On the noncommutative geometry of semi-graded rings
En esta tesis, establecemos diversas caracterizaciones topológicas del espectro no conmutativo de anillos semi-graduados al considerar la noción de topología débil de Zariski. Con este propósito, formulamos condiciones necesarias o suficientes para garantizar que familias de estos anillos definidos...
- Autores:
-
Chacón Capera, Andrés
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84866
- Palabra clave:
- 510 - Matemáticas::512 - Álgebra
Geometría algebraíca
Topología
Polinomios
Geometry, algebraic
Topology
Polynomials
Anillo semi-graduado
Anillo de polinomios torcidos
Extensión PBW torcida
Álgebra esquemática
Geometría algebraica no conmutativa
Esquema no conmutativo
Semi-graded ring
Skew polynomial ring
Skew PBW extension
Schematic algebra
Noncommutative algebraic geometry
Noncommutative scheme
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_cbde9317b33694978d61d08de146e67a |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84866 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
On the noncommutative geometry of semi-graded rings |
dc.title.translated.spa.fl_str_mv |
Sobre la geometría no conmutativa de anillos semi graduados |
title |
On the noncommutative geometry of semi-graded rings |
spellingShingle |
On the noncommutative geometry of semi-graded rings 510 - Matemáticas::512 - Álgebra Geometría algebraíca Topología Polinomios Geometry, algebraic Topology Polynomials Anillo semi-graduado Anillo de polinomios torcidos Extensión PBW torcida Álgebra esquemática Geometría algebraica no conmutativa Esquema no conmutativo Semi-graded ring Skew polynomial ring Skew PBW extension Schematic algebra Noncommutative algebraic geometry Noncommutative scheme |
title_short |
On the noncommutative geometry of semi-graded rings |
title_full |
On the noncommutative geometry of semi-graded rings |
title_fullStr |
On the noncommutative geometry of semi-graded rings |
title_full_unstemmed |
On the noncommutative geometry of semi-graded rings |
title_sort |
On the noncommutative geometry of semi-graded rings |
dc.creator.fl_str_mv |
Chacón Capera, Andrés |
dc.contributor.advisor.none.fl_str_mv |
Reyes Villamil, Milton Armando |
dc.contributor.author.none.fl_str_mv |
Chacón Capera, Andrés |
dc.contributor.researchgroup.spa.fl_str_mv |
Sac2 |
dc.subject.ddc.spa.fl_str_mv |
510 - Matemáticas::512 - Álgebra |
topic |
510 - Matemáticas::512 - Álgebra Geometría algebraíca Topología Polinomios Geometry, algebraic Topology Polynomials Anillo semi-graduado Anillo de polinomios torcidos Extensión PBW torcida Álgebra esquemática Geometría algebraica no conmutativa Esquema no conmutativo Semi-graded ring Skew polynomial ring Skew PBW extension Schematic algebra Noncommutative algebraic geometry Noncommutative scheme |
dc.subject.lemb.spa.fl_str_mv |
Geometría algebraíca Topología Polinomios |
dc.subject.lemb.eng.fl_str_mv |
Geometry, algebraic Topology Polynomials |
dc.subject.proposal.spa.fl_str_mv |
Anillo semi-graduado Anillo de polinomios torcidos Extensión PBW torcida Álgebra esquemática Geometría algebraica no conmutativa Esquema no conmutativo |
dc.subject.proposal.eng.fl_str_mv |
Semi-graded ring Skew polynomial ring Skew PBW extension Schematic algebra Noncommutative algebraic geometry Noncommutative scheme |
description |
En esta tesis, establecemos diversas caracterizaciones topológicas del espectro no conmutativo de anillos semi-graduados al considerar la noción de topología débil de Zariski. Con este propósito, formulamos condiciones necesarias o suficientes para garantizar que familias de estos anillos definidos por endomorfismos y derivaciones sean anillos NI o anillos NJ. Presentamos resultados sobre la caracterización de diferentes tipos de elementos de anillos no conmmutativos tales como idempotentes, unidades, von Neumann regulares, π-regulares, y elementos limpios. También investigamos las nociones de anillo fuertemente armónico y de Gelfand sobre dichas familias de anillos semi-graduados. Nuestros resultados generalizan tratamientos desarrollados para anillos conmutativos, anillos de polinomios torcidos, y variadas familias de anillos N-graduados, y contribuyen a la investigación sobre estos temas que ha sido llevada a cabo parcialmente en la literatura. Por otra parte, investigamos la esquematicidad y el teorema de Serre-Artin-Zhang-Verevkin para anillos semi-graduados. Más exactamente, para los polinomios de Ore de orden superior generados por relaciones homogéneas y las extensiones torcidas de Poincaré-Birkhoff-Witt, formulamos condiciones necesarias o suficientes para garantizar la esquematicidad de estas familias de anillos. Desarrollamos una teoría de esquemas no conmutativa para anillos semi-graduados que no son necesariamente conexos y N-graduados. Con esta teoría, demostramos el teorema de Serre-Artin-Zhang-Verevkin para diversas familias de álgebras no N-graduadas que incluyen diferentes clases de anillos no conmutativos que surgen en la teoría de anillos y la geometría algebraica no conmutativa. Nuestro tratamiento contribuye a la investigación sobre este teorema desarrollada en la literatura. (Texto tomado de la fuente) |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-11-02T19:38:40Z |
dc.date.available.none.fl_str_mv |
2023-11-02T19:38:40Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84866 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84866 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
M. Abdi and Y. Talebi. On the diameter of the zero-divisor graph over skew PBW extensions. J. Algebra Appl., https://doi.org/10.1142/S0219498824500890, 2023 M. Aghajani and A. Tarizadeh. Characterizations of Gelfand rings, specially clean rings and their dual rings. Results Math., 75(3):1–24, 2020 J. Alev and F. Dumas. Sur le corps des fractions de certaines algèbres quantiques. J. Algebra, 170(1):229–265, 1994 A. Alhevaz and A. Moussavi. On skew Armendariz and skew quasi-Armendariz modules. Bull. Iranian Math. Soc., 38(1):55–84, 2012 D. D. Anderson and V. Camillo. Armendariz rings and Gaussian rings. Comm. Algebra, 26(7):2265–2275, 1998 S. Annin. Associated and Attached Primes Over Noncommutative Rings. PhD thesis, University of California, Berkeley, 2002 S. Annin. Associated primes over skew polynomial rings. Comm. Algebra, 30(5):2511–2528, 2002 S. Annin. Associated primes over Ore extension rings. J. Algebra Appl., 3(2):193–205, 2004 J. Apel. Gröbnerbasen in nichtkommutativen Algebren und ihre Anwendung. PhD thesis, University of Leipzig, 1998 E. P. Armendariz. A note on extensions of Baer and p.p.