The Hilbert's Nullstellensatz over skew Poincaré-Birkhoff-Witt extensions

In this work we study several versions of the Hilbert's Nullstellensatz. We begin with a commutative review of its geometric interpretation following the study of affine and projective case. Later, we consider its algebraic interpretation. Next, we present several treatments to the non-commutat...

Full description

Autores:
Hernández Mogollón, Jason Ricardo
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/77035
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/77035
http://bdigital.unal.edu.co/74233/
Palabra clave:
Hilbert's Nullstellensatz
Skew PBW extension
Jacobson ring
Generic flatness
Anillo de Jacobson
Planitud genérica
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_c9182069ef781b4edf79687086e2456c
oai_identifier_str oai:repositorio.unal.edu.co:unal/77035
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Reyes Villamil, Milton ArmandoHernández Mogollón, Jason Ricardo792b4e18-ffbf-47ce-b1f1-28b073fb694f3002020-03-30T06:36:46Z2020-03-30T06:36:46Z2019https://repositorio.unal.edu.co/handle/unal/77035http://bdigital.unal.edu.co/74233/In this work we study several versions of the Hilbert's Nullstellensatz. We begin with a commutative review of its geometric interpretation following the study of affine and projective case. Later, we consider its algebraic interpretation. Next, we present several treatments to the non-commutative interpretation. Therefore, we begin with Ore extensions, their properties and obstructions with classical methods. We consider a relationship between the Hilbert's Nullstellensatz and the notion of generic flatness. Subsequently we use the filtration-graduation technique over almost normalizing extensions (also called almost commutative algebras) with the aim of state a theorem that helps us to guarantee conditions such that the Hilbert's Nullstellensatz holds. Finally, we study skew Poincaré-Birkhoff-Witt extensions together with some of their homological and ring-theoretical properties in order to extend Hilbert's Nullstellensatz to such extensions.Resumen: En este trabajo estudiaremos algunas versiones del teorema de ceros de Hilbert (Nullstellensatz). Empezaremos con una revisión conmutativa de la interpretación geo-\linebreak métrica con el estudio del caso afín y proyectivo. Luego, consideramos su versión algebraica. Después, presentaremos varios desarrollos en el caso no conmutativo. De esta forma, empezamos con las extensiones de Ore, sus propiedades y obstrucciones con los métodos clásicos. Consideraremos una relación entre el teorema de ceros de Hilbert y la noción de plenitud genérica. Posteriormente usaremos la técnica de filtración graduación sobre las extensiones casi normalizadoras (tambien llamadas algebras casi conmutativas) con el objetivo de establecer un teorema que nos ayude a garantizar condiciones para que el teorema de ceros de Hilbert se cumpla. Por último, estudiaremos las extensiones de Poincaré-Birkhoff-With torcidas junto con algunas de sus propiedades homológicas y de teoría de anillos para poder extender el teorema de ceros de Hilbert sobre estas extensiones.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de MatemáticasDepartamento de Matemáticas51 Matemáticas / MathematicsHernández Mogollón, Jason Ricardo (2019) The Hilbert's Nullstellensatz over skew Poincaré-Birkhoff-Witt extensions. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.The Hilbert's Nullstellensatz over skew Poincaré-Birkhoff-Witt extensionsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMHilbert's NullstellensatzSkew PBW extensionJacobson ringGeneric flatnessAnillo de JacobsonPlanitud genéricaORIGINALTrabajo final de maestria.pdfapplication/pdf834453https://repositorio.unal.edu.co/bitstream/unal/77035/1/Trabajo%20final%20de%20maestria.pdffc38f2962ba4b00fdd4cfde1f5f4b0a8MD51THUMBNAILTrabajo final de maestria.pdf.jpgTrabajo final de maestria.pdf.jpgGenerated Thumbnailimage/jpeg4239https://repositorio.unal.edu.co/bitstream/unal/77035/2/Trabajo%20final%20de%20maestria.pdf.jpg36cb98feb37d1f8b9c32f94e1d4776a1MD52unal/77035oai:repositorio.unal.edu.co:unal/770352024-07-15 23:10:02.795Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv The Hilbert's Nullstellensatz over skew Poincaré-Birkhoff-Witt extensions
title The Hilbert's Nullstellensatz over skew Poincaré-Birkhoff-Witt extensions
spellingShingle The Hilbert's Nullstellensatz over skew Poincaré-Birkhoff-Witt extensions
Hilbert's Nullstellensatz
Skew PBW extension
Jacobson ring
Generic flatness
Anillo de Jacobson
Planitud genérica
title_short The Hilbert's Nullstellensatz over skew Poincaré-Birkhoff-Witt extensions
title_full The Hilbert's Nullstellensatz over skew Poincaré-Birkhoff-Witt extensions
title_fullStr The Hilbert's Nullstellensatz over skew Poincaré-Birkhoff-Witt extensions
title_full_unstemmed The Hilbert's Nullstellensatz over skew Poincaré-Birkhoff-Witt extensions
title_sort The Hilbert's Nullstellensatz over skew Poincaré-Birkhoff-Witt extensions
dc.creator.fl_str_mv Hernández Mogollón, Jason Ricardo
dc.contributor.author.spa.fl_str_mv Hernández Mogollón, Jason Ricardo
dc.contributor.spa.fl_str_mv Reyes Villamil, Milton Armando
dc.subject.proposal.spa.fl_str_mv Hilbert's Nullstellensatz
Skew PBW extension
Jacobson ring
Generic flatness
Anillo de Jacobson
Planitud genérica
topic Hilbert's Nullstellensatz
Skew PBW extension
Jacobson ring
Generic flatness
Anillo de Jacobson
Planitud genérica
description In this work we study several versions of the Hilbert's Nullstellensatz. We begin with a commutative review of its geometric interpretation following the study of affine and projective case. Later, we consider its algebraic interpretation. Next, we present several treatments to the non-commutative interpretation. Therefore, we begin with Ore extensions, their properties and obstructions with classical methods. We consider a relationship between the Hilbert's Nullstellensatz and the notion of generic flatness. Subsequently we use the filtration-graduation technique over almost normalizing extensions (also called almost commutative algebras) with the aim of state a theorem that helps us to guarantee conditions such that the Hilbert's Nullstellensatz holds. Finally, we study skew Poincaré-Birkhoff-Witt extensions together with some of their homological and ring-theoretical properties in order to extend Hilbert's Nullstellensatz to such extensions.
publishDate 2019
dc.date.issued.spa.fl_str_mv 2019
dc.date.accessioned.spa.fl_str_mv 2020-03-30T06:36:46Z
dc.date.available.spa.fl_str_mv 2020-03-30T06:36:46Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/77035
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/74233/
url https://repositorio.unal.edu.co/handle/unal/77035
http://bdigital.unal.edu.co/74233/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Matemáticas
Departamento de Matemáticas
dc.relation.haspart.spa.fl_str_mv 51 Matemáticas / Mathematics
dc.relation.references.spa.fl_str_mv Hernández Mogollón, Jason Ricardo (2019) The Hilbert's Nullstellensatz over skew Poincaré-Birkhoff-Witt extensions. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/77035/1/Trabajo%20final%20de%20maestria.pdf
https://repositorio.unal.edu.co/bitstream/unal/77035/2/Trabajo%20final%20de%20maestria.pdf.jpg
bitstream.checksum.fl_str_mv fc38f2962ba4b00fdd4cfde1f5f4b0a8
36cb98feb37d1f8b9c32f94e1d4776a1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089817335529472