Contribución al diseño de un método de disolución predictivo para evaluar una forma farmacéutica de liberación modificada de carbamazepina

ilustraciones, diagramas

Autores:
Carvajal Barbosa, Laura
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86344
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86344
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
610 - Medicina y salud::615 - Farmacología y terapéutica
Carbamazepina/síntesis química
Disolución
Técnicas In Vitro/métodos
Carbamazepine/chemical synthesis
Dissolution
In Vitro Techniques/methods
Correlación in vivo in vitro
Carbamazepina
Método de disolución
Liberación modificada
Aparato de disolución USP 4
Celda de flujo
In vivo in vitro correlation
Carbamazepine
Dissolution method
Modified release
Dissolution apparatus USP 4
Flow-through cell
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_cb4874e98e4dc045258d0bcd97579d2f
oai_identifier_str oai:repositorio.unal.edu.co:unal/86344
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Contribución al diseño de un método de disolución predictivo para evaluar una forma farmacéutica de liberación modificada de carbamazepina
dc.title.translated.eng.fl_str_mv Two-Step In Vitro-In Vivo Correlation for the Development a Predictive Flow Through Cell Dissolution Method for Carbamazepine Modified Release Tablet
title Contribución al diseño de un método de disolución predictivo para evaluar una forma farmacéutica de liberación modificada de carbamazepina
spellingShingle Contribución al diseño de un método de disolución predictivo para evaluar una forma farmacéutica de liberación modificada de carbamazepina
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
610 - Medicina y salud::615 - Farmacología y terapéutica
Carbamazepina/síntesis química
Disolución
Técnicas In Vitro/métodos
Carbamazepine/chemical synthesis
Dissolution
In Vitro Techniques/methods
Correlación in vivo in vitro
Carbamazepina
Método de disolución
Liberación modificada
Aparato de disolución USP 4
Celda de flujo
In vivo in vitro correlation
Carbamazepine
Dissolution method
Modified release
Dissolution apparatus USP 4
Flow-through cell
title_short Contribución al diseño de un método de disolución predictivo para evaluar una forma farmacéutica de liberación modificada de carbamazepina
title_full Contribución al diseño de un método de disolución predictivo para evaluar una forma farmacéutica de liberación modificada de carbamazepina
title_fullStr Contribución al diseño de un método de disolución predictivo para evaluar una forma farmacéutica de liberación modificada de carbamazepina
title_full_unstemmed Contribución al diseño de un método de disolución predictivo para evaluar una forma farmacéutica de liberación modificada de carbamazepina
title_sort Contribución al diseño de un método de disolución predictivo para evaluar una forma farmacéutica de liberación modificada de carbamazepina
dc.creator.fl_str_mv Carvajal Barbosa, Laura
dc.contributor.advisor.spa.fl_str_mv Aragón Novoa, Diana Marcela
dc.contributor.author.spa.fl_str_mv Carvajal Barbosa, Laura
dc.contributor.researchgroup.spa.fl_str_mv Sistemas Para Liberación Controlada de Moléculas Biológicamente Activas
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
610 - Medicina y salud::615 - Farmacología y terapéutica
topic 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
610 - Medicina y salud::615 - Farmacología y terapéutica
Carbamazepina/síntesis química
Disolución
Técnicas In Vitro/métodos
Carbamazepine/chemical synthesis
Dissolution
In Vitro Techniques/methods
Correlación in vivo in vitro
Carbamazepina
Método de disolución
Liberación modificada
Aparato de disolución USP 4
Celda de flujo
In vivo in vitro correlation
Carbamazepine
Dissolution method
Modified release
Dissolution apparatus USP 4
Flow-through cell
dc.subject.decs.spa.fl_str_mv Carbamazepina/síntesis química
Disolución
Técnicas In Vitro/métodos
dc.subject.decs.eng.fl_str_mv Carbamazepine/chemical synthesis
Dissolution
In Vitro Techniques/methods
dc.subject.proposal.spa.fl_str_mv Correlación in vivo in vitro
Carbamazepina
Método de disolución
Liberación modificada
Aparato de disolución USP 4
Celda de flujo
dc.subject.proposal.eng.fl_str_mv In vivo in vitro correlation
Carbamazepine
Dissolution method
Modified release
Dissolution apparatus USP 4
Flow-through cell
description ilustraciones, diagramas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-02T18:54:10Z
dc.date.available.none.fl_str_mv 2024-07-02T18:54:10Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86344
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86344
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv Bireme
dc.relation.references.spa.fl_str_mv Aguilar Ros, A., Caamaño Somoza, Manuel., Martín Martín, F. R., & Montejo Rubio, M. Consuelo. (2014). Biofarmacia y farmacocinética : ejercicios y problemas resueltos (B. Elsevier, Ed.; 2nd ed.). https://bibliotecadigital.uchile.cl/discovery/fulldisplay?docid=alma991002291699703936&context=L&vid=56UDC_INST:56UDC_INST&lang=es&adaptor=Local%20Search%20Engine&tab=Everything&query=sub,exact,%20Tecnologi%CC%81a%20farmace%CC%81utica,AND&mode=advanced&offset=10
Aldenkamp, A. P., Alpherts, W. C. J., Moerland, M. C., Ottevanger, N., & Parys, J. A. P. V. (1987). Controlled release carbamazepine: cognitive side effects in patients with epilepsy. Epilepsia, 28(5), 507–514. https://doi.org/10.1111/J.1528-1157.1987.TB03679.X
Alizadeh, M. N., Shayanfar, A., & Jouyban, A. (2018). Solubilization of drugs using sodium lauryl sulfate: Experimental data and modeling. Journal of Molecular Liquids, 268, 410–414. https://doi.org/10.1016/j.molliq.2018.07.065
Alvarado, A. T., Muñoz, A. M., Bendezú, M. R., Palomino-Jhong, J. J., García, J. A., Alvarado, C. A., Alvarado, E. A., Ochoa-Pachas, G., Pineda-Pérez, M., & Bolarte, M. (2021). In Vitro Biopharmaceutical Equivalence of Carbamazepine Sodium Tablets Available in Lima, Peru. Dissolution Technologies, 28(2). https://doi.org/10.14227/DT280221PGC2
Ambrósio, A. F., Soares-da-Silva, P., Carvalho, C. M., & Carvalho, A. P. (2002). Mechanisms of action of carbamazepine and its derivatives, oxcarbazepine, BIA 2-093, and BIA 2-024. Neurochemical Research, 27(1–2), 121–130. https://doi.org/10.1023/A:1014814924965
Amidon, G. L., Lennernäs, H., Shah, V. P., & Crison, J. R. (1995). A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharmaceutical Research, 12(3), 413–420. https://doi.org/10.1023/A:1016212804288
Baena, Y., & Ponce D’León, L. F. (2008). Importancia y fundamentación del sistema de clasificación biofarmacéutico, como base de la exención de estudios de biodisponibilidad y bioequivalencia in vivo. Revista Colombiana de Ciencias Químico - Farmacéuticas, 37(1), 18–32. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0034-74182008000100002
Barzegar-Jalali, M., Maleki, N., Garjani, A., Khandar, A. A., Haji-Hosseinloo, M., Jabbari, R., & Dastmalchi, S. (2002). Enhancement of Dissolution Rate and Anti-inflammatory Effects of Piroxicam Using Solvent Deposition Technique. Drug Development and Industrial Pharmacy, 28(6), 681–686. https://doi.org/10.1081/DDC-120003859
Bermejo, M., Meulman, J., Davanço, M. G., Carvalho, P. de O., Gonzalez-Alvarez, I., & Campos, D. R. (2020). In Vivo Predictive Dissolution (IPD) for Carbamazepine Formulations: Additional Evidence Regarding a Biopredictive Dissolution Medium. Pharmaceutics 2020, Vol. 12, Page 558, 12(6), 558. https://doi.org/10.3390/PHARMACEUTICS12060558
Bodhe, R., Deshmukh, R., Gorale, A., Shinde, R., & Bodhe, P. (2019). Formulation, Development and Evaluation of Carbamazepine Extended Release Tablet: Dissolution Apparatus USP IV. World Journal of Pharmaceutical Research, 8(9), 1484–1504. https://doi.org/10.20959/wjpr20199-15588
Bondareva, I. B., Jelliffe, R. W., Gusev, E. I., Guekht, A. B., Melikyan, E. G., & Belousov, Y. B. (2006). Population pharmacokinetic modelling of carbamazepine in epileptic elderly patients: implications for dosage. Journal of Clinical Pharmacy and Therapeutics, 31(3), 211–221. https://doi.org/10.1111/j.1365-2710.2006.00717.x
Bruschi, M. L. (2015). Mathematical models of drug release. In Strategies to Modify the Drug Release from Pharmaceutical Systems (pp. 63–86). Elsevier. https://doi.org/10.1016/B978-0-08-100092-2.00005-9
Cárdenas Cuadros, P. A. (2015). Estudio de la correlación in vitro/ in vivo de la liberación de 6-metilcumarina a partir de un sistema micropartículado [Tesis doctoral, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/56673
Cárdenas, P. A., Jiménez – Kairuz, Á., Verlindo de Araujo, B., & Aragón, D. M. (2019). Development of a dissolution method based on lipase for preclinical level A IVIVC of oral poly(ε-caprolactone) microspheres. Journal of Drug Delivery Science and Technology, 52, 632–641. https://doi.org/10.1016/j.jddst.2019.05.011
Carrión Recio, D., González Delgado, C. A., Olivera Ruano, L., & Correa Fernández, A. (1999). Bioequivalencia: Introducción a la correlación in vivo-in vitro. Parte I. Revista Cubana de Farmacia, 33(2), 137-142. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75151999000200010
Comisión Federal para la Protección contra Riesgos Sanitarios (COFEPRIS). (2024). Consulta de Registros Sanitarios . https://tramiteselectronicos02.cofepris.gob.mx/BuscadorPublicoRegistrosSanitarios/BusquedaRegistroSanitario.aspx
Costa, P., & Sousa Lobo, J. M. (2001). Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences, 13(2), 123–133. https://doi.org/10.1016/S0928-0987(01)00095-1
Ding, A., Zhou, Y., Chen, P., & Nie, W. (2017). Ibuprofen-loaded micelles based on star-shaped erythritol-core PLLA-PEG copolymer: effect of molecular weights of PEG. Colloid and Polymer Science, 295(9), 1609–1619. https://doi.org/10.1007/s00396-017-4141-6
Dressman, J. B. (Jennifer B. ), & Krämer, J. (2005). Pharmaceutical dissolution testing. Taylor & Francis.