-rings. J. Austral. Math. Soc., 18(4):470–473, 1974 V. A. Artamonov. Derivations of Skew PBW-extensions. Commun. Math. Stat, 3(4):449–457, 2015 M. Artin, J. Tate, and M. Van den Bergh. Some algebras associated to automorphisms of elliptic curves. In: The Grothendieck Festschrift, Vol. I, Progr. Math., Birkhäuser Boston, Boston, MA, 86, pp. 33–85, 1990 A. Badawi. On Abelian π-regular rings. Comm. Algebra, 25(4):1009–1021, 1997 V. V. Bavula. Generalized Weyl algebras and their representations. St. Petersburg Math. J., 4(1):75–97, 1992 V. V. Bavula. Global dimension of generalized weyl algebras. Canad. Math. Soc. Confe. Proce., 18:81–107, 1996 V. V. Bavula. Description of bi-quadratic algebras on 3 generators with PBW basis. J. Algebra, 631:695–730, 2023 A. Bell and K. Goodearl. Uniform rank over differential operator rings and Poincaré-Birkhoff-Witt extensions. Pacific J. Math., 131(1):13–37, 1988 A. D. Bell and S. P. Smith. Some 3-dimensional skew polynomial rings. University of Wisconsin, Milwaukee, preprint, 1990 P. Belmans. Connections Between Commutative and Noncommutative Algebraic Geometry. PhD thesis, University of Antwerp, 2007 H. B. Benaoum. (q, h)-analogue of Newton’s binomial formula. J. Phys. A: Math. Gen., 32(10):2037–2040, 1999 G. Benkart. Down-up algebras and Witten’s deformation of the universal enveloping algebra of sl2. In: S. Geun Hahn, H. Chul Myung and E. Zelmanov (eds). Recent Progress in Algebra, Contemporary Mathematics, Vol. 224, Amer. Math. Soc., Providence, pp. 29–45, 1999 G. Benkart and T. Roby. Down-Up Algebras. J. Algebra, 209(1):305–344, 1998 J. Bergen and P. Grzeszczuk. Jacobson radicals of ring extensions. J. Pure Appl. Algebra, 216(12):2601–2607, 2012 R. Berger. The Quantum Poincaré-Birkhoff-Witt Theorem. Comm. Math. Phys., 143(2):215–234, 1992 F. Borceux and G. Van den Bossche. Algebra in a Localic Topos with Applications to Ring Theory. Lecture Notes in Mathematics 1038, Springer-Verlag, 1983 F. Borceux, H. Simmons, and G. Van den Bossche. A Sheaf Representation for Modules with Applications to Gelfand Rings. Proc. London Math. Soc., s3–48(2):230–246, 1984 K. Brown and K. R. Goodearl. Lectures on Algebraic Quantum Groups. BirkäuserVerlag, 2002 J. Bueso, J. Gómez-Torrecillas, and A. Verschoren. Algorithmic Methods in noncommutative Algebra: Applications to Quantum Groups. Dordrecht, Kluwer, 2003 F. Calderón and A. Reyes. Some interactions between Hopf Galois extensions and noncommutative rings. Univ. Sci., 27(2):58–161, 2022 M. Carral. K-theory of Gelfand rings. J. Pure Appl. Algebra, 17(3):249–265, 1980 T. Cassidy and M. Vancliff. Generalizations of graded Clifford algebras and of complete intersections. J. Lond. Math. Soc., 81(1):91–112, 2010 W. X. Chen and S. Y. Cui. On weakly semicommutative rings. Commun. Math. Res., 27(2):179–192, 2011 P. M. Cohn. Quadratic extensions of skew fields. Proc. London Math. Soc., 11(3):531–556, 1961 P. M. Cohn. Free Rings and Their Relations. Second Edition. Academic Press, London, 1985 A. Connes. Noncommutative Geometry. Academic Press, 1994 M. Contessa. On certain classes of PM rings. Comm. Algebra, 12(12):1447–1469, 1984 S. C. Coutinho. A Primer of Algebraic D-modules. Cambridge University Press. London Mathematical Society, Student Texts 33, 1995 G. Demarco and A. Orsatti. Commutative rings in which every prime ideal is contained in a unique maximal ideal. Proc. Amer. Math. Soc., 30(3):459–466, 1971 V. G. Drinfeld. Quantum groups. J. Math. Sci., 41(2):898–915, 1988 F. Dumas. Sous-corps de fractions rationnelles des corps gauches de series de Laurent. Topics in Invariant Theory, Lecture Notes in Math. Vol. 1478, 1991 W. Fajardo, C. Gallego, O. Lezama, A. Reyes, H. Suárez, and H. Venegas. Skew PBW Extensions. Ring and Module-theoretic Properties, Matrix and Gröbner Methods, and Applications. Algebra and Applications. Springer, Cham, 2020 C. Gallego and O. Lezama. Gröbner bases for ideals of σ-PBW extensions. Comm. Algebra, 39(1):50–75, 2011 A. Giaquinto and J. J. Zhang. Quantum Weyl Algebras. J. Algebra, 176(3):861–881, 1995 V. Ginzburg. Lectures on Noncommutative Geometry. arXiv:math/0506603v1. 2005 J. Goldman. Rings and Modules of Quotients. J. Algebra, 13(1):10–47, 1969 A. V. Golovashkin and V. M. Maksimov. Skew Ore polynomials of higher orders generated by homogeneous quadratic relations. Russian Math. Surveys, 53(2):384–386, 1998 A. V. Golovashkin and V. M. Maksimov. On algebras of skew polynomials generated by quadratic homogeneous relations. J. Math. Sci., 129(2):3757–3771, 2005 K. R. Goodearl. Von Neumann regular rings, volume 4 of Monographs and Studies in Mathematics. Pitman, 1979 K. R. Goodearl and R. B. Warfield. An Introduction to Noncommutative Noetherian Rings. Cambridge University Press. London, 2004 H. S. Green. A generalized method of field quantization. Phys. Rev., 90(2):270, 1953 O. W. Greenberg and A. M. L. Messiah. Selection Rules for Parafields and the Absence of Para Particles in Nature. Phys. Rev., 138(5B):B1155–B1167, 1965 M. Hamidizadeh, E. Hashemi, and A. Reyes. A classification of ring elements in skew PBW extensions over compatible rings. Int. Electron. J. Algebra, 28(1):75–97, 2020 J. Han, Y. Lee, and S. Park. Structure of NI rings related to centers. Comm. Algebra, 49(2):621–630, 2021 R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics 52, SpringerVerlag, New York, Heidelberg, Berlin, 1977 E. Hashemi, M. Hamidizadeh, and A. Alhevaz. Some types of ring elements in Ore extensions over noncommutative rings. J. Algebra Appl., 16(11):1750201–1–1750201–17, 2017 E. Hashemi, Kh. Khalilnezhad, and A. Alhevaz. (Σ, ∆)-compatible skew PBW extension ring. Kyungpook Math. J., 57(3):401–417, 2017 E. Hashemi, Kh. Khalilnezhad, and A. Alhevaz. Extensions of rings over 2-primal rings. Matematiche, 74(I):141–162, 2019 E. Hashemi and A. Moussavi. Polinomial extensions of quasi-Baer rings. Acta Math. Hungar., 107(3):207–224, 2005 T. Hayashi. q-analogues of Clifford and Weyl algebras-Spinor and oscillator representations of quantum enveloping algebras. Comm. Math. Phys., 127(1):129–144, 1990 J. Hernández and A. Reyes. A Survey on Some Algebraic Characterizations of Hilbert’s Nullstellensatz for Non-commutative Rings of Polynomial Type. Ingeniería y Ciencia, 16(31):27–52, 2020 S. Higuera and A. Reyes. A survey on the fusible property for skew PBW extensions. J. Algebr. Syst., 10(1):1–29, 2022 O. Hinchcliffe. Diffusion algebras. PhD thesis, University of Sheffield, 2005 C. Y. Hong, N. K. Kim, and T. K. Kwak. Ore extensions of Baer and p.p.-rings. J. Pure Appl. Algebra, 151(3):215–226, 2000 C. Y. Hong, N. K. Kim, and T. K. Kwak. On skew Armendariz rings. Comm. Algebra, 31(1):103–122, 2003 C. Y. Hong, T. K. Kwak, and S. T. Rizvi. Extensions of generalized Armendariz rings. Algebra Colloq., 13(2):253–266, 2006 C. Huh, N. K. Kim, and Y. Lee. Examples of strongly π-regular rings. J. Pure Appl. Algebra, 189(1-3):195–210, 2004 C. Huh, Y. Lee, and A. Smoktunowicz. Armendariz rings and semicommutative rings. Comm. Algebra, 30(2):751–761, 2002 S. U. Hwang, Y. C. Jeon, and Y. Lee. Structure and topological conditions of NI rings. J. Algebra, 302(1):186–199, 2006 A. P. Isaev, P. N. Pyatov, and V. Rittenberg. Diffusion algebras. J. Phys. A, 34(29):5815–5834, 2001 A. Jannussis, A. Leodaris, and R. Mignani. Non-Hermitian Realization of a Lie-deformed Heisenberg algebra. Phys. Lett. A, 197(3):187–191, 1995 J. C. Jantzen. Lectures on Quantum Groups. Amer. Math. Soc. Vol. 6, 1996 J. Jaramillo and A. Reyes. Symmetry and Reversibility Properties for Quantum Algebras and Skew Poincaré-Birkhoff-Witt Extensions. Ingeniería y Ciencia, 14(27):29–52, 2018 M. Jiang, Y. Wang, and Y. Ren. Extensions and topological conditions of NJ rings. Turkish J. Math., 43(1):44–62, 2019 M. Jimbo. A q-Difference analogue of U(g) and the Yang-Baxter Equation. Lett. Math. Phys., 10(1):63–69, 1985 