Adsorción de solventes orgánicos desde fase gas y fase líquida orgánica sobre carbones activados modificados. Caracterización energética

ilustraciones, gráficas, tablas

Autores:
Hernández Monje, Diana Cristina
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83000
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83000
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::541 - Química física
Adsorción
adsorption
Carbón activado
Adsorción
Compuestos orgánicos volátiles
Calorimetría
Entalpía de inmersión
Gas phase adsorption
Liquid phase adsorption
Activated carbon
Immersion enthalpy
Organic solvents
Tecnología de los combustibles
Tecnología química
Fuel technology
Chemical technology
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_caf57d4c5ea1bb709da1ff8d0b124a90
oai_identifier_str oai:repositorio.unal.edu.co:unal/83000
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Adsorción de solventes orgánicos desde fase gas y fase líquida orgánica sobre carbones activados modificados. Caracterización energética
dc.title.translated.eng.fl_str_mv Adsorption of organic solvents from gas phase and organic liquid phase on modified activated carbons. Energy characterization
title Adsorción de solventes orgánicos desde fase gas y fase líquida orgánica sobre carbones activados modificados. Caracterización energética
spellingShingle Adsorción de solventes orgánicos desde fase gas y fase líquida orgánica sobre carbones activados modificados. Caracterización energética
540 - Química y ciencias afines::541 - Química física
Adsorción
adsorption
Carbón activado
Adsorción
Compuestos orgánicos volátiles
Calorimetría
Entalpía de inmersión
Gas phase adsorption
Liquid phase adsorption
Activated carbon
Immersion enthalpy
Organic solvents
Tecnología de los combustibles
Tecnología química
Fuel technology
Chemical technology
title_short Adsorción de solventes orgánicos desde fase gas y fase líquida orgánica sobre carbones activados modificados. Caracterización energética
title_full Adsorción de solventes orgánicos desde fase gas y fase líquida orgánica sobre carbones activados modificados. Caracterización energética
title_fullStr Adsorción de solventes orgánicos desde fase gas y fase líquida orgánica sobre carbones activados modificados. Caracterización energética
title_full_unstemmed Adsorción de solventes orgánicos desde fase gas y fase líquida orgánica sobre carbones activados modificados. Caracterización energética
title_sort Adsorción de solventes orgánicos desde fase gas y fase líquida orgánica sobre carbones activados modificados. Caracterización energética
dc.creator.fl_str_mv Hernández Monje, Diana Cristina
dc.contributor.advisor.spa.fl_str_mv Giraldo Gutiérrez, Liliana
Moreno Piraján, Juan Carlos
dc.contributor.author.spa.fl_str_mv Hernández Monje, Diana Cristina
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Calorimetría
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::541 - Química física
topic 540 - Química y ciencias afines::541 - Química física
Adsorción
adsorption
Carbón activado
Adsorción
Compuestos orgánicos volátiles
Calorimetría
Entalpía de inmersión
Gas phase adsorption
Liquid phase adsorption
Activated carbon
Immersion enthalpy
Organic solvents
Tecnología de los combustibles
Tecnología química
Fuel technology
Chemical technology
dc.subject.agrovoc.spa.fl_str_mv Adsorción
dc.subject.agrovoc.eng.fl_str_mv adsorption
dc.subject.proposal.spa.fl_str_mv Carbón activado
Adsorción
Compuestos orgánicos volátiles
Calorimetría
Entalpía de inmersión
dc.subject.proposal.eng.fl_str_mv Gas phase adsorption
Liquid phase adsorption
Activated carbon
Immersion enthalpy
Organic solvents
dc.subject.unesco.spa.fl_str_mv Tecnología de los combustibles
Tecnología química
dc.subject.unesco.eng.fl_str_mv Fuel technology
Chemical technology
description ilustraciones, gráficas, tablas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-01-18T01:28:40Z
dc.date.available.none.fl_str_mv 2023-01-18T01:28:40Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83000
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83000
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv L. Bandura, D. Kołodyńska, W. Franus, Adsorption of BTX from aqueous solutions by Na-P1 zeolite obtained from fly ash, Process Saf. Environ. Prot. (2017). https://doi.org/10.1016/j.psep.2017.03.036
G. Gałezowska, M. Chraniuk, L. Wolska, In vitro assays as a tool for determination of VOCs toxic effect on respiratory system: A critical review, TrAC - Trends Anal. Chem. 77 (2016) 14–22. https://doi.org/10.1016/j.trac.2015.10.012
M.S. Kamal, S.A. Razzak, M.M. Hossain, Catalytic oxidation of volatile organic compounds (VOCs) - A review, Atmos. Environ. 140 (2016) 117–134. https://doi.org/10.1016/j.atmosenv.2016.05.031
R. Tong, L. Zhang, X. Yang, J. Liu, P. Zhou, J. Li, Emission characteristics and probabilistic health risk of volatile organic compounds from solvents in wooden furniture manufacturing, J. Clean. Prod. 208 (2019) 1096–1108. https://doi.org/10.1016/j.jclepro.2018.10.195.