Eichelbaum, M., Köthe, K. W., Hoffmann, F., & von Unruh, G. E. (1982). Use of stable labelled carbamazepine to study its kinetics during chronic carbamazepine treatment. European Journal of Clinical Pharmacology 1982 23:3, 23(3), 241–244. https://doi.org/10.1007/BF00547561
EL-Massik, M. A., Abdallah, O. Y., Galal, S., & Daabis, N. A. (2006). Towards a Universal Dissolution Medium for Carbamazepine. Drug Development and Industrial Pharmacy, 32(7), 893–905. https://doi.org/10.1080/03639040600762677
European Medicines Agency (EMEA). (2010). Guideline On The Investigation of Bioequivalence Discussion in the Joint Efficacy and Quality Working Group. http://www.ema.europa.eu
Figueroa, A. I., Gonzalez, M., Merino, V., & Bermejo, M. del V. (2019). Desarrollo de métodos de disolución con capacidad predictiva del rendimiento in vivo de formulaciones farmacéuticas [Tesis doctoral, Universitat de València]. https://hdl.handle.net/10550/70578
Food and Drug Administration (FDA). (1997). Guía para la Industria: Pruebas de disolución de formas de dosificación oral sólidas de liberación inmediata. Centro de Evaluación e Investigación de Drogas. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guia-para-la-industria-pruebas-de-disolucion-de-formas-de-dosificacion-oral-solidas-de-liberacion
Food and Drug Administration (FDA). (2018). Guía para la Industria: Formas de dosificación oral de liberación prolongada: elaboración, evaluación y aplicación de correlaciones in vitro/in vivo. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guia-para-la-industria-formas-de-dosificacion-oral-de-liberacion-prolongada-elaboracion-evaluacion-y
Food and Drug Administration (FDA). (2021). M9 Biopharmaceutics Classification System-Based Biowaivers. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/m9-biopharmaceutics-classification-system-based-biowaivers
Fotaki, N., & Reppas, C. (2005). The Flow Through Cell Methodology in the Evaluation of Intralumenal Drug Release Characteristics. Dissolution Technologies, 12(2), 17–21. https://doi.org/10.14227/DT120205P17
Gao, Z. (2009). In Vitro Dissolution Testing with Flow-Through Method: A Technical Note. AAPS PharmSciTech, 10(4), 1401. https://doi.org/10.1208/s12249-009-9339-6
Gohel, M., Parikh, R., Aghara, P., Nagori, S., Delvadia, R., & Dabhi, M. (2009). Application of Simplex Lattice Design and Desirability Function for the Formulation Development of Mouth Dissolving Film of Salbutamol Sulphate. Current Drug Delivery, 6(5), 486–494. https://doi.org/10.2174/156720109789941696
Gohel, M., Sarvaiya, K., Shah, A., & Brahmbhatt, B. (2009). Mathematical Approach for the Assessment of Similarity Factor Using a New Scheme for Calculating Weight. Indian Journal of Pharmaceutical Sciences, 71(2), 142. https://doi.org/10.4103/0250-474X.54281
González García, I., Mangas Sanjuan, V., Merino Sanjuán, M., Álvarez Álvarez, C., Díaz Garzón, M. J., Rodríguez Bonnín, M. A., Langguth, T., Torrado Durán, J. J., Langguth, P., García Arieta, A., & Bermejo, M. (2017). IVIVC approach based on carbamazepine bioequivalence studies combination. Die Pharmazie, 72(8), 449–455. https://doi.org/10.1691/PH.2017.7011
Graves, N. M., Brundage, R. C., Wen, Y., Cascino, G., So, E., Ahman, P., Rarick, J., Krause, S., & Leppik, I. E. (1998). Population Pharmacokinetics of Carbamazepine in Adults with Epilepsy. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 18(2), 273–281. https://doi.org/10.1002/j.1875-9114.1998.tb03853.x
Grupo SOTAX. (n.d.). CE 7smart Offline: Disolución con celdas de flujo continuo con recogida de muestras.
Hann, E., Malagu, K., Stott, A., & Vater, H. (2022). The importance of plasma protein and tissue binding in a drug discovery program to successfully deliver a preclinical candidate (pp. 163–214). https://doi.org/10.1016/bs.pmch.2022.04.002
Höpener, R. J., Kuyer, A., Meijer, J. W. A., & Hulsman, J. (1980). Correlation between daily fluctuations of carbamazepine serum levels and intermittent side effects. Epilepsia, 21(4), 341–350. https://doi.org/10.1111/J.1528-1157.1980.TB04081.X
Hopfenberg, H. B. (1976). Controlled Release from Erodible Slabs, Cylinders, and Spheres (pp. 26–32). https://doi.org/10.1021/bk-1976-0033.ch003
Hurtado y de la Peña, M., Vargas Alvarado, Y., Domínguez-Ramírez, A. M., & Cortés Arroyo, A. R. (2003). Comparison of Dissolution Profiles for Albendazole Tablets Using USP Apparatus 2 and 4. Http://Dx.Doi.Org/10.1081/DDC-120021777, 29(7), 777–784. https://doi.org/10.1081/DDC-120021777
Instituto Nacional de Vigilancia de Medicamentos y Alimentos (INVIMA). (2022). Tegretol Retard de 200 mg: Expediente Sanitario 227376, Registro Sanitario INVIMA 2018M-011160-R2. Sistema de Tramites En Linea - Consultas Publicas. https://consultaregistro.invima.gov.co/Consultas/consultas/consreg_encabcum.jsp
Instituto Nacional de Vigilancia de Medicamentos y Alimentos (INVIMA). (2024). Sistema de Tramites en Linea - Consultas Publicas. https://consultaregistro.invima.gov.co/Consultas/consultas/consreg_encabcum.jsp
Jinno, J. ichi, Kamada, N., Miyake, M., Yamada, K., Mukai, T., Odomi, M., Toguchi, H., Liversidge, G. G., Higaki, K., & Kimura, T. (2008). In vitro-in vivo correlation for wet-milled tablet of poorly water-soluble cilostazol. Journal of Controlled Release, 130(1), 29–37. https://doi.org/10.1016/J.JCONREL.2008.05.013
Jung Cook, H., de Anda Jáuregui, G., Rubio Carrasco, K., & Mayet Cruz, L. (2013). Comparación de perfiles de disolución: Impacto de los criterios de diferentes agencias regulatorias en el cálculo de ƒ2. Revista Mexicana de Ciencias Farmacéuticas, 43(3). http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-01952012000300007
Kassaye, L., & Genete, G. (2013). Evaluation and comparison of in-vitro dissolution profiles for different brands of amoxicillin capsules. African Health Sciences, 13(2). https://doi.org/10.4314/ahs.v13i2.25
Katzhendler, I., & Friedman, M. (1999). Zero-order sustained release matrix tablet formulations of carbamazepine (Patent No: US5980942A) (Patent US5980942A). United States Patent. https://patents.google.com/patent/US5980942A/en
Kayali, A., Tuglular, I., & Ertas, M. (1994). Pharmacokinetics of carbamazepine Part I: a new bioequivalency parameter based on a relative bioavailability trial. European Journal of Drug Metabolism and Pharmacokinetics, 19(4), 319–325. https://doi.org/10.1007/BF03188858
Kiuri, J. N., Maru, S. M., & Ndwigah, S. N. (2020). Product Evaluation of Carbamazepine 200mg Controlled Release Tablets using an in vitro-in vivo Correlation Simulation Model. East and Central African Journal of Pharmaceutical Sciences, 23(2), 60–66. https://www.ajol.info/index.php/ecajps/article/view/200123
Kovačević, I., Parojčić, J., Homšek, I., Tubić-Grozdanis, M., & Langguth, P. (2009). Justification of Biowaiver for Carbamazepine, a Low Soluble High Permeable Compound, in Solid Dosage Forms Based on IVIVC and Gastrointestinal Simulation. Molecular Pharmaceutics, 6(1), 40–47. https://doi.org/10.1021/mp800128y
Kuo, C. C., Chen, R. S., Lu, L., & Chen, R. C. (1997). Carbamazepine inhibition of neuronal Na+ currents: quantitative distinction from phenytoin and possible therapeutic implications. Molecular Pharmacology, 51(6), 1077–1083. https://doi.org/10.1124/MOL.51.6.1077