D. Jordan. The Graded Algebra Generated by Two Eulerian Derivatives. Algebr. Represent. Theory, 4(3):249–275, 2001 D. A. Jordan. Finite-dimensional simple modules over certain iterated skew polynomial rings. J. Pure Appl. Algebra, 98(1):45–55, 1995 D. A. Jordan. Down-Up Algebras and Ambiskew Polynomial Rings. J. Algebra, 228(1):311–346, 2000 D. A. Jordan and I. E. Wells. Invariants for automorphisms of certain iterated skew polynomial rings. Proc. Edinb. Math. Soc., 39(3):461–472, 1996 K. Kanakoglou and C. Daskaloyannis. Bosonisation and Parastatistics. In: S. Silvestrov and E. Paal and V. Abramov and A. Stolin (eds). Generalized Lie Theory in Mathematics, Physics and Beyond. Springer, Berlin, Heidelberg, pp. 207–218, 2009 P. Kanwar, A. Leroy, and J. Matczuk. Clean elements in polynomial rings. In: S. Dougherty, A. Facchini, A. Leroy, E. Puczylowski and P. Solé (eds). Noncommutative Rings and their Applications, Contemp. Math., AMS, Vol. 634, pp. 197–204, 2015 I. Kaplansky. A quasi-commutative ring that is not neo-commutative. Proc. Amer. Math. Soc., 122(1):321, 1994 O. A. Karamzadeh. On constant products of polynomials. Int. J. Math. Edu. Technol., 18:627–629, 1987 N. K. Kim and Y. Lee. Armendariz rings and reduced rings. J. Algebra, 223(2):477–488, 2000 E. Kirkman, I. M. Musson, and D. Passman. Noetherian Down-Up Algebras. Proc. Amer. Math. Soc., 127(11):3161–3167, 1999 K. Krebs and S. Sandow. Matrix product eigenstates for one-dimensional stochastic models and quantum spin chains. J. Phys. A: Math. Gen., 30(9):3165–3173, 1997 J. Krempa. Some examples of reduced rings. Algebra Colloq., 3(4):289–300, 1996 T. Y. Lam. A First Course in Noncommutative Rings. New York, USA. SpringerVerlag, 1991 L. le Bruyn. Two remarks on Witten’s quantum enveloping algebra. Comm. Algebra, 22(3):865–876, 1994 L. le Bruyn. Central singularities of quantum spaces. J. Algebra, 177(1):142–153, 1995 T. K. Lee and T. L. Wong. On Armendariz rings. Houston J. Math., 29(3):583–593, 2003 V. Levandovskyy. Non-commutative Computer Algebra for polynomial algebras: Gröbner bases, applications and implementation. PhD thesis, University of Kaiserslautern, 2005, Kaiserslautern O. Lezama. Computation of point modules of finitely semi-graded rings. Comm. Algebra, 48(2):866–878, 2020 O. Lezama. Algebraic sets, ideals of points and the Hilbert’s Nullstellensatz theorem for skew PBW extensions. https://arxiv.org/abs/2106.12088, 2021 O. Lezama. Some Open Problems in the Context of Skew PBW Extensions and Semi-graded Rings. Commun. Math. Stat., 9(3):347–378, 2021 O. Lezama, J. P. Acosta, and A. Reyes. Prime ideals of skew PBW extensions. Rev. Un. Mat. Argentina, 56(2):39–55, 2015 O. Lezama and J. Gómez. Koszulity and Point Modules of Finitely Semi-graded Rings and Algebras. Symmetry, 11(7):1–22, 2019 O. Lezama and E. Latorre. Non-commutative algebraic geometry of semi-graded rings. Internat. J. Algebra Comput., 27(4):361–389, 2017 O. Lezama and A. Reyes. Some Homological Properties of Skew PBW Extensions. Comm. Algebra, 42(3):1200–1230, 2014 O. Lezama and H. Venegas. Some homological properties of skew PBW extensions arising in non-commutative algebraic geometry. Discuss. Math. Gen. Algebra Appl., 37(1):45–57, 2017 H. Li and F. van Oystaeyen. Zariskian filtrations. K-Monographs in Mathematics, Vol. 2, Springer Science, 1996 M. Louzari and A. Reyes. Generalized Rigid Modules and Their Polynomial Extensions. In: M. Siles Molina, L. El Kaoutit, M. Louzari, L. Ben Yakoub and M. Benslimane (eds). Associative and Non-Associative Algebras and Applications. MAMAA 2018. Springer Proceedings in Mathematics and Statistics, Vol 311. Springer, Cham., 2020 M. Louzari and A. Reyes. Minimal prime ideals of skew PBW extensions over 2-primal compatible rings. Rev. Colombiana Mat., 54(1):39–63, 2020 V. M. Maksimov. On a generalization of the ring of skew Ore polynomials. Russian Math. Surveys, 55:817–818, 2000 V. M. Maksimov. Canonical forms of skew polynomial rings. J. Math. Sci. (N.Y.), 126(2):1064–1076, 2005 G. Marks. On 2-primal Ore extensions. Comm. Algebra, 29(5):2113–2123, 2001 G. Marks. A taxonomy of 2-primal rings. J. Algebra, 266(2):494–520, 2003 J. Matczuk. A characterization of σ-rigid rings. Comm. Algebra, 32(11):4333–4336, 2004 J. McConnell and J. Robson. Noncommutative Noetherian Rings, volume 30 of Graduate Studies in Mathematics. American Mathematical Society, Second edition, 2001 B. R. McDonald. Linear Algebra Over Commutative Rings. New York. Basel, Marcel Dekker, Inc., 1984 M. Medina-Bárcenas, L. Morales-Callejas, M. L. S. Sandoval-Miranda, and A. Zaldívar-Corichi. On strongly harmonic and Gelfand modules. Comm. Algebra, 48(5):1985–2013, 2020 A. Moussavi and E. Hashemi. On (α, δ)-skew Armendariz rings. J. Korean Math. Soc., 42(2):353–363, 2005 C. J. Mulvey. A generalisation of Swan’s theorem. Math. Z., 151(1):57–70, 1976 C. J. Mulvey. A generalisation of Gelfand duality. J. Algebra, 56(2):494–505, 1979 C. J. Mulvey. Representations of Rings and Modules. In: M. Fourman, C. Mulvey and D. Scott (eds). Applications of Sheaves, Lecture Notes in Mathematics, Vol. 753, Springer, Berlin, Heidelberg, pp. 542–585, 1979 A. Nasr-Isfahani. Jacobson Radicals of Skew Polynomial Rings of Derivation Type. Canad. Math. Bull., 57(3):609–613, 2014 A. Nasr-Isfahani. On NI Skew Polynomial Rings. Comm. Algebra, 43(12):5113–5120, 2015 A. R. Nasr-Isfahani and A. Moussavi. On Classical Quotient Rings of Skew Armendariz Rings. Int. J. Math. Math. Sci., 2007:1–7, 2007 W. K. Nicholson. Lifting idempotents and exchange rings. Trans. Amer. Math. Soc., 229:269–278, 1977 W. K. Nicholson and Y. Zhou. Clean rings: A survey. In: J. L. Chen, N. Q. Ding and H. Marubayashi (eds). Advances in Ring Theory, Proceedings of the 4th China - Japon - Korea International Conference China 24–28, June 2004, World Scientific, pp. 181–198, 2005 A. Niño, M. C. Ramírez, and A. Reyes. Associated prime ideals over skew PBW extensions. Comm. Algebra, 48(12):5038–5055, 2020 A. Niño and A. Reyes. Some ring theoretical properties of skew Poincaré-Birkhoff-Witt extensions. Bol. Mat., 24(2):131–148, 2017 A. Niño and A. Reyes. Some remarks about minimal prime ideals of skew Poincaré-Birkhoff-Witt extensions. Algebra Discrete Math., 30(2):207–229, 2020 E. Noether and W. Schmeidler. Moduln in nichtkommutativen bereichen, insbesondere aus differential - und differenzenausdrücken. Math. Zeitschrift, 8:1–35, 1920 O. Ore. Linear Equations in Non-commutative Fields. Ann. of Math. Second Series, 32(3):463–477, 1931 O. Ore. Theory of Non-Commutative Polynomials. Ann. of Math. Second Series, 34(3):480–508, 1933 V. L. Ostrovskii and Yu. S. Samoilenko. Representation of ∗-algebras with two generators and polynomial relations. J. Math. Sci., 59(5):1107–1113, 1992 L. Ouyang and J. Liu. On weak (α, δ)-compatible rings. Int. J. Algebra, 5(26):1283–1296, 2011 L. Ouyang, J. Liu, and Y. Xiang. Ore extensions of skew π-Armendariz rings. Bull. Iranian Math. Soc., 39(2):355–368, 2013 P. N. Pyatov and R. Twarock. Construction of diffusion algebras. J. Math. Phys., 43(6):3268–3279, 2002 I. T. Redman. The Non-Commutative Algebraic Geometry of some Skew Polynomial Algebras. PhD thesis, University of Wisconsin - Milwaukee, 1996 I. T. Redman. The homogenization of the three dimensional skew polynomial algebras of type I. Comm. Algebra, 27(11):5587–5602, 1999 M. B. Rege and S. Chhawchharia. Armendariz Rings. Proc. Japan Acad. Ser. A Math. Sci., 73(1):14–17, 1997 A. Reyes. Skew PBW extensions of Baer, quasi-Baer, p.p. and p.q.