X. Li, L. Zhang, Z. Yang, P. Wang, Y. Yan, J. Ran, Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review, Sep. Purif. Technol. 235 (2020) 116213. https://doi.org/10.1016/j.seppur.2019.116213.
Y. Qi, L. Shen, J. Zhang, J. Yao, R. Lu, T. Miyakoshi, Species and release characteristics of VOCs in furniture coating process, Environ. Pollut. 245 (2019) 810–819. https://doi.org/10.1016/j.envpol.2018.11.057.
E.H. Lee, D. Paek, Y.L. Kho, K. Choi, H.J. Chae, Color vision impairments among shipyard workers exposed to mixed organic solvents, especially xylene, Neurotoxicol. Teratol. 37 (2013) 39–43. https://doi.org/10.1016/j.ntt.2013.02.005.
A.M. Betancur-Sánchez, E.M. Vásquez-Trespalacios, C. Sardi-Correa, Impaired colour vision in workers exposed to organic solvents: A systematic review, Arch. La Soc. Española Oftalmol. (English Ed. 92 (2017) 12–18. https://doi.org/10.1016/j.oftale.2016.09.003.
E.M.D.C.B. Lacerda, M.G. Lima, A.R. Rodrigues, C.E.C. Teixeira, L.J.B. De Lima, D.F. Ventura, L.C.D.L. Silveira, Psychophysical evaluation of achromatic and chromatic vision of workers chronically exposed to organic solvents, J. Environ. Public Health. 2012 (2012) 1–7. https://doi.org/10.1155/2012/784390.
T.L. Costa, M.T.S. Barboni, A.L. de A. Moura, D.M.O. Bonci, M. Gualtieri, L.C. de Lima Silveira, D.F. Ventura, Long-term occupational exposure to organic solvents affects color vision, contrast sensitivity and visual fields, PLoS One. 7 (2012) 1–9. https://doi.org/10.1371/journal.pone.0042961.
A.M. Landtblom, A. Kristoffersson, I. Boström, Organic solvent exposure as a risk factor for multiple sclerosis: An updated review, Rev. Neurol. (Paris). 175 (2019) 625–630. https://doi.org/10.1016/j.neurol.2019.07.014.
C. Barul, M. Carton, L. Radoï, G. Menvielle, C. Pilorget, A.S. Woronoff, I. Stücker, D. Luce, Occupational exposure to petroleum-based and oxygenated solvents and oral and oropharyngeal cancer risk in men: A population-based case-control study in France, Cancer Epidemiol. 59 (2019) 22–28. https://doi.org/10.1016/j.canep.2019.01.005.
S. Batterman, F.C. Su, S. Li, B. Mukherjee, C. Jia, HEI Health Review Committee, Personal exposure to mixtures of volatile organic compounds: modeling and further analysis of the RIOPA data., Res. Rep. Health. Eff. Inst. (2014) 3–63. http://www.ncbi.nlm.nih.gov/pubmed/25145040 (accessed October 6, 2017).
