Remoción de colorantes presentes en aguas reales provenientes de un laboratorio de microbiología mediante el proceso CWAO con un catalizador Mn, Cu, y/o Fe soportado en carbón activado a partir de caucho de llanta

ilustraciones, graficas, mapas

Autores:
Meneses Madroñero, Paula Stefania
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82198
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82198
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
PURIFICACION DEL AGUA-OXIDACION
Water - purification - oxidation
Tinción de Gram
Oxidación húmeda catalítica con aire
Remoción
Caucho de llanta
CWAO
Tire rubber
Gram stain
Removal
Rights
openAccess
License
Atribución-SinDerivadas 4.0 Internacional
id UNACIONAL2_c9a3c5490f7203cacbf21df006a87aa8
oai_identifier_str oai:repositorio.unal.edu.co:unal/82198
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Remoción de colorantes presentes en aguas reales provenientes de un laboratorio de microbiología mediante el proceso CWAO con un catalizador Mn, Cu, y/o Fe soportado en carbón activado a partir de caucho de llanta
dc.title.translated.eng.fl_str_mv Removal of colorants present in real water from a microbiology laboratory through the CWAO process with a Mn, Cu, and/or Fe catalyst supported on activated carbon from tire rubber
title Remoción de colorantes presentes en aguas reales provenientes de un laboratorio de microbiología mediante el proceso CWAO con un catalizador Mn, Cu, y/o Fe soportado en carbón activado a partir de caucho de llanta
spellingShingle Remoción de colorantes presentes en aguas reales provenientes de un laboratorio de microbiología mediante el proceso CWAO con un catalizador Mn, Cu, y/o Fe soportado en carbón activado a partir de caucho de llanta
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
PURIFICACION DEL AGUA-OXIDACION
Water - purification - oxidation
Tinción de Gram
Oxidación húmeda catalítica con aire
Remoción
Caucho de llanta
CWAO
Tire rubber
Gram stain
Removal
title_short Remoción de colorantes presentes en aguas reales provenientes de un laboratorio de microbiología mediante el proceso CWAO con un catalizador Mn, Cu, y/o Fe soportado en carbón activado a partir de caucho de llanta
title_full Remoción de colorantes presentes en aguas reales provenientes de un laboratorio de microbiología mediante el proceso CWAO con un catalizador Mn, Cu, y/o Fe soportado en carbón activado a partir de caucho de llanta
title_fullStr Remoción de colorantes presentes en aguas reales provenientes de un laboratorio de microbiología mediante el proceso CWAO con un catalizador Mn, Cu, y/o Fe soportado en carbón activado a partir de caucho de llanta
title_full_unstemmed Remoción de colorantes presentes en aguas reales provenientes de un laboratorio de microbiología mediante el proceso CWAO con un catalizador Mn, Cu, y/o Fe soportado en carbón activado a partir de caucho de llanta
title_sort Remoción de colorantes presentes en aguas reales provenientes de un laboratorio de microbiología mediante el proceso CWAO con un catalizador Mn, Cu, y/o Fe soportado en carbón activado a partir de caucho de llanta
dc.creator.fl_str_mv Meneses Madroñero, Paula Stefania
dc.contributor.advisor.none.fl_str_mv Pérez Flórez, Alejandro
Ramírez Franco, José Herney
dc.contributor.author.none.fl_str_mv Meneses Madroñero, Paula Stefania
dc.contributor.researchgroup.spa.fl_str_mv Investigación en Tecnología Ambiental y de Materiales
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
topic 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
PURIFICACION DEL AGUA-OXIDACION
Water - purification - oxidation
Tinción de Gram
Oxidación húmeda catalítica con aire
Remoción
Caucho de llanta
CWAO
Tire rubber
Gram stain
Removal
dc.subject.lemb.spa.fl_str_mv PURIFICACION DEL AGUA-OXIDACION
dc.subject.lemb.eng.fl_str_mv Water - purification - oxidation
dc.subject.proposal.spa.fl_str_mv Tinción de Gram
Oxidación húmeda catalítica con aire
Remoción
Caucho de llanta
dc.subject.proposal.eng.fl_str_mv CWAO
Tire rubber
Gram stain
Removal
description ilustraciones, graficas, mapas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-30T16:51:49Z
dc.date.available.none.fl_str_mv 2022-08-30T16:51:49Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82198
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82198
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv Abu Sharib, A. S. A. A., Bonilla-Petriciolet, A., Selim, A. Q., Mohamed, E. A., & Seliem, M. K. (2021). Utilizing modified weathered basalt as a novel approach in the preparation of Fe3O4 nanoparticles: Experimental and theoretical studies for crystal violet adsorption. Journal of Environmental Chemical Engineering, 9(6), 106220. https://doi.org/10.1016/J.JECE.2021.106220
Ahmad, A., Jini, D., Aravind, M., Parvathiraja, C., Ali, R., Kiyani, M. Z., & Alothman, A. (2020). A novel study on synthesis of egg shell based activated carbon for degradation of methylene blue via photocatalysis. Arabian Journal of Chemistry, 13(12), 8717– 8722. https://doi.org/10.1016/j.arabjc.2020.10.002
Ahmed, S., Ahmad, Z., Kumar, A., Rafiq, M., Vashistha, V. K., Ashiq, M. N., & Kumar, A. (2021). Effective removal of methylene blue using nanoscale manganese oxide rods and spheres derived from different precursors of manganese. Journal of Physics and Chemistry of Solids, 155, 110121. https://doi.org/10.1016/J.JPCS.2021.110121
Al-Rahbi, A. S., & Williams, P. T. (2016). Production of activated carbons from waste tyres for low temperature NOx control. Waste Management, 49, 188–195. https://doi.org/10.1016/J.WASMAN.2016.01.030
Benhamed, I., Barthe, L., Kessas, R., Julcour, C., & Delmas, H. (2016). Effect of transition metal impregnation on oxidative regeneration of activated carbon by catalytic wet air oxidation. Applied Catalysis B: Environmental, 187, 228–237. https://doi.org/10.1016/j.apcatb.2016.01.016
Berkün Olgun, Ö., Palas, B., Atalay, S., & Ersöz, G. (2021). Photocatalytic oxidation and catalytic wet air oxidation of real pharmaceutical wastewater in the presence of Fe and LaFeO3 doped activated carbon catalysts. Chemical Engineering Research and Design, 171, 421–432. https://doi.org/10.1016/J.CHERD.2021.05.017
Bes Monge, Sra. S., Silva, Dr. A. M. T., & Bengoa, Dr. C. (2016). Manual técnico sobre procesos de oxidación avanzada aplicados al tratamiento de aguas residuales industriales. In (Tritón-316Rt0506) (Issues 978-84-09-08637–5). http://www.cyted.org/sites/default/files/manual_sobre_oxidaciones_avanzadas_0.pdf
Bessashia, W., Berredjem, Y., Hattab, Z., & Bououdina, M. (2020). Removal of Basic Fuchsin from water by using mussel powdered eggshell membrane as novel bioadsorbent: Equilibrium, kinetics, and thermodynamic studies. Environmental Research, 186, 109484. https://doi.org/10.1016/J.ENVRES.2020.109484
Cao, D. J., Wang, J. J., Zhang, Q., Wen, Y. Z., Dong, B., Liu, R. J., Yang, X., & Geng, G. (2019). Biodegradation of triphenylmethane dye crystal violet by Cedecea davisae. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 210, 9–13. https://doi.org/10.1016/j.saa.2018.11.004
Castro Carreño, N., & Rojas Chitiva, W. J. (2018). Síntesis de óxidos mixtos de mn-fe mediante el método de autocombustión para la degradación de cristal violeta en aguas residuales [Fundación Universidad de América]. https://repository.uamerica.edu.co/handle/20.500.11839/6703
Celis-Salazar, P., Zea, H., Luhrs, C., Phillips, J., & Ramirez, J. (2015). Iron on carbon catalaysts for the photocatalytic degradation orange II. Journal of Advanced Oxidation Technologies, 18(2), 295–302. https://doi.org/10.1515/JAOTS-2015- 0216/MACHINEREADABLECITATION/RIS
Chang, R., & Goldsby, K. (2017). Química (McGraw-Hill/Interamericana Editores, Ed.; 12th ed., Vol. 12). McGraw-Hill. http://www.ebooks7- 24.com.ezproxy.unal.edu.co/stage.aspx?il=&pg=&ed=
Chatwal, G. R. (2009). Synthetic Dyes (M. Arora, Ed.; 1st ed.). Himalaya Publishing House. https://ebookcentral.proquest.com/lib/unal/reader.action?docID=3011371&query=dy es
Cherono, F., Mburu, N., & Kakoi, B. (2021). Adsorption of lead, copper and zinc in a multimetal aqueous solution by waste rubber tires for the design of single batch adsorber. Heliyon, 7(11), e08254. https://doi.org/10.1016/J.HELIYON.2021.E08254
Chong, S., Zhang, G., Zhang, N., Liu, Y., Zhu, J., Huang, T., & Fang, S. (2016). Preparation of FeCeOx by ultrasonic impregnation method for heterogeneous Fenton degradation of diclofenac. Ultrasonics Sonochemistry, 32, 231–240. https://doi.org/10.1016/j.ultsonch.2016.03.019
Ciżman, A., Rysiakiewicz-Pasek, E., Antropova, T., Krupiński, M., Pshenko, O. A., & Zarzycki, A. (2020). Effect of the iron content on the structure and electrical properties of sodium borosilicate glasses: XRD, TEM, Mössbauer, FTIR and DIS spectroscopy study. Journal of Non-Crystalline Solids, 531, 119847. https://doi.org/10.1016/J.JNONCRYSOL.2019.119847
Coha, M., Farinelli, G., Tiraferri, A., Minella, M., & Vione, D. (2021). Advanced oxidation processes in the removal of organic substances from produced water: Potential, configurations, and research needs. In Chemical Engineering Journal (Vol. 414, p. 128668). Elsevier B.V. https://doi.org/10.1016/j.cej.2021.128668
Conde-Rivera, L. R., Suarez-Escobar, A. F., Marin-Perez, J. J., Junco-Rodriguez, M. J., & Lopez-Suarez, F. E. (2021a). TiO2 supported on activated carbon from tire waste for ibuprofen removal. Materials Letters, 291, 129590. https://doi.org/10.1016/J.MATLET.2021.129590
Conde-Rivera, L. R., Suarez-Escobar, A. F., Marin-Perez, J. J., Junco-Rodriguez, M. J., & Lopez-Suarez, F. E. (2021b). TiO2 supported on activated carbon from tire waste for ibuprofen removal. Materials Letters, 291, 129590. https://doi.org/10.1016/J.MATLET.2021.129590
Degano, I., Sabatini, F., Braccini, C., & Colombini, M. P. (2019). Triarylmethine dyes: Characterization of isomers using integrated mass spectrometry. Dyes and Pigments, 160, 587–596. https://doi.org/10.1016/J.DYEPIG.2018.08.046
el Haddad, M. (2016). Removal of Basic Fuchsin dye from water using mussel shell biomass waste as an adsorbent: Equilibrium, kinetics, and thermodynamics. Journal of Taibah University for Science, 10(5), 664–674. https://doi.org/10.1016/J.JTUSCI.2015.08.007
Erjavec, B., Kaplan, R., Djinović, P., & Pintar, A. (2013). Catalytic wet air oxidation of bisphenol A model solution in a trickle-bed reactor over titanate nanotube-based catalysts. Applied Catalysis B: Environmental, 132–133, 342–352. https://doi.org/10.1016/J.APCATB.2012.12.007
Ertl, G., Knözinger, H., Schüth, F., & Weitkamp, J. (2008). Handbook of Heterogeneus Catalysis (G. Ertl, H. Knözinger, F. Schüth, & J. Weitkamp, Eds.; 2° edición). Wiley- VCH Verlag.
Fogler, H. S. (2008). Elementos de ingeniería de las reacciones químicas. In H. S. Fogler (Ed.), Chemical Engineering Education (Cuarta, Issue 4). Pearson Prentice Hall. http://www.ebooks7-24.com.ezproxy.unal.edu.co/?il=3799
Fraume Restrepo, N. J. (2006). Diccionario ambiental (ECOE edici). ECOE. https://elibronet. ezproxy.unal.edu.co/es/ereader/unalecoe/69025?prev=bf
Ghosh, K., Bar, N., Biswas, A. B., & Das, S. K. (2021). Elimination of crystal violet from synthetic medium by adsorption using unmodified and acid-modified eucalyptus leaves with MPR and GA application. Sustainable Chemistry and Pharmacy, 19, 100370. https://doi.org/10.1016/j.scp.2020.100370
Gordon M., H. (1973). Cinetica Quimica (H. Gordon M, Ed.; 2nd ed.). Editorial reverté S.A.