-rings. Rev. Integr. Temas Mat., 33(2):173–189, 2015 A. Reyes. σ-PBW Extensions of Skew Π-Armendariz Rings. Far East J. Math. Sci. (FJMS), 103(2):401–428, 2018 A. Reyes. Armendariz modules over skew PBW extensions. Comm. Algebra, 47(3):1248–1270, 2019 A. Reyes and C. Rodríguez. The McCoy Condition on Skew Poincaré-Birkhoff-Witt extensions. Commun. Math. Stat., 9(1):1–21, 2021 A. Reyes and C. Sarmiento. On the differential smoothness of 3-dimensional skew polynomial algebras and diffusion algebras. Internat. J. Algebra Comput., 32(03):529–559, 2022 A. Reyes and H. Suárez. Armendariz property for skew PBW extensions and their classical ring of quotients. Rev. Integr. Temas Mat., 34(2):147–168, 2016 A. Reyes and H. Suárez. PBW Bases for Some 3-Dimensional Skew Polynomial Algebras. Far East J. Math. Sci., 101(6):1207–1228, 2017 A. Reyes and H. Suárez. σ-PBW extensions of Skew Armendariz Rings. Adv. Appl. Clifford Algebr., 27(4):3197–3224, 2017 A. Reyes and H. Suárez. A notion of compatibility for Armendariz and Baer properties over skew PBW extensions. Rev. Un. Mat. Argentina, 59(1):157–178, 2018 A. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak zip rings. Beitr Algebra Geom., 60(2):197–216, 2019 A. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak compatible rings. J. Algebra Appl., 19(12):2050225(1)–2050225(21), 2020 A. Reyes and H. Suárez. Radicals and Köthe’s conjecture for skew PBW extensions. Commun. Math. Stat., 9(2):119–138, 2021 A. Reyes and H. Suárez. Skew PBW extensions over symmetric rings. Algebra Discrete Math., 32(1):76–102, 2021 V. Rittenberg and D. Wyler. Generalized superalgebras. Nucl. Phys. B, 139(3):189–202, 1978 A. Rosenberg. Non-commutative Algebraic Geometry and Representations of Quantized Algebras. Math. Appl. Soviet Ser., 330 Kluwer Academic Publishers, 1995 I. Rubio and L. Acosta. On Spectral Compactness of von Neumann Regular Rings. Rev. Colombiana Mat., 46(1):81–95, 2012 W. Rump. The Weighted Spectrum of a Regular Ring. Forum Math., 22(4):683–697, 2010 G. Shin. Prime ideals and sheaf representation of a pseudosymmetric rings. Trans. Amer. Math. Soc., 184:43–60, 1973 H. Simmons. Reticulated rings. J. Algebra, 66(1):169–192, 1980 H. Simmons. Erratum. Reticulated rings: Volume 66 number 1, September 1980: H. Simmons pp. 169–192. J. Algebra, 74(1):292, 1982 S. P. Smith. A Class of Algebras Similar to the Enveloping of sl(2). Comm. Algebra, 322(1):285–314, 1991 S. P. Smith. Non-commutative algebraic geometry. Department of Mathematics. University of Washington, 2000 T. H. M. Smits. Skew polynomial rings. Indag. Math., 71(1):209–224, 1968 B. Stenström. Rings of Quotients. An Introduction to Methods of Ring Theory. Springer-Verlag, 1975 H. Suárez. Koszulity for graded skew PBW extensions. Comm. Algebra, 45(10):4569–4580, 2017 H. Suárez, F. Anaya, and A. Reyes. Propiedad χ en extensiones PBW torcidas graduadas. Ciencia en Desarrollo, 12(1):33–41, 2021 H. Suárez, D. Cáceres, and A. Reyes. Some special types of determinants in graded skew PBW extensions. Rev. Integr. Temas Mat., 391(1):91–107, 2021 H. Suárez, A. Chacón, and A. Reyes. On NI and NJ skew PBW extensions. Comm. Algebra, 50(8):3261–3275, 2022 H. Suárez, S. Higuera, and A. Reyes. On Σ-skew reflexive-nilpotents-property for rings. https://arxiv.org/abs/2110.14061. 2021 H. Suárez, A. Reyes, and Y. Suárez. Homogenized skew PBW extensions. Arab. J. Math. (Springer)., 12(1):247–263, 2023 S. H. Sun. Noncommutative rings in which every prime ideal is contained in a unique maximal right ideal. J. Pure Appl. Algebra, 76(2):179–192, 1991 S. H. Sun. On separation lemmas. J. Pure Appl. Algebra, 78(3):301–310, 1992 S. H. Sun. Rings in which every prime ideal is contained in a unique maximal right ideal. J. Pure Appl. Algebra, 78(2):183–194, 1992 H. Suárez, O. Lezama, and A. Reyes. Calabi-Yau property for graded skew PBW extensions. Rev. Colombiana Mat., 51(2):221–238, 2017 A. B. Tumwesigye, J. Richter, and S. Silvestrov. Centralizers in PBW extensions. In: S. Silvestrov, A. Malyarenko and M. Rancic (eds). Algebraic Structures and Applications. SPAS 2017. Springer Proc. Math. Stat. Vol. 317, Springer, pp. 469–490, 2020 R. Twarok. Representations for Selected Types of Diffusion Systems. In: E. Kapuscik and A. Horzela (eds). Quantum Theory and Symmetries. Proceedings of the Second International Symposium, Held 18–21, July 2001 in Kraków, Poland, World Scientific Publishing Co. Pte. Ltd., pp. 615–620, 2002 V. A. Ufnarovskii. Combinatorial and asymptotic methods in algebra. Algebra – 6, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr, 57:5–177, 1990 F. van Oystaeyen. On graded rings and modules of quotients. Comm. Algebra, 6(18):1923–1959, 1978 F. van Oystaeyen. Algebraic Geometry for Associative Algebras. Pure and Applied Mathematics, CRC Press Taylor & Francis Group, 2000 F. van Oystaeyen and L. A. Willaert. Grothendieck topology, coherent sheaves and Serre’s theorem for schematic algebras. J. Pure Appl. Algebra, 104(1):109–122, 1995 F. van Oystaeyen and L. A. Willaert. Cohomology of Schematic Algebras. J. Algebra, 185(1):74–84, 1996 F. van Oystaeyen and L. A. Willaert. The Quantum Site of a Schematic Algebra. Comm. Algebra, 24(1):209–122, 1996 F. van Oystaeyen and L. A. Willaert. Examples and quantum sections of schematic algebras. J. Pure Appl. Algebra, 120(2):195–211, 1997 N. Ja. Vilenkin and A. U. Klimyk. Representation of Lie Groups and Special Functions. Kluwer Academic Publishers, 1995 J. von Neumann. On Regular Rings. Proc. Natl. Acad. Sci. USA, 22(12):707–713, 1936 L. A. Willaert. A new dimension for schematic algebras. In: S. Caenepeel and A. Verschoren (eds). Rings, Hopf algebras, and Brauer Groups, Lecture Notes in Pure and Applied Mathematics, pp. 325–332, 1998 E. Witten. Gauge theories, vertex models, and quantum groups. Nuclear Phys. B, 330(2-3):285–346, 1990 E. Witten. Quantization of Chern-Simons Gauge Theory with Complex Gauge Group. Comm. Math. Phys., 137(1):29–66, 1991 S. L. Woronowicz. Twisted SU(2)-Group. An Example of a Non-commutative Differential Calculus. Publ. Res. Inst. Math. Sci., 23:117–181, 1987 H. Yamane. A Poincaré-Birkhoff-Witt Theorem for Quantized Universal Enveloping Algebras of Type AN . Publ. RIMS Kyoto Univ., 25(3):503–520, 1989 G. Yunus, Z. Gao, and A. Obul. Gröbner-Shirshov Basis of Quantum Groups. Algebra Colloq., 22(3):495–516, 2015 G. Zhang, W. Tong, and F. Wang. Spectra of Maximal 1-Sided Ideals and Primitive Ideals. Comm. Algebra, 34(8):2879–2896, 2006 G. Zhang, W. Tong, and F. Wang. Spectrum of a Noncommutative Ring. Comm. Algebra, 34(8):2795–2810, 2006 G. Zhang, F. Wang, and W. Xu. Gelfand Factor Rings and Weak Zariski Topologies. Comm. Algebra, 35(8):2628–2645, 2007 J. J. Zhang and J. Zhang. Double Ore extensions. J. Pure Appl. Algebra, 212(12):2668–2690, 2008 A. S. Zhedanov. “Hidden symmetry” of Askey–Wilson polynomials. Theoret. and Math. Phys., 89(2):1146–1157, 1991 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