Lake, O. A., Olling, M., & Barends, D. M. (1999). In vitro/in vivo correlations of dissolution data of carbamazepine immediate release tablets with pharmacokinetic data obtained in healthy volunteers. European Journal of Pharmaceutics and Biopharmaceutics, 48(1), 13–19. https://doi.org/10.1016/S0939-6411(99)00016-8
Langenbucher, F. (2011). Letters to the Editor: Linearization of dissolution rate curves by the Weibull distribution. Journal of Pharmacy and Pharmacology, 24(12), 979–981. https://doi.org/10.1111/j.2042-7158.1972.tb08930.x
Lee, S. L., Raw, A. S., & Yu, L. (2008). Dissolution Testing. In Biopharmaceutics Applications in Drug Development (pp. 47–74). Springer US. https://doi.org/10.1007/978-0-387-72379-2_3
Lindenberg, M., Kopp, S., & Dressman, J. B. (2004). Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. European Journal of Pharmaceutics and Biopharmaceutics, 58(2), 265–278. https://doi.org/10.1016/J.EJPB.2004.03.001
Lopes, C. M., Lobo, J. M. S., & Costa, P. (2005). Formas farmacêuticas de liberação modificada: polímeros hidrifílicos. Revista Brasileira de Ciências Farmacêuticas, 41(2), 143–154. https://doi.org/10.1590/S1516-93322005000200003
Lu, Y., Kim, S., & Park, K. (2011). In vitro–in vivo correlation: Perspectives on model development. International Journal of Pharmaceutics, 418(1), 142–148. https://doi.org/10.1016/j.ijpharm.2011.01.010
Mateu López, L., & Herrera LLópiz, A. (2007). Fracturar tabletas de liberación modificada: ¿una práctica adecuada? Revista Cubana de Farmacia, 41(1). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75152007000100013
McLean, M. J., & Macdonald, R. L. (1983). Multiple actions of phenytoin on mouse spinal cord neurons in cell culture. Journal of Pharmacology and Experimental Therapeutics, 227(3).
Medina, J. R., Salazar, D. K., Hurtado, M., Cortés, A. R., & Domínguez-Ramírez, A. M. (2014). Comparative in vitro dissolution study of carbamazepine immediate-release products using the USP paddles method and the flow-through cell system. Saudi Pharmaceutical Journal, 22(2), 141–147. https://doi.org/10.1016/J.JSPS.2013.02.001
Medina Lopez, J. R., & Hurtado Y de la Peña, M. (2009). Dissolution of paracetamol suppositories using the flow-through cell system and their absorption in an animal model | Request PDF. Revista Mexicana de Ciencias Farmaceuticas , 40(2), 11–18. https://www.researchgate.net/publication/288673896_Dissolution_of_paracetamol_suppositories_using_the_flow-through_cell_system_and_their_absorption_in_an_animal_model
Resolución 1124 de 2016, 1 (2016).
Minitab LLC. (2023). Model reduction. https://support.minitab.com/en-us/minitab/20/help-and-how-to/statistical-modeling/regression/supporting-topics/regression-models/model-reduction/
Mittapalli, P. K., Suresh, B., Hussaini, S. S. Q., Rao, Y. M., & Apte, S. (2008). Comparative In Vitro Study of Six Carbamazepine Products. AAPS PharmSciTech, 9(2), 357. https://doi.org/10.1208/S12249-008-9035-Y
Mohamed Rizwan, I., & Damodharan, N. (2020). Mathematical Modelling of Dissolution Kinetics in Dosage forms. Research Journal of Pharmacy and Technology, 13(3), 1339. https://doi.org/10.5958/0974-360X.2020.00247.4
Moreno, J., Belmont, A., Jaimes, O., Santos, J. A., López, G., Campos, M. G., Amancio, O., Pérez, P., & Heinze, G. (2004). Pharmacokinetic study of carbamazepine and its carbamazepine 10,11-epoxide metabolite in a group of female epileptic patients under chronic treatment. Archives of Medical Research, 35(2), 168–171. https://doi.org/10.1016/j.arcmed.2003.09.016
Okumu, A., DiMaso, M., & Löbenberg, R. (2008). Dynamic dissolution testing to establish in vitro/in vivo correlations for montelukast sodium, a poorly soluble drug. Pharmaceutical Research, 25(12), 2778–2785. https://doi.org/10.1007/S11095-008-9642-Z
Olling, M., Mensinga, T. T., Barends, D. M., Groen, C., Lake, O. A., & Meulenbelt, J. (1999). Bioavailability of carbamazepine from four different products and the occurrence of side effects. Biopharmaceutics and Drug Disposition, 20(1), 19–28. https://doi.org/10.1002/(SICI)1099-081X(199901)20:1<19::AID-BDD152>3.0.CO;2-Q
Palma-Aguirre, J. A., & Barreiro Perera, O. (1992). Biodisponibilidad y bioequivalencia de medicamentos. Revista de La Facultad de Medicina, Universidad Nacional Autónoma de México, 35(1). http://revistas.unam.mx/index.php/rfm/article/view/74573
Paschal Iwundu, M., & Cosmos, J. (2022). The Efficiency of Seven-Variable Box-Behnken Experimental Design with Varying Center Runs on Full and Reduced Model Types. Journal of Mathematics and Statistics, 18(1), 196–207. https://doi.org/10.3844/jmssp.2022.196.207
Podczeck, F. (1993). Comparison of in vitro dissolution profiles by calculating mean dissolution time (MDT) or mean residence time (MRT). International Journal of Pharmaceutics, 97(1–3), 93–100. https://doi.org/10.1016/0378-5173(93)90129-4
Polli, J. E., Rekhi, G. S., Augsburger, L. L., & Shah, V. P. (1997). Methods to Compare Dissolution Profiles and a Rationale for Wide Dissolution Specifications for Metoprolol Tartrate tablets†. Journal of Pharmaceutical Sciences, 86(6), 690–700. https://doi.org/10.1021/js960473x
Punyawudho, B., Ramsay, E. R., Brundage, R. C., Macias, F. M., Collins, J. F., & Birnbaum, A. K. (2012). Population Pharmacokinetics of Carbamazepine in Elderly Patients. Therapeutic Drug Monitoring, 34(2), 176–181. https://doi.org/10.1097/FTD.0b013e31824d6a4e
Rabti, H., Mohammed Salmani, J. M., Elamin, E. S., Lammari, N., Zhang, J., & Ping, Q. (2014). Carbamazepine solubility enhancement in tandem with swellable polymer osmotic pump tablet: A promising approach for extended delivery of poorly water-soluble drugs. Asian Journal of Pharmaceutical Sciences, 9(3), 146–154. https://doi.org/10.1016/J.AJPS.2014.04.001
Rane, Y., Mashru, R., Sankalia, M., & Sankalia, J. (2007). Effect of hydrophilic swellable polymers on dissolution enhancement of carbamazepine solid dispersions studied using response surface methodology. AAPS PharmSciTech, 8(2), E1–E11. https://doi.org/10.1208/pt0802027
Rawlins, M. D., Collste, P., Bertilsson, L., & Palmér, L. (1975). Distribution and elimination kinetics of carbamazepine in man. European Journal of Clinical Pharmacology 1975 8:2, 8(2), 91–96. https://doi.org/10.1007/BF00561556
Riva, R., Albani, F., Ambrosetto, G., Contin, M., Cortelli, P., Perucca, E., & Baruzzi, A. (1984). Diurnal Fluctuations in Free and Total Steady-State Plasma Levels of Carbamazepine and Correlation with Intermittent Side Effects. Epilepsia, 25(4), 476–481. https://doi.org/10.1111/J.1528-1157.1984.TB03446.X
Rodriguez, C., Guevara, B. H., & Lobo, G. (2010). Mecanismos de acción de fármacos antiepilépticos. Informe Médico, 12(6), 321–326. https://www.researchgate.net/publication/235769333_Mecanismos_de_accion_de_farmacos_antiepilepticos
Roni, M., Kibria, G., & Jalil, R. (2009). Formulation and in vitro Evaluation of Alfuzosin Extended Release Tablets Using Directly Compressible Eudragit. Indian Journal of Pharmaceutical Sciences, 71(3), 252. https://doi.org/10.4103/0250-474X.56019
Ruiz, A. M., Restrepo, M. M., Cuesta, F., Giraldo, J., Archbold, R., & Holguín, G. (2001). Estudio de bioequivalencia de dos formulaciones de tabletas de carbamazepina de liberación retardada. Iatreia, 13(3), 131–139.