Guclu, C., Alper, K., Erdem, M., Tekin, K., & Karagoz, S. (2021). Activated carbons from co-carbonization of waste truck tires and spent tea leaves. Sustainable Chemistry and Pharmacy, 21, 100410. https://doi.org/10.1016/j.scp.2021.100410
Gupta, P., & Verma, N. (2021). Evaluation of degradation and mineralization of glyphosate pollutant in wastewater using catalytic wet air oxidation over Fe-dispersed carbon nanofibrous beads. Chemical Engineering Journal, 417, 128029. https://doi.org/10.1016/J.CEJ.2020.128029
Gupta, V. K., Gupta, B., Rastogi, A., Agarwal, S., & Nayak, A. (2011a). A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye-Acid Blue 113. Journal of Hazardous Materials, 186(1), 891–901. https://doi.org/10.1016/j.jhazmat.2010.11.091
Gupta, V. K., Gupta, B., Rastogi, A., Agarwal, S., & Nayak, A. (2011b). A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye—Acid Blue 113. Journal of Hazardous Materials, 186(1), 891–901. https://doi.org/10.1016/J.JHAZMAT.2010.11.091
Gupta, V. K., Gupta, B., Rastogi, A., Agarwal, S., Nayak, A., Saleh, T. A., Al-Saadi, A. A., Gupta, V. K., Qin, H., Xiao, R., Chen, J., Riaño Hincapie, P. F., Herney-Ramirez, J., Vicente, M. A., Madeira, L. M., Saleh, T. A., Danmaliki, G. I., Wawrzkiewicz, M., Wiśniewska, M., … Alhooshani, K. (2018). Catalytic wet peroxide oxidation of benzoic acid over Fe/AC catalysts: Effect of nitrogen and sulfur co-doped activated carbon. Journal of the Taiwan Institute of Chemical Engineers, 60(1–2), 779–787. https://doi.org/10.1016/j.scitotenv.2018.01.206
Gürses, A., Açıkyıldız, M., Güneş, K., & Gürses, M. S. (2016). Dyes and Pigments (Sanjay K. Sharma, Ed.). Springer. http://www.springer.com/series/10045
Hao, Y. F., Yan, L. G., Yu, H. Q., Yang, K., Yu, S. J., Shan, R. R., & Du, B. (2014). Comparative study on adsorption of basic and acid dyes by hydroxy-aluminum pillared bentonite. Journal of Molecular Liquids, 199, 202–207. https://doi.org/10.1016/J.MOLLIQ.2014.09.005
Hasan, I., Walia, S., Alharbi, K. H., Khanjer, M. A., Alsalme, A., & Khan, R. A. (2020). Multiwalled carbon nanotube coupled β-Cyclodextrin/PANI hybrid photocatalyst for advance oxidative degradation of crystal violet. Journal of Molecular Liquids, 317, 114216. https://doi.org/10.1016/J.MOLLIQ.2020.114216
Hernández Archila, K. G. (2019). Catalizadores de Ni y Fe promovidos por Ce obtenidos a partir de hidroxidos de doble capa para la degradación de cristal violeta en solución.
Hernández-Oloño, J. T., Infantes-Molina, A., Vargas-Hernández, D., Domínguez- Talamantes, D. G., Rodríguez-Castellón, E., Herrera-Urbina, J. R., & Tánori-Córdova, J. C. (2021). A novel heterogeneous photo-Fenton Fe/Al2O3 catalyst for dye degradation. Journal of Photochemistry and Photobiology A: Chemistry, 421, 113529. https://doi.org/10.1016/J.JPHOTOCHEM.2021.113529
Hood, Z. D., Adhikari, S. P., Evans, S. F., Wang, H., Li, Y., Naskar, A. K., Chi, M., Lachgar, A., & Paranthaman, M. P. (2018). Tire-derived carbon for catalytic preparation of biofuels from feedstocks containing free fatty acids. Carbon Resources Conversion, 1(2), 165–173. https://doi.org/10.1016/j.crcon.2018.07.007
Hua, L., Ma, H., & Zhang, L. (2013). Degradation process analysis of the azo dyes by catalytic wet air oxidation with catalyst CuO/γ-Al2O3. Chemosphere, 90(2), 143–149. https://doi.org/10.1016/J.CHEMOSPHERE.2012.06.018
Huang, J., Zhang, Y., & Zhang, Y. (2021). Preparation and characterization of manganese oxides supported on functionalized halloysite nanotubes with enhanced catalytic oxidation for toluene. Applied Clay Science, 209, 106147. https://doi.org/10.1016/J.CLAY.2021.106147
Huang, L., Kong, J., Wang, W., Zhang, C., Niu, S., & Gao, B. (2012). Study on Fe(III) and Mn(II) modified activated carbons derived from Zizania latifolia to removal basic fuchsin. Desalination, 286, 268–276. https://doi.org/10.1016/j.desal.2011.11.034
Huang, Y. dong. (2019). Comments on using of “pseudo-first-order model” [Appl. Surf. Sci. 394 (2017) 378–385, 397 (2017) 133–143, 426 (2017) 545–553, 437 (2018) 294–303]. Applied Surface Science, 469, 564–565. https://doi.org/10.1016/J.APSUSC.2018.11.070
Hussain, T., & Wahab, A. (2018). A critical review of the current water conservation practices in textile wet processing. Journal of Cleaner Production, 198, 806–819. https://doi.org/10.1016/j.jclepro.2018.07.051
Jamil, H., Dildar, I. M., Ilyas, U., Hashmi, J. Z., Shaukat, S., Sarwar, M. N., & Khaleeq-ur- Rahman, M. (2021). Microstructural and Optical study of polycrystalline manganese oxide films using Kubelka-Munk function. Thin Solid Films, 732, 138796. https://doi.org/10.1016/J.TSF.2021.138796
Jin, X., Zhuang, Z., Yu, B., Chen, Z., & Chen, Z. (2016). Functional chitosan-stabilized nanoscale zero-valent iron used to remove acid fuchsine with the assistance of ultrasound. Carbohydrate Polymers, 136, 1085–1090. https://doi.org/10.1016/j.carbpol.2015.10.002
Karaman, C., Karaman, O., Show, P. L., Karimi-Maleh, H., & Zare, N. (2022). Congo red dye removal from aqueous environment by cationic surfactant modified-biomass derived carbon: Equilibrium, kinetic, and thermodynamic modeling, and forecasting via artificial neural network approach. Chemosphere, 290, 133346. https://doi.org/10.1016/J.CHEMOSPHERE.2021.133346
Karmacharya, M. S., Gupta, V. K., Tyagi, I., Agarwal, S., & Jha, V. K. (2016a). Removal of As(III) and As(V) using rubber tire derived activated carbon modified with alumina composite. Journal of Molecular Liquids, 216, 836–844. https://doi.org/10.1016/J.MOLLIQ.2016.02.025
Karmacharya, M. S., Gupta, V. K., Tyagi, I., Agarwal, S., & Jha, V. K. (2016b). Removal of As(III) and As(V) using rubber tire derived activated carbon modified with alumina composite. Journal of Molecular Liquids, 216, 836–844. https://doi.org/10.1016/J.MOLLIQ.2016.02.025
Kassem, K. O., Hussein, M. A. T., Motawea, M. M., Gomaa, H., Alrowaili, Z. A., & Ezzeldien, M. (2021). Design of mesoporous ZnO @ silica fume-derived SiO2 nanocomposite as photocatalyst for efficient crystal violet removal: Effective route to recycle industrial waste. Journal of Cleaner Production, 326, 129416. https://doi.org/10.1016/J.JCLEPRO.2021.129416
Kumar, A., & Verma, N. (2018). Wet air oxidation of aqueous dichlorvos pesticide over catalytic copper-carbon nanofiberous beads. Chemical Engineering Journal, 351, 428–440. https://doi.org/10.1016/J.CEJ.2018.06.058
Kumari, M., & Saroha, A. K. (2019). Synthesis and characterization of carbon xerogel based iron catalyst for use in wet air oxidation of aqueous solution containing 2, 4, 6– trichlorophenol. Journal of Environmental Chemical Engineering, 7(3), 103121. https://doi.org/10.1016/J.JECE.2019.103121
Levec, J., & Pintar, A. (2007). Catalytic wet-air oxidation processes: A review. Catalysis Today, 124(3–4), 172–184. https://doi.org/10.1016/j.cattod.2007.03.035
Lima, S. B., Borges, S. M. S., do Carmo Rangel, M., & Marchetti, S. G. (2013). Effect of iron content on the catalytic properties of activated carbon-supported magnetite derived from biomass. Journal of the Brazilian Chemical Society, 24(2), 344–354. https://doi.org/10.5935/0103-5053.20130044
Liu, B., Chen, B., Zhang, B. Y., Jing, L., Zhang, H., & Lee, K. (2016). Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbons in Offshore Produced Water: Effects of Water Matrix. Journal of Environmental Engineering, 142(11), 04016054. https://doi.org/10.1061/(asce)ee.1943-7870.0001135
Liu, J., Yu, C., Zhao, P., & Chen, G. (2012a). Comparative study of supported CuOx and MnOx catalysts for the catalytic wet air oxidation of β-naphthol. Applied Surface Science, 258(22), 9096–9102. https://doi.org/10.1016/J.APSUSC.2012.06.022
Liu, J., Yu, C., Zhao, P., & Chen, G. (2012b). Comparative study of supported CuOx and MnOx catalysts for the catalytic wet air oxidation of β-naphthol. Applied Surface Science, 258(22), 9096–9102. https://doi.org/10.1016/J.APSUSC.2012.06.022
Liu, W.-M., Hu, Y.-Q., & Tu, S.-T. (2010). Active carbon–ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent. Journal of Hazardous Materials, 179(1–3), 545–551. https://doi.org/10.1016/j.jhazmat.2010.03.038
Madigan, M. T., Martinko, J. M., Bender, K. S., Buckley, D. H., & Stahl, D. A. (2015). Brock. Biología de los microorganismos. In M. Martín-Romo (Ed.), Brock : biología de los microorganismos (14th ed.). Pearson Educación. https://books.google.cl/books?id=rIoZjgEACAAJ
Mahlambi, M. M., Ngila, C. J., & Mamba, B. B. (2015). Recent Developments in Environmental Photocatalytic Degradation of Organic Pollutants: The Case of Titanium Dioxide Nanoparticles-A Review. In Journal of Nanomaterials (Vol. 2015). Hindawi Publishing Corporation. https://doi.org/10.1155/2015/790173
Manjunatha, M., Kumar, R., Anupama, A. v., Khopkar, V. B., Damle, R., Ramesh, K. P., & Sahoo, B. (2019). XRD, internal field-NMR and Mössbauer spectroscopy study of composition, structure and magnetic properties of iron oxide phases in iron ores. Journal of Materials Research and Technology, 8(2), 2192–2200. https://doi.org/10.1016/J.JMRT.2019.01.022
Maroufi, S., Mayyas, M., & Sahajwalla, V. (2017). Nano-carbons from waste tyre rubber: An insight into structure and morphology. Waste Management, 69, 110–116. https://doi.org/10.1016/J.WASMAN.2017.08.020
Mashile, P. P., Mpupa, A., & Nomngongo, P. N. (2018). Adsorptive removal of microcystin- LR from surface and wastewater using tyre-based powdered activated carbon: Kinetics and isotherms. Toxicon, 145, 25–31. https://doi.org/10.1016/J.TOXICON.2018.02.044
Melissa Denchak. (2018). Water Pollution Facts, Types, Causes and Effects of Water Pollution | NRDC. In NRDC (p. 1). https://www.nrdc.org/stories/water-pollutioneverything- you-need-know
Merck KGaA. (2017). MSDS Crystal Violet. In Merck S.A (Vol. 2, Issue 1907). https://www.merckmillipore.com/CO/es/product/msds/MDA_CHEM- 115940?Origin=SERP
Merck KGaA. (2019). MSDS Fucsina (Issue 1907). https://www.merckmillipore.com/CO/es/product/msds/MDA_CHEM- 115937?Origin=PDP
Meza, E. (2018, December 3). Crean artículos sustentables con llantas usadas | El Economista. EL ECONOMISTA. https://www.eleconomista.com.mx/empresas/Creanarticulos- sustentables-con-llantas-usadas-20181203-0056.html
Micromeritics. (2021). 3Flex - Analizador de adsorción Micromeritics 3Flex. Micromeritics. https://www.micromeritics.com/3flex/
Milone, C., Fazio, M., Pistone, A., & Galvagno, S. (2006). Catalytic wet air oxidation of pcoumaric acid on CeO2, platinum and gold supported on CeO2 catalysts. Applied Catalysis B: Environmental, 68(1–2), 28–37. https://doi.org/10.1016/j.apcatb.2006.07.016
Ministerio de Ambiente y Desarrollo Sostenible. (n.d.). Legislación del agua | Ministerio de Ambiente y Desarrollo Sostenible. Retrieved May 4, 2021, from https://www.minambiente.gov.co/index.php/component/content/article?id=407:plantill a-gestion-integral-del-recurso-hidrico-14
Mishra, T. K., Kumar, A., Sinha, S. K., & Gupta, B. (2018). Wear behavior and XRD analysis of reinforced copper matrix composite reinforced with Cerium Oxide (CeO2). Materials Today: Proceedings, 5(14), 27786–27794. https://doi.org/10.1016/J.MATPR.2018.10.014
Mohammed Ali, M. J., Radhy, M. M., mashkoor, S. J., & Ali, E. M. (2021). Synthesis and characterization of copper oxide nanoparticles and their application for solar cell. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2021.10.250
Mohd Shaid, M. S. H., Zaini, M. A. A., & Nasri, N. S. (2019). Evaluation of methylene blue dye and phenol removal onto modified CO2-activated pyrolysis tyre powder. Journal of Cleaner Production, 223, 487–498. https://doi.org/10.1016/J.JCLEPRO.2019.03.097
Moise, C. C., Enache, L. B., Anăstăsoaie, V., Lazăr, O. A., Mihai, G. V., Bercu, M., & Enăchescu, M. (2021). On the growth of copper oxide nanowires by thermal oxidation near the threshold temperature at atmospheric pressure. Journal of Alloys and Compounds, 886, 161130. https://doi.org/10.1016/J.JALLCOM.2021.161130
Molino, A., Donatelli, A., Marino, T., Aloise, A., Rimauro, J., & Iovane, P. (2018). Waste tire recycling process for production of steam activated carbon in a pilot plant. Resources, Conservation and Recycling, 129(November 2017), 102–111. https://doi.org/10.1016/j.resconrec.2017.10.023
Molla, A., Kim, A. Y., Woo, J. C., Cho, H. S., & Youk, J. H. (2022). Study on preparation methodology of zero-valent iron decorated on graphene oxide for highly efficient sonocatalytic dye degradation. Journal of Environmental Chemical Engineering, 10(2), 107214. https://doi.org/10.1016/J.JECE.2022.107214
Mui, E. L. K., Cheung, W. H., Valix, M., & McKay, G. (2010). Dye adsorption onto activated carbons from tyre rubber waste using surface coverage analysis. Journal of Colloid and Interface Science, 347(2), 290–300. https://doi.org/10.1016/J.JCIS.2010.03.061
Murillo, R., Navarro, M. v., López, J. M., García, T., Callén, M. S., Aylón, E., & Mastral, A. M. (2006). Activation of pyrolytic lignite char with CO2. Kinetic study. Energy and Fuels, 20(1), 11–16. https://doi.org/10.1021/ef0501187
Mussa, Z. H., Al-Qaim, F. F., Othman, M. R., Abdullah, M. P., Latip, J., & Zakria, Z. (2017). Pseudo first order kinetics and proposed transformation products pathway for the degradation of diclofenac using graphite–PVC composite as anode. Journal of the Taiwan Institute of Chemical Engineers, 72, 37–44. https://doi.org/10.1016/J.JTICE.2016.12.031
Nagaraja, M., Prashanth, S., Pattar, J., Mahesh, H. M., & Rajanna, K. (2021). Polyaniline- CuO nanocomposite: Electrical, structural and sensor properties. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2021.08.154
Nawaz, M., Khan, A. A., Hussain, A., Jang, J., Jung, H. Y., & Lee, D. S. (2020). Reduced graphene oxide−TiO2/sodium alginate 3-dimensional structure aerogel for enhanced photocatalytic degradation of ibuprofen and sulfamethoxazole. Chemosphere, 261, 127702. https://doi.org/10.1016/j.chemosphere.2020.127702
Noyola, Morgan-Sagastume, & Guereca. (2013). Selección de Tecnologías para el Tratamiento de Aguas Residuales Municipales: Guía de Apoyo para Ciudades Pequeñas y Medianas (UNAM). UNAM.
Ocade Ltda-Colombia, Siniplan-R.J-Brasil, & Ambiental S.A-Argentina. (2011). Diagnostico ambiental sobre el actual manejo de llantas y neumaticos usados generados por el parque automotor de Santa Fe de Bogotá. In Union Temporal Ocade Ltda(Colombia), Siniplan (R.J- Brasil), Ambiental S.a (Argentina). http://ambientebogota.gov.co/documents/10157/0/Llantas.pdf
ONU. (1972). Informe de la conferencia de las naciones unidas sobre el medio humano. In Conferencia de las Naciones Unidas sobre el Medio Humano.
Oseroff, A. R., Ohuoha, D., Ara, G., McAuliffe, D., Foley, J., & Cincotta, L. (1986). Intramitochondrial dyes allow selective in vitro photolysis of carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 83(24), 9729–9733. https://doi.org/10.1073/pnas.83.24.9729
Ovejero, G., Rodríguez, A., Vallet, A., & García, J. (2013). Ni/Fe-supported over hydrotalcites precursors as catalysts for clean and selective oxidation of Basic Yellow 11: Reaction intermediates determination. Chemosphere, 90(4), 1379–1386. https://doi.org/10.1016/j.chemosphere.2012.07.067
Ovejero, G., Rodríguez, A., Vallet, A., Willerich, S., & García, J. (2012). Application of Ni supported over mixed Mg-Al oxides to crystal violet wet air oxidation: The role of the reaction conditions and the catalyst. Applied Catalysis B: Environmental, 111–112, 586–594. https://doi.org/10.1016/j.apcatb.2011.11.011
Penagos Vega, P. A., & Barrera Castro, A. M. (2019). Evaluación de borra de café como soporte en un catalizador de hierro para la remoción de fucsina básica mediante un proceso de oxidación catalítica por fase húmeda. http://repository.uamerica.edu.co/bitstream/20.500.11839/7598/1/6141276-2019-2- IQ.pdf
Pijović, M., Manić, N., Anićijević, D. V., Krstić, A., Mitrić, M., Matić, T., & Janković, B. (2022). Simple and effective one-step production of high-quality mesoporous pyrolytic char from waste tires: Rhodamine B adsorption kinetics and density functional theory (DFT) study. Diamond and Related Materials, 121, 108768. https://doi.org/10.1016/J.DIAMOND.2021.108768
Priyanka, Subbaramaiah, V., Srivastava, V. C., & Mall, I. D. (2014). Catalytic oxidation of nitrobenzene by copper loaded activated carbon. Separation and Purification Technology, 125, 284–290. https://doi.org/10.1016/J.SEPPUR.2014.01.045
Qu, Y. F., Guo, J. X., Chu, Y. H., Sun, M. C., & Yin, H. Q. (2013). The influence of Mn species on the SO2 removal of Mn-based activated carbon catalysts. Applied Surface Science, 282, 425–431. https://doi.org/10.1016/J.APSUSC.2013.05.146
Quantachrome INSTRUMENTS. (2022). Quimisorción de cuantacromo - ChemBET 3000 TPR / TPD. Giangarloscientific.Com. http://giangarloscientific.com/analytical/quantachrome/chembet.html
Quesada-Peñate, I., Julcour-Lebigue, C., Jáuregui-Haza, U. J., Wilhelm, A. M., & Delmas, H. (2012). Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons. Journal of Hazardous Materials, 221–222, 131–138. https://doi.org/10.1016/j.jhazmat.2012.04.021
Ramírez, J. H., Galeano, L. A., Pinchao, G., Bedoya, R. A., & Hidalgo, A. (2018). Optimized CWPO phenol oxidation in CSTR reactor catalyzed by Al/Fe-PILC from concentrated precursors at circumneutral pH. Journal of Environmental Chemical Engineering, 6(2), 2429–2441. https://doi.org/10.1016/J.JECE.2018.02.024
Ramírez-Franco, J. H., Galeano, L. A., & Vicente, M. A. (2019). Fly ash as photo-Fenton catalyst for the degradation of amoxicillin. Journal of Environmental Chemical Engineering, 7(5), 103274. https://doi.org/10.1016/J.JECE.2019.103274
Rana, A., Hasan, I., Koo, B. H., & Khan, R. A. (2022). Green synthesized CeO2 nanowires immobilized with alginate-ascorbic acid biopolymer for advance oxidative degradation of crystal violet. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 637, 128225. https://doi.org/10.1016/J.COLSURFA.2021.128225
Revellame, E. D., Fortela, D. L., Sharp, W., Hernandez, R., & Zappi, M. E. (2020). Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Cleaner Engineering and Technology, 1, 100032. https://doi.org/10.1016/J.CLET.2020.100032
Revista Semana. (2020, December 3). 2020 ha sido el año más desinflado para la industria de las llantas. Publicaciones Semana. https://www.semana.com/economia/articulo/el- 2020-ha-sido-el-ano-mas-desinflado-para-la-industria-de-las-llantas/202044/
Riaño Hincapie, P. F. (2018). Degradación del cristal violeta presente en aguas residuales mediante la oxidación catalítica humeda con peróxido de hidrógeno (CWPO) a partir de óxidos mixtos de Mn-Cu a condiciones moderadas. (Vol. 1, Issue 1).
Rocha, R. P., Pereira, M. F. R., & Figueiredo, J. L. (2020). Metal-free carbon materials as catalysts for wet air oxidation. Catalysis Today, 356, 189–196. https://doi.org/10.1016/J.CATTOD.2019.04.047
Rodríguez Fernández-Alba, A., Letón García, P., Rosal García, R., Dorado Valiño, M., Villar Fernández, S., & Sanz García, J. M. (2006). Tratamientos Avanzados De Aguas Residuales Industriales. Citme, 6,8. 13, 30, 34.
Rouquerol, J., Rouquerol, F., Maurin, G., & Sing, K. S. W. (2014). Adsorption by Powders and Porous Solids: Principles, Methodology and ... - Jean Rouquerol, Françoise Rouquerol, Philip Llewellyn, Guillaume Maurin, Kenneth S.W. Sing - Google Libros. Elsevier. https://books.google.com.co/books?hl=es&lr=&id=UOEZscCYncC& oi=fnd&pg=PP1&ots=0TX_GFumnv&sig=AShdJIW02gDm1EFcXUPfJ7A eGgg&redir_esc=y#v=onepage&q&f=false
Sabnis, R. W. (2010). Handbook of biological dyes and stains (Wiley, Ed.). John Wiley & Sons Inc. https://ebookcentral.proquest.com/lib/unal/reader.action?docID=514385&query=cryst al+violet
Sagar, M., Nibedita, K., Manohar, N., Kumar, K. R., Suchismita, S., Pradnyesh, A., Reddy, A. B., Sadiku, E. R., Gupta, U. N., Lachit, P., & Jayaramudu, J. (2018). A potential utilization of end-of-life tyres as recycled carbon black in EPDM rubber. Waste Management, 74, 110–122. https://doi.org/10.1016/J.WASMAN.2018.01.003
Saini, B., & Dey, A. (2021). Synthesis and characterization of copolymer adsorbent for crystal violet dye removal from water. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2021.10.060
Saleh, T. A., Al-Hammadi, S. A., Tanimu, A., & Alhooshani, K. (2018). Ultra-deep adsorptive desulfurization of fuels on cobalt and molybdenum nanoparticles loaded on activated carbon derived from waste rubber. Journal of Colloid and Interface Science, 513, 779– 787. https://doi.org/10.1016/j.jcis.2017.11.076
Saleh, T. A., Gupta, V. K., & Al-Saadi, A. A. (2013). Adsorption of lead ions from aqueous solution using porous carbon derived from rubber tires: Experimental and computational study. Journal of Colloid and Interface Science, 396, 264–269. https://doi.org/10.1016/J.JCIS.2013.01.037
Samrot, A. v., Ali, H. H., Selvarani A, J., Faradjeva, E., P, R., P, P., & Kumar S, S. (2021). Adsorption efficiency of chemically synthesized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on crystal violet dye. Current Research in Green and Sustainable Chemistry, 4, 100066. https://doi.org/10.1016/J.CRGSC.2021.100066
Sánchez, L. Enrique. (2010). Evaluación de impacto ambiental : conceptos y métodos (Oficina de). Ecoe Ediciones. elibronet. ezproxy.unal.edu.co/es/ereader/unalecoe/65934?prev=bf
Santiago, M., Stüber, F., Fortuny, A., Fabregat, A., & Font, J. (2005). Modified activated carbons for catalytic wet air oxidation of phenol. Carbon, 43(10), 2134–2145. https://doi.org/10.1016/J.CARBON.2005.03.026
Santos, A., Yustos, P., Quintanilla, A., Ruiz, G., & Garcia-Ochoa, F. (2005). Study of the copper leaching in the wet oxidation of phenol with CuO-based catalysts: Causes and effects. Applied Catalysis B: Environmental, 61(3–4), 323–333. https://doi.org/10.1016/j.apcatb.2005.06.006
Saravan, R. S., Muthukumaran, M., Mubashera, S. M., Abinaya, M., Prasath, P. V., Parthiban, R., Mohammad, F., Oh, W. C., & Sagadevan, S. (2020). Evaluation of the photocatalytic efficiency of cobalt oxide nanoparticles towards the degradation of crystal violet and methylene violet dyes. Optik, 207, 164428. https://doi.org/10.1016/J.IJLEO.2020.164428
Serra-Pérez, E., Álvarez-Torrellas, S., Ismael Águeda, V., Larriba, M., Ovejero, G., & García, J. (2021). Effective removal of naproxen from aqueous solutions by CWAO process using noble metals supported on carbon nanospheres catalysts. Separation and Purification Technology, 259, 118084. https://doi.org/10.1016/J.SEPPUR.2020.118084
Shah, I., Adnan, R., Wan Ngah, W. S., Mohamed, N., & Taufiq-Yap, Y. H. (2014). A new insight to the physical interpretation of activated carbon and iron doped carbon material: Sorption affinity towards organic dye. Bioresource Technology, 160, 52–56. https://doi.org/10.1016/J.BIORTECH.2014.02.047
Shahbazi, F., Noghani, M., & Ahmadi, R. (2021). Effect of synthesis conditions on the morphology, composition and magnetic properties of the iron oxide nanoparticles prepared via electric discharge method. Journal of Magnetism and Magnetic Materials, 536, 168090. https://doi.org/10.1016/J.JMMM.2021.168090
Shahrokhi-Shahraki, R., Benally, C., El-Din, M. G., & Park, J. (2021a). High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere, 264, 128455. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128455
Shahrokhi-Shahraki, R., Benally, C., El-Din, M. G., & Park, J. (2021b). High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere, 264, 128455. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128455
Shahrokhi-Shahraki, R., Benally, C., El-Din, M. G., & Park, J. (2021c). High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere, 264, 128455. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128455
Shao, Q., Li, Y., Wang, Q., Niu, T., Li, S., & Shen, W. (2021). Preparation of copper doped walnut shell-based biochar for efficiently removal of organic dyes from aqueous solutions. Journal of Molecular Liquids, 336, 116314. https://doi.org/10.1016/J.MOLLIQ.2021.116314
Shin, J., Bae, S., & Chon, K. (2021). Fenton oxidation of synthetic food dyes by Feembedded coffee biochar catalysts prepared at different pyrolysis temperatures: A mechanism study. Chemical Engineering Journal, 421, 129943. https://doi.org/10.1016/J.CEJ.2021.129943
Shu, J., Cheng, S., Xia, H., Zhang, L., Peng, J., Li, C., & Zhang, S. (2017). Copper loaded on activated carbon as an efficient adsorbent for removal of methylene blue. RSC Advances, 7(24), 14395–14405. https://doi.org/10.1039/C7RA00287D
Silva, L. A. da, Borges, S. M. S., Paulino, P. N., Fraga, M. A., Oliva, S. T. de, Marchetti, S. G., & Rangel, M. do C. (2017). Methylene blue oxidation over iron oxide supported on activated carbon derived from peanut hulls. Catalysis Today, 289, 237–248. https://doi.org/10.1016/j.cattod.2016.11.036
Skodras, G., Diamantopoulou, Ir., Zabaniotou, A., Stavropoulos, G., & Sakellaropoulos, G. P. (2007). Enhanced mercury adsorption in activated carbons from biomass materials and waste tires. Fuel Processing Technology, 88(8), 749–758. https://doi.org/10.1016/j.fuproc.2007.03.008
Smith, J. M. (1991). Ingeniería Cinética Química (McGraw-Hill, Ed.; 6th ed.). CECSA.