vii, 113 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Doctorado en Ciencias - Matemáticas |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84866/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84866/2/1032455420.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/84866/3/1032455420.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 1b36c8bcd299265f879557c4fcd4ec0a 62f21032f0ce3b6d1dfc7492fb8d1740 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089625329729536 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Reyes Villamil, Milton Armando767f31307c790697ee2bf5d2c4f57583Chacón Capera, Andrés50222393337edcac1a8141d1517f5264Sac22023-11-02T19:38:40Z2023-11-02T19:38:40Z2022https://repositorio.unal.edu.co/handle/unal/84866Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/En esta tesis, establecemos diversas caracterizaciones topológicas del espectro no conmutativo de anillos semi-graduados al considerar la noción de topología débil de Zariski. Con este propósito, formulamos condiciones necesarias o suficientes para garantizar que familias de estos anillos definidos por endomorfismos y derivaciones sean anillos NI o anillos NJ. Presentamos resultados sobre la caracterización de diferentes tipos de elementos de anillos no conmmutativos tales como idempotentes, unidades, von Neumann regulares, π-regulares, y elementos limpios. También investigamos las nociones de anillo fuertemente armónico y de Gelfand sobre dichas familias de anillos semi-graduados. Nuestros resultados generalizan tratamientos desarrollados para anillos conmutativos, anillos de polinomios torcidos, y variadas familias de anillos N-graduados, y contribuyen a la investigación sobre estos temas que ha sido llevada a cabo parcialmente en la literatura. Por otra parte, investigamos la esquematicidad y el teorema de Serre-Artin-Zhang-Verevkin para anillos semi-graduados. Más exactamente, para los polinomios de Ore de orden superior generados por relaciones homogéneas y las extensiones torcidas de Poincaré-Birkhoff-Witt, formulamos condiciones necesarias o suficientes para garantizar la esquematicidad de estas familias de anillos. Desarrollamos una teoría de esquemas no conmutativa para anillos semi-graduados que no son necesariamente conexos y N-graduados. Con esta teoría, demostramos el teorema de Serre-Artin-Zhang-Verevkin para diversas familias de álgebras no N-graduadas que incluyen diferentes clases de anillos no conmutativos que surgen en la teoría de anillos y la geometría algebraica no conmutativa. Nuestro tratamiento contribuye a la investigación sobre este teorema desarrollada en la literatura. (Texto tomado de la fuente)ilustraciones, diagramasIn this thesis, we establish several topological characterizations of the noncommutative spectrum of semi-graded rings by considering the notion of weak Zariski topology. With this aim, necessary or sufficient conditions to guarantee that families of these rings defined by endomorphisms and derivations are NI or NJ rings are formulated. We present results about the characterization of different types of elements of noncommutative rings such as idempotents, units, von Neumann regular, π-regular, and clean elements. We also investigate the notions of strongly harmonic and Gelfand rings over such families of semi-graded rings. Our results generalize treatments developed for commutative rings, skew polynomial rings, and several families of N-graded rings, and contribute to the research on these topics that has been partially carried out in the literature. On the other hand, we investigate the schematicness and the Serre-Artin-Zhang-Verevkin theorem for semi-graded rings. More exactly, for the Ore polynomials of higher order generated by homogeneous relations and skew Poincaré-Birkhoff-Witt extensions, we formulate necessary or sufficient conditions to guarantee the schematicness of these families of rings. We develop a noncommutative scheme theory for semi-graded rings that are not necessarily connected and N-graded. With this theory, we prove the Serre-Artin-ZhangVerevkin theorem for several families of non-N-graded algebras that include different kinds of noncommutative rings appearing in ring theory and noncommutative algebraic geometry. Our treatment contributes to the research on this theorem developed in the literature.DoctoradoDoctor en Ciencias - Matemáticasvii, 113 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - MatemáticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas::512 - ÁlgebraGeometría algebraícaTopologíaPolinomiosGeometry, algebraicTopologyPolynomialsAnillo semi-graduadoAnillo de polinomios torcidosExtensión PBW torcidaÁlgebra esquemáticaGeometría algebraica no conmutativaEsquema no conmutativoSemi-graded ringSkew polynomial ringSkew PBW extensionSchematic algebraNoncommutative algebraic geometryNoncommutative schemeOn the noncommutative geometry of semi-graded ringsSobre la geometría no conmutativa de anillos semi graduadosTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDM. Abdi and Y. Talebi. On the diameter of the zero-divisor graph over skew PBW extensions. J. Algebra Appl., https://doi.org/10.1142/S0219498824500890, 2023M. Aghajani and A. Tarizadeh. Characterizations of Gelfand rings, specially clean rings and their dual rings. Results Math., 75(3):1–24, 2020J. Alev and F. Dumas. Sur le corps des fractions de certaines algèbres quantiques. J. Algebra, 170(1):229–265, 1994A. Alhevaz and A. Moussavi. On skew Armendariz and skew quasi-Armendariz modules. Bull. Iranian Math. Soc., 38(1):55–84, 2012D. D. Anderson and V. Camillo. Armendariz rings and Gaussian rings. Comm. Algebra, 26(7):2265–2275, 1998S. Annin. Associated and Attached Primes Over Noncommutative Rings. PhD thesis, University of California, Berkeley, 2002S. Annin. Associated primes over skew polynomial rings. Comm. Algebra, 30(5):2511–2528, 2002S. Annin. Associated primes over Ore extension rings. J. Algebra Appl., 3(2):193–205, 2004J. Apel. Gröbnerbasen in nichtkommutativen Algebren und ihre Anwendung. PhD thesis, University of Leipzig, 1998E. P. Armendariz. A note on extensions of Baer and p.p.-rings. J. Austral. Math. Soc., 18(4):470–473, 1974V. A. Artamonov. Derivations of Skew PBW-extensions. Commun. Math. Stat, 3(4):449–457, 2015M. Artin, J. Tate, and M. Van den Bergh. Some algebras associated to automorphisms of elliptic curves. In: The Grothendieck Festschrift, Vol. I, Progr. Math., Birkhäuser Boston, Boston, MA, 86, pp. 33–85, 1990A. Badawi. On Abelian π-regular rings. Comm. Algebra, 25(4):1009–1021, 1997V. V. Bavula. Generalized Weyl algebras and their representations. St. Petersburg Math. J., 4(1):75–97, 1992V. V. Bavula. Global dimension of generalized weyl algebras. Canad. Math. Soc. Confe. Proce., 18:81–107, 1996V. V. Bavula. Description of bi-quadratic algebras on 3 generators with PBW basis. J. Algebra, 631:695–730, 2023A. Bell and K. Goodearl. Uniform rank over differential operator rings and Poincaré-Birkhoff-Witt extensions. Pacific J. Math., 131(1):13–37, 1988A. D. Bell and S. P. Smith. Some 3-dimensional skew polynomial rings. University of Wisconsin, Milwaukee, preprint, 1990P. Belmans. Connections Between Commutative and Noncommutative Algebraic