Sakore, S., & Chakraborty, B. (2011). In Vitro - In Vivo Correlation (IVIVC): A Strategic Tool in Drug Development. Journal of Bioequivalence & Bioavailability, 8(4). https://doi.org/10.4172/JBB.S3-001
Sánchez-Dengra, B., González-García, I., González-Álvarez, M., González-Álvarez, I., & Bermejo, M. (2021). Two-step in vitro-in vivo correlations: Deconvolution and convolution methods, which one gives the best predictability? Comparison with one-step approach. European Journal of Pharmaceutics and Biopharmaceutics, 158, 185–197. https://doi.org/10.1016/j.ejpb.2020.11.009
Shargel, L., & Yu, A. B. C. (2016). Applied Biopharmaceutics & Pharmacokinetics (7th ed.). McGraw-Hill. https://accesspharmacy.mhmedical.com/book.aspx?bookID=1592
Springer Boston, M. (2004). Bioavailability and Bioequivalence. In Foundations of Pharmacokinetics (pp. 171–177). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47924-9_17
Tomson, T. (1984). Interdosage fluctuations in plasma carbamazepine concentration determine intermittent side effects. Archives of Neurology, 41(8), 830–834. https://doi.org/10.1001/ARCHNEUR.1984.04050190036011
Tunnicliff, G. (1996). Basis of the antiseizure action of phenytoin. General Pharmacology: The Vascular System, 27(7), 1091–1097. https://doi.org/10.1016/S0306-3623(96)00062-6
United States Pharmacopeia USP-NF. (2015, May 1). <1854> Espectroscopía En El Infrarrojo Medio—Teoría Y Práctica. Online United States Pharmacopeia USP-NF. https://doi.org/10.31003/USPNF_M5512_02_02
United States Pharmacopeia USP-NF. (2022a, April 1). Monografía oficial Carbamazepina. Online United States Pharmacopeia USP-NF. https://doi.org/https://doi.org/10.31003/USPNF_M12565_04_02
United States Pharmacopeia USP-NF. (2022b, December 1). Capítulo General <857> Espectroscopía Ultravioleta-Visible. Online United States Pharmacopeia USP-NF. https://doi.org/https://doi.org/10.31003/USPNF_M3209_04_02
United States Pharmacopeia USP-NF. (2023a, April 1). Monografía oficial Carbamazepina, Tabletas de Liberación Prolongada. https://doi.org/10.31003/USPNF_M12565_04_02
United States Pharmacopeia USP-NF. (2023b, May 1). Capítulo General <711> Disolución. https://doi.org/10.31003/USPNF_M99470_03_02
United States Pharmacopeia USP-NF. (2023c, August 1). Capítulo General <905> Uniformidad de Unidades de Dosificación. Online United States Pharmacopeia USP-NF. https://doi.org/10.31003/USPNF_M99694_03_02
Valbuena Reyes, K. (2018). Estudio de la Cinética de Degradación Bajo Carga Mecánica de un Polímero Implantable [Tesis de maestría]. Universidad Nacional de Colombia .
Veng-Pedersen, P., Gobburu, J. V. S., Meyer, M. C., & Straughn, A. B. (2000). Carbamazepine level-Ain vivo-in vitro correlation (IVIVC): a scaled convolution based predictive approach. Biopharmaceutics & Drug Disposition, 21(1), 1–6. https://doi.org/10.1002/1099-081X(200001)21:1<1::AID-BDD207>3.0.CO;2-D
Vinayakrao Barabde, U., Kumar Verma, R., & Singh Raghuvanshi, R. (2009). Carbamazepine formulations (Patent US20090143362A1). United States Patent and Trademark Office. https://patents.google.com/patent/US20090143362A1/en
Volonté, M. G., Viñas, M. A., de Buschiazzo, P. M., Piersante, M. v., Escales, M. C., & Gorriti, C. E. (2004). Estudio comparativo de comprimidos con 200 mg de carbamacepina para determinar equivalencia farmacéutica. Acta Farmaceutica Bonaerense, 23(3), 391–397.
Wadher, K., Umekar, M., & Kakde, R. (2011). Formulation and evaluation of a sustained-release tablets of metformin hydrochloride using hydrophilic synthetic and hydrophobic natural polymers. Indian Journal of Pharmaceutical Sciences, 73(2), 208. https://doi.org/10.4103/0250-474X.91579
Wei-Qin, T. (Tony). (2008). Molecular and Physicochemical Properties Impacting OralAbsorptionofDrugs. In Biopharmaceutics Applications in Drug Development (pp. 26–46). Springer US. https://doi.org/10.1007/978-0-387-72379-2_2
Wennergren, B., Lindberg, J., Nicklasson, M., Nilsson, G., Nyberg, G., Ahlgren, R., Persson, C., & Palm, B. (1989). A collaborative in vitro dissolution study: comparing the flow-through method with the USP paddle method using USP prednisone calibrator tablets. International Journal of Pharmaceutics, 53(1), 35–41. https://doi.org/10.1016/0378-5173(89)90358-X
World Health Oranization Collaborating Centre for Drug Statistics Methodology. (2022). ATC/DDD Index: Carbamazepine. Norwegian Institute of Public Health. https://www.whocc.no/atc_ddd_index/?code=N03AF01
Zadbuke, N., Khan, A. R., Battase, A., & Shahi, S. (2017). Convolution and Deconvolution Based Approach For Prediction of in-vivo Performance. European Journal of Biomedical and Pharmaceutical Sciences, 4(11), 447–453. https://www.ejbps.com/ejbps/abstract_id/3377
Zhang, G. H., Vadino, W. A., Yang, T. T., Cho, W. P., & Chaudry, I. A. (1994). Evaluation of the Flow-Through Cell Dissolution Apparatus: Effects of Flow Rate, Glass Beads and Tablet Position on Drug Release from Different Type of Tablets. Drug Development and Industrial Pharmacy, 20(13), 2063–2078. https://doi.org/10.3109/03639049409050222
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv x,x, 111 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias Farmacéuticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86344/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86344/2/1151961385.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86344/3/1151961385.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
c7ff631500fa2ed6fed8156865fd067f
174d261008ea81bd9e196f603b833768
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089302930358272
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Aragón Novoa, Diana Marcela4deaff341e3b3d3b4f981cdd720edd1d600Carvajal Barbosa, Laura10100c13d0ca8e085f36bf92601be738600Sistemas Para Liberación Controlada de Moléculas Biológicamente Activas2024-07-02T18:54:10Z2024-07-02T18:54:10Z2024https://repositorio.unal.edu.co/handle/unal/86344Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLos métodos de disolución in vitro posiblemente predictivos del comportamiento in vivo permiten evidenciar posibles problemas de biodisponibilidad y tomar decisiones oportunas desde las etapas de diseño y desarrollo de nuevas formulaciones. A su vez, las correlaciones in vivo in vitro (CIVIV) son herramientas principalmente útiles en el desarrollo de formulaciones, que consisten en un modelo matemático predictivo construido a partir de la relación entre una característica in vitro de la forma farmacéutica, con una variable respuesta in vivo. El objetivo de este trabajo fue desarrollar un método de disolución predictivo del comportamiento in vivo, empleando el Aparato celda de flujo, para tabletas de carbamazepina de liberación modificada (Tegretol® 200mg Liberación prolongada) en una compañía farmacéutica local interesada en desarrollar productos multifuente de carbamazepina. Con este fin, se empleó un diseño experimental Box-Behnken para optimizar el método de disolución minimizando el error en la predicción del Área Bajo la Curva (AUC0-t) y la Cmax (los datos in vivo se tomaron de la bibliografía). Se evaluaron tres factores en tres niveles: la concentración de laurilsulfato de sodio en el medio de disolución, la cantidad de microesferas de vidrio y la velocidad de flujo; los demás parámetros se mantuvieron constantes. La CIVIV se desarrolló utilizando una deconvolución con la ecuación de Wagner-Nelson, seguida por un escalamiento con enfoque en dos etapas y una reconvolución con la ecuación de Gohel et al. (2009). El enfoque en dos etapas se llevó a cabo construyendo un gráfico de Levy, escalando los perfiles de disolución y representándolos frente al perfil de absorción. Estos modelos CIVIV obtenidos se utilizaron para predecir las fracciones absorbidas. Siguiendo el diseño experimental, se obtuvieron quince perfiles de disolución y modelos CIVIV en diferentes condiciones, con errores de predicción de AUC0-t y Cmax que oscilaron entre -64% y -9%. Con el método de disolución optimizado, se logró una CIVIV con un r2= 0,9905, prediciendo errores de -6,09% para el AUC0-t y -1,94% para la Cmax. El método de disolución desarrollado y optimizado se puso a prueba con tabletas de carbamazepina de liberación inmediata (Tegretol® 200mg) y demostró ser discriminatorio. En conclusión, en una empresa farmacéutica local se desarrolló un método de disolución predictivo del comportamiento in vivo, empleando el Aparato celda de flujo, como herramienta para el desarrollo de productos multifuente de carbamazepina de liberación modificada. (Texto tomado de la fuente).In vitro dissolution methods, possibly predictive of in vivo behavior, make it possible to detect bioavailability problems and make timely decisions early in the design and development stages of new formulations. Furthermore, in vivo in vitro correlations (IVIVC) are mainly useful tools in the development of formulations, which consist of a predictive mathematical model built from the relationship between an in vitro characteristic of the dosage form with an in vivo response variable. The aim of this work was to develop an in vivo predictive flow-through cell dissolution method for a modified release carbamazepine tablet (Tegretol® 200mg prolonged release) in a local pharmaceutical company interested in developing carbamazepine generic products. For this purpose, a Box-Behnken experimental design was employed to optimize the dissolution method minimizing the prediction error of the Area Under the Curve (AUC0-t) and Cmax (in vivo data were taken from the literature). Three factors at three levels were evaluated: sodium lauryl sulfate concentration in dissolution media, the amount of glass beads, and flow rate; the other parameters were kept constant. The IVIVC was developed using a deconvolution with the Wagner-Nelson equation, followed by a two-step scaling approach, and a reconvolution with the equation from Gohel et al. (2009). The two-step approach was carried out by constructing a Levy plot, scaling up the dissolution profiles and plotting them against the absorption profile. The obtained IVIVC models were then used to predict the absorbed fractions. Following the experimental design, fifteen dissolution profiles and IVIVC models were obtained under different conditions, with AUC0-t and Cmax prediction errors ranging from -64% to -9%. With the optimized dissolution method, an IVIVC was achieved with an r2= 0.9905, predicting errors of -6.09% for the AUC0-t and -1.94% for Cmax. The developed and optimized dissolution method was challenged with immediate-release carbamazepine tablets (Tegretol® 200mg) and proved to be discriminative. In conclusion, an in vivo predictive flow-through cell dissolution method was developed in a local pharmaceutical company as a tool for the development of generic modified release carbamazepine products.Pharmetique LabsGrupo de Investigación: Sistemas para liberación controlada de moléculas biológicamente activas (SILICOMOBA)MaestríaMagíster en Ciencias FarmacéuticasFarmacocinética y estudios de biodisponibilidad y bioequivalenciax,x, 111 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias FarmacéuticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales610 - Medicina y salud::615 - Farmacología y terapéuticaCarbamazepina/síntesis químicaDisoluciónTécnicas In Vitro/métodosCarbamazepine/chemical synthesisDissolutionIn Vitro Techniques/methodsCorrelación in vivo in vitroCarbamazepinaMétodo de disoluciónLiberación modificadaAparato de disolución USP 4Celda de flujoIn vivo in vitro correlationCarbamazepineDissolution methodModified releaseDissolution apparatus USP 4Flow-through cellContribución al diseño de un método de disolución predictivo para evaluar una forma farmacéutica de liberación modificada de carbamazepinaTwo-Step In Vitro-In Vivo Correlation for the Development a Predictive Flow Through Cell Dissolution Method for Carbamazepine Modified Release TabletTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBiremeAguilar Ros, A., Caamaño Somoza, Manuel., Martín Martín, F. R., & Montejo Rubio, M. Consuelo. (2014). Biofarmacia y farmacocinética : ejercicios y problemas resueltos (B. Elsevier, Ed.; 2nd ed.). https://bibliotecadigital.uchile.cl/discovery/fulldisplay?docid=alma991002291699703936&context=L&vid=56UDC_INST:56UDC_INST&lang=es&adaptor=Local%20Search%20Engine&tab=Everything&query=sub,exact,%20Tecnologi%CC%81a%20farmace%CC%81utica,AND&mode=advanced&offset=10Aldenkamp, A. P., Alpherts, W. C. J., Moerland, M. C., Ottevanger, N., & Parys, J. A. P. V. (1987). Controlled release carbamazepine: cognitive side effects in patients with epilepsy. Epilepsia, 28(5), 507–514. https://doi.org/10.1111/J.1528-1157.1987.TB03679.XAlizadeh, M. N., Shayanfar, A., & Jouyban, A. (2018). Solubilization of drugs using sodium lauryl sulfate: Experimental data and modeling. Journal of Molecular Liquids, 268, 410–414. https://doi.org/10.1016/j.molliq.2018.07.065Alvarado, A. T., Muñoz, A. M., Bendezú, M. R., Palomino-Jhong, J. J., García, J. A., Alvarado, C. A., Alvarado, E. A., Ochoa-Pachas, G., Pineda-Pérez, M., & Bolarte, M. (2021). In Vitro Biopharmaceutical Equivalence of Carbamazepine Sodium Tablets Available in Lima, Peru. Dissolution Technologies, 28(2). https://doi.org/10.14227/DT280221PGC2Ambrósio, A. F., Soares-da-Silva, P., Carvalho, C. M., & Carvalho, A. P. (2002). Mechanisms of action of carbamazepine and its derivatives, oxcarbazepine, BIA 2-093, and BIA 2-024. Neurochemical Research, 27(1–2), 121–130. https://doi.org/10.1023/A:1014814924965Amidon, G. L., Lennernäs, H., Shah, V. P., & Crison, J. R. (1995). A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharmaceutical Research, 12(3), 413–420. https://doi.org/10.1023/A:1016212804288Baena, Y., & Ponce D’León, L. F. (2008). Importancia y fundamentación del sistema de clasificación biofarmacéutico, como base de la exención de estudios de biodisponibilidad y bioequivalencia in vivo. Revista Colombiana de Ciencias Químico - Farmacéuticas, 37(1), 18–32. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0034-74182008000100002Barzegar-Jalali, M., Maleki, N., Garjani, A., Khandar, A. A., Haji-Hosseinloo, M., Jabbari, R., & Dastmalchi, S. (2002). Enhancement of Dissolution Rate and Anti-inflammatory Effects of Piroxicam Using Solvent Deposition Technique. Drug Development and Industrial Pharmacy, 28(6), 681–686. https://doi.org/10.1081/DDC-120003859Bermejo, M., Meulman, J., Davanço, M. G., Carvalho, P. de O., Gonzalez-Alvarez, I., & Campos, D. R. (2020). In Vivo Predictive Dissolution (IPD) for Carbamazepine Formulations: Additional Evidence Regarding a Biopredictive Dissolution Medium. Pharmaceutics 2020, Vol. 12, Page 558, 12(6), 558. https://doi.org/10.3390/PHARMACEUTICS12060558Bodhe, R., Deshmukh, R., Gorale, A., Shinde, R., & Bodhe, P. (2019). Formulation, Development and Evaluation of Carbamazepine Extended Release Tablet: Dissolution Apparatus USP IV. World Journal of Pharmaceutical Research, 8(9), 1484–1504. https://doi.org/10.20959/wjpr20199-15588Bondareva, I. B., Jelliffe, R. W., Gusev, E. I., Guekht, A. B., Melikyan, E. G., & Belousov, Y. B. (2006). Population pharmacokinetic modelling of carbamazepine in epileptic elderly patients: implications for dosage. Journal of Clinical Pharmacy and Therapeutics, 31(3), 211–221. https://doi.org/10.1111/j.1365-2710.2006.00717.xBruschi, M. L. (2015). Mathematical models of drug release. In Strategies to Modify the Drug Release from Pharmaceutical Systems (pp. 63–86). Elsevier. https://doi.org/10.1016/B978-0-08-100092-2.00005-9Cárdenas Cuadros, P. A. (2015). Estudio de la correlación in vitro/ in vivo de la liberación de 6-metilcumarina a partir de un sistema micropartículado [Tesis doctoral, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/56673Cárdenas, P. A., Jiménez – Kairuz, Á., Verlindo de Araujo, B., & Aragón, D. M. (2019). Development of a dissolution method based on lipase for preclinical level A IVIVC of oral poly(ε-caprolactone) microspheres. Journal of Drug Delivery Science and Technology, 52, 632–641. https://doi.org/10.1016/j.jddst.2019.05.011Carrión Recio, D., González Delgado, C. A., Olivera Ruano, L., & Correa Fernández, A. (1999). Bioequivalencia: Introducción a la correlación in vivo-in vitro. Parte I. Revista Cubana de Farmacia, 33(2), 137-142. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75151999000200010Comisión Federal para la Protección contra Riesgos Sanitarios (COFEPRIS). (2024). Consulta de Registros Sanitarios . https://tramiteselectronicos02.cofepris.gob.mx/BuscadorPublicoRegistrosSanitarios/BusquedaRegistroSanitario.aspxCosta, P., & Sousa Lobo, J. M. (2001). Modeling and comparison of dissolution profiles. European Journal of Pharmaceutical Sciences, 13(2), 123–133. https://doi.org/10.1016/S0928-0987(01)00095-1Ding, A., Zhou, Y., Chen, P., & Nie, W. (2017). Ibuprofen-loaded micelles based on star-shaped erythritol-core PLLA-PEG copolymer: effect of molecular weights of PEG. Colloid and Polymer Science, 295(9), 1609–1619. https://doi.org/10.1007/s00396-017-4141-6Dressman, J. B. (Jennifer B. ), & Krämer, J. (2005). Pharmaceutical dissolution testing. Taylor & Francis.Eichelbaum, M., Köthe, K. W., Hoffmann, F., & von Unruh, G. E. (1982). Use of stable labelled carbamazepine to study its kinetics during chronic carbamazepine treatment. European Journal of Clinical Pharmacology 1982 23:3, 23(3), 241–244. https://doi.org/10.1007/BF00547561EL-Massik, M. A., Abdallah, O. Y., Galal, S., & Daabis, N. A. (2006). Towards a Universal Dissolution Medium for Carbamazepine. Drug Development and Industrial Pharmacy, 32(7), 893–905. https://doi.org/10.1080/03639040600762677European Medicines Agency (EMEA). (2010). Guideline On The Investigation of Bioequivalence Discussion in the Joint Efficacy and Quality Working Group. http://www.ema.europa.euFigueroa, A. I., Gonzalez, M., Merino, V., & Bermejo, M. del V. (2019). Desarrollo de métodos de disolución con capacidad predictiva del rendimiento in vivo de formulaciones farmacéuticas [Tesis doctoral, Universitat de València]. https://hdl.handle.net/10550/70578Food and Drug Administration (FDA). (1997). Guía para la Industria: Pruebas de disolución de formas de dosificación oral sólidas de liberación inmediata. Centro de Evaluación e Investigación de Drogas. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guia-para-la-industria-pruebas-de-disolucion-de-formas-de-dosificacion-oral-solidas-de-liberacionFood and Drug Administration (FDA). (2018). Guía para la Industria: Formas de dosificación oral de liberación prolongada: elaboración, evaluación y aplicación de correlaciones in vitro/in vivo. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guia-para-la-industria-formas-de-dosificacion-oral-de-liberacion-prolongada-elaboracion-evaluacion-yFood and Drug Administration (FDA). (2021). M9 Biopharmaceutics Classification System-Based Biowaivers. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/m9-biopharmaceutics-classification-system-based-biowaiversFotaki, N., & Reppas, C. (2005). The Flow Through Cell Methodology in the Evaluation of Intralumenal Drug Release Characteristics. Dissolution Technologies, 12(2), 17–21. https://doi.org/10.14227/DT120205P17Gao, Z. (2009). In Vitro Dissolution Testing with Flow-Through Method: A Technical Note. AAPS PharmSciTech, 10(4), 1401. https://doi.org/10.1208/s12249-009-9339-6Gohel, M., Parikh, R., Aghara, P., Nagori, S., Delvadia, R., & Dabhi, M. (2009). Application of Simplex Lattice Design and Desirability Function for the Formulation Development of Mouth Dissolving Film of Salbutamol Sulphate. Current Drug Delivery, 6(5), 486–494. https://doi.org/10.2174/156720109789941696Gohel, M., Sarvaiya, K., Shah, A., & Brahmbhatt, B. (2009). Mathematical Approach for the Assessment of Similarity Factor Using a New Scheme for Calculating Weight. Indian Journal of Pharmaceutical Sciences, 71(2), 142. https://doi.org/10.4103/0250-474X.54281González García, I., Mangas Sanjuan, V., Merino Sanjuán, M., Álvarez Álvarez, C., Díaz Garzón, M. J., Rodríguez Bonnín, M. A., Langguth, T., Torrado Durán, J. J., Langguth, P., García Arieta, A., & Bermejo, M. (2017). IVIVC approach based on carbamazepine bioequivalence studies combination. Die Pharmazie, 72(8), 449–455. https://doi.org/10.1691/PH.2017.7011Graves, N. M., Brundage, R. C., Wen, Y., Cascino, G., So, E., Ahman, P., Rarick, J., Krause, S., & Leppik, I. E. (1998). Population Pharmacokinetics of Carbamazepine in Adults with Epilepsy. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 18(2), 273–281. https://doi.org/10.1002/j.1875-9114.1998.tb03853.xGrupo SOTAX. (n.d.). CE 7smart Offline: Disolución con celdas de flujo continuo con recogida de muestras.Hann, E., Malagu, K., Stott, A., & Vater, H. (2022). The importance of plasma protein and tissue binding in a drug discovery program to successfully deliver a preclinical candidate (pp. 163–214). https://doi.org/10.1016/bs.pmch.2022.04.002Höpener, R. J., Kuyer, A., Meijer, J. W. A., & Hulsman, J. (1980). Correlation between daily fluctuations of carbamazepine serum levels and intermittent side effects. Epilepsia, 21(4), 341–350. https://doi.org/10.1111/J.1528-1157.1980.TB04081.XHopfenberg, H. B. (1976). Controlled Release from Erodible Slabs, Cylinders, and Spheres (pp. 26–32). https://doi.org/10.1021/bk-1976-0033.ch003Hurtado y de la Peña, M., Vargas Alvarado, Y., Domínguez-Ramírez, A. M., & Cortés Arroyo, A. R. (2003). Comparison of Dissolution Profiles for Albendazole Tablets Using USP Apparatus 2 and 4. Http://Dx.Doi.Org/10.1081/DDC-120021777, 29(7), 777–784. https://doi.org/10.1081/DDC-120021777Instituto Nacional de Vigilancia de Medicamentos y Alimentos (INVIMA). (2022). Tegretol Retard de 200 mg: Expediente Sanitario 227376, Registro Sanitario INVIMA 2018M-011160-R2. Sistema de Tramites En Linea - Consultas Publicas. https://consultaregistro.invima.gov.co/Consultas/consultas/consreg_encabcum.jspInstituto Nacional de Vigilancia de Medicamentos y Alimentos (INVIMA). (2024). Sistema de Tramites en Linea - Consultas Publicas. https://consultaregistro.invima.gov.co/Consultas/consultas/consreg_encabcum.jspJinno, J. ichi, Kamada, N., Miyake, M., Yamada, K., Mukai, T., Odomi, M., Toguchi, H., Liversidge, G. G., Higaki, K., & Kimura, T. (2008). In vitro-in vivo correlation for wet-milled tablet of poorly water-soluble cilostazol. Journal of Controlled Release, 130(1), 29–37. https://doi.org/10.1016/J.JCONREL.2008.05.013Jung Cook, H., de Anda Jáuregui, G., Rubio Carrasco, K., & Mayet Cruz, L. (2013). Comparación de perfiles de disolución: Impacto de los criterios de diferentes agencias regulatorias en el cálculo de ƒ2. Revista Mexicana de Ciencias Farmacéuticas, 43(3). http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-01952012000300007Kassaye, L., & Genete, G. (2013). Evaluation and comparison of in-vitro dissolution profiles for different brands of amoxicillin capsules. African Health Sciences, 13(2). https://doi.org/10.4314/ahs.v13i2.25Katzhendler, I., & Friedman, M. (1999). Zero-order sustained release matrix tablet formulations of carbamazepine (Patent No: US5980942A) (Patent US5980942A). United States Patent. https://patents.google.com/patent/US5980942A/enKayali, A., Tuglular, I., & Ertas, M. (1994). Pharmacokinetics of carbamazepine Part I: a new bioequivalency parameter based on a relative bioavailability trial. European Journal of Drug Metabolism and Pharmacokinetics, 19(4), 319–325. https://doi.org/10.1007/BF03188858Kiuri, J. N., Maru, S. M., & Ndwigah, S. N. (2020). Product Evaluation of Carbamazepine 200mg Controlled Release Tablets using an in vitro-in vivo Correlation Simulation Model. East and Central African Journal of Pharmaceutical Sciences, 23(2), 60–66. https://www.ajol.info/index.php/ecajps/article/view/200123Kovačević, I., Parojčić, J., Homšek, I., Tubić-Grozdanis, M., & Langguth, P. (2009). Justification of Biowaiver for Carbamazepine, a Low Soluble High Permeable Compound, in Solid Dosage Forms Based on IVIVC and Gastrointestinal Simulation. Molecular Pharmaceutics, 6(1), 40–47. https://doi.org/10.1021/mp800128yKuo, C. C., Chen, R. S., Lu, L., & Chen, R. C. (1997). Carbamazepine inhibition of neuronal Na+ currents: quantitative distinction from phenytoin and possible therapeutic implications. Molecular Pharmacology, 51(6), 1077–1083. https://doi.org/10.1124/MOL.51.6.1077Lake, O. A., Olling, M., & Barends, D. M. (1999). In vitro/in vivo correlations of dissolution data of carbamazepine immediate release tablets with pharmacokinetic data obtained in healthy volunteers. European Journal of Pharmaceutics and Biopharmaceutics, 48(1), 13–19. https://doi.org/10.1016/S0939-6411(99)00016-8Langenbucher, F. (2011). Letters to the Editor: Linearization of dissolution rate curves by the Weibull distribution. Journal of Pharmacy and Pharmacology, 24(12), 979–981. https://doi.org/10.1111/j.2042-7158.1972.tb08930.xLee, S. L., Raw, A. S., & Yu, L. (2008). Dissolution Testing. In Biopharmaceutics Applications in Drug Development (pp. 47–74). Springer US. https://doi.org/10.1007/978-0-387-72379-2_3Lindenberg, M., Kopp, S., & Dressman, J. B. (2004). Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. European Journal of Pharmaceutics and Biopharmaceutics, 58(2), 265–278. https://doi.org/10.1016/J.EJPB.2004.03.001Lopes, C. M., Lobo, J. M. S., & Costa, P. (2005). Formas farmacêuticas de liberação modificada: polímeros hidrifílicos. Revista Brasileira de Ciências Farmacêuticas, 41(2), 143–154. https://doi.org/10.1590/S1516-93322005000200003Lu, Y., Kim, S., & Park, K. (2011). In vitro–in vivo correlation: Perspectives on model development. International Journal of Pharmaceutics, 418(1), 142–148. https://doi.org/10.1016/j.ijpharm.2011.01.010Mateu López, L., & Herrera LLópiz, A. (2007). Fracturar tabletas de liberación modificada: ¿una práctica adecuada? Revista Cubana de Farmacia, 41(1). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75152007000100013McLean, M. J., & Macdonald, R. L. (1983). Multiple actions of phenytoin on mouse spinal cord neurons in cell culture. Journal of Pharmacology and Experimental Therapeutics, 227(3).Medina, J. R., Salazar, D. K., Hurtado, M., Cortés, A. R., & Domínguez-Ramírez, A. M. (2014). Comparative in vitro dissolution study of carbamazepine immediate-release products using the USP paddles method and the flow-through cell system. Saudi Pharmaceutical Journal, 22(2), 141–147. https://doi.org/10.1016/J.JSPS.2013.02.001Medina Lopez, J. R., & Hurtado Y de la Peña, M. (2009). Dissolution of paracetamol suppositories using the flow-through cell system and their absorption in an animal model | Request PDF. Revista Mexicana de Ciencias Farmaceuticas , 40(2), 11–18. https://www.researchgate.net/publication/288673896_Dissolution_of_paracetamol_suppositories_using_the_flow-through_cell_system_and_their_absorption_in_an_animal_modelResolución 1124 de 2016, 1 (2016).Minitab LLC. (2023). Model reduction. https://support.minitab.com/en-us/minitab/20/help-and-how-to/statistical-modeling/regression/supporting-topics/regression-models/model-reduction/Mittapalli, P. K., Suresh, B., Hussaini, S. S. Q., Rao, Y. M., & Apte, S. (2008). Comparative In Vitro Study of Six Carbamazepine Products. AAPS PharmSciTech, 9(2), 357. https://doi.org/10.1208/S12249-008-9035-YMohamed Rizwan, I., & Damodharan, N. (2020). Mathematical Modelling of Dissolution Kinetics in Dosage forms. Research Journal of Pharmacy and Technology, 13(3), 1339. https://doi.org/10.5958/0974-360X.2020.00247.4Moreno, J., Belmont, A., Jaimes, O., Santos, J. A., López, G., Campos, M. G., Amancio, O., Pérez, P., & Heinze, G. (2004). Pharmacokinetic study of carbamazepine and its carbamazepine 10,11-epoxide metabolite in a group of female epileptic patients under chronic treatment. Archives of Medical Research, 35(2), 168–171. https://doi.org/10.1016/j.arcmed.2003.09.016Okumu, A., DiMaso, M., & Löbenberg, R. (2008). Dynamic dissolution testing to establish in vitro/in vivo correlations for montelukast sodium, a poorly soluble drug. Pharmaceutical Research, 25(12), 2778–2785. https://doi.org/10.1007/S11095-008-9642-ZOlling, M., Mensinga, T. T., Barends, D. M., Groen, C., Lake, O. A., & Meulenbelt, J. (1999). Bioavailability of carbamazepine from four different products and the occurrence of side effects. Biopharmaceutics and Drug Disposition, 20(1), 19–28. https://doi.org/10.1002/(SICI)1099-081X(199901)20:1<19::AID-BDD152>3.0.CO;2-QPalma-Aguirre, J. A., & Barreiro Perera, O. (1992). Biodisponibilidad y bioequivalencia de medicamentos. Revista de La Facultad de Medicina, Universidad Nacional Autónoma de México, 35(1). http://revistas.unam.mx/index.php/rfm/article/view/74573Paschal Iwundu, M., & Cosmos, J. (2022). The Efficiency of Seven-Variable Box-Behnken Experimental Design with Varying Center Runs on Full and Reduced Model Types. Journal of Mathematics and Statistics, 18(1), 196–207. https://doi.org/10.3844/jmssp.2022.196.207Podczeck, F. (1993). Comparison of in vitro dissolution profiles by calculating mean dissolution time (MDT) or mean residence time (MRT). International Journal of Pharmaceutics, 97(1–3), 93–100. https://doi.org/10.1016/0378-5173(93)90129-4Polli, J. E., Rekhi, G. S., Augsburger, L. L., & Shah, V. P. (1997). Methods to Compare Dissolution Profiles and a Rationale for Wide Dissolution Specifications for Metoprolol Tartrate tablets†. Journal of Pharmaceutical Sciences, 86(6), 690–700. https://doi.org/10.1021/js960473xPunyawudho, B., Ramsay, E. R., Brundage, R. C., Macias, F. M., Collins, J. F., & Birnbaum, A. K. (2012). Population Pharmacokinetics of Carbamazepine in Elderly Patients. Therapeutic Drug Monitoring, 34(2), 176–181. https://doi.org/10.1097/FTD.0b013e31824d6a4eRabti, H., Mohammed Salmani, J. M., Elamin, E. S., Lammari, N., Zhang, J., & Ping, Q. (2014). Carbamazepine