULTS.pdf.jpg3bf9c57fc7a80ec199acad859c13bb58MD5824347143.2021.APPENDICES.pdf.jpg24347143.2021.APPENDICES.pdf.jpgGenerated Thumbnailimage/jpeg4906https://repositorio.unal.edu.co/bitstream/unal/79932/9/24347143.2021.APPENDICES.pdf.jpg11ab529e6b49bfae0e0973a9c1670886MD5924347143.2021.GENERAL.pdf.jpg24347143.2021.GENERAL.pdf.jpgGenerated Thumbnailimage/jpeg4657https://repositorio.unal.edu.co/bitstream/unal/79932/10/24347143.2021.GENERAL.pdf.jpg828426ed06bac27ab0e687c444a796e6MD510unal/79932oai:repositorio.unal.edu.co:unal/799322023-10-13 12:58:44.766Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==