Geometry. PhD thesis, University of Antwerp, 2007H. B. Benaoum. (q, h)-analogue of Newton’s binomial formula. J. Phys. A: Math. Gen., 32(10):2037–2040, 1999G. Benkart. Down-up algebras and Witten’s deformation of the universal enveloping algebra of sl2. In: S. Geun Hahn, H. Chul Myung and E. Zelmanov (eds). Recent Progress in Algebra, Contemporary Mathematics, Vol. 224, Amer. Math. Soc., Providence, pp. 29–45, 1999G. Benkart and T. Roby. Down-Up Algebras. J. Algebra, 209(1):305–344, 1998J. Bergen and P. Grzeszczuk. Jacobson radicals of ring extensions. J. Pure Appl. Algebra, 216(12):2601–2607, 2012R. Berger. The Quantum Poincaré-Birkhoff-Witt Theorem. Comm. Math. Phys., 143(2):215–234, 1992F. Borceux and G. Van den Bossche. Algebra in a Localic Topos with Applications to Ring Theory. Lecture Notes in Mathematics 1038, Springer-Verlag, 1983F. Borceux, H. Simmons, and G. Van den Bossche. A Sheaf Representation for Modules with Applications to Gelfand Rings. Proc. London Math. Soc., s3–48(2):230–246, 1984K. Brown and K. R. Goodearl. Lectures on Algebraic Quantum Groups. BirkäuserVerlag, 2002J. Bueso, J. Gómez-Torrecillas, and A. Verschoren. Algorithmic Methods in noncommutative Algebra: Applications to Quantum Groups. Dordrecht, Kluwer, 2003F. Calderón and A. Reyes. Some interactions between Hopf Galois extensions and noncommutative rings. Univ. Sci., 27(2):58–161, 2022M. Carral. K-theory of Gelfand rings. J. Pure Appl. Algebra, 17(3):249–265, 1980T. Cassidy and M. Vancliff. Generalizations of graded Clifford algebras and of complete intersections. J. Lond. Math. Soc., 81(1):91–112, 2010W. X. Chen and S. Y. Cui. On weakly semicommutative rings. Commun. Math. Res., 27(2):179–192, 2011P. M. Cohn. Quadratic extensions of skew fields. Proc. London Math. Soc., 11(3):531–556, 1961P. M. Cohn. Free Rings and Their Relations. Second Edition. Academic Press, London, 1985A. Connes. Noncommutative Geometry. Academic Press, 1994M. Contessa. On certain classes of PM rings. Comm. Algebra, 12(12):1447–1469, 1984S. C. Coutinho. A Primer of Algebraic D-modules. Cambridge University Press. London Mathematical Society, Student Texts 33, 1995G. Demarco and A. Orsatti. Commutative rings in which every prime ideal is contained in a unique maximal ideal. Proc. Amer. Math. Soc., 30(3):459–466, 1971V. G. Drinfeld. Quantum groups. J. Math. Sci., 41(2):898–915, 1988F. Dumas. Sous-corps de fractions rationnelles des corps gauches de series de Laurent. Topics in Invariant Theory, Lecture Notes in Math. Vol. 1478, 1991W. Fajardo, C. Gallego, O. Lezama, A. Reyes, H. Suárez, and H. Venegas. Skew PBW Extensions. Ring and Module-theoretic Properties, Matrix and Gröbner Methods, and Applications. Algebra and Applications. Springer, Cham, 2020C. Gallego and O. Lezama. Gröbner bases for ideals of σ-PBW extensions. Comm. Algebra, 39(1):50–75, 2011A. Giaquinto and J. J. Zhang. Quantum Weyl Algebras. J. Algebra, 176(3):861–881, 1995V. Ginzburg. Lectures on Noncommutative Geometry. arXiv:math/0506603v1. 2005J. Goldman. Rings and Modules of Quotients. J. Algebra, 13(1):10–47, 1969A. V. Golovashkin and V. M. Maksimov. Skew Ore polynomials of higher orders generated by homogeneous quadratic relations. Russian Math. Surveys, 53(2):384–386, 1998A. V. Golovashkin and V. M. Maksimov. On algebras of skew polynomials generated by quadratic homogeneous relations. J. Math. Sci., 129(2):3757–3771, 2005K. R. Goodearl. Von Neumann regular rings, volume 4 of Monographs and Studies in Mathematics. Pitman, 1979K. R. Goodearl and R. B. Warfield. An Introduction to Noncommutative Noetherian Rings. Cambridge University Press. London, 2004H. S. Green. A generalized method of field quantization. Phys. Rev., 90(2):270, 1953O. W. Greenberg and A. M. L. Messiah. Selection Rules for Parafields and the Absence of Para Particles in Nature. Phys. Rev., 138(5B):B1155–B1167, 1965M. Hamidizadeh, E. Hashemi, and A. Reyes. A classification of ring elements in skew PBW extensions over compatible rings. Int. Electron. J. Algebra, 28(1):75–97, 2020J. Han, Y. Lee, and S. Park. Structure of NI rings related to centers. Comm. Algebra, 49(2):621–630, 2021R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics 52, SpringerVerlag, New York, Heidelberg, Berlin, 1977E. Hashemi, M. Hamidizadeh, and A. Alhevaz. Some types of ring elements in Ore extensions over noncommutative rings. J. Algebra Appl., 16(11):1750201–1–1750201–17, 2017E. Hashemi, Kh. Khalilnezhad, and A. Alhevaz. (Σ, ∆)-compatible skew PBW extension ring. Kyungpook Math. J., 57(3):401–417, 2017E. Hashemi, Kh. Khalilnezhad, and A. Alhevaz. Extensions of rings over 2-primal rings. Matematiche, 74(I):141–162, 2019E. Hashemi and A. Moussavi. Polinomial extensions of quasi-Baer rings. Acta Math. Hungar., 107(3):207–224, 2005T. Hayashi. q-analogues of Clifford and Weyl algebras-Spinor and oscillator representations of quantum enveloping algebras. Comm. Math. Phys., 127(1):129–144, 1990J. Hernández and A. Reyes. A Survey on Some Algebraic Characterizations of Hilbert’s Nullstellensatz for Non-commutative Rings of Polynomial Type. Ingeniería y Ciencia, 16(31):27–52, 2020S. Higuera and A. Reyes. A survey on the fusible property for skew PBW extensions. J. Algebr. Syst., 10(1):1–29, 2022O. Hinchcliffe. Diffusion algebras. PhD thesis, University of Sheffield, 2005C. Y. Hong, N. K. Kim, and T. K. Kwak. Ore extensions of Baer and p.p.-rings. J. Pure Appl. Algebra, 151(3):215–226, 2000C. Y. Hong, N. K. Kim, and T. K. Kwak. On skew Armendariz rings. Comm. Algebra, 31(1):103–122, 2003C. Y. Hong, T. K. Kwak, and S. T. Rizvi. Extensions of generalized Armendariz rings. Algebra Colloq., 13(2):253–266, 2006C. Huh, N. K. Kim, and Y. Lee. Examples of strongly π-regular rings. J. Pure Appl. Algebra, 189(1-3):195–210, 2004C. Huh, Y. Lee, and A. Smoktunowicz. Armendariz rings and semicommutative rings. Comm. Algebra, 30(2):751–761, 2002S. U. Hwang, Y. C. Jeon, and Y. Lee. Structure and topological conditions of NI rings. J. Algebra, 302(1):186–199, 2006A. P. Isaev, P. N. Pyatov, and V. Rittenberg. Diffusion algebras. J. Phys. A, 34(29):5815–5834, 2001A. Jannussis, A. Leodaris, and R. Mignani. Non-Hermitian Realization of a Lie-deformed Heisenberg algebra. Phys. Lett. A, 197(3):187–191, 1995J. C. Jantzen. Lectures on Quantum Groups. Amer. Math. Soc. Vol. 6, 1996J. Jaramillo and A. Reyes. Symmetry and Reversibility Properties for Quantum Algebras and Skew Poincaré-Birkhoff-Witt Extensions. Ingeniería y Ciencia, 14(27):29–52, 2018M. Jiang, Y. Wang, and Y. Ren. Extensions and topological conditions of NJ rings. Turkish J. Math., 43(1):44–62, 2019M. Jimbo. A q-Difference analogue of U(g) and the Yang-Baxter Equation. Lett. Math. Phys., 10(1):63–69, 1985D. Jordan. The Graded Algebra Generated by Two Eulerian Derivatives. Algebr. Represent. Theory, 4(3):249–275, 2001D. A. Jordan. Finite-dimensional simple modules over certain iterated skew polynomial rings. J. Pure Appl. Algebra, 98(1):45–55, 1995D. A. Jordan. Down-Up Algebras and Ambiskew Polynomial Rings. J. Algebra, 228(1):311–346, 2000D. A. Jordan and I. E. Wells. Invariants for automorphisms of certain iterated skew polynomial rings. Proc. Edinb. Math. Soc., 39(3):461–472, 1996K. Kanakoglou and