Sreekumar, G., Louie Frobel, P. G., Sreeja, S., Suresh, S. R., Mayadevi, S., Muneera, C. I., Suchand Sandeep, C. S., Philip, R., & Mukharjee, C. (2011). Nonlinear absorption and photoluminescence emission in nanocomposite films of Fuchsine Basic dyepolymer system. Chemical Physics Letters, 506(1–3), 61–65. https://doi.org/10.1016/j.cplett.2011.02.048
Stüber, F., Font, J., Fortuny, A., Bengoa, C., Eftaxias, A., & Fabregat, A. (2005). Carbon materials and catalytic wet air oxidation of organic pollutants in wastewater. In Topics in Catalysis (Vol. 33, Issues 1–4). https://doi.org/10.1007/s11244-005-2497-1
Sultana, S., Islam, K., Asif Hasan, Md., Jawad Khan, H. M., Azizur R. Khan, M., Deb, A., al Raihan, Md., & Wasikur Rahman, Md. (2022). Adsorption of Crystal Violet Dye by Coconut Husk Powder: Isotherm, Kinetics and Thermodynamics Perspectives. Environmental Nanotechnology, Monitoring & Management, 100651. https://doi.org/10.1016/J.ENMM.2022.100651
Sun, Z., Yao, G., Liu, M., & Zheng, S. (2017). In situ synthesis of magnetic MnFe2O4/diatomite nanocomposite adsorbent and its efficient removal of cationic dyes. Journal of the Taiwan Institute of Chemical Engineers, 71, 501–509. https://doi.org/10.1016/j.jtice.2016.12.013
Sushma, Kumari, M., & Saroha, A. K. (2018a). Performance of various catalysts on treatment of refractory pollutants in industrial wastewater by catalytic wet air oxidation: A review. Journal of Environmental Management, 228, 169–188. https://doi.org/10.1016/J.JENVMAN.2018.09.003
Sushma, Kumari, M., & Saroha, A. K. (2018b). Performance of various catalysts on treatment of refractory pollutants in industrial wastewater by catalytic wet air oxidation: A review. Journal of Environmental Management, 228, 169–188. https://doi.org/10.1016/J.JENVMAN.2018.09.003
Takabi, A. S., Shirani, M., & Semnani, A. (2021). Apple stem as a high performance cellulose based biosorbent for low cost and eco-friendly adsorption of crystal violet from aqueous solutions using experimental design: Mechanism, kinetic and thermodynamics. Environmental Technology & Innovation, 24, 101947. https://doi.org/10.1016/J.ETI.2021.101947
Tamburini, D., Shimada, C. M., & McCarthy, B. (2021). The molecular characterization of early synthetic dyes in E. Knecht et al’s textile sample book “A Manual of Dyeing” (1893) by high performance liquid chromatography - Diode array detector - Mass spectrometry (HPLC-DAD-MS). Dyes and Pigments, 190, 109286. https://doi.org/10.1016/J.DYEPIG.2021.109286
Thakar, M. A., Saurabh Jha, S., Phasinam, K., Manne, R., Qureshi, Y., & Hari Babu, V. V. (2021). X ray diffraction (XRD) analysis and evaluation of antioxidant activity of copper oxide nanoparticles synthesized from leaf extract of Cissus vitiginea. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2021.05.410
Todea, M., Simon, V., Muresan-Pop, M., Vulpoi, A., Rusu, M. M., Simion, A., Vasilescu, M., Damian, G., Petrisor, D. M., & Simon, S. (2021). Silica-based microspheres with aluminum-iron oxide shell for diagnosis and cancer treatment. Journal of Molecular Structure, 1246, 131149. https://doi.org/10.1016/J.MOLSTRUC.2021.131149
Tran, T. H., Le, A. H., Pham, T. H., Nguyen, D. T., Chang, S. W., Chung, W. J., & Nguyen, D. D. (2020). Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste. Science of The Total Environment, 725, 138325. https://doi.org/10.1016/J.SCITOTENV.2020.138325
UN WATER. (2016). Annual report 2015. In UN Water. https://doi.org/10.5962/bhl.title.42736
UPME. (2016). Normatividad Ambiental. UPME. http://www.upme.gov.co/guia_ambiental/carbon/gestion/politica/normativ/normativ.ht m#BM2__NORMATIVIDAD_TEMATICA
Vallet, A., Besson, M., Ovejero, G., & García, J. (2012). Treatment of a non-azo dye aqueous solution by CWAO in continuous reactor using a Ni catalyst derived from hydrotalcite-like precursor. Journal of Hazardous Materials, 227–228, 410–417. https://doi.org/10.1016/j.jhazmat.2012.05.081
Vásquez Vargas, D. A. (2019). Evaluación de la disminución en la carga contaminante de los colorantes asociados a la tinción de Gram mediante carbón activado encapsulado en alginato de sodio [Fundación Universidad de América]. https://repository.uamerica.edu.co/handle/20.500.11839/7592
Verma, A., Anand, P., Kumar, S., & Fu, Y. P. (2022). Cu-cuprous/cupric oxide nanoparticles towards dual application for nitrophenol conversion and electrochemical hydrogen evolution. Applied Surface Science, 578, 151795. https://doi.org/10.1016/J.APSUSC.2021.151795
Vidal, G., Jarpa, M., Plaza de los Reyes, C., Belmonte, M., & Mariangel, L. (2005). Manual de tecnologías sostenibles en tratamiento de aguas (G. Peñuela & J. Morató, Eds.; TECSPAR). Alfa EuropeAid.
Wang, L., Wang, J., Pan, H., Zhao, M., & Chen, J. (2021a). Kinetics and removal pathwayof basic fuchsin by electrochemical oxidization. Journal of Electroanalytical Chemistry, 880, 114792. https://doi.org/10.1016/j.jelechem.2020.114792
Wang, L., Wang, J., Pan, H., Zhao, M., & Chen, J. (2021b). Kinetics and removal pathwayof basic fuchsin by electrochemical oxidization. Journal of Electroanalytical Chemistry, 880, 114792. https://doi.org/10.1016/J.JELECHEM.2020.114792
Wang, P., Liang, Y. N., Zhong, Z., & Hu, X. (2020a). Nano-hybrid bimetallic Au-Pd catalysts for ambient condition-catalytic wet air oxidation (AC-CWAO) of organic dyes. Separation and Purification Technology, 233, 115960. https://doi.org/10.1016/j.seppur.2019.115960
Wang, P., Liang, Y. N., Zhong, Z., & Hu, X. (2020b). Nano-hybrid bimetallic Au-Pd catalysts for ambient condition-catalytic wet air oxidation (AC-CWAO) of organic dyes. Separation and Purification Technology, 233, 115960. https://doi.org/10.1016/j.seppur.2019.115960
Wang, P., Liang, Y. N., Zhong, Z., & Hu, X. (2020c). Nano-hybrid bimetallic Au-Pd catalysts for ambient condition-catalytic wet air oxidation (AC-CWAO) of organic dyes. Separation and Purification Technology, 233, 115960. https://doi.org/10.1016/J.SEPPUR.2019.115960
Wang, Y., Wang, J., Du, B., Wang, Y., Xiong, Y., Yang, Y., & Zhang, X. (2018). Synthesis of hierarchically porous perovskite-carbon aerogel composite catalysts for the rapid degradation of fuchsin basic under microwave irradiation and an insight into probable catalytic mechanism. Applied Surface Science, 439, 475–487. https://doi.org/10.1016/J.APSUSC.2017.12.196
WBCSD. (2010). End-of-Life Tires A framework for effective management systems Managing End-of-Life Tires End-of-Life Tires: A Framework for Effective Management Systems Prepared by the WBCSD Tire Industry Project Contents. http://docs.wbcsd.org/2018/02/TIP/A_Framework_For_Effective_Management_Syste ms.pdf
Wu, Q., Wang, H., & Yi, C. (2018). Preparation of photo-Fenton heterogeneous catalyst (Fe-TS-1 zeolite) and its application in typical azo dye decoloration. Journal of Photochemistry and Photobiology A: Chemistry, 356, 138–149. https://doi.org/10.1016/J.JPHOTOCHEM.2017.12.041
Wu, Z., Deng, W., Tang, S., Ruiz-Hitzky, E., Luo, J., & Wang, X. (2021). Pod-inspired MXene/porous carbon microspheres with ultrahigh adsorption capacity towards crystal violet. Chemical Engineering Journal, 426, 130776. https://doi.org/10.1016/J.CEJ.2021.130776
Xu, Y., Shao, H., Ge, F., & Liu, Y. (2017). Novel-structured Mo-Cu-Fe-O composite for catalytic air oxidation of dye-containing wastewater under ambient temperature and pressure. Chinese Journal of Catalysis, 38(10), 1719–1725. https://doi.org/10.1016/S1872-2067(17)62884-5
Xu, Z., Li, Y., Lin, Y., Wang, Y., Wang, Q., & Zhu, T. (2021). Loading mechanism and double-site reaction mechanism of Cu on activated carbon for enhanced oxidation of CO from flue gas. Chemical Engineering Journal, 419, 129994. https://doi.org/10.1016/J.CEJ.2021.129994
Yadav, A., & Verma, N. (2018). Carbon bead-supported copper-dispersed carbon nanofibers: An efficient catalyst for wet air oxidation of industrial wastewater in a recycle flow reactor. Journal of Industrial and Engineering Chemistry, 67, 448–460. https://doi.org/10.1016/j.jiec.2018.07.019
Yakout, S. M., Hassan, M. R., Abdeltawab, A. A., & Aly, M. I. (2019). Sono-sorption efficiencies and equilibrium removal of triphenylmethane (crystal violet) dye from aqueous solution by activated charcoal. Journal of Cleaner Production, 234, 124–131. https://doi.org/10.1016/j.jclepro.2019.06.164
Yang, X., Li, Y., Du, Q., Sun, J., Chen, L., Hu, S., Wang, Z., Xia, Y., & Xia, L. (2015). Highly effective removal of basic fuchsin from aqueous solutions by anionic polyacrylamide/graphene oxide aerogels. Journal of Colloid and Interface Science, 453, 107–114. https://doi.org/10.1016/J.JCIS.2015.04.042
Yang, Y., Ding, X., Chang, K., Zeng, Z., Hou, Y., & Huang, Z. (2022). In situ DRIFTS combined with GC–MS to identify the catalytic oxidation process of dibenzofuran over activated carbon-supported transition metals oxide catalysts. Fuel, 312, 122492. https://doi.org/10.1016/J.FUEL.2021.122492
Yin, J., Cai, J., Yin, C., Gao, L., & Zhou, J. (2016). Degradation performance of crystal violet over CuO@AC and CeO 2 -CuO@AC catalysts using microwave catalytic oxidation degradation method. Journal of Environmental Chemical Engineering, 4(1), 958–964. https://doi.org/10.1016/j.jece.2016.01.001
Zhang, G., Hou, P., Sun, Y., Xu, Y., Cheng, H., & Zhang, Y. (2019). Three Different Types of Activated Carbon and Manganese-Modified Activated Carbons as Deoxidizers for the Low-Concentration Coalbed Methane Deoxidation. Journal of the Brazilian Chemical Society, 30(9), 1789–1800. https://doi.org/10.21577/0103-5053.20190085
Zhang, N., Zhang, G., Chong, S., Zhao, H., Huang, T., & Zhu, J. (2018). Ultrasonic impregnation of MnO2/CeO2 and its application in catalytic sono-degradation of methyl orange. Journal of Environmental Management, 205, 134–141. https://doi.org/10.1016/j.jenvman.2017.09.073
Zhang, X., Li, H., Cao, Q., Jin, L., & Wang, F. (2018). Upgrading pyrolytic residue from waste tires to commercial carbon black. Waste Management and Research, 36(5), 436–444. https://doi.org/10.1177/0734242X18764292
Zhao, J., Wei, Y., Liu, Z., Zhang, L., Cui, Q., & Wang, H. (2022). Study on heterogeneous catalytic wet air oxidation process of high concentration MDEA-containing wastewater. Chemical Engineering and Processing - Process Intensification, 171, 108744. https://doi.org/10.1016/J.CEP.2021.108744
Zhu, L., Zhang, L., Qu, H., & Zhong, Q. (2015). A study on chemisorbed oxygen and reaction process of Fe-CuOx/ZSM-5 via ultrasonic impregnation method for lowtemperature NH3-SCR. Journal of Molecular Catalysis A: Chemical, 409, 207–215. https://doi.org/10.1016/j.molcata.2015.08.029
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 116 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Química y Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82198/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82198/2/1019057864.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82198/3/1019057864.2022.pdf.jpg
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
5bf065f111dd8508683ea0765a647829
522aa174bf04b3fefb9eb138e12ffd64
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806885913054150656
spelling Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Pérez Flórez, Alejandro882e42a7e5df421016ee67b45b9affcdRamírez Franco, José Herney50c4f1e63d416e6c5aaa0e73a06bd6a3Meneses Madroñero, Paula Stefania438839c1b9c87552b47c860e36940877Investigación en Tecnología Ambiental y de Materiales2022-08-30T16:51:49Z2022-08-30T16:51:49Z2022https://repositorio.unal.edu.co/handle/unal/82198Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficas, mapasEl desarrollo de nuevas tecnologías, permiten el control de sustancias químicas peligrosas presentes en los efluentes de diversas industrias o recintos educativos, cuya remoción no es factible por métodos convencionales. Asimismo, el aumento en el número de vehículos cada año es mayor y esto está generando residuos como el caucho de las llantas. En esta investigación se emplea el caucho de llanta como materia prima para producir carbón activado que se usa como soporte de óxidos metálicos de Fe, Cu, Mn y una mezcla de los dos mejores metales analizados (CuMn), estos catalizadores son preparados por medio del método de impregnación húmeda y caracterizados por XRD, SEM-EDX, TPR-H2, FTIR y propiedades texturales. Los sólidos se evaluaron mediante la oxidación húmeda catalítica con aire de un efluente contaminado con colorantes de tinción de Gram a condiciones ambientales de reacción: 25 °C, presión atmosférica. y flujo de aire de 2 mL/min. Los resultados experimentales indicaron porcentajes de remoción del 98%, eliminación de DQO del 33% en tan solo 3 horas de reacción y conversión del carbono orgánico total (COT) del 80% a las 24 horas de reacción. El catalizador de Cu con una relación másica del 5% demostró ser el catalizador con mayor actividad catalítica. (Texto tomado de la fuente)The development of new technologies allows the control of dangerous chemical substances present in the water currents of various industries or educational facilities, whose removal is not feasible by conventional methods. Similarly, the increase in the number of motor vehicles is greater each year and this is generating waste such as tire rubber. In this research, tire rubber is use as a raw material to produce activated carbon that is use as a support for metal oxides of Fe, Cu, Mn and a mixture of the two best metals analyzed (CuMn), these catalysts are prepared by means of the wet impregnation method and characterized by XRD, SEM-EDX, TPR-H2, FTIR and textural properties. Water contaminated with Gram stain dyes was treated with the synthesized solids by catalytic wet oxidation with air under ambient conditions: 25°C, atmospheric pressure and air flow of 2 mL/min. The experimental results indicated percentages of colorant removal of 98%, COD elimination of 33% in only 3 hours of reaction and conversion of total organic carbon (COT) of 80% at 24 hours of reaction. The Cu catalyst with a mass ratio of 5% proved to be the catalyst with the highest catalytic activity.MaestríaMagíster en Ingeniería - Ingeniería QuímicaCatálisis Ambientalxviii, 116 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería QuímicaDepartamento de Ingeniería Química y AmbientalFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesPURIFICACION DEL AGUA-OXIDACIONWater - purification - oxidationTinción de GramOxidación húmeda catalítica con aireRemociónCaucho de llantaCWAOTire rubberGram stainRemovalRemoción de colorantes presentes en aguas reales provenientes de un laboratorio de microbiología mediante el proceso CWAO con un catalizador Mn, Cu, y/o Fe soportado en carbón activado a partir de caucho de llantaRemoval of colorants present in real water from a microbiology laboratory through the CWAO process with a Mn, Cu, and/or Fe catalyst supported on activated carbon from tire rubberTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaAbu Sharib, A. S. A. A., Bonilla-Petriciolet, A., Selim, A. Q., Mohamed, E. A., & Seliem, M. K. (2021). Utilizing modified weathered basalt as a novel approach in the preparation of Fe3O4 nanoparticles: Experimental and theoretical studies for crystal violet adsorption. Journal of Environmental Chemical Engineering, 9(6), 106220. https://doi.org/10.1016/J.JECE.2021.106220Ahmad, A., Jini, D., Aravind, M., Parvathiraja, C., Ali, R., Kiyani, M. Z., & Alothman, A. (2020). A novel study on synthesis of egg shell based activated carbon for degradation of methylene blue via photocatalysis. Arabian Journal of Chemistry, 13(12), 8717– 8722. https://doi.org/10.1016/j.arabjc.2020.10.002Ahmed, S., Ahmad, Z., Kumar, A., Rafiq, M., Vashistha, V. K., Ashiq, M. N., & Kumar, A. (2021). Effective removal of methylene blue using nanoscale manganese oxide rods and spheres derived from different precursors of manganese. Journal of Physics and Chemistry of Solids, 155, 110121. https://doi.org/10.1016/J.JPCS.2021.110121Al-Rahbi, A. S., & Williams, P. T. (2016). Production of activated carbons from waste tyres for low temperature NOx control. Waste Management, 49, 188–195. https://doi.org/10.1016/J.WASMAN.2016.01.030Benhamed, I., Barthe, L., Kessas, R., Julcour, C., & Delmas, H. (2016). Effect of transition metal impregnation on oxidative regeneration of activated carbon by catalytic wet air oxidation. Applied Catalysis B: Environmental, 187, 228–237. https://doi.org/10.1016/j.apcatb.2016.01.016Berkün Olgun, Ö., Palas, B., Atalay, S., & Ersöz, G. (2021). Photocatalytic oxidation and catalytic wet air oxidation of real pharmaceutical wastewater in the presence of Fe and LaFeO3 doped activated carbon catalysts. Chemical Engineering Research and Design, 171, 421–432. https://doi.org/10.1016/J.CHERD.2021.05.017Bes Monge, Sra. S., Silva, Dr. A. M. T., & Bengoa, Dr. C. (2016). Manual técnico sobre procesos de oxidación avanzada aplicados al tratamiento de aguas residuales industriales. In (Tritón-316Rt0506) (Issues 978-84-09-08637–5). http://www.cyted.org/sites/default/files/manual_sobre_oxidaciones_avanzadas_0.pdfBessashia, W., Berredjem, Y., Hattab, Z., & Bououdina, M. (2020). Removal of Basic Fuchsin from water by using mussel powdered eggshell membrane as novel bioadsorbent: Equilibrium, kinetics, and thermodynamic studies. Environmental Research, 186, 109484. https://doi.org/10.1016/J.ENVRES.2020.109484Cao, D. J., Wang, J. J., Zhang, Q., Wen, Y. Z., Dong, B., Liu, R. J., Yang, X., & Geng, G. (2019). Biodegradation of triphenylmethane dye crystal violet by Cedecea davisae. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 210, 9–13. https://doi.org/10.1016/j.saa.2018.11.004Castro Carreño, N., & Rojas Chitiva, W. J. (2018). Síntesis de óxidos mixtos de mn-fe mediante el método de autocombustión para la degradación de cristal violeta en aguas residuales [Fundación Universidad de América]. https://repository.uamerica.edu.co/handle/20.500.11839/6703Celis-Salazar, P., Zea, H., Luhrs, C., Phillips, J., & Ramirez, J. (2015). Iron on carbon catalaysts for the photocatalytic degradation orange II. Journal of Advanced Oxidation Technologies, 18(2), 295–302. https://doi.org/10.1515/JAOTS-2015- 0216/MACHINEREADABLECITATION/RISChang, R., & Goldsby, K. (2017). Química (McGraw-Hill/Interamericana Editores, Ed.; 12th ed., Vol. 12). McGraw-Hill. http://www.ebooks7- 24.com.ezproxy.unal.edu.co/stage.aspx?il=&pg=&ed=Chatwal, G. R. (2009). Synthetic Dyes (M. Arora, Ed.; 1st ed.). Himalaya Publishing House. https://ebookcentral.proquest.com/lib/unal/reader.action?docID=3011371&query=dy esCherono, F., Mburu, N., & Kakoi, B. (2021). Adsorption of lead, copper and zinc in a multimetal aqueous solution by waste rubber tires for the design of single batch adsorber. Heliyon, 7(11), e08254. https://doi.org/10.1016/J.HELIYON.2021.E08254Chong, S., Zhang, G., Zhang, N., Liu, Y., Zhu, J., Huang, T., & Fang, S. (2016). Preparation of FeCeOx by ultrasonic impregnation method for heterogeneous Fenton degradation of diclofenac. Ultrasonics Sonochemistry, 32, 231–240. https://doi.org/10.1016/j.ultsonch.2016.03.019Ciżman, A., Rysiakiewicz-Pasek, E., Antropova, T., Krupiński, M., Pshenko, O. A., & Zarzycki, A. (2020). Effect of the iron content on the structure and electrical properties of sodium borosilicate glasses: XRD, TEM, Mössbauer, FTIR and DIS spectroscopy study. Journal of Non-Crystalline Solids, 531, 119847. https://doi.org/10.1016/J.JNONCRYSOL.2019.119847Coha, M., Farinelli, G., Tiraferri, A., Minella, M., & Vione, D. (2021). Advanced oxidation processes in the removal of organic substances from produced water: Potential, configurations, and research needs. In Chemical Engineering Journal (Vol. 414, p. 128668). Elsevier B.V. https://doi.org/10.1016/j.cej.2021.128668Conde-Rivera, L. R., Suarez-Escobar, A. F., Marin-Perez, J. J., Junco-Rodriguez, M. J., & Lopez-Suarez, F. E. (2021a). TiO2 supported on activated carbon from tire waste for ibuprofen removal. Materials Letters, 291, 129590. https://doi.org/10.1016/J.MATLET.2021.129590Conde-Rivera, L. R., Suarez-Escobar, A. F., Marin-Perez, J. J., Junco-Rodriguez, M. J., & Lopez-Suarez, F. E. (2021b). TiO2 supported on activated carbon from tire waste for ibuprofen removal. Materials Letters, 291, 129590. https://doi.org/10.1016/J.MATLET.2021.129590Degano, I., Sabatini, F., Braccini, C., & Colombini, M. P. (2019). Triarylmethine dyes: Characterization of isomers using integrated mass spectrometry. Dyes and Pigments, 160, 587–596. https://doi.org/10.1016/J.DYEPIG.2018.08.046el Haddad, M. (2016). Removal of Basic Fuchsin dye from water using mussel shell biomass waste as an adsorbent: Equilibrium, kinetics, and thermodynamics. Journal of Taibah University for Science, 10(5), 664–674. https://doi.org/10.1016/J.JTUSCI.2015.08.007Erjavec, B., Kaplan, R., Djinović, P., & Pintar, A. (2013). Catalytic wet air oxidation of bisphenol A model solution in a trickle-bed reactor over titanate nanotube-based catalysts. Applied Catalysis B: Environmental, 132–133, 342–352. https://doi.org/10.1016/J.APCATB.2012.12.007Ertl, G., Knözinger, H., Schüth, F., & Weitkamp, J. (2008). Handbook of Heterogeneus Catalysis (G. Ertl, H. Knözinger, F. Schüth, & J. Weitkamp, Eds.; 2° edición). Wiley- VCH Verlag.Fogler, H. S. (2008). Elementos de ingeniería de las reacciones químicas. In H. S. Fogler (Ed.), Chemical Engineering Education (Cuarta, Issue 4). Pearson Prentice Hall. http://www.ebooks7-24.com.ezproxy.unal.edu.co/?il=3799Fraume Restrepo, N. J. (2006). Diccionario ambiental (ECOE edici). ECOE. https://elibronet. ezproxy.unal.edu.co/es/ereader/unalecoe/69025?prev=bfGhosh, K., Bar, N., Biswas, A. B., & Das, S. K. (2021). Elimination of crystal violet from synthetic medium by adsorption using unmodified and acid-modified eucalyptus leaves with MPR and GA application. Sustainable Chemistry and Pharmacy, 19, 100370. https://doi.org/10.1016/j.scp.2020.100370Gordon M., H. (1973). Cinetica Quimica (H. Gordon M, Ed.; 2nd ed.). Editorial reverté S.A.Guclu, C., Alper, K., Erdem, M., Tekin, K., & Karagoz, S. (2021). Activated carbons from co-carbonization of waste truck tires and spent tea leaves. Sustainable Chemistry and Pharmacy, 21, 100410. https://doi.org/10.1016/j.scp.2021.100410Gupta, P., & Verma, N. (2021). Evaluation of degradation and mineralization of glyphosate pollutant in wastewater using catalytic wet air oxidation over Fe-dispersed carbon nanofibrous beads. Chemical Engineering Journal, 417, 128029. https://doi.org/10.1016/J.CEJ.2020.128029Gupta, V. K., Gupta, B., Rastogi, A., Agarwal, S., & Nayak, A. (2011a). A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye-Acid Blue 113. Journal of Hazardous Materials, 186(1), 891–901. https://doi.org/10.1016/j.jhazmat.2010.11.091Gupta, V. K., Gupta, B., Rastogi, A., Agarwal, S., & Nayak, A. (2011b). A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye—Acid Blue 113. Journal of Hazardous Materials, 186(1), 891–901. https://doi.org/10.1016/J.JHAZMAT.2010.11.091Gupta, V. K., Gupta, B., Rastogi, A., Agarwal, S., Nayak, A., Saleh, T. A., Al-Saadi, A. A., Gupta, V. K., Qin, H., Xiao, R., Chen, J., Riaño Hincapie, P. F., Herney-Ramirez, J., Vicente, M. A., Madeira, L. M., Saleh, T. A., Danmaliki, G. I., Wawrzkiewicz, M., Wiśniewska, M., … Alhooshani, K. (2018). Catalytic wet peroxide oxidation of benzoic acid over Fe/AC catalysts: Effect of nitrogen and sulfur co-doped activated carbon. Journal of the Taiwan Institute of Chemical Engineers, 60(1–2), 779–787. https://doi.org/10.1016/j.scitotenv.2018.01.206Gürses, A., Açıkyıldız, M., Güneş, K., & Gürses, M. S. (2016). Dyes and Pigments (Sanjay K. Sharma, Ed.). Springer. http://www.springer.com/series/10045Hao, Y. F., Yan, L. G., Yu, H. Q., Yang, K., Yu, S. J., Shan, R. R., & Du, B. (2014). Comparative study on adsorption of basic and acid dyes by hydroxy-aluminum pillared bentonite. Journal of Molecular Liquids, 199, 202–207. https://doi.org/10.1016/J.MOLLIQ.2014.09.005Hasan, I., Walia, S., Alharbi, K. H., Khanjer, M. A., Alsalme, A., & Khan, R. A. (2020). Multiwalled carbon nanotube coupled β-Cyclodextrin/PANI hybrid photocatalyst for advance oxidative degradation of crystal violet. Journal of Molecular Liquids, 317, 114216. https://doi.org/10.1016/J.MOLLIQ.2020.114216Hernández Archila, K. G. (2019). Catalizadores de Ni y Fe promovidos por Ce obtenidos a partir de hidroxidos de doble capa para la degradación de cristal violeta en solución.Hernández-Oloño, J. T., Infantes-Molina, A., Vargas-Hernández, D., Domínguez- Talamantes, D. G., Rodríguez-Castellón, E., Herrera-Urbina, J. R., & Tánori-Córdova, J. C. (2021). A novel heterogeneous photo-Fenton Fe/Al2O3 catalyst for dye degradation. Journal of Photochemistry and Photobiology A: Chemistry, 421, 113529. https://doi.org/10.1016/J.JPHOTOCHEM.2021.113529Hood, Z. D., Adhikari, S. P., Evans, S. F., Wang, H., Li, Y., Naskar, A. K., Chi, M., Lachgar, A., & Paranthaman, M. P. (2018). Tire-derived carbon for catalytic preparation of biofuels from feedstocks containing free fatty acids. Carbon Resources Conversion, 1(2), 165–173. https://doi.org/10.1016/j.crcon.2018.07.007Hua, L., Ma, H., & Zhang, L. (2013). Degradation process analysis of the azo dyes by catalytic wet air oxidation with catalyst CuO/γ-Al2O3. Chemosphere, 90(2), 143–149. https://doi.org/10.1016/J.CHEMOSPHERE.2012.06.018Huang, J., Zhang, Y., & Zhang, Y. (2021). Preparation and characterization of manganese oxides supported on functionalized halloysite nanotubes with enhanced catalytic oxidation for toluene. Applied Clay Science, 209, 106147. https://doi.org/10.1016/J.CLAY.2021.106147Huang, L., Kong, J., Wang, W., Zhang, C., Niu, S., & Gao, B. (2012). Study on Fe(III) and Mn(II) modified activated carbons derived from Zizania latifolia to removal basic fuchsin. Desalination, 286, 268–276. https://doi.org/10.1016/j.desal.2011.11.034Huang, Y. dong. (2019). Comments on using of “pseudo-first-order model” [Appl. Surf. Sci. 394 (2017) 378–385, 397 (2017) 133–143, 426 (2017) 545–553, 437 (2018) 294–303]. Applied Surface Science, 469, 564–565. https://doi.org/10.1016/J.APSUSC.2018.11.070Hussain, T., & Wahab, A. (2018). A critical review of the current water conservation practices in textile wet processing. Journal of Cleaner Production, 198, 806–819. https://doi.org/10.1016/j.jclepro.2018.07.051Jamil, H., Dildar, I. M., Ilyas, U., Hashmi, J. Z., Shaukat, S., Sarwar, M. N., & Khaleeq-ur- Rahman, M. (2021). Microstructural and Optical study of polycrystalline manganese oxide films using Kubelka-Munk function. Thin Solid Films, 732, 138796. https://doi.org/10.1016/J.TSF.2021.138796Jin, X., Zhuang, Z., Yu, B., Chen, Z., & Chen, Z. (2016). Functional chitosan-stabilized nanoscale zero-valent iron used to remove acid fuchsine with the assistance of ultrasound. Carbohydrate Polymers, 136, 1085–1090. https://doi.org/10.1016/j.carbpol.2015.10.002Karaman, C., Karaman, O., Show, P. L., Karimi-Maleh, H., & Zare, N. (2022). Congo red dye removal from aqueous environment by cationic surfactant modified-biomass derived carbon: Equilibrium, kinetic, and thermodynamic modeling, and forecasting via artificial neural network approach. Chemosphere, 290, 133346. https://doi.org/10.1016/J.CHEMOSPHERE.2021.133346Karmacharya, M. S., Gupta, V. K., Tyagi, I., Agarwal, S., & Jha, V. K. (2016a). Removal of As(III) and As(V) using rubber tire derived activated carbon modified with alumina composite. Journal of Molecular Liquids, 216, 836–844. https://doi.org/10.1016/J.MOLLIQ.2016.02.025Karmacharya, M. S., Gupta, V. K., Tyagi, I., Agarwal, S., & Jha, V. K. (2016b). Removal of As(III) and As(V) using rubber tire derived activated carbon modified with alumina composite. Journal of Molecular Liquids, 216, 836–844. https://doi.org/10.1016/J.MOLLIQ.2016.02.025Kassem, K. O., Hussein, M. A. T., Motawea, M. M., Gomaa, H., Alrowaili, Z. A., & Ezzeldien, M. (2021). Design of mesoporous ZnO @ silica fume-derived SiO2 nanocomposite as photocatalyst for efficient crystal violet removal: Effective route to recycle industrial waste. Journal of Cleaner Production, 326, 129416. https://doi.org/10.1016/J.JCLEPRO.2021.129416Kumar, A., & Verma, N. (2018). Wet air oxidation of aqueous dichlorvos pesticide over catalytic copper-carbon nanofiberous beads. Chemical Engineering Journal, 351, 428–440. https://doi.org/10.1016/J.CEJ.2018.06.058Kumari, M., & Saroha, A. K. (2019). Synthesis and characterization of carbon xerogel based iron catalyst for use in wet air oxidation of aqueous solution containing 2, 4, 6– trichlorophenol. Journal of Environmental Chemical Engineering, 7(3), 103121. https://doi.org/10.1016/J.JECE.2019.103121Levec, J., & Pintar, A. (2007). Catalytic wet-air oxidation processes: A review. Catalysis Today, 124(3–4), 172–184. https://doi.org/10.1016/j.cattod.2007.03.035Lima, S. B., Borges, S. M. S., do Carmo Rangel, M., & Marchetti, S. G. (2013). Effect of iron content on the catalytic properties of activated carbon-supported magnetite derived from biomass. Journal of the Brazilian Chemical Society, 24(2), 344–354. https://doi.org/10.5935/0103-5053.20130044Liu, B., Chen, B., Zhang, B. Y., Jing, L., Zhang, H., & Lee, K. (2016). Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbons in Offshore Produced Water: Effects of Water Matrix. Journal of Environmental Engineering, 142(11), 04016054. https://doi.org/10.1061/(asce)ee.1943-7870.0001135Liu, J., Yu, C., Zhao, P., & Chen, G. (2012a). Comparative study of supported CuOx and MnOx catalysts for the catalytic wet air oxidation of β-naphthol. Applied Surface Science, 258(22), 9096–9102. https://doi.org/10.1016/J.APSUSC.2012.06.022Liu, J., Yu, C., Zhao, P., & Chen, G. (2012b). Comparative study of supported CuOx and MnOx catalysts for the catalytic wet air oxidation of β-naphthol. Applied Surface Science, 258(22), 9096–9102. https://doi.org/10.1016/J.APSUSC.2012.06.022Liu, W.-M., Hu, Y.-Q., & Tu, S.-T. (2010). Active carbon–ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent. Journal of Hazardous Materials, 179(1–3), 545–551. https://doi.org/10.1016/j.jhazmat.2010.03.038Madigan, M. T., Martinko, J. M., Bender, K. S., Buckley, D. H., & Stahl, D. A. (2015). Brock. Biología de los microorganismos. In M. Martín-Romo (Ed.), Brock : biología de los microorganismos (14th ed.). Pearson Educación. https://books.google.cl/books?id=rIoZjgEACAAJMahlambi, M. M., Ngila, C. J., & Mamba, B. B. (2015). Recent Developments in Environmental Photocatalytic Degradation of Organic Pollutants: The Case of Titanium Dioxide Nanoparticles-A Review. In Journal of Nanomaterials (Vol. 2015). Hindawi Publishing Corporation. https://doi.org/10.1155/2015/790173Manjunatha, M., Kumar, R., Anupama, A. v., Khopkar, V. B., Damle, R., Ramesh, K. P., & Sahoo, B. (2019). XRD, internal field-NMR and Mössbauer spectroscopy study of composition, structure and magnetic properties of iron oxide phases in iron ores. Journal of Materials Research and Technology, 8(2), 2192–2200. https://doi.org/10.1016/J.JMRT.2019.01.022Maroufi, S., Mayyas, M., & Sahajwalla, V. (2017). Nano-carbons from waste tyre rubber: An insight into structure and morphology. Waste Management, 69, 110–116. https://doi.org/10.1016/J.WASMAN.2017.08.020Mashile, P. P., Mpupa, A., & Nomngongo, P. N. (2018). Adsorptive removal of microcystin- LR from surface and wastewater using tyre-based powdered activated carbon: Kinetics and isotherms. Toxicon, 145, 25–31. https://doi.org/10.1016/J.TOXICON.2018.02.044Melissa Denchak. (2018). Water Pollution Facts, Types, Causes and Effects of Water Pollution | NRDC. In NRDC (p. 1). https://www.nrdc.org/stories/water-pollutioneverything- you-need-knowMerck KGaA. (2017). MSDS Crystal Violet. In Merck S.A (Vol. 2, Issue 1907). https://www.merckmillipore.com/CO/es/product/msds/MDA_CHEM- 115940?Origin=SERPMerck KGaA. (2019). MSDS Fucsina (Issue 1907). https://www.merckmillipore.com/CO/es/product/msds/MDA_CHEM- 115937?Origin=PDPMeza, E. (2018, December 3). Crean artículos sustentables con llantas usadas | El Economista. EL ECONOMISTA. https://www.eleconomista.com.mx/empresas/Creanarticulos- sustentables-con-llantas-usadas-20181203-0056.htmlMicromeritics. (2021). 3Flex - Analizador de adsorción Micromeritics 3Flex. Micromeritics. https://www.micromeritics.com/3flex/Milone, C., Fazio, M., Pistone, A., & Galvagno, S. (2006). Catalytic wet air oxidation of pcoumaric acid on CeO2, platinum and gold supported on CeO2 catalysts. Applied Catalysis B: Environmental, 68(1–2), 28–37. https://doi.org/10.1016/j.apcatb.2006.07.016Ministerio de Ambiente y Desarrollo Sostenible. (n.d.). Legislación del agua | Ministerio de Ambiente y Desarrollo Sostenible. Retrieved May 4, 2021, from https://www.minambiente.gov.co/index.php/component/content/article?id=407:plantill a-gestion-integral-del-recurso-hidrico-14Mishra, T. K., Kumar, A., Sinha, S. K., & Gupta, B. (2018). Wear behavior and XRD analysis of reinforced copper matrix composite reinforced with Cerium Oxide (CeO2). Materials Today: Proceedings, 5(14), 27786–27794. https://doi.org/10.1016/J.MATPR.2018.10.014Mohammed Ali, M. J., Radhy, M. M., mashkoor, S. J., & Ali, E. M. (2021). Synthesis and characterization of copper oxide nanoparticles and their application for solar cell. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2021.10.250Mohd Shaid, M. S. H., Zaini, M. A. A., & Nasri, N. S. (2019). Evaluation of methylene blue dye and phenol removal onto modified CO2-activated pyrolysis tyre powder. Journal of Cleaner Production, 223, 487–498. https://doi.org/10.1016/J.JCLEPRO.2019.03.097Moise, C. C., Enache, L. B., Anăstăsoaie, V., Lazăr, O. A., Mihai, G. V., Bercu, M., & Enăchescu, M. (2021). On the growth of copper oxide nanowires by thermal oxidation near the threshold temperature at atmospheric pressure. Journal of Alloys and Compounds, 886, 161130. https://doi.org/10.1016/J.JALLCOM.2021.161130Molino, A., Donatelli, A., Marino, T., Aloise, A., Rimauro, J., & Iovane, P. (2018). Waste tire recycling process for production of steam activated carbon in a pilot plant. Resources, Conservation and Recycling, 129(November 2017), 102–111. https://doi.org/10.1016/j.resconrec.2017.10.023Molla, A., Kim, A. Y., Woo, J. C., Cho, H. S., & Youk, J. H. (2022). Study on preparation methodology of zero-valent iron decorated on graphene oxide for highly efficient sonocatalytic dye degradation. Journal of Environmental Chemical Engineering, 10(2), 107214. https://doi.org/10.1016/J.JECE.2022.107214Mui, E. L. K., Cheung, W. H., Valix, M., & McKay, G. (2010). Dye adsorption onto activated carbons from tyre rubber waste using surface coverage analysis. Journal of Colloid and Interface Science, 347(2), 290–300. https://doi.org/10.1016/J.JCIS.2010.03.061Murillo, R., Navarro, M. v., López, J. M., García, T., Callén, M. S., Aylón, E., & Mastral, A. M. (2006). Activation of pyrolytic lignite char with CO2. Kinetic study. Energy and Fuels, 20(1), 11–16. https://doi.org/10.1021/ef0501187Mussa, Z. H., Al-Qaim, F. F., Othman, M. R., Abdullah, M. P., Latip, J., & Zakria, Z. (2017). Pseudo first order kinetics and proposed transformation products pathway for the degradation of diclofenac using graphite–PVC composite as anode. Journal of the Taiwan Institute of Chemical Engineers, 72, 37–44. https://doi.org/10.1016/J.JTICE.2016.12.031Nagaraja, M., Prashanth, S., Pattar, J., Mahesh, H. M., & Rajanna, K. (2021). Polyaniline- CuO nanocomposite: Electrical, structural and sensor properties. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2021.08.154Nawaz, M., Khan, A. A., Hussain, A., Jang, J., Jung, H. Y., & Lee, D. S. (2020). Reduced graphene oxide−TiO2/sodium alginate 3-dimensional structure aerogel for enhanced photocatalytic degradation of ibuprofen and sulfamethoxazole. Chemosphere, 261, 127702. https://doi.org/10.1016/j.chemosphere.2020.127702Noyola, Morgan-Sagastume, & Guereca. (2013). Selección de Tecnologías para el Tratamiento de Aguas Residuales Municipales: Guía de Apoyo para Ciudades Pequeñas y Medianas (UNAM). UNAM.Ocade Ltda-Colombia, Siniplan-R.J-Brasil, & Ambiental S.A-Argentina. (2011). Diagnostico ambiental sobre el actual manejo de llantas y neumaticos usados generados por el parque automotor de Santa Fe de Bogotá. In Union Temporal Ocade Ltda(Colombia), Siniplan (R.J- Brasil), Ambiental S.a (Argentina). http://ambientebogota.gov.co/documents/10157/0/Llantas.pdfONU. (1972). Informe de la conferencia de las naciones unidas sobre el medio humano. In Conferencia de las Naciones Unidas sobre el Medio Humano.Oseroff, A. R., Ohuoha, D., Ara, G., McAuliffe, D., Foley, J., & Cincotta, L. (1986). Intramitochondrial dyes allow selective in vitro photolysis of carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 83(24), 9729–9733. https://doi.org/10.1073/pnas.83.24.9729Ovejero, G., Rodríguez, A., Vallet, A., & García, J. (2013). Ni/Fe-supported over hydrotalcites precursors as catalysts for clean and selective oxidation of Basic Yellow 11: Reaction intermediates determination. Chemosphere, 90(4), 1379–1386. https://doi.org/10.1016/j.chemosphere.2012.07.067Ovejero, G., Rodríguez, A., Vallet, A., Willerich, S., & García, J. (2012). Application of Ni supported over mixed Mg-Al oxides to crystal violet wet air oxidation: The role of the reaction conditions and the catalyst. Applied Catalysis B: Environmental, 111–112, 586–594. https://doi.org/10.1016/j.apcatb.2011.11.011Penagos Vega, P. A., & Barrera Castro, A. M. (2019). Evaluación de borra de café como soporte en un catalizador de hierro para la remoción de fucsina básica mediante un proceso de oxidación catalítica por fase húmeda. http://repository.uamerica.edu.co/bitstream/20.500.11839/7598/1/6141276-2019-2- IQ.pdfPijović, M., Manić, N., Anićijević, D. V., Krstić, A., Mitrić, M., Matić, T., & Janković, B. (2022). Simple and effective one-step production of high-quality mesoporous pyrolytic char from waste tires: Rhodamine B adsorption kinetics and density functional theory (DFT) study. Diamond and Related Materials, 121, 108768. https://doi.org/10.1016/J.DIAMOND.2021.108768Priyanka, Subbaramaiah, V., Srivastava, V. C., & Mall, I. D. (2014). Catalytic oxidation of nitrobenzene by copper loaded activated carbon. Separation and Purification Technology, 125, 284–290. https://doi.org/10.1016/J.SEPPUR.2014.01.045Qu, Y. F., Guo, J. X., Chu, Y. H., Sun, M. C., & Yin, H. Q. (2013). The influence of Mn species on the SO2 removal of Mn-based activated carbon catalysts. Applied Surface Science, 282, 425–431. https://doi.org/10.1016/J.APSUSC.2013.05.146Quantachrome INSTRUMENTS. (2022). Quimisorción de cuantacromo - ChemBET 3000 TPR / TPD. Giangarloscientific.Com. http://giangarloscientific.com/analytical/quantachrome/chembet.htmlQuesada-Peñate, I., Julcour-Lebigue, C., Jáuregui-Haza, U. J., Wilhelm, A. M., & Delmas, H. (2012). Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons. Journal of Hazardous Materials, 221–222, 131–138. https://doi.org/10.1016/j.jhazmat.2012.04.021Ramírez, J. H., Galeano, L. A., Pinchao, G., Bedoya, R. A., & Hidalgo, A. (2018). Optimized CWPO phenol oxidation in CSTR reactor catalyzed by Al/Fe-PILC from concentrated precursors at circumneutral pH. Journal of Environmental Chemical Engineering, 6(2), 2429–2441. https://doi.org/10.1016/J.JECE.2018.02.024Ramírez-Franco, J. H., Galeano, L. A., & Vicente, M. A. (2019). Fly ash as photo-Fenton catalyst for the degradation of amoxicillin. Journal of Environmental Chemical Engineering, 7(5), 103274. https://doi.org/10.1016/J.JECE.2019.103274Rana, A., Hasan, I., Koo, B. H., & Khan, R. A. (2022). Green synthesized CeO2 nanowires immobilized with alginate-ascorbic acid biopolymer for advance oxidative degradation of crystal violet. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 637, 128225. https://doi.org/10.1016/J.COLSURFA.2021.128225Revellame, E. D., Fortela, D. L., Sharp, W., Hernandez, R., & Zappi, M. E. (2020). Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Cleaner Engineering and Technology, 1, 100032. https://doi.org/10.1016/J.CLET.2020.100032Revista Semana. (2020, December 3). 2020 ha sido el año más desinflado para la industria de las llantas. Publicaciones Semana. https://www.semana.com/economia/articulo/el- 2020-ha-sido-el-ano-mas-desinflado-para-la-industria-de-las-llantas/202044/Riaño Hincapie, P. F. (2018). Degradación del cristal violeta presente en aguas residuales mediante la oxidación catalítica humeda con peróxido de hidrógeno (CWPO) a partir de óxidos mixtos de Mn-Cu a condiciones moderadas. (Vol. 1, Issue 1).Rocha, R. P., Pereira, M. F. R., & Figueiredo, J. L. (2020). Metal-free carbon materials as catalysts for wet air oxidation. Catalysis Today, 356, 189–196. https://doi.org/10.1016/J.CATTOD.2019.04.047Rodríguez Fernández-Alba, A., Letón García, P., Rosal García, R., Dorado Valiño, M., Villar Fernández, S., & Sanz García, J. M. (2006). Tratamientos Avanzados De Aguas Residuales Industriales. Citme, 6,8. 13, 30, 34.Rouquerol, J., Rouquerol, F., Maurin, G., & Sing, K. S. W. (2014). Adsorption by Powders and Porous Solids: Principles, Methodology and ... - Jean Rouquerol, Françoise Rouquerol, Philip Llewellyn, Guillaume Maurin, Kenneth S.W. Sing - Google Libros. Elsevier. https://books.google.com.co/books?hl=es&lr=&id=UOEZscCYncC& oi=fnd&pg=PP1&ots=0TX_GFumnv&sig=AShdJIW02gDm1EFcXUPfJ7A eGgg&redir_esc=y#v=onepage&q&f=falseSabnis, R. W. (2010). Handbook of biological dyes and stains (Wiley, Ed.). John Wiley & Sons Inc. https://ebookcentral.proquest.com/lib/unal/reader.action?docID=514385&query=cryst al+violetSagar, M., Nibedita, K., Manohar, N., Kumar, K. R., Suchismita, S., Pradnyesh, A., Reddy, A. B., Sadiku, E. R., Gupta, U. N., Lachit, P., & Jayaramudu, J. (2018). A potential utilization of end-of-life tyres as recycled carbon black in EPDM rubber. Waste Management, 74, 110–122. https://doi.org/10.1016/J.WASMAN.2018.01.003Saini, B., & Dey, A. (2021). Synthesis and characterization of copolymer adsorbent for crystal violet dye removal from water. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2021.10.060Saleh, T. A., Al-Hammadi, S. A., Tanimu, A., & Alhooshani, K. (2018). Ultra-deep adsorptive desulfurization of fuels on cobalt and molybdenum nanoparticles loaded on activated carbon derived from waste rubber. Journal of Colloid and Interface Science, 513, 779– 787. https://doi.org/10.1016/j.jcis.2017.11.076Saleh, T. A., Gupta, V. K., & Al-Saadi, A. A. (2013). Adsorption of lead ions from aqueous solution using porous carbon derived from rubber tires: Experimental and computational study. Journal of Colloid and Interface Science, 396, 264–269. https://doi.org/10.1016/J.JCIS.2013.01.037Samrot, A. v., Ali, H. H., Selvarani A, J., Faradjeva, E., P, R., P, P., & Kumar S, S. (2021). Adsorption efficiency of chemically synthesized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) on crystal violet dye. Current Research in Green and Sustainable Chemistry, 4, 100066. https://doi.org/10.1016/J.CRGSC.2021.100066Sánchez, L. Enrique. (2010). Evaluación de impacto ambiental : conceptos y métodos (Oficina de). Ecoe Ediciones. elibronet. ezproxy.unal.edu.co/es/ereader/unalecoe/65934?prev=bfSantiago, M., Stüber, F., Fortuny, A., Fabregat, A., & Font, J. (2005). Modified activated carbons for catalytic wet air oxidation of phenol. Carbon, 43(10), 2134–2145. https://doi.org/10.1016/J.CARBON.2005.03.026Santos, A., Yustos, P., Quintanilla, A., Ruiz, G., & Garcia-Ochoa, F. (2005). Study of the copper leaching in the wet oxidation of phenol with CuO-based catalysts: Causes and effects. Applied Catalysis B: Environmental, 61(3–4), 323–333. https://doi.org/10.1016/j.apcatb.2005.06.006Saravan, R. S., Muthukumaran, M., Mubashera, S. M., Abinaya, M., Prasath, P. V., Parthiban, R., Mohammad, F., Oh, W. C., & Sagadevan, S. (2020). Evaluation of the photocatalytic efficiency of cobalt oxide nanoparticles towards the degradation of crystal violet and methylene violet dyes. Optik, 207, 164428. https://doi.org/10.1016/J.IJLEO.2020.164428Serra-Pérez, E., Álvarez-Torrellas, S., Ismael Águeda, V., Larriba, M., Ovejero, G., & García, J. (2021). Effective removal of naproxen from aqueous solutions by CWAO process using noble metals supported on carbon nanospheres catalysts. Separation and Purification Technology, 259, 118084. https://doi.org/10.1016/J.SEPPUR.2020.118084Shah, I., Adnan, R., Wan Ngah, W. S., Mohamed, N., & Taufiq-Yap, Y. H. (2014). A new insight to the physical interpretation of activated carbon and iron doped carbon material: Sorption affinity towards organic dye. Bioresource Technology, 160, 52–56. https://doi.org/10.1016/J.BIORTECH.2014.02.047Shahbazi, F., Noghani, M., & Ahmadi, R. (2021). Effect of synthesis conditions on the morphology, composition and magnetic properties of the iron oxide nanoparticles prepared via electric discharge method. Journal of Magnetism and Magnetic Materials, 536, 168090. https://doi.org/10.1016/J.JMMM.2021.168090Shahrokhi-Shahraki, R., Benally, C., El-Din, M. G., & Park, J. (2021a). High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere, 264, 128455. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128455Shahrokhi-Shahraki, R., Benally, C., El-Din, M. G., & Park, J. (2021b). High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere, 264, 128455. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128455Shahrokhi-Shahraki, R., Benally, C., El-Din, M. G., & Park, J. (2021c). High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere, 264, 128455. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128455Shao, Q., Li, Y., Wang, Q., Niu, T., Li, S., & Shen, W. (2021). Preparation of copper doped walnut shell-based biochar for efficiently removal of organic dyes from aqueous solutions. Journal of Molecular Liquids, 336, 116314. https://doi.org/10.1016/J.MOLLIQ.2021.116314Shin, J., Bae, S., & Chon, K. (2021). Fenton oxidation of synthetic food dyes by Feembedded coffee biochar catalysts prepared at different pyrolysis temperatures: A mechanism study. Chemical Engineering Journal, 421, 129943. https://doi.org/10.1016/J.CEJ.2021.129943Shu, J., Cheng, S., Xia, H., Zhang, L., Peng, J., Li, C., & Zhang, S. (2017). Copper loaded on activated carbon as an efficient adsorbent for removal of methylene blue. RSC Advances, 7(24), 14395–14405. https://doi.org/10.1039/C7RA00287DSilva, L. A. da, Borges, S. M. S., Paulino, P. N., Fraga, M. A., Oliva, S. T. de, Marchetti, S. G., & Rangel, M. do C. (2017). Methylene blue oxidation over iron oxide supported on activated carbon derived from peanut hulls. Catalysis Today, 289, 237–248. https://doi.org/10.1016/j.cattod.2016.11.036Skodras, G., Diamantopoulou, Ir., Zabaniotou, A., Stavropoulos, G., & Sakellaropoulos, G. P. (2007). Enhanced mercury adsorption in activated carbons from biomass materials and waste tires. Fuel Processing Technology, 88(8), 749–758. https://doi.org/10.1016/j.fuproc.2007.03.008Smith, J. M. (1991). Ingeniería Cinética Química (McGraw-Hill, Ed.; 6th ed.). CECSA.Sreekumar, G., Louie Frobel, P. G., Sreeja, S., Suresh, S. R., Mayadevi, S., Muneera, C. I., Suchand Sandeep, C. S., Philip, R., & Mukharjee, C. (2011). Nonlinear absorption and photoluminescence emission in nanocomposite films of Fuchsine Basic dyepolymer system. Chemical Physics Letters, 506(1–3), 61–65. https://doi.org/10.1016/j.cplett.2011.02.048Stüber, F., Font, J., Fortuny, A., Bengoa, C., Eftaxias, A., & Fabregat, A. (2005). Carbon materials and catalytic wet air oxidation of organic pollutants in wastewater. In Topics in Catalysis (Vol. 33, Issues 1–4). https://doi.org/10.1007/s11244-005-2497-1Sultana, S., Islam, K., Asif Hasan, Md., Jawad Khan, H. M., Azizur R. Khan, M., Deb, A., al Raihan, Md., & Wasikur Rahman, Md. (2022). Adsorption of Crystal Violet Dye by Coconut Husk Powder: Isotherm, Kinetics and Thermodynamics Perspectives. Environmental Nanotechnology, Monitoring & Management, 100651. https://doi.org/10.1016/J.ENMM.2022.100651Sun, Z., Yao, G., Liu, M., & Zheng, S. (2017). In situ synthesis of magnetic MnFe2O4/diatomite nanocomposite adsorbent and its efficient removal of cationic dyes. Journal of the Taiwan Institute of Chemical Engineers, 71, 501–509. https://doi.org/10.1016/j.jtice.2016.12.013Sushma, Kumari, M., & Saroha, A. K. (2018a). Performance of various catalysts on treatment of refractory pollutants in industrial wastewater by catalytic wet air oxidation: A review. Journal of Environmental Management, 228, 169–188. https://doi.org/10.1016/J.JENVMAN.2018.09.003Sushma, Kumari, M., & Saroha, A. K. (2018b). Performance of various catalysts on treatment of refractory pollutants in industrial wastewater by catalytic wet air oxidation: A review. Journal of Environmental Management, 228, 169–188. https://doi.org/10.1016/J.JENVMAN.2018.09.003Takabi, A. S., Shirani, M., & Semnani, A. (2021). Apple stem as a high performance cellulose based biosorbent for low cost and eco-friendly adsorption of crystal violet from aqueous solutions using experimental design: Mechanism, kinetic and thermodynamics. Environmental Technology & Innovation, 24, 101947. https://doi.org/10.1016/J.ETI.2021.101947Tamburini, D., Shimada, C. M., & McCarthy, B. (2021). The molecular characterization of early synthetic dyes in E. Knecht et al’s textile sample book “A Manual of Dyeing” (1893) by high performance liquid chromatography - Diode array detector - Mass spectrometry (HPLC-DAD-MS). Dyes and Pigments, 190, 109286. https://doi.org/10.1016/J.DYEPIG.2021.109286Thakar, M. A., Saurabh Jha, S., Phasinam, K., Manne, R., Qureshi, Y., & Hari Babu, V. V. (2021). X ray diffraction (XRD) analysis and evaluation of antioxidant activity of copper oxide nanoparticles synthesized from leaf extract of Cissus vitiginea. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2021.05.410Todea, M., Simon, V., Muresan-Pop, M., Vulpoi, A., Rusu, M. M., Simion, A., Vasilescu, M., Damian, G., Petrisor, D. M., & Simon, S. (2021). Silica-based microspheres with aluminum-iron oxide shell for diagnosis and cancer treatment. Journal of Molecular Structure, 1246, 131149. https://doi.org/10.1016/J.MOLSTRUC.2021.131149Tran, T. H., Le, A. H., Pham, T. H., Nguyen, D. T., Chang, S. W., Chung, W. J., & Nguyen, D. D. (2020). Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste. Science of The Total Environment, 725, 138325. https://doi.org/10.1016/J.SCITOTENV.2020.138325UN WATER. (2016). Annual report 2015. In UN Water. https://doi.org/10.5962/bhl.title.42736UPME. (2016). Normatividad Ambiental. UPME. http://www.upme.gov.co/guia_ambiental/carbon/gestion/politica/normativ/normativ.ht m#BM2__NORMATIVIDAD_TEMATICAVallet, A., Besson, M., Ovejero, G., & García, J. (2012). Treatment of a non-azo dye aqueous solution by CWAO in continuous reactor using a Ni catalyst derived from hydrotalcite-like precursor. Journal of Hazardous Materials, 227–228, 410–417. https://doi.org/10.1016/j.jhazmat.2012.05.081Vásquez Vargas, D. A. (2019). Evaluación de la disminución en la carga contaminante de los colorantes asociados a la tinción de Gram mediante carbón activado encapsulado en alginato de sodio [Fundación Universidad de América]. https://repository.uamerica.edu.co/handle/20.500.11839/7592Verma, A., Anand, P., Kumar, S., & Fu, Y. P. (2022). Cu-cuprous/cupric oxide nanoparticles towards dual application for nitrophenol conversion and electrochemical hydrogen evolution. Applied Surface Science, 578, 151795. https://doi.org/10.1016/J.APSUSC.2021.151795Vidal, G., Jarpa, M., Plaza de los Reyes, C., Belmonte, M., & Mariangel, L. (2005). Manual de tecnologías sostenibles en tratamiento de aguas (G. Peñuela & J. Morató, Eds.; TECSPAR). Alfa EuropeAid.Wang, L., Wang, J., Pan, H., Zhao, M., & Chen, J. (2021a). Kinetics and removal pathwayof basic fuchsin by electrochemical oxidization. Journal of Electroanalytical Chemistry, 880, 114792. https://doi.org/10.1016/j.jelechem.2020.114792Wang, L., Wang, J., Pan, H., Zhao, M., & Chen, J. (2021b). Kinetics and removal pathwayof basic fuchsin by electrochemical oxidization. Journal of Electroanalytical Chemistry, 880, 114792. https://doi.org/10.1016/J.JELECHEM.2020.114792Wang, P., Liang, Y. N., Zhong, Z., & Hu, X. (2020a). Nano-hybrid bimetallic Au-Pd catalysts for ambient condition-catalytic wet air oxidation (AC-CWAO) of organic dyes. Separation and Purification Technology, 233, 115960. https://doi.org/10.1016/j.seppur.2019.115960Wang, P., Liang, Y. N., Zhong, Z., & Hu, X. (2020b). Nano-hybrid bimetallic Au-Pd catalysts for ambient condition-catalytic wet air oxidation (AC-CWAO) of organic dyes. Separation and Purification Technology, 233, 115960. https://doi.org/10.1016/j.seppur.2019.115960Wang, P., Liang, Y. N., Zhong, Z., & Hu, X. (2020c). Nano-hybrid bimetallic Au-Pd catalysts for ambient condition-catalytic wet air oxidation (AC-CWAO) of organic dyes. Separation and Purification Technology, 233, 115960. https://doi.org/10.1016/J.SEPPUR.2019.115960Wang, Y., Wang, J., Du, B., Wang, Y., Xiong, Y., Yang, Y., & Zhang, X. (2018). Synthesis of hierarchically porous perovskite-carbon aerogel composite catalysts for the rapid degradation of fuchsin basic under microwave irradiation and an insight into probable catalytic mechanism. Applied Surface Science, 439, 475–487. https://doi.org/10.1016/J.APSUSC.2017.12.196WBCSD. (2010). End-of-Life Tires A framework for effective management systems Managing End-of-Life Tires End-of-Life Tires: A Framework for Effective Management Systems Prepared by the WBCSD Tire Industry Project Contents. http://docs.wbcsd.org/2018/02/TIP/A_Framework_For_Effective_Management_Syste ms.pdfWu, Q., Wang, H., & Yi, C. (2018). Preparation of photo-Fenton heterogeneous catalyst (Fe-TS-1 zeolite) and its application in typical azo dye decoloration. Journal of Photochemistry and Photobiology A: Chemistry, 356, 138–149. https://doi.org/10.1016/J.JPHOTOCHEM.2017.12.041Wu, Z., Deng, W., Tang, S., Ruiz-Hitzky, E., Luo, J., & Wang, X. (2021). Pod-inspired MXene/porous carbon microspheres with ultrahigh adsorption capacity towards crystal violet. Chemical Engineering Journal, 426, 130776. https://doi.org/10.1016/J.CEJ.2021.130776Xu, Y., Shao, H., Ge, F., & Liu, Y. (2017). Novel-structured Mo-Cu-Fe-O composite for catalytic air oxidation of dye-containing wastewater under ambient temperature and pressure. Chinese Journal of Catalysis, 38(10), 1719–1725. https://doi.org/10.1016/S1872-2067(17)62884-5Xu, Z., Li, Y., Lin, Y., Wang, Y., Wang, Q., & Zhu, T. (2021). Loading mechanism and double-site reaction mechanism of Cu on activated carbon for enhanced oxidation of CO from flue gas. Chemical Engineering Journal, 419, 129994. https://doi.org/10.1016/J.CEJ.2021.129994Yadav, A., & Verma, N. (2018). Carbon bead-supported copper-dispersed carbon nanofibers: An efficient catalyst for wet air oxidation of industrial wastewater in a recycle flow reactor. Journal of Industrial and Engineering Chemistry, 67, 448–460. https://doi.org/10.1016/j.jiec.2018.07.019Yakout, S. M., Hassan, M. R., Abdeltawab, A. A., & Aly, M. I. (2019). Sono-sorption efficiencies and equilibrium removal of triphenylmethane (crystal violet) dye from aqueous solution by activated charcoal. Journal of Cleaner Production, 234, 124–131. https://doi.org/10.1016/j.jclepro.2019.06.164Yang, X., Li, Y., Du, Q., Sun, J., Chen, L., Hu, S., Wang, Z., Xia, Y., & Xia, L. (2015). Highly effective removal of basic fuchsin from aqueous solutions by anionic polyacrylamide/graphene oxide aerogels. Journal of Colloid and Interface Science, 453, 107–114. https://doi.org/10.1016/J.JCIS.2015.04.042Yang, Y., Ding, X., Chang, K., Zeng, Z., Hou, Y., & Huang, Z. (2022). In situ DRIFTS combined with GC–MS to identify the catalytic oxidation process of dibenzofuran over activated carbon-supported transition metals oxide catalysts. Fuel, 312, 122492. https://doi.org/10.1016/J.FUEL.2021.122492Yin, J., Cai, J., Yin, C., Gao, L., & Zhou, J. (2016). Degradation performance of crystal violet over CuO@AC and CeO 2 -CuO@AC catalysts using microwave catalytic oxidation degradation method. Journal of Environmental Chemical Engineering, 4(1), 958–964. https://doi.org/10.1016/j.jece.2016.01.001Zhang, G., Hou, P., Sun, Y., Xu, Y., Cheng, H., & Zhang, Y. (2019). Three Different Types of Activated Carbon and Manganese-Modified Activated Carbons as Deoxidizers for the Low-Concentration Coalbed Methane Deoxidation. Journal of the Brazilian Chemical Society, 30(9), 1789–1800. https://doi.org/10.21577/0103-5053.20190085Zhang, N., Zhang, G., Chong, S., Zhao, H., Huang, T., & Zhu, J. (2018). Ultrasonic impregnation of MnO2/CeO2 and its application in catalytic sono-degradation of methyl orange. Journal of Environmental Management, 205, 134–141. https://doi.org/10.1016/j.jenvman.2017.09.073Zhang, X., Li, H., Cao, Q., Jin, L., & Wang, F. (2018). Upgrading pyrolytic residue from waste tires to commercial carbon black. Waste Management and Research, 36(5), 436–444. https://doi.org/10.1177/0734242X18764292Zhao, J., Wei, Y., Liu, Z., Zhang, L., Cui, Q., & Wang, H. (2022). Study on heterogeneous catalytic wet air oxidation process of high concentration MDEA-containing wastewater. Chemical Engineering and Processing - Process Intensification, 171, 108744. https://doi.org/10.1016/J.CEP.2021.108744Zhu, L., Zhang, L., Qu, H., & Zhong, Q. (2015). A study on chemisorbed oxygen and reaction process of Fe-CuOx/ZSM-5 via ultrasonic impregnation method for lowtemperature NH3-SCR. Journal of Molecular Catalysis A: Chemical, 409, 207–215. https://doi.org/10.1016/j.molcata.2015.08.029EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unal.edu.co/bitstream/unal/82198/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINAL1019057864.2022.pdf1019057864.2022.pdfTesis de Maestría en Tratamiento de Aguasapplication/pdf5041792https://repositorio.unal.edu.co/bitstream/unal/82198/2/1019057864.2022.pdf5bf065f111dd8508683ea0765a647829MD52THUMBNAIL1019057864.2022.pdf.jpg1019057864.2022.pdf.jpgGenerated Thumbnailimage/jpeg6422https://repositorio.unal.edu.co/bitstream/unal/82198/3/1019057864.2022.pdf.jpg522aa174bf04b3fefb9eb138e12ffd64MD53unal/82198oai:repositorio.unal.edu.co:unal/821982023-08-08 23:04:14.485Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=