A. Mirzaei, S.G. Leonardi, G. Neri, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review, Ceram. Int. 42 (2016) 15119–15141. https://doi.org/10.1016/j.ceramint.2016.06.145.
M.J. Salar-García, V.M. Ortiz-Martínez, F.J. Hernández-Fernández, A.P. de los Ríos, J. Quesada-Medina, Ionic liquid technology to recover volatile organic compounds (VOCs), J. Hazard. Mater. 321 (2017) 484–499. https://doi.org/10.1016/j.jhazmat.2016.09.040.
H. Huang, Y. Xu, Q. Feng, D.Y.C. Leung, Low temperature catalytic oxidation of volatile organic compounds: a review, Catal. Sci. Technol. 5 (2015) 2649–2669. https://doi.org/10.1039/C4CY01733A.
X. Zhang, B. Gao, A.E. Creamer, C. Cao, Y. Li, Adsorption of VOCs onto engineered carbon materials: A review, J. Hazard. Mater. (2017). https://doi.org/10.1016/j.jhazmat.2017.05.013.
L. Zhou, Q. Yu, Y. Cui, F. Xie, W. Li, Y. Li, M. Chen, Adsorption properties of activated carbon from reed with a high adsorption capacity, Ecol. Eng. 102 (2017) 443–450. https://doi.org/10.1016/j.ecoleng.2017.02.036.
Y. Yang, X., Yi, H., Tang, X., Zhao, S., Yang, Z., Ma, Behaviors and kinetics of toluene adsorption‐desorption on activated carbons with varying pore structure, J. Environ. Sci. 67 (2018) 104–114. https://doi.org/10.1016/j.jes.2017.06.032.
E. Gallego, F.J. Roca, J.F. Perales, X. Guardino, Experimental evaluation of VOC removal efficiency of a coconut shell activated carbon filter for indoor air quality enhancement, Build. Environ. 67 (2013) 14–25. https://doi.org/10.1016/j.buildenv.2013.05.003.
L. Li, S. Liu, J. Liu, Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal, J. Hazard. Mater. 192 (2011) 683–690. https://doi.org/10.1016/j.jhazmat.2011.05.069.
A. Sekar, G.K. Varghese, M.K. Ravi Varma, Analysis of benzene air quality standards, monitoring methods and concentrations in indoor and outdoor environment, Heliyon. 5 (2019) 2918. https://doi.org/10.1016/j.heliyon.2019.e02918.
M. Song, X. Liu, Y. Zhang, M. Shao, K. Lu, Q. Tan, M. Feng, Y. Qu, Sources and abatement mechanisms of VOCs in southern China, Atmos. Environ. 201 (2019) 28–40. https://doi.org/10.1016/j.atmosenv.2018.12.019.
W.-T. Tsai, Toxic Volatile Organic Compounds (VOCs) in the Atmospheric Environment: Regulatory Aspects and Monitoring in Japan and Korea, Environments. 3 (2016) 23–30. https://doi.org/10.3390/environments3030023.
J. Fan, X. Gou, Y. Sun, X. Ran, W. Teng, X. Wang, Adsorptive performance of chromium-containing ordered mesoporous silica on volatile organic compounds (VOCs), Nat. Gas Ind. B. 4 (2017) 382–389. https://doi.org/10.1016/j.ngib.2017.10.003.
M.M. Dubinin, Microporous structures of carbonaceous adsorbents, Carbon N. Y. 20 (1982) 195–200. https://doi.org/10.1016/0008-6223(82)90020-3.
D. Hugi-Cleary, S. Wermeille, F. Stoeckli, The Characterization of Non-Porous Surfaces by a Combination of the BET and the Dubinin-Radushkevich-Kaganer (DRK) Theories, Chimia (Aarau). 57 (2003) 611–615. https://doi.org/10.2533/000942903777678740.
R. Denoyel, F. Rouquerol, J. Rouquerol, Porous texture and surface characterization from liquid – solid interactions: immersion calorimetry and adsorption from solution, in: J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, K.S.W. Sing (Eds.), Adsorpt. by Powders Porous Solids Princ. Methodol. Appl., ACADEMIC PRESS, INC., Kidlington, 2014: pp. 273–300.