C. Daskaloyannis. Bosonisation and Parastatistics. In: S. Silvestrov and E. Paal and V. Abramov and A. Stolin (eds). Generalized Lie Theory in Mathematics, Physics and Beyond. Springer, Berlin, Heidelberg, pp. 207–218, 2009P. Kanwar, A. Leroy, and J. Matczuk. Clean elements in polynomial rings. In: S. Dougherty, A. Facchini, A. Leroy, E. Puczylowski and P. Solé (eds). Noncommutative Rings and their Applications, Contemp. Math., AMS, Vol. 634, pp. 197–204, 2015I. Kaplansky. A quasi-commutative ring that is not neo-commutative. Proc. Amer. Math. Soc., 122(1):321, 1994O. A. Karamzadeh. On constant products of polynomials. Int. J. Math. Edu. Technol., 18:627–629, 1987N. K. Kim and Y. Lee. Armendariz rings and reduced rings. J. Algebra, 223(2):477–488, 2000E. Kirkman, I. M. Musson, and D. Passman. Noetherian Down-Up Algebras. Proc. Amer. Math. Soc., 127(11):3161–3167, 1999K. Krebs and S. Sandow. Matrix product eigenstates for one-dimensional stochastic models and quantum spin chains. J. Phys. A: Math. Gen., 30(9):3165–3173, 1997J. Krempa. Some examples of reduced rings. Algebra Colloq., 3(4):289–300, 1996T. Y. Lam. A First Course in Noncommutative Rings. New York, USA. SpringerVerlag, 1991L. le Bruyn. Two remarks on Witten’s quantum enveloping algebra. Comm. Algebra, 22(3):865–876, 1994L. le Bruyn. Central singularities of quantum spaces. J. Algebra, 177(1):142–153, 1995T. K. Lee and T. L. Wong. On Armendariz rings. Houston J. Math., 29(3):583–593, 2003V. Levandovskyy. Non-commutative Computer Algebra for polynomial algebras: Gröbner bases, applications and implementation. PhD thesis, University of Kaiserslautern, 2005, KaiserslauternO. Lezama. Computation of point modules of finitely semi-graded rings. Comm. Algebra, 48(2):866–878, 2020O. Lezama. Algebraic sets, ideals of points and the Hilbert’s Nullstellensatz theorem for skew PBW extensions. https://arxiv.org/abs/2106.12088, 2021O. Lezama. Some Open Problems in the Context of Skew PBW Extensions and Semi-graded Rings. Commun. Math. Stat., 9(3):347–378, 2021O. Lezama, J. P. Acosta, and A. Reyes. Prime ideals of skew PBW extensions. Rev. Un. Mat. Argentina, 56(2):39–55, 2015O. Lezama and J. Gómez. Koszulity and Point Modules of Finitely Semi-graded Rings and Algebras. Symmetry, 11(7):1–22, 2019O. Lezama and E. Latorre. Non-commutative algebraic geometry of semi-graded rings. Internat. J. Algebra Comput., 27(4):361–389, 2017O. Lezama and A. Reyes. Some Homological Properties of Skew PBW Extensions. Comm. Algebra, 42(3):1200–1230, 2014O. Lezama and H. Venegas. Some homological properties of skew PBW extensions arising in non-commutative algebraic geometry. Discuss. Math. Gen. Algebra Appl., 37(1):45–57, 2017H. Li and F. van Oystaeyen. Zariskian filtrations. K-Monographs in Mathematics, Vol. 2, Springer Science, 1996M. Louzari and A. Reyes. Generalized Rigid Modules and Their Polynomial Extensions. In: M. Siles Molina, L. El Kaoutit, M. Louzari, L. Ben Yakoub and M. Benslimane (eds). Associative and Non-Associative Algebras and Applications. MAMAA 2018. Springer Proceedings in Mathematics and Statistics, Vol 311. Springer, Cham., 2020M. Louzari and A. Reyes. Minimal prime ideals of skew PBW extensions over 2-primal compatible rings. Rev. Colombiana Mat., 54(1):39–63, 2020V. M. Maksimov. On a generalization of the ring of skew Ore polynomials. Russian Math. Surveys, 55:817–818, 2000V. M. Maksimov. Canonical forms of skew polynomial rings. J. Math. Sci. (N.Y.), 126(2):1064–1076, 2005G. Marks. On 2-primal Ore extensions. Comm. Algebra, 29(5):2113–2123, 2001G. Marks. A taxonomy of 2-primal rings. J. Algebra, 266(2):494–520, 2003J. Matczuk. A characterization of σ-rigid rings. Comm. Algebra, 32(11):4333–4336, 2004J. McConnell and J. Robson. Noncommutative Noetherian Rings, volume 30 of Graduate Studies in Mathematics. American Mathematical Society, Second edition, 2001B. R. McDonald. Linear Algebra Over Commutative Rings. New York. Basel, Marcel Dekker, Inc., 1984M. Medina-Bárcenas, L. Morales-Callejas, M. L. S. Sandoval-Miranda, and A. Zaldívar-Corichi. On strongly harmonic and Gelfand modules. Comm. Algebra, 48(5):1985–2013, 2020A. Moussavi and E. Hashemi. On (α, δ)-skew Armendariz rings. J. Korean Math. Soc., 42(2):353–363, 2005C. J. Mulvey. A generalisation of Swan’s theorem. Math. Z., 151(1):57–70, 1976C. J. Mulvey. A generalisation of Gelfand duality. J. Algebra, 56(2):494–505, 1979C. J. Mulvey. Representations of Rings and Modules. In: M. Fourman, C. Mulvey and D. Scott (eds). Applications of Sheaves, Lecture Notes in Mathematics, Vol. 753, Springer, Berlin, Heidelberg, pp. 542–585, 1979A. Nasr-Isfahani. Jacobson Radicals of Skew Polynomial Rings of Derivation Type. Canad. Math. Bull., 57(3):609–613, 2014A. Nasr-Isfahani. On NI Skew Polynomial Rings. Comm. Algebra, 43(12):5113–5120, 2015A. R. Nasr-Isfahani and A. Moussavi. On Classical Quotient Rings of Skew Armendariz Rings. Int. J. Math. Math. Sci., 2007:1–7, 2007W. K. Nicholson. Lifting idempotents and exchange rings. Trans. Amer. Math. Soc., 229:269–278, 1977W. K. Nicholson and Y. Zhou. Clean rings: A survey. In: J. L. Chen, N. Q. Ding and H. Marubayashi (eds). Advances in Ring Theory, Proceedings of the 4th China - Japon - Korea International Conference China 24–28, June 2004, World Scientific, pp. 181–198, 2005A. Niño, M. C. Ramírez, and A. Reyes. Associated prime ideals over skew PBW extensions. Comm. Algebra, 48(12):5038–5055, 2020A. Niño and A. Reyes. Some ring theoretical properties of skew Poincaré-Birkhoff-Witt extensions. Bol. Mat., 24(2):131–148, 2017A. Niño and A. Reyes. Some remarks about minimal prime ideals of skew Poincaré-Birkhoff-Witt extensions. Algebra Discrete Math., 30(2):207–229, 2020E. Noether and W. Schmeidler. Moduln in nichtkommutativen bereichen, insbesondere aus differential - und differenzenausdrücken. Math. Zeitschrift, 8:1–35, 1920O. Ore. Linear Equations in Non-commutative Fields. Ann. of Math. Second Series, 32(3):463–477, 1931O. Ore. Theory of Non-Commutative Polynomials. Ann. of Math. Second Series, 34(3):480–508, 1933V. L. Ostrovskii and Yu. S. Samoilenko. Representation of ∗-algebras with two generators and polynomial relations. J. Math. Sci., 59(5):1107–1113, 1992L. Ouyang and J. Liu. On weak (α, δ)-compatible rings. Int. J. Algebra, 5(26):1283–1296, 2011L. Ouyang, J. Liu, and Y. Xiang. Ore extensions of skew π-Armendariz rings. Bull. Iranian Math. Soc., 39(2):355–368, 2013P. N. Pyatov and R. Twarock. Construction of diffusion algebras. J. Math. Phys., 43(6):3268–3279, 2002I. T. Redman. The Non-Commutative Algebraic Geometry of some Skew Polynomial Algebras. PhD thesis, University of Wisconsin - Milwaukee, 1996I. T. Redman. The homogenization of the three dimensional skew polynomial algebras of type I. Comm. Algebra, 27(11):5587–5602, 1999M. B. Rege and S. Chhawchharia. Armendariz Rings. Proc. Japan Acad. Ser. A Math. Sci., 73(1):14–17, 1997A. Reyes. Skew PBW extensions of Baer, quasi-Baer, p.p. and p.q.