Una aplicación del teorema de liberalización de hartman

In this note we consider the ordinary differential equation U' = AU +f(t, U), where A is a real, constant, n x n matrix with eigenvalues satisfying Reλ = 0. We assume that the solution U = 0 of the system U' =A U is stable. f is a C1 function, lim U→0 f(t, U) = 0 and lim U→0 Df(t, U) = 0 u...

Full description

Autores:
Naulin, Raúl
Tipo de recurso:
Article of journal
Fecha de publicación:
1991
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/43398
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/43398
http://bdigital.unal.edu.co/33496/
Palabra clave:
Ordinary differential equation
matrix constant eigenvalues
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:In this note we consider the ordinary differential equation U' = AU +f(t, U), where A is a real, constant, n x n matrix with eigenvalues satisfying Reλ = 0. We assume that the solution U = 0 of the system U' =A U is stable. f is a C1 function, lim U→0 f(t, U) = 0 and lim U→0 Df(t, U) = 0 uniformly in t  (Df   is derivate of  f with respect to U). We prove that for any μ and gt; 0, there exists δ (μ) and gt; 0 such that for solutions U1, U2 with initial conditions ξ1, ξ 2,  ξ 1 "# ξ2, |ξ1| and lt; δ we havem limt→∞|U1 (t) – U2 (t)| eμt  = ∞.