X. Zhang, B. Gao, A.E. Creamer, C. Cao, Y. Li, Adsorption of VOCs onto engineered carbon materials: A review, J. Hazard. Mater. 338 (2017) 102–123. https://doi.org/10.1016/j.jhazmat.2017.05.013.
L. Zhu, D. Shen, K.H. Luo, A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods, J. Hazard. Mater. 389 (2020) 122102. https://doi.org/10.1016/j.jhazmat.2020.122102.
A. Erto, S. Chianese, A. Lancia, D. Musmarra, On the mechanism of benzene and toluene adsorption in single-compound and binary systems: Energetic interactions and competitive effects, Desalin. Water Treat. 86 (2017) 259–265. https://doi.org/10.5004/dwt.2017.20712.
J.M. Martín Martínez, Porosidad de Carbones II. Teoría de Polanyi - Dubinin, in: Martín-Martínez JM (Ed.), Adsorción Física Gases y Vap. Por Carbones, Universidad de Alicante Publicaciones, Alicante, 1990: pp. 5–80.
F. Stoeckli, A. Slasli, D. Hugi-Cleary, A. Guillot, The characterization of microporosity in carbons with molecular sieve effects, Microporous Mesoporous Mater. 51 (2002) 197–202. https://doi.org/10.1016/S1387-1811(01)00482-6.
B. Rubahamya, K.S. Kumar Reddy, A. Prabhu, A. Al Shoaibi, C. Srinivasakannan, Porous carbon screening for benzene sorption, Environ. Prog. Sustain. Energy. 38 (2019) 93–99. https://doi.org/10.1002/ep.12925.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxiv, 171 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Ciencias - Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83000/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83000/2/1070948464.2022.pdf
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
18955a9286434b5a889e6a1db4e6044a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886446464761856
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Giraldo Gutiérrez, Liliana2e06ab89675c8eefeb27f5db86c4a5ccMoreno Piraján, Juan Carlosf2427bb9793bdff7846e3ea32876e705Hernández Monje, Diana Cristina8bd61da2d5d9a928a8b3a98cb3f9e94bGrupo de Calorimetría2023-01-18T01:28:40Z2023-01-18T01:28:40Z2022https://repositorio.unal.edu.co/handle/unal/83000Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasSe evaluó la adsorción desde fase gas y fase líquida de benceno, tolueno, ciclohexano y hexano sobre cinco muestras de carbón activado modificadas térmica y químicamente, caracterizando los sólidos por medio de diferentes técnicas. Para la fase gas se evaluaron las isotermas de adsorción de los hidrocarburos sobre los sólidos porosos, mientras que para la fase líquida se emplearon como adsorbatos soluciones de los compuestos orgánicos; posteriormente las isotermas se ajustaron a los modelos de Langmuir y Freundlich. También se determinaron las cinéticas de adsorción y se ajustaron a los modelos de pseudo primer y pseudo segundo orden, así como al modelo de difusión intraparticular. Para evaluar la energía involucrada en la interacción entre los adsorbatos y los sólidos, se calcularon los parámetros del modelo Dubinin-Radushkevich y Dubinin-Radushkevich-Kaganer para determinar la energía característica de adsorción de los solventes desde fase gas y fase líquida y el volumen de microporo (fase gas); además, se realizó la inmersión de los sólidos en benceno, tolueno, ciclohexano y hexano y en mezclas binarias de los mismos para obtener la entalpía de inmersión para los solventes puros y las mezclas; para estas últimas se calculó la entalpía diferencial a fin de evaluar la contribución del soluto y del componente sólido-solvente al proceso de interacción. Se encontró que la adsorción e interacción sólido-adsorbato se favorece si el sólido tiene mayor área superficial, volumen de microporo, carácter básico e hidrofóbico y menor contenido de grupos ácidos y si los adsorbatos son de naturaleza aromática y presentan arreglo planar para apilarse en la estructura porosa. (Texto tomado de la fuente).The adsorption from gas phase and liquid phase of benzene, toluene, cyclohexane and hexane on five thermally and chemically modified activated carbon samples was evaluated, characterizing the solids by means of different techniques. For the gas phase, the adsorption isotherms of hydrocarbons on porous solids were evaluated, while solutions of organic compounds were used as adsorbates for the liquid phase; subsequently, the isotherms were adjusted to the Langmuir and Freundlich models. Adsorption kinetics were also determined and fitted to pseudo first and pseudo second order models, as well as to the intraparticle diffusion model. For evaluating the energy involved in the interaction between the adsorbates and the solids, the parameters of the Dubinin-Radushkevich and Dubinin-Radushkevich-Kaganer models were calculated to determine the characteristic adsorption energy of the solvents from the gas and liquid phases and the volume of micropore (gas phase); In addition, the solids were immersed in benzene, toluene, cyclohexane and hexane and in binary mixtures thereof to obtain the enthalpy of immersion for the pure solvents and the mixtures; for the latter, the differential enthalpy was calculated in order to evaluate the contribution of the solute and the solid-solvent component to the interaction process. It was found that the solid-adsorbate adsorption and interaction is favored if the solid has a higher surface area, micropore volume, basic and hydrophobic character and lower content of acid groups and if the adsorbates are aromatic in nature and have a planar arrangement to stack on the porous structure.DoctoradoDoctor en Ciencias - QuímicaTermodinámicaxxiv, 171 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::541 - Química físicaAdsorciónadsorptionCarbón activadoAdsorciónCompuestos orgánicos volátilesCalorimetríaEntalpía de inmersiónGas phase adsorptionLiquid phase adsorptionActivated carbonImmersion enthalpyOrganic solventsTecnología de los combustiblesTecnología químicaFuel technologyChemical technologyAdsorción de solventes orgánicos desde fase gas y fase líquida orgánica sobre carbones activados modificados. Caracterización energéticaAdsorption of organic solvents from gas phase and organic liquid phase on modified activated carbons. Energy characterizationTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDL. Bandura, D. Kołodyńska, W. Franus, Adsorption of BTX from aqueous solutions by Na-P1 zeolite obtained from fly ash, Process Saf. Environ. Prot. (2017). https://doi.org/10.1016/j.psep.2017.03.036G. Gałezowska, M. Chraniuk, L. Wolska, In vitro assays as a tool for determination of VOCs toxic effect on respiratory system: A critical review, TrAC - Trends Anal. Chem. 77 (2016) 14–22. https://doi.org/10.1016/j.trac.2015.10.012M.S. Kamal, S.A. Razzak, M.M. Hossain, Catalytic oxidation of volatile organic compounds (VOCs) - A review, Atmos. Environ. 140 (2016) 117–134. https://doi.org/10.1016/j.atmosenv.2016.05.031R. Tong, L. Zhang, X. Yang, J. Liu, P. Zhou, J. Li, Emission characteristics and probabilistic health risk of volatile organic compounds from solvents in wooden furniture manufacturing, J. Clean. Prod. 208 (2019) 1096–1108. https://doi.org/10.1016/j.jclepro.2018.10.195.X. Li, L. Zhang, Z. Yang, P. Wang, Y. Yan, J. Ran, Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review, Sep. Purif. Technol. 235 (2020) 116213. https://doi.org/10.1016/j.seppur.2019.116213.Y. Qi, L. Shen, J. Zhang, J. Yao, R. Lu, T. Miyakoshi, Species and release characteristics of VOCs in furniture coating process, Environ. Pollut. 245 (2019) 810–819. https://doi.org/10.1016/j.envpol.2018.11.057.E.H. Lee, D. Paek, Y.L. Kho, K. Choi, H.J. Chae, Color vision impairments among shipyard workers exposed to mixed organic solvents, especially xylene, Neurotoxicol. Teratol. 37 (2013) 39–43. https://doi.org/10.1016/j.ntt.2013.02.005.A.M. Betancur-Sánchez, E.M. Vásquez-Trespalacios, C. Sardi-Correa, Impaired colour vision in workers exposed to organic solvents: A systematic review, Arch. La Soc. Española Oftalmol. (English Ed. 92 (2017) 12–18. https://doi.org/10.1016/j.oftale.2016.09.003.E.M.D.C.B. Lacerda, M.G. Lima, A.R. Rodrigues, C.E.C. Teixeira, L.J.B. De Lima, D.F. Ventura, L.C.D.L. Silveira, Psychophysical evaluation of achromatic and chromatic vision of workers chronically exposed to organic solvents, J. Environ. Public Health. 2012 (2012) 1–7. https://doi.org/10.1155/2012/784390.T.L. Costa, M.T.S. Barboni, A.L. de A. Moura, D.M.O. Bonci, M. Gualtieri, L.C. de Lima Silveira, D.F. Ventura, Long-term occupational exposure to organic solvents affects color vision, contrast sensitivity and visual fields, PLoS One. 7 (2012) 1–9. https://doi.org/10.1371/journal.pone.0042961.A.M. Landtblom, A. Kristoffersson, I. Boström, Organic solvent exposure as a risk factor for multiple sclerosis: An updated review, Rev. Neurol. (Paris). 175 (2019) 625–630. https://doi.org/10.1016/j.neurol.2019.07.014.C. Barul, M. Carton, L. Radoï, G. Menvielle, C. Pilorget, A.S. Woronoff, I. Stücker, D. Luce, Occupational exposure to petroleum-based and oxygenated solvents and oral and oropharyngeal cancer risk in men: A population-based case-control study in France, Cancer Epidemiol. 59 (2019) 22–28. https://doi.org/10.1016/j.canep.2019.01.005.S. Batterman, F.C. Su, S. Li, B. Mukherjee, C. Jia, HEI Health Review Committee, Personal exposure to mixtures of volatile organic compounds: modeling and further analysis of the RIOPA data., Res. Rep. Health. Eff. Inst. (2014) 3–63. http://www.ncbi.nlm.nih.gov/pubmed/25145040 (accessed October 6, 2017).A. Mirzaei, S.G. Leonardi, G. Neri, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review, Ceram. Int. 42 (2016) 15119–15141. https://doi.org/10.1016/j.ceramint.2016.06.145.M.J. Salar-García, V.M. Ortiz-Martínez, F.J. Hernández-Fernández, A.P. de los Ríos, J. Quesada-Medina, Ionic liquid technology to recover volatile organic compounds (VOCs), J. Hazard. Mater. 321 (2017) 484–499. https://doi.org/10.1016/j.jhazmat.2016.09.040.H. Huang, Y. Xu, Q. Feng, D.Y.C. Leung, Low temperature catalytic oxidation of volatile organic compounds: a review, Catal. Sci. Technol. 5 (2015) 2649–2669. https://doi.org/10.1039/C4CY01733A.X. Zhang, B. Gao, A.E. Creamer, C. Cao, Y. Li, Adsorption of VOCs onto engineered carbon materials: A review, J. Hazard. Mater. (2017). https://doi.org/10.1016/j.jhazmat.2017.05.013.L. Zhou, Q. Yu, Y. Cui, F. Xie, W. Li, Y. Li, M. Chen, Adsorption properties of activated carbon from reed with a high adsorption capacity, Ecol. Eng. 102 (2017) 443–450. https://doi.org/10.1016/j.ecoleng.2017.02.036.Y. Yang, X., Yi, H., Tang, X., Zhao, S., Yang, Z., Ma, Behaviors and kinetics of toluene adsorption‐desorption on activated carbons with varying pore structure, J. Environ. Sci. 67 (2018) 104–114. https://doi.org/10.1016/j.jes.2017.06.032.E. Gallego, F.J. Roca, J.F. Perales, X. Guardino, Experimental evaluation of VOC removal efficiency of a coconut shell activated carbon filter for indoor air quality enhancement, Build. Environ. 67 (2013) 14–25. https://doi.org/10.1016/j.buildenv.2013.05.003.L. Li, S. Liu, J. Liu, Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal, J. Hazard. Mater. 192 (2011) 683–690. https://doi.org/10.1016/j.jhazmat.2011.05.069.A. Sekar, G.K. Varghese, M.K. Ravi Varma, Analysis of benzene air quality standards, monitoring methods and concentrations in indoor and outdoor environment, Heliyon. 5 (2019) 2918. https://doi.org/10.1016/j.heliyon.2019.e02918.M. Song, X. Liu, Y. Zhang, M. Shao, K. Lu, Q. Tan, M. Feng, Y. Qu, Sources and abatement mechanisms of VOCs in southern China, Atmos. Environ. 201 (2019) 28–40. https://doi.org/10.1016/j.atmosenv.2018.12.019.W.-T. Tsai, Toxic Volatile Organic Compounds (VOCs) in the Atmospheric Environment: Regulatory Aspects and Monitoring in Japan and Korea, Environments. 3 (2016) 23–30. https://doi.org/10.3390/environments3030023.J. Fan, X. Gou, Y. Sun, X. Ran, W. Teng, X. Wang, Adsorptive performance of chromium-containing ordered mesoporous silica on volatile organic compounds (VOCs), Nat. Gas Ind. B. 4 (2017) 382–389. https://doi.org/10.1016/j.ngib.2017.10.003.M.M. Dubinin, Microporous structures of carbonaceous adsorbents, Carbon N. Y. 20 (1982) 195–200. https://doi.org/10.1016/0008-6223(82)90020-3.D. Hugi-Cleary, S. Wermeille, F. Stoeckli, The Characterization of Non-Porous Surfaces by a Combination of the BET and the Dubinin-Radushkevich-Kaganer (DRK) Theories, Chimia (Aarau). 57 (2003) 611–615. https://doi.org/10.2533/000942903777678740.R. Denoyel, F. Rouquerol, J. Rouquerol, Porous texture and surface characterization from liquid – solid interactions: immersion calorimetry and adsorption from solution, in: J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, K.S.W. Sing (Eds.), Adsorpt. by Powders Porous Solids Princ. Methodol. Appl., ACADEMIC PRESS, INC., Kidlington, 2014: pp. 273–300.X. Zhang, B. Gao, A.E. Creamer, C. Cao, Y. Li, Adsorption of VOCs onto engineered carbon materials: A review, J. Hazard. Mater. 338 (2017) 102–123. https://doi.org/10.1016/j.jhazmat.2017.05.013.L. Zhu, D. Shen, K.H. Luo, A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods, J. Hazard. Mater. 389 (2020) 122102. https://doi.org/10.1016/j.jhazmat.2020.122102.A. Erto, S. Chianese, A. Lancia, D. Musmarra, On the mechanism of benzene and toluene adsorption in single-compound and binary systems: Energetic interactions and competitive effects, Desalin. Water Treat. 86 (2017) 259–265. https://doi.org/10.5004/dwt.2017.20712.J.M. Martín Martínez, Porosidad de Carbones II. Teoría de Polanyi - Dubinin, in: Martín-Martínez JM (Ed.), Adsorción Física Gases y Vap. Por Carbones, Universidad de Alicante Publicaciones, Alicante, 1990: pp. 5–80.F. Stoeckli, A. Slasli, D. Hugi-Cleary, A. Guillot, The characterization of microporosity in carbons with molecular sieve effects, Microporous Mesoporous Mater. 51 (2002) 197–202. https://doi.org/10.1016/S1387-1811(01)00482-6.B. Rubahamya, K.S. Kumar Reddy, A. Prabhu, A. Al Shoaibi, C. Srinivasakannan, Porous carbon screening for benzene sorption, Environ. Prog. Sustain. Energy. 38 (2019) 93–99. https://doi.org/10.1002/ep.12925.EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83000/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1070948464.2022.pdf1070948464.2022.pdfTesis de Doctorado en Ciencias - Químicaapplication/pdf8216493https://repositorio.unal.edu.co/bitstream/unal/83000/2/1070948464.2022.pdf18955a9286434b5a889e6a1db4e6044aMD52unal/83000oai:repositorio.unal.edu.co:unal/830002023-01-17 20:30:18.538Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=