-rings. Rev. Integr. Temas Mat., 33(2):173–189, 2015A. Reyes. σ-PBW Extensions of Skew Π-Armendariz Rings. Far East J. Math. Sci. (FJMS), 103(2):401–428, 2018A. Reyes. Armendariz modules over skew PBW extensions. Comm. Algebra, 47(3):1248–1270, 2019A. Reyes and C. Rodríguez. The McCoy Condition on Skew Poincaré-Birkhoff-Witt extensions. Commun. Math. Stat., 9(1):1–21, 2021A. Reyes and C. Sarmiento. On the differential smoothness of 3-dimensional skew polynomial algebras and diffusion algebras. Internat. J. Algebra Comput., 32(03):529–559, 2022A. Reyes and H. Suárez. Armendariz property for skew PBW extensions and their classical ring of quotients. Rev. Integr. Temas Mat., 34(2):147–168, 2016A. Reyes and H. Suárez. PBW Bases for Some 3-Dimensional Skew Polynomial Algebras. Far East J. Math. Sci., 101(6):1207–1228, 2017A. Reyes and H. Suárez. σ-PBW extensions of Skew Armendariz Rings. Adv. Appl. Clifford Algebr., 27(4):3197–3224, 2017A. Reyes and H. Suárez. A notion of compatibility for Armendariz and Baer properties over skew PBW extensions. Rev. Un. Mat. Argentina, 59(1):157–178, 2018A. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak zip rings. Beitr Algebra Geom., 60(2):197–216, 2019A. Reyes and H. Suárez. Skew Poincaré-Birkhoff-Witt extensions over weak compatible rings. J. Algebra Appl., 19(12):2050225(1)–2050225(21), 2020A. Reyes and H. Suárez. Radicals and Köthe’s conjecture for skew PBW extensions. Commun. Math. Stat., 9(2):119–138, 2021A. Reyes and H. Suárez. Skew PBW extensions over symmetric rings. Algebra Discrete Math., 32(1):76–102, 2021V. Rittenberg and D. Wyler. Generalized superalgebras. Nucl. Phys. B, 139(3):189–202, 1978A. Rosenberg. Non-commutative Algebraic Geometry and Representations of Quantized Algebras. Math. Appl. Soviet Ser., 330 Kluwer Academic Publishers, 1995I. Rubio and L. Acosta. On Spectral Compactness of von Neumann Regular Rings. Rev. Colombiana Mat., 46(1):81–95, 2012W. Rump. The Weighted Spectrum of a Regular Ring. Forum Math., 22(4):683–697, 2010G. Shin. Prime ideals and sheaf representation of a pseudosymmetric rings. Trans. Amer. Math. Soc., 184:43–60, 1973H. Simmons. Reticulated rings. J. Algebra, 66(1):169–192, 1980H. Simmons. Erratum. Reticulated rings: Volume 66 number 1, September 1980: H. Simmons pp. 169–192. J. Algebra, 74(1):292, 1982S. P. Smith. A Class of Algebras Similar to the Enveloping of sl(2). Comm. Algebra, 322(1):285–314, 1991S. P. Smith. Non-commutative algebraic geometry. Department of Mathematics. University of Washington, 2000T. H. M. Smits. Skew polynomial rings. Indag. Math., 71(1):209–224, 1968B. Stenström. Rings of Quotients. An Introduction to Methods of Ring Theory. Springer-Verlag, 1975H. Suárez. Koszulity for graded skew PBW extensions. Comm. Algebra, 45(10):4569–4580, 2017H. Suárez, F. Anaya, and A. Reyes. Propiedad χ en extensiones PBW torcidas graduadas. Ciencia en Desarrollo, 12(1):33–41, 2021H. Suárez, D. Cáceres, and A. Reyes. Some special types of determinants in graded skew PBW extensions. Rev. Integr. Temas Mat., 391(1):91–107, 2021H. Suárez, A. Chacón, and A. Reyes. On NI and NJ skew PBW extensions. Comm. Algebra, 50(8):3261–3275, 2022H. Suárez, S. Higuera, and A. Reyes. On Σ-skew reflexive-nilpotents-property for rings. https://arxiv.org/abs/2110.14061. 2021H. Suárez, A. Reyes, and Y. Suárez. Homogenized skew PBW extensions. Arab. J. Math. (Springer)., 12(1):247–263, 2023S. H. Sun. Noncommutative rings in which every prime ideal is contained in a unique maximal right ideal. J. Pure Appl. Algebra, 76(2):179–192, 1991S. H. Sun. On separation lemmas. J. Pure Appl. Algebra, 78(3):301–310, 1992S. H. Sun. Rings in which every prime ideal is contained in a unique maximal right ideal. J. Pure Appl. Algebra, 78(2):183–194, 1992H. Suárez, O. Lezama, and A. Reyes. Calabi-Yau property for graded skew PBW extensions. Rev. Colombiana Mat., 51(2):221–238, 2017A. B. Tumwesigye, J. Richter, and S. Silvestrov. Centralizers in PBW extensions. In: S. Silvestrov, A. Malyarenko and M. Rancic (eds). Algebraic Structures and Applications. SPAS 2017. Springer Proc. Math. Stat. Vol. 317, Springer, pp. 469–490, 2020R. Twarok. Representations for Selected Types of Diffusion Systems. In: E. Kapuscik and A. Horzela (eds). Quantum Theory and Symmetries. Proceedings of the Second International Symposium, Held 18–21, July 2001 in Kraków, Poland, World Scientific Publishing Co. Pte. Ltd., pp. 615–620, 2002V. A. Ufnarovskii. Combinatorial and asymptotic methods in algebra. Algebra – 6, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr, 57:5–177, 1990F. van Oystaeyen. On graded rings and modules of quotients. Comm. Algebra, 6(18):1923–1959, 1978F. van Oystaeyen. Algebraic Geometry for Associative Algebras. Pure and Applied Mathematics, CRC Press Taylor & Francis Group, 2000F. van Oystaeyen and L. A. Willaert. Grothendieck topology, coherent sheaves and Serre’s theorem for schematic algebras. J. Pure Appl. Algebra, 104(1):109–122, 1995F. van Oystaeyen and L. A. Willaert. Cohomology of Schematic Algebras. J. Algebra, 185(1):74–84, 1996F. van Oystaeyen and L. A. Willaert. The Quantum Site of a Schematic Algebra. Comm. Algebra, 24(1):209–122, 1996F. van Oystaeyen and L. A. Willaert. Examples and quantum sections of schematic algebras. J. Pure Appl. Algebra, 120(2):195–211, 1997N. Ja. Vilenkin and A. U. Klimyk. Representation of Lie Groups and Special Functions. Kluwer Academic Publishers, 1995J. von Neumann. On Regular Rings. Proc. Natl. Acad. Sci. USA, 22(12):707–713, 1936L. A. Willaert. A new dimension for schematic algebras. In: S. Caenepeel and A. Verschoren (eds). Rings, Hopf algebras, and Brauer Groups, Lecture Notes in Pure and Applied Mathematics, pp. 325–332, 1998E. Witten. Gauge theories, vertex models, and quantum groups. Nuclear Phys. B, 330(2-3):285–346, 1990E. Witten. Quantization of Chern-Simons Gauge Theory with Complex Gauge Group. Comm. Math. Phys., 137(1):29–66, 1991S. L. Woronowicz. Twisted SU(2)-Group. An Example of a Non-commutative Differential Calculus. Publ. Res. Inst. Math. Sci., 23:117–181, 1987H. Yamane. A Poincaré-Birkhoff-Witt Theorem for Quantized Universal Enveloping Algebras of Type AN . Publ. RIMS Kyoto Univ., 25(3):503–520, 1989G. Yunus, Z. Gao, and A. Obul. Gröbner-Shirshov Basis of Quantum Groups. Algebra Colloq., 22(3):495–516, 2015G. Zhang, W. Tong, and F. Wang. Spectra of Maximal 1-Sided Ideals and Primitive Ideals. Comm. Algebra, 34(8):2879–2896, 2006G. Zhang, W. Tong, and F. Wang. Spectrum of a Noncommutative Ring. Comm. Algebra, 34(8):2795–2810, 2006G. Zhang, F. Wang, and W. Xu. Gelfand Factor Rings and Weak Zariski Topologies. Comm. Algebra, 35(8):2628–2645, 2007J. J. Zhang and J. Zhang. Double Ore extensions. J. Pure Appl. Algebra, 212(12):2668–2690, 2008A. S. Zhedanov. “Hidden symmetry” of Askey–Wilson polynomials. Theoret. and Math. Phys., 89(2):1146–1157, 1991LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84866/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1032455420.2022.pdf1032455420.2022.pdfTesis deDoctorado en Ciencias - Matemáticasapplication/pdf1374511https://repositorio.unal.edu.co/bitstream/unal/84866/2/1032455420.2022.pdf1b36c8bcd299265f879557c4fcd4ec0aMD52THUMBNAIL1032455420.2022.pdf.jpg1032455420.2022.pdf.jpgGenerated Thumbnailimage/jpeg4071https://repositorio.unal.edu.co/bitstream/unal/84866/3/1032455420.2022.pdf.jpg62f21032f0ce3b6d1dfc7492fb8d1740MD53unal/84866oai:repositorio.unal.edu.co:unal/848662024-08-19 23:10:45.679Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |