Reincorporación al ciclo productivo de un residuo industrial de siderúrgicas en la fabricación de filamentos para manufactura aditiva
ilustraciones, diagramas, fotografías
- Autores:
-
Tirado González, Johanna Gisell
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84723
- Palabra clave:
- 670 - Manufactura::672 - Hierro, acero, otras aleaciones ferrosas
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
660 - Ingeniería química::669 - Metalurgia
Plastics - Additives
Metalurgia de polvos
Plásticos aditivos
Imagen tridimensional en diseño
Powder metallurgy
Design imaging
Manufactura aditiva
economía circular
hierro/óxido de hierro
Pulvimetalurgia
Additive manufacturing
Circular economy
Iron/iron oxide
Powder metallurgy
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_c9ad3b63d343eafe29397dd1ab7bf86d |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84723 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.none.fl_str_mv |
Reincorporación al ciclo productivo de un residuo industrial de siderúrgicas en la fabricación de filamentos para manufactura aditiva |
dc.title.translated.eng.fl_str_mv |
Reincorporation into the production cycle of an industrial waste from steel mills in the manufacture of filaments for additive manufacturing |
title |
Reincorporación al ciclo productivo de un residuo industrial de siderúrgicas en la fabricación de filamentos para manufactura aditiva |
spellingShingle |
Reincorporación al ciclo productivo de un residuo industrial de siderúrgicas en la fabricación de filamentos para manufactura aditiva 670 - Manufactura::672 - Hierro, acero, otras aleaciones ferrosas 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 660 - Ingeniería química::669 - Metalurgia Plastics - Additives Metalurgia de polvos Plásticos aditivos Imagen tridimensional en diseño Powder metallurgy Design imaging Manufactura aditiva economía circular hierro/óxido de hierro Pulvimetalurgia Additive manufacturing Circular economy Iron/iron oxide Powder metallurgy |
title_short |
Reincorporación al ciclo productivo de un residuo industrial de siderúrgicas en la fabricación de filamentos para manufactura aditiva |
title_full |
Reincorporación al ciclo productivo de un residuo industrial de siderúrgicas en la fabricación de filamentos para manufactura aditiva |
title_fullStr |
Reincorporación al ciclo productivo de un residuo industrial de siderúrgicas en la fabricación de filamentos para manufactura aditiva |
title_full_unstemmed |
Reincorporación al ciclo productivo de un residuo industrial de siderúrgicas en la fabricación de filamentos para manufactura aditiva |
title_sort |
Reincorporación al ciclo productivo de un residuo industrial de siderúrgicas en la fabricación de filamentos para manufactura aditiva |
dc.creator.fl_str_mv |
Tirado González, Johanna Gisell |
dc.contributor.advisor.none.fl_str_mv |
Herrera Quintero, Liz Karen |
dc.contributor.author.none.fl_str_mv |
Tirado González, Johanna Gisell |
dc.contributor.educationalvalidator.none.fl_str_mv |
Johanna Esguerra Arce |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación Afis (Análisis de Fallas, Integridad y Superficies) |
dc.contributor.orcid.spa.fl_str_mv |
Tirado Gonzalez, Johanna Gisell [0009-0000-7224-4512] |
dc.contributor.researchgate.spa.fl_str_mv |
Tirado González, Johanna Gisell [https://www.researchgate.net/profile/Johanna-Tirado-Gonzalez] |
dc.contributor.googlescholar.spa.fl_str_mv |
Tirado González, Johanna Gisell [https://scholar.google.com/citations?user=N5EjpAgAAAAJ&hl=es] |
dc.subject.ddc.spa.fl_str_mv |
670 - Manufactura::672 - Hierro, acero, otras aleaciones ferrosas 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 660 - Ingeniería química::669 - Metalurgia |
topic |
670 - Manufactura::672 - Hierro, acero, otras aleaciones ferrosas 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 660 - Ingeniería química::669 - Metalurgia Plastics - Additives Metalurgia de polvos Plásticos aditivos Imagen tridimensional en diseño Powder metallurgy Design imaging Manufactura aditiva economía circular hierro/óxido de hierro Pulvimetalurgia Additive manufacturing Circular economy Iron/iron oxide Powder metallurgy |
dc.subject.armarc.none.fl_str_mv |
Plastics - Additives |
dc.subject.lemb.spa.fl_str_mv |
Metalurgia de polvos Plásticos aditivos Imagen tridimensional en diseño |
dc.subject.lemb.eng.fl_str_mv |
Powder metallurgy Design imaging |
dc.subject.proposal.spa.fl_str_mv |
Manufactura aditiva economía circular hierro/óxido de hierro Pulvimetalurgia |
dc.subject.proposal.eng.fl_str_mv |
Additive manufacturing Circular economy Iron/iron oxide Powder metallurgy |
description |
ilustraciones, diagramas, fotografías |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-09-25T15:24:17Z |
dc.date.available.none.fl_str_mv |
2023-09-25T15:24:17Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84723 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84723 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Naciones Unidas, “Consumo y producción sostenibles - Desarrollo Sostenible,” Objetivos de desarrollo sostenible. p. 1, 2020. Accessed: Apr. 19, 2022. [Online]. Available: https://www.un.org/sustainabledevelopment/es/sustainable-consumption-production/ Noticias Parlamento Europeo, “Economía circular: definición, importancia y beneficios,” Economía circular: definición, importancia y beneficios, May 24, 2023. ISO/ASTM, “Additive Manufacturing - General Principles Terminology (ASTM52900),” 2013. doi: 10.1520/F2792-12A.2. S. Cacace and Q. Semeraro, “Influence of the atomization medium on the properties of stainless steel SLM parts,” Addit Manuf, vol. 36, p. 101509, Dec. 2020, doi: 10.1016/J.ADDMA.2020.101509. L. S. Santos, S. K. Gupta, and H. A. Bruck, “Simulation of buckling of internal features during selective laser sintering of metals,” Addit Manuf, vol. 23, pp. 235–245, Oct. 2018, doi: 10.1016/J.ADDMA.2018.08.002. A. Mostafaei, E. L. Stevens, J. J. Ference, D. E. Schmidt, and M. Chmielus, “Binder jetting of a complex-shaped metal partial denture framework,” Addit Manuf, vol. 21, pp. 63–68, May 2018, doi: 10.1016/J.ADDMA.2018.02.014. A. P. S. Cruz, “Estado del Arte de la Fabricación Aditiva.,” 2013. “Chemical store Inc,” Iron powder. https://shop.chemicalstore.com/navigation/search.asp?keyword=iron%20powder (accessed Mar. 25, 2023). Z. Lotfizarei, A. Mostafapour, A. Barari, A. Jalili, and A. E. Patterson, “Overview of debinding methods for parts manufactured using powder material extrusion,” Addit Manuf, vol. 61, p. 103335, Jan. 2023, doi: 10.1016/J.ADDMA.2022.103335. N. Birks and G. Meier, Introduction to High Temperature Oxidation of Metals. 1982. L. Rojas and S. Restrepo, “Evaluación Del Uso De Cascarilla De Laminación Como Agregado Fino En La Elaboración De Concreto Convencional,” UNIVERSIDAD EAFIT, 2016. [Online]. Available: https://repository.eafit.edu.co/bitstream/handle/10784/12229/RojasHenao_LinaMaria_SierraRestrepo_Simon_2016.pdf?sequence=2 “Mill Scale, Sales and Information Such As Mill Scale Uses.” https://millscale.org/ (accessed May 03, 2022). J. G. Tirado González, B. T. Reyes Segura, J. Esguerra-Arce, A. Bermúdez Castañeda, Y. Aguilar, and A. Esguerra-Arce, “An innovative magnetic oxide dispersion-strengthened iron compound obtained from an industrial byproduct, with a view to circular economy,” J Clean Prod, vol. 268, no. 205, 2020, doi: 10.1016/j.jclepro.2020.122362. C. K. Blakely, S. R. Bruno, Z. J. Baum, and V. v. Poltavets, “Effects of ball milling and thermal annealing on size and strain of ASnO3 (A = Ba, Sr) ceramics,” Solid State Sci, vol. 15, pp. 110–114, 2013, doi: 10.1016/j.solidstatesciences.2012.09.006. M. Sherif El-Eskandarany et al., “Mechanical milling: A superior nanotechnological tool for fabrication of nanocrystalline and nanocomposite materials,” Nanomaterials, vol. 11, no. 10, 2021, doi: 10.3390/nano11102484. M. S. El-Eskandarany, “Controlling the powder milling process,” in Mechanical Alloying, 2015, pp. 48–83. doi: 10.1016/b978-1-4557-7752-5.00003-6. Z. H. Chin and T. P. Perng, “Amorphization of Ni-Si-C ternary alloy powder by mechanical alloying,” Materials Science Forum, vol. 235–238, no. PART 1, pp. 121–126, 1997, doi: 10.4028/www.scientific.net/msf.235-238.121. M. K. Vargas and D. L. Beke, “Phase transitions in Cu-Sb systems induced by ball milling,” Trans Tech Publications, vol. 225, pp. 465–470, 1996, doi: 10.1557/mrs2002.257. C. Suryanarayana, “Mechanical alloying and milling,” Prog Mater Sci, vol. 46, no. 1–2, pp. 1–184, 2001, doi: 10.1016/S0079-6425(99)00010-9. P. Sharma, S. Sharma, and D. Khanduja, “On the Use of Ball Milling for the Production of Ceramic Powders,” Materials and Manufacturing Processes, vol. 30, no. 11, pp. 1370–1376, 2015, doi: 10.1080/10426914.2015.1037904. G. S. Upadhyaya, Powder Metallurgy Technology, no. 1. 1998. K. Jabbour and N. el Hassan, “Optimized conditions for reduction of iron (III) oxide into metallic form under hydrogen atmosphere: A thermodynamic approach,” Chem Eng Sci, vol. 252, p. 117297, 2022, doi: 10.1016/j.ces.2021.117297. W. K. Jozwiak, E. Kaczmarek, T. P. Maniecki, W. Ignaczak, and W. Maniukiewicz, “Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres,” Appl Catal A Gen, vol. 326, no. 1, 2007, doi: 10.1016/j.apcata.2007.03.021. M. N. Abu Tahari, F. Salleh, T. S. Tengku Saharuddin, A. Samsuri, S. Samidin, and M. A. Yarmo, “Influence of hydrogen and carbon monoxide on reduction behavior of iron oxide at high temperature: Effect on reduction gas concentrations,” Int J Hydrogen Energy, vol. 46, no. 48, pp. 24791–24805, Jul. 2021, doi: 10.1016/J.IJHYDENE.2020.06.250. M. Bystrzejewski, “Synthesis of carbon-encapsulated iron nanoparticles via solid state reduction of iron oxide nanoparticles,” J Solid State Chem, vol. 184, no. 6, pp. 1492–1498, Jun. 2011, doi: 10.1016/J.JSSC.2011.04.018. S. H. Kim et al., “Influence of microstructure and atomic-scale chemistry on the direct reduction of iron ore with hydrogen at 700°C,” Acta Mater, vol. 212, 2021, doi: 10.1016/j.actamat.2021.116933. F. Patisson and O. Mirgaux, “metals Hydrogen Ironmaking: How It Works”, doi: 10.3390/met10070922. A. Pineau, N. Kanari, and I. Gaballah, “Kinetics of reduction of iron oxides by H2: Part II. Low temperature reduction of magnetite,” Thermochim Acta, vol. 456, no. 2, pp. 75–88, May 2007, doi: 10.1016/J.TCA.2007.01.014. A. Heidari, N. Niknahad, M. Iljana, and T. Fabritius, “A review on the kinetics of iron ore reduction by hydrogen,” Materials, vol. 14, no. 24, 2021, doi: 10.3390/ma14247540. A. Zhang, B. J. Monaghan, R. J. Longbottom, M. Nusheh, and C. W. Bumby, “Reduction Kinetics of Oxidized New Zealand Ironsand Pellets in H2 at Temperatures up to 1443 K,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, vol. 51, no. 2, pp. 492–504, Apr. 2020, doi: 10.1007/S11663-020-01790-3/METRICS. L. Yi, Z. Huang, H. Peng, and T. Jiang, “Action rules of H2 and CO in gas-based direct reduction of iron ore pellets,” Journal of Central South University 2012 19:8, vol. 19, no. 8, pp. 2291–2296, Aug. 2012, doi: 10.1007/S11771-012-1274-0. J. Szekely, J. Evans, and H. Sohn, Gas-Solid Reactions , 1st ed. New York: Academic Press Inc, 1976. O. Benchiheub, S. Mechachti, S. Serrai, and M. G. Khalifa, “Elaboration of iron powder from mill scale,” J. Mater. Environ. Sci, vol. 1, no. 4, pp. 267–276, 2010. A. Zhang, B. J. Monaghan, R. J. Longbottom, M. Nusheh, and C. W. Bumby, “Reduction Kinetics of Oxidized New Zealand Ironsand Pellets in H2 at Temperatures up to 1443 K,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, vol. 51, no. 2, pp. 492–504, 2020, doi: 10.1007/s11663-020-01790-3. F. Chen, Y. Mohassab, T. Jiang, and H. Y. Sohn, “Hydrogen Reduction Kinetics of Hematite Concentrate Particles Relevant to a Novel Flash Ironmaking Process,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, vol. 46, no. 3, pp. 1133–1145, 2015, doi: 10.1007/s11663-015-0332-z. J. Chen, R. Zhang, T. Simmonds, and P. C. Hayes, “Microstructural Changes and Kinetics of Reduction of Hematite to Magnetite in CO/CO2 Gas Atmospheres,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, vol. 50, no. 6, 2019, doi: 10.1007/s11663-019-01659-0. C. Scharm et al., “Direct reduction of iron ore pellets by H2 and CO: In-situ investigation of the structural transformation and reduction progression caused by atmosphere and temperature,” Miner Eng, vol. 180, p. 107459, Apr. 2022, doi: 10.1016/J.MINENG.2022.107459. M. I. A. Barustan and S. M. Jung, “Morphology of Iron and Agglomeration Behaviour During Reduction of Iron Oxide Fines,” Metals and Materials International, vol. 25, no. 4, 2019, doi: 10.1007/s12540-019-00259-6. A. A. Barde, J. F. Klausner, and R. Mei, “Solid state reaction kinetics of iron oxide reduction using hydrogen as a reducing agent,” Int J Hydrogen Energy, vol. 41, no. 24, pp. 10103–10119, 2016, doi: 10.1016/j.ijhydene.2015.12.129. M. S. Valipour, M. Y. Motamed Hashemi, and Y. Saboohi, “Mathematical modeling of the reaction in an iron ore pellet using a mixture of hydrogen, water vapor, carbon monoxide and carbon dioxide: An isothermal study,” Advanced Powder Technology, vol. 17, no. 3, pp. 277–295, 2006, doi: 10.1163/156855206777213375. A. D. Mazurchevici, D. Nedelcu, and R. Popa, “Additive manufacturing of composite materials by FDM technology: A review,” Indian Journal of Engineering and Materials Sciences, vol. 27, no. 2, pp. 179–192, 2020. T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,” Compos B Eng, vol. 143, no. December 2017, pp. 172–196, 2018, doi: 10.1016/j.compositesb.2018.02.012. A. I. Nurhudan, S. Supriadi, Y. Whulanza, and A. S. Saragih, “Additive manufacturing of metallic based on extrusion process: A review,” J Manuf Process, vol. 66, pp. 228–237, Jun. 2021, doi: 10.1016/J.JMAPRO.2021.04.018. M. K. Agarwala, R. van Weeren, A. Bandyopadhyayl, P. J. Whalen, A. Safari, and S. C. Danforth, “Fused Deposition of Ceramics and Metals : An Overview,” Proceedings of Solid Freeform Fabrication Symposium, pp. 385–392, 1996, [Online]. Available: http://hdl.handle.net/2152/70261 G. Wu, N. A. Langrana, R. Sadanji, and S. Danforth, “Solid freeform fabrication of metal components using fused deposition of metals,” Mater Des, vol. 23, no. 1, pp. 97–105, Feb. 2002, doi: 10.1016/S0261-3069(01)00079-6. S. Hwang, E. I. Reyes, K. sik Moon, R. C. Rumpf, and N. S. Kim, “Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process,” J Electron Mater, vol. 44, no. 3, pp. 771–777, 2015, doi: 10.1007/s11664-014-3425-6. S. Riecker, S. B. Hein, T. Studnitzky, O. Andersen, and B. Kieback, “3D printing of metal parts by means of fused filament fabrication - A non beam-based approach,” Proceedings Euro PM 2017: International Powder Metallurgy Congress and Exhibition, no. October, 2017. C. Kukla, J. Gonzalez-Gutierrez, I. Duretek, S. Schuschnigg, and C. Holzer, “Effect of particle size on the properties of highly-filled polymers for fused filament fabrication,” AIP Conf Proc, vol. 1914, no. July, pp. 2–6, 2017, doi: 10.1063/1.5016795. J. Gonzalez-Gutierrez, R. Guráň, M. Spoerk, C. Holzer, D. Godec, and C. Kukla, “3D printing conditions determination for feedstock used in fused filament fabrication (FFF) of 17-4PH stainless steel parts,” in Metalurgija, 2018, pp. 117–120. M. A. Ryder, D. A. Lados, G. S. Iannacchione, and A. M. Peterson, “Fabrication and properties of novel polymer-metal composites using fused deposition modeling,” Compos Sci Technol, vol. 158, pp. 43–50, Apr. 2018, doi: 10.1016/J.COMPSCITECH.2018.01.049. Y. Thompson, J. Gonzalez-Gutierrez, C. Kukla, and P. Felfer, “Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel,” Addit Manuf, vol. 30, p. 100861, Dec. 2019, doi: 10.1016/J.ADDMA.2019.100861. W. Lengauer, I. Duretek, M. Fürst, J. Gonzalez-Gutierrez, S. Schuschnigg, and C. Kukla, “Fused-filament printing of hardmetals and cermets with feedstock from RTP powders,” in Euro PM 2019 Congress and Exhibition, 2019, pp. 1–8. S. Roshchupkin, A. Kolesov, A. Tarakhovskiy, and I. Tishchenko, “A brief review of main ideas of metal fused filament fabrication,” Mater Today Proc, vol. 38, pp. 2063–2067, Jan. 2021, doi: 10.1016/J.MATPR.2020.10.142. M. Bek, J. Gonzalez-Gutierrez, C. Kukla, K. P. Črešnar, B. Maroh, and L. S. Perše, “Rheological behaviour of highly filled materials for injection moulding and additive manufacturing: Effect of particle material and loading,” Applied Sciences (Switzerland), vol. 10, no. 22, pp. 1–23, 2020, doi: 10.3390/app10227993. P. Singh, V. K. Balla, A. Tofangchi, S. v. Atre, and K. H. Kate, “Printability studies of Ti-6Al-4V by metal fused filament fabrication (MF3),” Int J Refract Metals Hard Mater, vol. 91, p. 105249, Sep. 2020, doi: 10.1016/J.IJRMHM.2020.105249. D. Godec, S. Cano, C. Holzer, and J. Gonzalez-Gutierrez, “Optimization of the 3D printing parameters for tensile properties of specimens produced by fused filament fabrication of 17-4PH stainless steel,” Materials, vol. 13, no. 3, 2020, doi: 10.3390/ma13030774. C. Gloeckle, T. Konkol, O. Jacobs, W. Limberg, T. Ebel, and U. A. Handge, “Processing of highly filled polymer–metal feedstocks for fused filament fabrication and the production of metallic implants,” Materials, vol. 13, no. 19, pp. 1–16, 2020, doi: 10.3390/ma13194413. J. Slapnik, I. Pulko, R. Rudolf, I. Anžel, and M. Brunčko, “Fused filament fabrication of Nd-Fe-B bonded magnets: Comparison of PA12 and TPU matrices,” Addit Manuf, vol. 38, p. 101745, Feb. 2021, doi: 10.1016/J.ADDMA.2020.101745. Y. Zhang, L. Poli, E. Garratt, S. Foster, and A. Roch, “Utilizing Fused Filament Fabrication for Printing Iron Cores for Electrical Devices,” 3D Print Addit Manuf, vol. 7, no. 6, pp. 279–287, 2020, doi: 10.1089/3dp.2020.0136. A. G. Hasib et al., “Rheology scaling of spherical metal powders dispersed in thermoplastics and its correlation to the extrudability of filaments for 3D printing,” Addit Manuf, vol. 41, p. 101967, May 2021, doi: 10.1016/J.ADDMA.2021.101967. A.-F. Gil-Plazas et al., “Solid-State and Super Solidus Liquid Phase Sintering of 4340 Steel SLM Powders Shaped by Fused Filament Fabrication,” Revista Facultad de Ingeniería, vol. 31, no. 60, p. e13913, May 2022, doi: 10.19053/01211129.V31.N60.2022.13913. “Flexa Grey | Flexible material for 3D printing.” https://sinterit.com/materials/flexa-grey/ (accessed Oct. 07, 2022). J. Gonzalez-Gutierrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, and C. Holzer, “Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: A review and future perspectives,” Materials, vol. 11, no. 5, 2018, doi: 10.3390/ma11050840. G. George et al., “Green and facile approach to prepare polypropylene/in situ reduced graphene oxide nanocomposites with excellent electromagnetic interference shielding properties,” RSC Adv, vol. 8, no. 53, pp. 30412–30428, Aug. 2018, doi: 10.1039/C8RA05007D. X. Chen, Y. He, Y. Fan, Q. Yang, G. Zeng, and H. Shi, “Facile fabrication of a robust superwetting three-dimensional (3D) nickel foam for oil/water separation,” J Mater Sci, vol. 52, no. 4, pp. 2169–2179, Feb. 2017, doi: 10.1007/S10853-016-0505-4/METRICS. K. Polat, “Low-Cost and High-Capacity Dye Remover: a Study of Methylene Blue Adsorption by a Thermoplastic-Elastomer Blend System,” Water Air Soil Pollut, vol. 228, no. 9, pp. 1–10, Sep. 2017, doi: 10.1007/S11270-017-3510-6/METRICS. C. Zhang, S. Zhang, D. Sun, J. Lin, F. Meng, and H. Liu, “Superhydrophobic fluoride conversion coating on bioresorbable magnesium alloy – fabrication, characterization, degradation and cytocompatibility with BMSCs,” Journal of Magnesium and Alloys, vol. 9, no. 4, pp. 1246–1260, Jul. 2021, doi: 10.1016/J.JMA.2020.05.017. L. Tong et al., “Electrically Conductive TPU Nanofibrous Composite with High Stretchability for Flexible Strain Sensor,” Nanoscale Res Lett, vol. 13, no. 1, pp. 1–8, Mar. 2018, doi: 10.1186/S11671-018-2499-0/FIGURES/10. A. Stefan et al., “Multi-walled carbon nanotubes effect in polypropylene nanocomposites ,” Materials and technology, pp. 11–16, 2016, doi: 10.17222/mit.2014.142. A. Haryńska, I. Gubanska, J. Kucinska-Lipka, and H. Janik, “Fabrication and Characterization of Flexible Medical-Grade TPU Filament for Fused Deposition Modeling 3DP Technology,” Polymers 2018, Vol. 10, Page 1304, vol. 10, no. 12, p. 1304, Nov. 2018, doi: 10.3390/POLYM10121304. O. D. Maynez-Navarro, M. A. Mendez-Rojas, D. X. Flores-Cervantes, and J. L. Sanchez-Salas, “Hydroxyl Radical Generation by Recyclable Photocatalytic Fe3O4/ZnO Nanoparticles for Water Disinfection,” Air, Soil and Water Research, vol. 13, 2020, doi: 10.1177/1178622120970954. N. Kurnaz Yetim, F. Kurşun Baysak, M. M. Koç, and D. Nartop, “Characterization of magnetic Fe3O4@SiO2 nanoparticles with fluorescent properties for potential multipurpose imaging and theranostic applications,” Journal of Materials Science: Materials in Electronics, vol. 31, no. 20, 2020, doi: 10.1007/s10854-020-04375-7. M. A. Wagner et al., “Fused filament fabrication of stainless steel structures - from binder development to sintered properties,” Addit Manuf, vol. 49, p. 102472, Jan. 2022, doi: 10.1016/j.addma.2021.102472. H. Lgaz and H. seung Lee, “First‐principles based theoretical investigation of the adsorption of alkanethiols on the iron surface: A DFT-D3 study,” J Mol Liq, vol. 348, 2022, doi: 10.1016/j.molliq.2021.118071. H. Öström, Chemical Bonding of Hydrocarbons to Metal Surfaces. Stockholm, 2004. P. O. Bedolla et al., “Effects of van der Waals interactions in the adsorption of isooctane and ethanol on Fe(100) surfaces,” Journal of Physical Chemistry C, vol. 118, no. 31, pp. 17608–17615, Aug. 2014, doi: 10.1021/JP503829C/ASSET/IMAGES/LARGE/JP-2014-03829C_0008.JPEG. A. A. Tafti, V. Demers, S. M. Majdi, G. Vachon, and V. Brailovski, “Effect of thermal debinding conditions on the sintered density of low-pressure powder injection molded iron parts,” Metals (Basel), vol. 11, no. 2, 2021, doi: 10.3390/met11020264. “Impresora 3D Creality Ender 3 PRO - impresoras3d.com.” https://www.impresoras3d.com/producto/impresora-3d-creality-ender-3-pro/ (accessed Oct. 07, 2022). B. Liu, Y. Wang, Z. Lin, and T. Zhang, “Creating metal parts by Fused Deposition Modeling and Sintering,” Mater Lett, vol. 263, p. 127252, Mar. 2020, doi: 10.1016/J.MATLET.2019.127252. K. S. Hwang and Y. M. Hsieh, “Comparative study of pore structure evolution during solvent and thermal debinding of powder injection molded parts,” Metall Mater Trans A Phys Metall Mater Sci, vol. 27, no. 2, 1996, doi: 10.1007/BF02648403. M. Sadaf, M. Bragaglia, and F. Nanni, “A simple route for additive manufacturing of 316L stainless steel via Fused Filament Fabrication,” J Manuf Process, vol. 67, 2021, doi: 10.1016/j.jmapro.2021.04.055. J. Gonzalez-Gutierrez, F. Arbeiter, T. Schlauf, C. Kukla, and C. Holzer, “Tensile properties of sintered 17-4PH stainless steel fabricated by material extrusion additive manufacturing,” Mater Lett, vol. 248, 2019, doi: 10.1016/j.matlet.2019.04.024. Y. Zhang, S. Bai, M. Riede, E. Garratt, and A. Roch, “A comprehensive study on fused filament fabrication of Ti-6Al-4V structures,” Addit Manuf, vol. 34, 2020, doi: 10.1016/j.addma.2020.101256. J. H. H. Ter Maat, J. Ebenhöch, and H.-J. Sterzel, “Fast Catalytic Debinding of Injection Moulded Parts,” 4th International Symposium on Ceramic Materials and Components for Engines, pp. 544–551, 1992, doi: 10.1007/978-94-011-2882-7_58. I. Todd and A. T. Sidambe Dr, “Developments in metal injection moulding (MIM),” Advances in Powder Metallurgy: Properties, Processing and Applications, pp. 109–146, Jan. 2013, doi: 10.1533/9780857098900.1.109. M. F. F. A. Hamidi, W. S. W. Harun, N. Z. Khalil, S. A. C. Ghani, and M. Z. Azir, “Study of solvent debinding parameters for metal injection moulded 316L stainless steel,” in IOP Conference Series: Materials Science and Engineering, 2017. doi: 10.1088/1757-899X/257/1/012035. N. A. N. Dandang, W. S. W. Harun, N. Z. Khalil, A. H. Ahmad, F. R. M. Romlay, and N. A. Johari, “Paraffin wax removal from metal injection moulded cocrmo alloy compact by solvent debinding process,” IOP Conf Ser Mater Sci Eng, vol. 257, no. 1, p. 012020, Oct. 2017, doi: 10.1088/1757-899X/257/1/012020. G. R. M. and B. A., “Injection Moulding of Metals and Ceramics.” Metal Powder Industries Federation, Princeton, New Jersey, USA, 1997. T. Kurose et al., “Influence of the layer directions on the properties of 316l stainless steel parts fabricated through fused deposition of metals,” Materials, vol. 13, no. 11, 2020, doi: 10.3390/ma13112493. D. F. Heaney, Handbook of Metal Injection Molding. 2019. doi: 10.1016/B978-0-08-102152-1.09991-8. S. Banerjee and C. J. Joens, “Debinding and sintering of metal injection molding (MIM) components,” Handbook of Metal Injection Molding, pp. 129–171, Jan. 2019, doi: 10.1016/B978-0-08-102152-1.00009-X. M. Quarto, M. Carminati, and G. D’Urso, “Density and shrinkage evaluation of AISI 316L parts printed via FDM process,” Materials and Manufacturing Processes, vol. 36, no. 13, 2021, doi: 10.1080/10426914.2021.1905830. C. Suwanpreecha and A. Manonukul, “A Review on Material Extrusion Additive Manufacturing of Metal and How It Compares with Metal Injection Moulding,” Metals, vol. 12, no. 3. 2022. doi: 10.3390/met12030429. P. Singh, V. K. Balla, S. v. Atre, R. M. German, and K. H. Kate, “Factors affecting properties of Ti-6Al-4V alloy additive manufactured by metal fused filament fabrication,” Powder Technol, vol. 386, 2021, doi: 10.1016/j.powtec.2021.03.026. D. R. Askeland and W. J. Wright, The Science and Engineering of Materials 7th Edition. 2016. J. Gonzalez-Gutierrez et al., “Powder content in powder extrusion moulding of tool steel: Dimensional stability, shrinkage and hardness,” Mater Lett, vol. 283, 2021, doi: 10.1016/j.matlet.2020.128909. J. Gonzalez-Gutierrez et al., “Shaping, Debinding and Sintering of Steel Components via Fused Filament Fabrication,” in 16 th INTERNATIONAL SCIENTIFIC CONFERENCE ON PRODUCTION ENGINEERING, 2017, pp. 8–10. M. K. Agarwala, V. R. Jamalabad, N. A. Langrana, A. Safari, P. J. Whalen, and S. C. Danforth, “Structural quality of parts processed by fused deposition,” Rapid Prototyp J, vol. 2, no. 4, 1996, doi: 10.1108/13552549610732034. M. Mousapour, M. Salmi, L. Klemettinen, and J. Partanen, “Feasibility study of producing multi-metal parts by Fused Filament Fabrication (FFF) technique,” J Manuf Process, vol. 67, 2021, doi: 10.1016/j.jmapro.2021.05.021. D. C. Pang, Z. J. Shi, P. X. Xie, H. C. Huang, and G. T. Bui, “Investigation of an Inset Micro Permanent Magnet Synchronous Motor Using Soft Magnetic Composite Material,” Energies 2020, Vol. 13, Page 4445, vol. 13, no. 17, p. 4445, Aug. 2020, doi: 10.3390/EN13174445. M. U. Naseer, A. Kallaste, B. Asad, T. Vaimann, and A. Rassõlkin, “A Review on Additive Manufacturing Possibilities for Electrical Machines,” Energies 2021, Vol. 14, Page 1940, vol. 14, no. 7, p. 1940, Mar. 2021, doi: 10.3390/EN14071940. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xxi, 93 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84723/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84723/2/1020820949.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84723/3/1020820949.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a e8bca86c087275684927cad803d4aa38 2227dbfeb03e2cb548b96b6ee9f2bd83 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089406562172928 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Herrera Quintero, Liz Karen466450389e49c1dfef02fa0d2392b456Tirado González, Johanna Gisellff321368ce54a2b7b04e6b39d8ae6bd5Johanna Esguerra ArceGrupo de Investigación Afis (Análisis de Fallas, Integridad y Superficies)Tirado Gonzalez, Johanna Gisell [0009-0000-7224-4512]Tirado González, Johanna Gisell [https://www.researchgate.net/profile/Johanna-Tirado-Gonzalez]Tirado González, Johanna Gisell [https://scholar.google.com/citations?user=N5EjpAgAAAAJ&hl=es]2023-09-25T15:24:17Z2023-09-25T15:24:17Z2023https://repositorio.unal.edu.co/handle/unal/84723Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasLa técnica de impresión 3D basada en extrusión (MEX) ha demostrado ser confiable y de bajo costo para la obtención de piezas metálicas. Por tanto, en el presente trabajo se estudia su idoneidad para obtener piezas de un material compuesto de hierro/óxido de hierro proveniente de un residuo industrial. Inicialmente se evaluó la influencia del tiempo de molienda y la temperatura de reducción química. Una vez obtenido el polvo se fabricaron filamentos con matriz polimérica de TPU/PP/SA y TPE/PP/SA en una proporción para ambos casos de 87-13 %wt., (polvo metálico – mezcla polimérica, respectivamente). Se obtuvo el filamento, se evaluó la influencia de la temperatura y la velocidad de impresión en la geometría de las piezas impresas, y se eligieron las probetas que más se acercaron al valor nominal de diseño. Por último, se evaluó la influencia del ciclo de sinterización en las propiedades mecánicas y microestructurales de las mismas. Los resultados mostraron que la temperatura de impresión no tuvo un impacto significativo en la geometría de impresión de las piezas como sí lo mostró la velocidad de impresión. Durante el debinding térmico y la sinterización se observó un fenómeno de reducción química adicional sobre los polvos de hierro, producto de la descomposición de la matriz polimérica que generó agentes reductores, lo que demuestra que la selección de la matriz polimérica afecta la microestructura de las piezas sinterizadas. Finalmente se encontró que una menor velocidad de impresión (7mm/s) llevó a una mayor contracción, mayor densidad y dureza de las piezas metálicas. (Texto tomado de la fuente)The 3D printing technique based on extrusion (MEX) has proven to be reliable and low cost for obtaining metal parts. Therefore, in the present work, we study its suitability to obtain parts of a composite material of iron/iron oxide from an industrial waste. Initially, the influence of grinding time and chemical reduction temperature was evaluated. Once the powder was obtained, filaments were manufactured with polymer matrix of TPU/PP/SA and TPE/PP/SA in a proportion for both cases of 87-13 %wt., (metal powder – polymer mixture, respectively). The filament was obtained, the influence of temperature and printing speed on the geometry of the printed parts was evaluated, and the specimens that came closest to the nominal design value were chosen. Finally, the influence of the sintering cycle on their mechanical and microstructural properties was evaluated. The results showed that the printing temperature did not have a significant impact on the printing geometry of the parts as the printing speed did. During thermal debinding and sintering, an additional chemical reduction phenomenon was observed on iron powders, product of the decomposition of the polymer matrix that generated reducing agents, demonstrating that the selection of the polymer matrix affects the microstructure of the sintered parts. Finally, it was found that a lower printing speed (7mm/s) led to greater shrinkage, higher density and hardness of metal parts.ICETEX, el Ministerio de Ciencia, Tecnología e Innovación y la Universidad Nacional de ColombiaMaestríaMagíster en Ingeniería - Materiales y ProcesosPulvimetalurgia y manufactura aditivaxxi, 93 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Materiales y ProcesosFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá670 - Manufactura::672 - Hierro, acero, otras aleaciones ferrosas620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería660 - Ingeniería química::669 - MetalurgiaPlastics - AdditivesMetalurgia de polvosPlásticos aditivosImagen tridimensional en diseñoPowder metallurgyDesign imagingManufactura aditivaeconomía circularhierro/óxido de hierroPulvimetalurgiaAdditive manufacturingCircular economyIron/iron oxidePowder metallurgyReincorporación al ciclo productivo de un residuo industrial de siderúrgicas en la fabricación de filamentos para manufactura aditivaReincorporation into the production cycle of an industrial waste from steel mills in the manufacture of filaments for additive manufacturingTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMNaciones Unidas, “Consumo y producción sostenibles - Desarrollo Sostenible,” Objetivos de desarrollo sostenible. p. 1, 2020. Accessed: Apr. 19, 2022. [Online]. Available: https://www.un.org/sustainabledevelopment/es/sustainable-consumption-production/Noticias Parlamento Europeo, “Economía circular: definición, importancia y beneficios,” Economía circular: definición, importancia y beneficios, May 24, 2023.ISO/ASTM, “Additive Manufacturing - General Principles Terminology (ASTM52900),” 2013. doi: 10.1520/F2792-12A.2.S. Cacace and Q. Semeraro, “Influence of the atomization medium on the properties of stainless steel SLM parts,” Addit Manuf, vol. 36, p. 101509, Dec. 2020, doi: 10.1016/J.ADDMA.2020.101509.L. S. Santos, S. K. Gupta, and H. A. Bruck, “Simulation of buckling of internal features during selective laser sintering of metals,” Addit Manuf, vol. 23, pp. 235–245, Oct. 2018, doi: 10.1016/J.ADDMA.2018.08.002.A. Mostafaei, E. L. Stevens, J. J. Ference, D. E. Schmidt, and M. Chmielus, “Binder jetting of a complex-shaped metal partial denture framework,” Addit Manuf, vol. 21, pp. 63–68, May 2018, doi: 10.1016/J.ADDMA.2018.02.014.A. P. S. Cruz, “Estado del Arte de la Fabricación Aditiva.,” 2013.“Chemical store Inc,” Iron powder. https://shop.chemicalstore.com/navigation/search.asp?keyword=iron%20powder (accessed Mar. 25, 2023).Z. Lotfizarei, A. Mostafapour, A. Barari, A. Jalili, and A. E. Patterson, “Overview of debinding methods for parts manufactured using powder material extrusion,” Addit Manuf, vol. 61, p. 103335, Jan. 2023, doi: 10.1016/J.ADDMA.2022.103335.N. Birks and G. Meier, Introduction to High Temperature Oxidation of Metals. 1982.L. Rojas and S. Restrepo, “Evaluación Del Uso De Cascarilla De Laminación Como Agregado Fino En La Elaboración De Concreto Convencional,” UNIVERSIDAD EAFIT, 2016. [Online]. Available: https://repository.eafit.edu.co/bitstream/handle/10784/12229/RojasHenao_LinaMaria_SierraRestrepo_Simon_2016.pdf?sequence=2“Mill Scale, Sales and Information Such As Mill Scale Uses.” https://millscale.org/ (accessed May 03, 2022).J. G. Tirado González, B. T. Reyes Segura, J. Esguerra-Arce, A. Bermúdez Castañeda, Y. Aguilar, and A. Esguerra-Arce, “An innovative magnetic oxide dispersion-strengthened iron compound obtained from an industrial byproduct, with a view to circular economy,” J Clean Prod, vol. 268, no. 205, 2020, doi: 10.1016/j.jclepro.2020.122362.C. K. Blakely, S. R. Bruno, Z. J. Baum, and V. v. Poltavets, “Effects of ball milling and thermal annealing on size and strain of ASnO3 (A = Ba, Sr) ceramics,” Solid State Sci, vol. 15, pp. 110–114, 2013, doi: 10.1016/j.solidstatesciences.2012.09.006.M. Sherif El-Eskandarany et al., “Mechanical milling: A superior nanotechnological tool for fabrication of nanocrystalline and nanocomposite materials,” Nanomaterials, vol. 11, no. 10, 2021, doi: 10.3390/nano11102484.M. S. El-Eskandarany, “Controlling the powder milling process,” in Mechanical Alloying, 2015, pp. 48–83. doi: 10.1016/b978-1-4557-7752-5.00003-6.Z. H. Chin and T. P. Perng, “Amorphization of Ni-Si-C ternary alloy powder by mechanical alloying,” Materials Science Forum, vol. 235–238, no. PART 1, pp. 121–126, 1997, doi: 10.4028/www.scientific.net/msf.235-238.121.M. K. Vargas and D. L. Beke, “Phase transitions in Cu-Sb systems induced by ball milling,” Trans Tech Publications, vol. 225, pp. 465–470, 1996, doi: 10.1557/mrs2002.257.C. Suryanarayana, “Mechanical alloying and milling,” Prog Mater Sci, vol. 46, no. 1–2, pp. 1–184, 2001, doi: 10.1016/S0079-6425(99)00010-9.P. Sharma, S. Sharma, and D. Khanduja, “On the Use of Ball Milling for the Production of Ceramic Powders,” Materials and Manufacturing Processes, vol. 30, no. 11, pp. 1370–1376, 2015, doi: 10.1080/10426914.2015.1037904.G. S. Upadhyaya, Powder Metallurgy Technology, no. 1. 1998.K. Jabbour and N. el Hassan, “Optimized conditions for reduction of iron (III) oxide into metallic form under hydrogen atmosphere: A thermodynamic approach,” Chem Eng Sci, vol. 252, p. 117297, 2022, doi: 10.1016/j.ces.2021.117297.W. K. Jozwiak, E. Kaczmarek, T. P. Maniecki, W. Ignaczak, and W. Maniukiewicz, “Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres,” Appl Catal A Gen, vol. 326, no. 1, 2007, doi: 10.1016/j.apcata.2007.03.021.M. N. Abu Tahari, F. Salleh, T. S. Tengku Saharuddin, A. Samsuri, S. Samidin, and M. A. Yarmo, “Influence of hydrogen and carbon monoxide on reduction behavior of iron oxide at high temperature: Effect on reduction gas concentrations,” Int J Hydrogen Energy, vol. 46, no. 48, pp. 24791–24805, Jul. 2021, doi: 10.1016/J.IJHYDENE.2020.06.250.M. Bystrzejewski, “Synthesis of carbon-encapsulated iron nanoparticles via solid state reduction of iron oxide nanoparticles,” J Solid State Chem, vol. 184, no. 6, pp. 1492–1498, Jun. 2011, doi: 10.1016/J.JSSC.2011.04.018.S. H. Kim et al., “Influence of microstructure and atomic-scale chemistry on the direct reduction of iron ore with hydrogen at 700°C,” Acta Mater, vol. 212, 2021, doi: 10.1016/j.actamat.2021.116933.F. Patisson and O. Mirgaux, “metals Hydrogen Ironmaking: How It Works”, doi: 10.3390/met10070922.A. Pineau, N. Kanari, and I. Gaballah, “Kinetics of reduction of iron oxides by H2: Part II. Low temperature reduction of magnetite,” Thermochim Acta, vol. 456, no. 2, pp. 75–88, May 2007, doi: 10.1016/J.TCA.2007.01.014.A. Heidari, N. Niknahad, M. Iljana, and T. Fabritius, “A review on the kinetics of iron ore reduction by hydrogen,” Materials, vol. 14, no. 24, 2021, doi: 10.3390/ma14247540.A. Zhang, B. J. Monaghan, R. J. Longbottom, M. Nusheh, and C. W. Bumby, “Reduction Kinetics of Oxidized New Zealand Ironsand Pellets in H2 at Temperatures up to 1443 K,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, vol. 51, no. 2, pp. 492–504, Apr. 2020, doi: 10.1007/S11663-020-01790-3/METRICS.L. Yi, Z. Huang, H. Peng, and T. Jiang, “Action rules of H2 and CO in gas-based direct reduction of iron ore pellets,” Journal of Central South University 2012 19:8, vol. 19, no. 8, pp. 2291–2296, Aug. 2012, doi: 10.1007/S11771-012-1274-0.J. Szekely, J. Evans, and H. Sohn, Gas-Solid Reactions , 1st ed. New York: Academic Press Inc, 1976.O. Benchiheub, S. Mechachti, S. Serrai, and M. G. Khalifa, “Elaboration of iron powder from mill scale,” J. Mater. Environ. Sci, vol. 1, no. 4, pp. 267–276, 2010.A. Zhang, B. J. Monaghan, R. J. Longbottom, M. Nusheh, and C. W. Bumby, “Reduction Kinetics of Oxidized New Zealand Ironsand Pellets in H2 at Temperatures up to 1443 K,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, vol. 51, no. 2, pp. 492–504, 2020, doi: 10.1007/s11663-020-01790-3.F. Chen, Y. Mohassab, T. Jiang, and H. Y. Sohn, “Hydrogen Reduction Kinetics of Hematite Concentrate Particles Relevant to a Novel Flash Ironmaking Process,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, vol. 46, no. 3, pp. 1133–1145, 2015, doi: 10.1007/s11663-015-0332-z.J. Chen, R. Zhang, T. Simmonds, and P. C. Hayes, “Microstructural Changes and Kinetics of Reduction of Hematite to Magnetite in CO/CO2 Gas Atmospheres,” Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, vol. 50, no. 6, 2019, doi: 10.1007/s11663-019-01659-0.C. Scharm et al., “Direct reduction of iron ore pellets by H2 and CO: In-situ investigation of the structural transformation and reduction progression caused by atmosphere and temperature,” Miner Eng, vol. 180, p. 107459, Apr. 2022, doi: 10.1016/J.MINENG.2022.107459.M. I. A. Barustan and S. M. Jung, “Morphology of Iron and Agglomeration Behaviour During Reduction of Iron Oxide Fines,” Metals and Materials International, vol. 25, no. 4, 2019, doi: 10.1007/s12540-019-00259-6.A. A. Barde, J. F. Klausner, and R. Mei, “Solid state reaction kinetics of iron oxide reduction using hydrogen as a reducing agent,” Int J Hydrogen Energy, vol. 41, no. 24, pp. 10103–10119, 2016, doi: 10.1016/j.ijhydene.2015.12.129.M. S. Valipour, M. Y. Motamed Hashemi, and Y. Saboohi, “Mathematical modeling of the reaction in an iron ore pellet using a mixture of hydrogen, water vapor, carbon monoxide and carbon dioxide: An isothermal study,” Advanced Powder Technology, vol. 17, no. 3, pp. 277–295, 2006, doi: 10.1163/156855206777213375.A. D. Mazurchevici, D. Nedelcu, and R. Popa, “Additive manufacturing of composite materials by FDM technology: A review,” Indian Journal of Engineering and Materials Sciences, vol. 27, no. 2, pp. 179–192, 2020.T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,” Compos B Eng, vol. 143, no. December 2017, pp. 172–196, 2018, doi: 10.1016/j.compositesb.2018.02.012.A. I. Nurhudan, S. Supriadi, Y. Whulanza, and A. S. Saragih, “Additive manufacturing of metallic based on extrusion process: A review,” J Manuf Process, vol. 66, pp. 228–237, Jun. 2021, doi: 10.1016/J.JMAPRO.2021.04.018.M. K. Agarwala, R. van Weeren, A. Bandyopadhyayl, P. J. Whalen, A. Safari, and S. C. Danforth, “Fused Deposition of Ceramics and Metals : An Overview,” Proceedings of Solid Freeform Fabrication Symposium, pp. 385–392, 1996, [Online]. Available: http://hdl.handle.net/2152/70261G. Wu, N. A. Langrana, R. Sadanji, and S. Danforth, “Solid freeform fabrication of metal components using fused deposition of metals,” Mater Des, vol. 23, no. 1, pp. 97–105, Feb. 2002, doi: 10.1016/S0261-3069(01)00079-6.S. Hwang, E. I. Reyes, K. sik Moon, R. C. Rumpf, and N. S. Kim, “Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process,” J Electron Mater, vol. 44, no. 3, pp. 771–777, 2015, doi: 10.1007/s11664-014-3425-6.S. Riecker, S. B. Hein, T. Studnitzky, O. Andersen, and B. Kieback, “3D printing of metal parts by means of fused filament fabrication - A non beam-based approach,” Proceedings Euro PM 2017: International Powder Metallurgy Congress and Exhibition, no. October, 2017.C. Kukla, J. Gonzalez-Gutierrez, I. Duretek, S. Schuschnigg, and C. Holzer, “Effect of particle size on the properties of highly-filled polymers for fused filament fabrication,” AIP Conf Proc, vol. 1914, no. July, pp. 2–6, 2017, doi: 10.1063/1.5016795.J. Gonzalez-Gutierrez, R. Guráň, M. Spoerk, C. Holzer, D. Godec, and C. Kukla, “3D printing conditions determination for feedstock used in fused filament fabrication (FFF) of 17-4PH stainless steel parts,” in Metalurgija, 2018, pp. 117–120.M. A. Ryder, D. A. Lados, G. S. Iannacchione, and A. M. Peterson, “Fabrication and properties of novel polymer-metal composites using fused deposition modeling,” Compos Sci Technol, vol. 158, pp. 43–50, Apr. 2018, doi: 10.1016/J.COMPSCITECH.2018.01.049.Y. Thompson, J. Gonzalez-Gutierrez, C. Kukla, and P. Felfer, “Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel,” Addit Manuf, vol. 30, p. 100861, Dec. 2019, doi: 10.1016/J.ADDMA.2019.100861.W. Lengauer, I. Duretek, M. Fürst, J. Gonzalez-Gutierrez, S. Schuschnigg, and C. Kukla, “Fused-filament printing of hardmetals and cermets with feedstock from RTP powders,” in Euro PM 2019 Congress and Exhibition, 2019, pp. 1–8.S. Roshchupkin, A. Kolesov, A. Tarakhovskiy, and I. Tishchenko, “A brief review of main ideas of metal fused filament fabrication,” Mater Today Proc, vol. 38, pp. 2063–2067, Jan. 2021, doi: 10.1016/J.MATPR.2020.10.142.M. Bek, J. Gonzalez-Gutierrez, C. Kukla, K. P. Črešnar, B. Maroh, and L. S. Perše, “Rheological behaviour of highly filled materials for injection moulding and additive manufacturing: Effect of particle material and loading,” Applied Sciences (Switzerland), vol. 10, no. 22, pp. 1–23, 2020, doi: 10.3390/app10227993.P. Singh, V. K. Balla, A. Tofangchi, S. v. Atre, and K. H. Kate, “Printability studies of Ti-6Al-4V by metal fused filament fabrication (MF3),” Int J Refract Metals Hard Mater, vol. 91, p. 105249, Sep. 2020, doi: 10.1016/J.IJRMHM.2020.105249.D. Godec, S. Cano, C. Holzer, and J. Gonzalez-Gutierrez, “Optimization of the 3D printing parameters for tensile properties of specimens produced by fused filament fabrication of 17-4PH stainless steel,” Materials, vol. 13, no. 3, 2020, doi: 10.3390/ma13030774.C. Gloeckle, T. Konkol, O. Jacobs, W. Limberg, T. Ebel, and U. A. Handge, “Processing of highly filled polymer–metal feedstocks for fused filament fabrication and the production of metallic implants,” Materials, vol. 13, no. 19, pp. 1–16, 2020, doi: 10.3390/ma13194413.J. Slapnik, I. Pulko, R. Rudolf, I. Anžel, and M. Brunčko, “Fused filament fabrication of Nd-Fe-B bonded magnets: Comparison of PA12 and TPU matrices,” Addit Manuf, vol. 38, p. 101745, Feb. 2021, doi: 10.1016/J.ADDMA.2020.101745.Y. Zhang, L. Poli, E. Garratt, S. Foster, and A. Roch, “Utilizing Fused Filament Fabrication for Printing Iron Cores for Electrical Devices,” 3D Print Addit Manuf, vol. 7, no. 6, pp. 279–287, 2020, doi: 10.1089/3dp.2020.0136.A. G. Hasib et al., “Rheology scaling of spherical metal powders dispersed in thermoplastics and its correlation to the extrudability of filaments for 3D printing,” Addit Manuf, vol. 41, p. 101967, May 2021, doi: 10.1016/J.ADDMA.2021.101967.A.-F. Gil-Plazas et al., “Solid-State and Super Solidus Liquid Phase Sintering of 4340 Steel SLM Powders Shaped by Fused Filament Fabrication,” Revista Facultad de Ingeniería, vol. 31, no. 60, p. e13913, May 2022, doi: 10.19053/01211129.V31.N60.2022.13913.“Flexa Grey | Flexible material for 3D printing.” https://sinterit.com/materials/flexa-grey/ (accessed Oct. 07, 2022).J. Gonzalez-Gutierrez, S. Cano, S. Schuschnigg, C. Kukla, J. Sapkota, and C. Holzer, “Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: A review and future perspectives,” Materials, vol. 11, no. 5, 2018, doi: 10.3390/ma11050840.G. George et al., “Green and facile approach to prepare polypropylene/in situ reduced graphene oxide nanocomposites with excellent electromagnetic interference shielding properties,” RSC Adv, vol. 8, no. 53, pp. 30412–30428, Aug. 2018, doi: 10.1039/C8RA05007D.X. Chen, Y. He, Y. Fan, Q. Yang, G. Zeng, and H. Shi, “Facile fabrication of a robust superwetting three-dimensional (3D) nickel foam for oil/water separation,” J Mater Sci, vol. 52, no. 4, pp. 2169–2179, Feb. 2017, doi: 10.1007/S10853-016-0505-4/METRICS.K. Polat, “Low-Cost and High-Capacity Dye Remover: a Study of Methylene Blue Adsorption by a Thermoplastic-Elastomer Blend System,” Water Air Soil Pollut, vol. 228, no. 9, pp. 1–10, Sep. 2017, doi: 10.1007/S11270-017-3510-6/METRICS.C. Zhang, S. Zhang, D. Sun, J. Lin, F. Meng, and H. Liu, “Superhydrophobic fluoride conversion coating on bioresorbable magnesium alloy – fabrication, characterization, degradation and cytocompatibility with BMSCs,” Journal of Magnesium and Alloys, vol. 9, no. 4, pp. 1246–1260, Jul. 2021, doi: 10.1016/J.JMA.2020.05.017.L. Tong et al., “Electrically Conductive TPU Nanofibrous Composite with High Stretchability for Flexible Strain Sensor,” Nanoscale Res Lett, vol. 13, no. 1, pp. 1–8, Mar. 2018, doi: 10.1186/S11671-018-2499-0/FIGURES/10.A. Stefan et al., “Multi-walled carbon nanotubes effect in polypropylene nanocomposites ,” Materials and technology, pp. 11–16, 2016, doi: 10.17222/mit.2014.142.A. Haryńska, I. Gubanska, J. Kucinska-Lipka, and H. Janik, “Fabrication and Characterization of Flexible Medical-Grade TPU Filament for Fused Deposition Modeling 3DP Technology,” Polymers 2018, Vol. 10, Page 1304, vol. 10, no. 12, p. 1304, Nov. 2018, doi: 10.3390/POLYM10121304.O. D. Maynez-Navarro, M. A. Mendez-Rojas, D. X. Flores-Cervantes, and J. L. Sanchez-Salas, “Hydroxyl Radical Generation by Recyclable Photocatalytic Fe3O4/ZnO Nanoparticles for Water Disinfection,” Air, Soil and Water Research, vol. 13, 2020, doi: 10.1177/1178622120970954.N. Kurnaz Yetim, F. Kurşun Baysak, M. M. Koç, and D. Nartop, “Characterization of magnetic Fe3O4@SiO2 nanoparticles with fluorescent properties for potential multipurpose imaging and theranostic applications,” Journal of Materials Science: Materials in Electronics, vol. 31, no. 20, 2020, doi: 10.1007/s10854-020-04375-7.M. A. Wagner et al., “Fused filament fabrication of stainless steel structures - from binder development to sintered properties,” Addit Manuf, vol. 49, p. 102472, Jan. 2022, doi: 10.1016/j.addma.2021.102472.H. Lgaz and H. seung Lee, “First‐principles based theoretical investigation of the adsorption of alkanethiols on the iron surface: A DFT-D3 study,” J Mol Liq, vol. 348, 2022, doi: 10.1016/j.molliq.2021.118071.H. Öström, Chemical Bonding of Hydrocarbons to Metal Surfaces. Stockholm, 2004.P. O. Bedolla et al., “Effects of van der Waals interactions in the adsorption of isooctane and ethanol on Fe(100) surfaces,” Journal of Physical Chemistry C, vol. 118, no. 31, pp. 17608–17615, Aug. 2014, doi: 10.1021/JP503829C/ASSET/IMAGES/LARGE/JP-2014-03829C_0008.JPEG.A. A. Tafti, V. Demers, S. M. Majdi, G. Vachon, and V. Brailovski, “Effect of thermal debinding conditions on the sintered density of low-pressure powder injection molded iron parts,” Metals (Basel), vol. 11, no. 2, 2021, doi: 10.3390/met11020264.