solubility enhancement in tandem with swellable polymer osmotic pump tablet: A promising approach for extended delivery of poorly water-soluble drugs. Asian Journal of Pharmaceutical Sciences, 9(3), 146–154. https://doi.org/10.1016/J.AJPS.2014.04.001Rane, Y., Mashru, R., Sankalia, M., & Sankalia, J. (2007). Effect of hydrophilic swellable polymers on dissolution enhancement of carbamazepine solid dispersions studied using response surface methodology. AAPS PharmSciTech, 8(2), E1–E11. https://doi.org/10.1208/pt0802027Rawlins, M. D., Collste, P., Bertilsson, L., & Palmér, L. (1975). Distribution and elimination kinetics of carbamazepine in man. European Journal of Clinical Pharmacology 1975 8:2, 8(2), 91–96. https://doi.org/10.1007/BF00561556Riva, R., Albani, F., Ambrosetto, G., Contin, M., Cortelli, P., Perucca, E., & Baruzzi, A. (1984). Diurnal Fluctuations in Free and Total Steady-State Plasma Levels of Carbamazepine and Correlation with Intermittent Side Effects. Epilepsia, 25(4), 476–481. https://doi.org/10.1111/J.1528-1157.1984.TB03446.XRodriguez, C., Guevara, B. H., & Lobo, G. (2010). Mecanismos de acción de fármacos antiepilépticos. Informe Médico, 12(6), 321–326. https://www.researchgate.net/publication/235769333_Mecanismos_de_accion_de_farmacos_antiepilepticosRoni, M., Kibria, G., & Jalil, R. (2009). Formulation and in vitro Evaluation of Alfuzosin Extended Release Tablets Using Directly Compressible Eudragit. Indian Journal of Pharmaceutical Sciences, 71(3), 252. https://doi.org/10.4103/0250-474X.56019Ruiz, A. M., Restrepo, M. M., Cuesta, F., Giraldo, J., Archbold, R., & Holguín, G. (2001). Estudio de bioequivalencia de dos formulaciones de tabletas de carbamazepina de liberación retardada. Iatreia, 13(3), 131–139.Sakore, S., & Chakraborty, B. (2011). In Vitro - In Vivo Correlation (IVIVC): A Strategic Tool in Drug Development. Journal of Bioequivalence & Bioavailability, 8(4). https://doi.org/10.4172/JBB.S3-001Sánchez-Dengra, B., González-García, I., González-Álvarez, M., González-Álvarez, I., & Bermejo, M. (2021). Two-step in vitro-in vivo correlations: Deconvolution and convolution methods, which one gives the best predictability? Comparison with one-step approach. European Journal of Pharmaceutics and Biopharmaceutics, 158, 185–197. https://doi.org/10.1016/j.ejpb.2020.11.009Shargel, L., & Yu, A. B. C. (2016). Applied Biopharmaceutics & Pharmacokinetics (7th ed.). McGraw-Hill. https://accesspharmacy.mhmedical.com/book.aspx?bookID=1592Springer Boston, M. (2004). Bioavailability and Bioequivalence. In Foundations of Pharmacokinetics (pp. 171–177). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47924-9_17Tomson, T. (1984). Interdosage fluctuations in plasma carbamazepine concentration determine intermittent side effects. Archives of Neurology, 41(8), 830–834. https://doi.org/10.1001/ARCHNEUR.1984.04050190036011Tunnicliff, G. (1996). Basis of the antiseizure action of phenytoin. General Pharmacology: The Vascular System, 27(7), 1091–1097. https://doi.org/10.1016/S0306-3623(96)00062-6United States Pharmacopeia USP-NF. (2015, May 1). <1854> Espectroscopía En El Infrarrojo Medio—Teoría Y Práctica. Online United States Pharmacopeia USP-NF. https://doi.org/10.31003/USPNF_M5512_02_02United States Pharmacopeia USP-NF. (2022a, April 1). Monografía oficial Carbamazepina. Online United States Pharmacopeia USP-NF. https://doi.org/https://doi.org/10.31003/USPNF_M12565_04_02United States Pharmacopeia USP-NF. (2022b, December 1). Capítulo General <857> Espectroscopía Ultravioleta-Visible. Online United States Pharmacopeia USP-NF. https://doi.org/https://doi.org/10.31003/USPNF_M3209_04_02United States Pharmacopeia USP-NF. (2023a, April 1). Monografía oficial Carbamazepina, Tabletas de Liberación Prolongada. https://doi.org/10.31003/USPNF_M12565_04_02United States Pharmacopeia USP-NF. (2023b, May 1). Capítulo General <711> Disolución. https://doi.org/10.31003/USPNF_M99470_03_02United States Pharmacopeia USP-NF. (2023c, August 1). Capítulo General <905> Uniformidad de Unidades de Dosificación. Online United States Pharmacopeia USP-NF. https://doi.org/10.31003/USPNF_M99694_03_02Valbuena Reyes, K. (2018). Estudio de la Cinética de Degradación Bajo Carga Mecánica de un Polímero Implantable [Tesis de maestría]. Universidad Nacional de Colombia .Veng-Pedersen, P., Gobburu, J. V. S., Meyer, M. C., & Straughn, A. B. (2000). Carbamazepine level-Ain vivo-in vitro correlation (IVIVC): a scaled convolution based predictive approach. Biopharmaceutics & Drug Disposition, 21(1), 1–6. https://doi.org/10.1002/1099-081X(200001)21:1<1::AID-BDD207>3.0.CO;2-DVinayakrao Barabde, U., Kumar Verma, R., & Singh Raghuvanshi, R. (2009). Carbamazepine formulations (Patent US20090143362A1). United States Patent and Trademark Office. https://patents.google.com/patent/US20090143362A1/enVolonté, M. G., Viñas, M. A., de Buschiazzo, P. M., Piersante, M. v., Escales, M. C., & Gorriti, C. E. (2004). Estudio comparativo de comprimidos con 200 mg de carbamacepina para determinar equivalencia farmacéutica. Acta Farmaceutica Bonaerense, 23(3), 391–397.Wadher, K., Umekar, M., & Kakde, R. (2011). Formulation and evaluation of a sustained-release tablets of metformin hydrochloride using hydrophilic synthetic and hydrophobic natural polymers. Indian Journal of Pharmaceutical Sciences, 73(2), 208. https://doi.org/10.4103/0250-474X.91579Wei-Qin, T. (Tony). (2008). Molecular and Physicochemical Properties Impacting OralAbsorptionofDrugs. In Biopharmaceutics Applications in Drug Development (pp. 26–46). Springer US. https://doi.org/10.1007/978-0-387-72379-2_2Wennergren, B., Lindberg, J., Nicklasson, M., Nilsson, G., Nyberg, G., Ahlgren, R., Persson, C., & Palm, B. (1989). A collaborative in vitro dissolution study: comparing the flow-through method with the USP paddle method using USP prednisone calibrator tablets. International Journal of Pharmaceutics, 53(1), 35–41. https://doi.org/10.1016/0378-5173(89)90358-XWorld Health Oranization Collaborating Centre for Drug Statistics Methodology. (2022). ATC/DDD Index: Carbamazepine. Norwegian Institute of Public Health. https://www.whocc.no/atc_ddd_index/?code=N03AF01Zadbuke, N., Khan, A. R., Battase, A., & Shahi, S. (2017). Convolution and Deconvolution Based Approach For Prediction of in-vivo Performance. European Journal of Biomedical and Pharmaceutical Sciences, 4(11), 447–453. https://www.ejbps.com/ejbps/abstract_id/3377Zhang, G. H., Vadino, W. A., Yang, T. T., Cho, W. P., & Chaudry, I. A. (1994). Evaluation of the Flow-Through Cell Dissolution Apparatus: Effects of Flow Rate, Glass Beads and Tablet Position on Drug Release from Different Type of Tablets. Drug Development and Industrial Pharmacy, 20(13), 2063–2078. https://doi.org/10.3109/03639049409050222Pharmetique LabsInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86344/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1151961385.2024.pdf1151961385.2024.pdfTesis de Maestría en Ciencias Farmacéuticasapplication/pdf1501114https://repositorio.unal.edu.co/bitstream/unal/86344/2/1151961385.2024.pdfc7ff631500fa2ed6fed8156865fd067fMD52THUMBNAIL1151961385.2024.pdf.jpg1151961385.2024.pdf.jpgGenerated Thumbnailimage/jpeg5257https://repositorio.unal.edu.co/bitstream/unal/86344/3/1151961385.2024.pdf.jpg174d261008ea81bd9e196f603b833768MD53unal/86344oai:repositorio.unal.edu.co:unal/863442024-08-26 23:10:16.078Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=