“Impresora 3D Creality Ender 3 PRO - impresoras3d.com.” https://www.impresoras3d.com/producto/impresora-3d-creality-ender-3-pro/ (accessed Oct. 07, 2022).B. Liu, Y. Wang, Z. Lin, and T. Zhang, “Creating metal parts by Fused Deposition Modeling and Sintering,” Mater Lett, vol. 263, p. 127252, Mar. 2020, doi: 10.1016/J.MATLET.2019.127252.K. S. Hwang and Y. M. Hsieh, “Comparative study of pore structure evolution during solvent and thermal debinding of powder injection molded parts,” Metall Mater Trans A Phys Metall Mater Sci, vol. 27, no. 2, 1996, doi: 10.1007/BF02648403.M. Sadaf, M. Bragaglia, and F. Nanni, “A simple route for additive manufacturing of 316L stainless steel via Fused Filament Fabrication,” J Manuf Process, vol. 67, 2021, doi: 10.1016/j.jmapro.2021.04.055.J. Gonzalez-Gutierrez, F. Arbeiter, T. Schlauf, C. Kukla, and C. Holzer, “Tensile properties of sintered 17-4PH stainless steel fabricated by material extrusion additive manufacturing,” Mater Lett, vol. 248, 2019, doi: 10.1016/j.matlet.2019.04.024.Y. Zhang, S. Bai, M. Riede, E. Garratt, and A. Roch, “A comprehensive study on fused filament fabrication of Ti-6Al-4V structures,” Addit Manuf, vol. 34, 2020, doi: 10.1016/j.addma.2020.101256.J. H. H. Ter Maat, J. Ebenhöch, and H.-J. Sterzel, “Fast Catalytic Debinding of Injection Moulded Parts,” 4th International Symposium on Ceramic Materials and Components for Engines, pp. 544–551, 1992, doi: 10.1007/978-94-011-2882-7_58.I. Todd and A. T. Sidambe Dr, “Developments in metal injection moulding (MIM),” Advances in Powder Metallurgy: Properties, Processing and Applications, pp. 109–146, Jan. 2013, doi: 10.1533/9780857098900.1.109.M. F. F. A. Hamidi, W. S. W. Harun, N. Z. Khalil, S. A. C. Ghani, and M. Z. Azir, “Study of solvent debinding parameters for metal injection moulded 316L stainless steel,” in IOP Conference Series: Materials Science and Engineering, 2017. doi: 10.1088/1757-899X/257/1/012035.N. A. N. Dandang, W. S. W. Harun, N. Z. Khalil, A. H. Ahmad, F. R. M. Romlay, and N. A. Johari, “Paraffin wax removal from metal injection moulded cocrmo alloy compact by solvent debinding process,” IOP Conf Ser Mater Sci Eng, vol. 257, no. 1, p. 012020, Oct. 2017, doi: 10.1088/1757-899X/257/1/012020.G. R. M. and B. A., “Injection Moulding of Metals and Ceramics.” Metal Powder Industries Federation, Princeton, New Jersey, USA, 1997.T. Kurose et al., “Influence of the layer directions on the properties of 316l stainless steel parts fabricated through fused deposition of metals,” Materials, vol. 13, no. 11, 2020, doi: 10.3390/ma13112493.D. F. Heaney, Handbook of Metal Injection Molding. 2019. doi: 10.1016/B978-0-08-102152-1.09991-8.S. Banerjee and C. J. Joens, “Debinding and sintering of metal injection molding (MIM) components,” Handbook of Metal Injection Molding, pp. 129–171, Jan. 2019, doi: 10.1016/B978-0-08-102152-1.00009-X.M. Quarto, M. Carminati, and G. D’Urso, “Density and shrinkage evaluation of AISI 316L parts printed via FDM process,” Materials and Manufacturing Processes, vol. 36, no. 13, 2021, doi: 10.1080/10426914.2021.1905830.C. Suwanpreecha and A. Manonukul, “A Review on Material Extrusion Additive Manufacturing of Metal and How It Compares with Metal Injection Moulding,” Metals, vol. 12, no. 3. 2022. doi: 10.3390/met12030429.P. Singh, V. K. Balla, S. v. Atre, R. M. German, and K. H. Kate, “Factors affecting properties of Ti-6Al-4V alloy additive manufactured by metal fused filament fabrication,” Powder Technol, vol. 386, 2021, doi: 10.1016/j.powtec.2021.03.026.D. R. Askeland and W. J. Wright, The Science and Engineering of Materials 7th Edition. 2016.J. Gonzalez-Gutierrez et al., “Powder content in powder extrusion moulding of tool steel: Dimensional stability, shrinkage and hardness,” Mater Lett, vol. 283, 2021, doi: 10.1016/j.matlet.2020.128909.J. Gonzalez-Gutierrez et al., “Shaping, Debinding and Sintering of Steel Components via Fused Filament Fabrication,” in 16 th INTERNATIONAL SCIENTIFIC CONFERENCE ON PRODUCTION ENGINEERING, 2017, pp. 8–10.M. K. Agarwala, V. R. Jamalabad, N. A. Langrana, A. Safari, P. J. Whalen, and S. C. Danforth, “Structural quality of parts processed by fused deposition,” Rapid Prototyp J, vol. 2, no. 4, 1996, doi: 10.1108/13552549610732034.M. Mousapour, M. Salmi, L. Klemettinen, and J. Partanen, “Feasibility study of producing multi-metal parts by Fused Filament Fabrication (FFF) technique,” J Manuf Process, vol. 67, 2021, doi: 10.1016/j.jmapro.2021.05.021.D. C. Pang, Z. J. Shi, P. X. Xie, H. C. Huang, and G. T. Bui, “Investigation of an Inset Micro Permanent Magnet Synchronous Motor Using Soft Magnetic Composite Material,” Energies 2020, Vol. 13, Page 4445, vol. 13, no. 17, p. 4445, Aug. 2020, doi: 10.3390/EN13174445.M. U. Naseer, A. Kallaste, B. Asad, T. Vaimann, and A. Rassõlkin, “A Review on Additive Manufacturing Possibilities for Electrical Machines,” Energies 2021, Vol. 14, Page 1940, vol. 14, no. 7, p. 1940, Mar. 2021, doi: 10.3390/EN14071940.Desarrollo tecnológico para la fabricación de herramientas metálicas mediante técnicas de manufactura aditiva basada en extrusión para aplicaciones de alta temperatura y desgaste usadas por la industria de autopartes colombianaICETEX, el Ministerio de Ciencia, Tecnología e Innovación y la Universidad Nacional de ColombiaUniversidad Escuela Colombiana de Ingeniería Julio GaravitoEstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84723/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1020820949.2023.pdf1020820949.2023.pdfTesais de Maestría en Ingeniería - Materiales y Procesosapplication/pdf5304386https://repositorio.unal.edu.co/bitstream/unal/84723/2/1020820949.2023.pdfe8bca86c087275684927cad803d4aa38MD52THUMBNAIL1020820949.2023.pdf.jpg1020820949.2023.pdf.jpgGenerated Thumbnailimage/jpeg5879https://repositorio.unal.edu.co/bitstream/unal/84723/3/1020820949.2023.pdf.jpg2227dbfeb03e2cb548b96b6ee9f2bd83MD53unal/84723oai:repositorio.unal.edu.co:unal/847232023-09-25 23:04:21.862Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |