Nonlinear duality and multiplier theorems
The main purpose of this paper is to extend the John theorem on nonlinear programming with inequality contraints and the Mangasarian-Fromovitz theorem on nonlinear programming with mixed constraints to any real normed linear space. In addition, for the John theorem assuming Frechet differentiability...
- Autores:
-
Azpeitia, Alfonso G.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 1987
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/42888
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/42888
http://bdigital.unal.edu.co/32986/
- Palabra clave:
- John theorem
nonlinear programming
theorem Mangasarian-Fromovitz
restrictions mixed
linear space
finite dimensional
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_c90561915120d0e0b8ba6c3792f63ab0 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/42888 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Azpeitia, Alfonso G.61e20902-3080-4cc1-8a38-691fdccf239c3002019-06-28T11:17:55Z2019-06-28T11:17:55Z1987https://repositorio.unal.edu.co/handle/unal/42888http://bdigital.unal.edu.co/32986/The main purpose of this paper is to extend the John theorem on nonlinear programming with inequality contraints and the Mangasarian-Fromovitz theorem on nonlinear programming with mixed constraints to any real normed linear space. In addition, for the John theorem assuming Frechet differentiability, the standard conclusion that the multiplier vector is not zero is sharpened to the nonvanishing of the subvector of those components corresponding to the constraints which are not linear affine. The only tools used are generalizations of the duality theorem of linear programming, and hence of the Farkas lemma, to the case of a primal real linear space of any dimension with no topological restrictions. It is shown that these generalizations are direct consequence of the ordiry duality theorem of linear programming in finite dimension.application/pdfspaUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticashttp://revistas.unal.edu.co/index.php/recolma/article/view/32728Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRevista Colombiana de Matemáticas; Vol. 21, núm. 1 (1987); 13-24 0034-7426Azpeitia, Alfonso G. (1987) Nonlinear duality and multiplier theorems. Revista Colombiana de Matemáticas; Vol. 21, núm. 1 (1987); 13-24 0034-7426 .Nonlinear duality and multiplier theoremsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTJohn theoremnonlinear programmingtheorem Mangasarian-Fromovitzrestrictions mixedlinear spacefinite dimensionalORIGINAL32728-121128-1-PB.pdfapplication/pdf2650900https://repositorio.unal.edu.co/bitstream/unal/42888/1/32728-121128-1-PB.pdf2d1c70988a6f1265f8d5d89d551dd8c5MD51THUMBNAIL32728-121128-1-PB.pdf.jpg32728-121128-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg5881https://repositorio.unal.edu.co/bitstream/unal/42888/2/32728-121128-1-PB.pdf.jpg572b7018b440b1a786644d4b9b8843cbMD52unal/42888oai:repositorio.unal.edu.co:unal/428882024-02-07 23:08:52.818Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Nonlinear duality and multiplier theorems |
title |
Nonlinear duality and multiplier theorems |
spellingShingle |
Nonlinear duality and multiplier theorems John theorem nonlinear programming theorem Mangasarian-Fromovitz restrictions mixed linear space finite dimensional |
title_short |
Nonlinear duality and multiplier theorems |
title_full |
Nonlinear duality and multiplier theorems |
title_fullStr |
Nonlinear duality and multiplier theorems |
title_full_unstemmed |
Nonlinear duality and multiplier theorems |
title_sort |
Nonlinear duality and multiplier theorems |
dc.creator.fl_str_mv |
Azpeitia, Alfonso G. |
dc.contributor.author.spa.fl_str_mv |
Azpeitia, Alfonso G. |
dc.subject.proposal.spa.fl_str_mv |
John theorem nonlinear programming theorem Mangasarian-Fromovitz restrictions mixed linear space finite dimensional |
topic |
John theorem nonlinear programming theorem Mangasarian-Fromovitz restrictions mixed linear space finite dimensional |
description |
The main purpose of this paper is to extend the John theorem on nonlinear programming with inequality contraints and the Mangasarian-Fromovitz theorem on nonlinear programming with mixed constraints to any real normed linear space. In addition, for the John theorem assuming Frechet differentiability, the standard conclusion that the multiplier vector is not zero is sharpened to the nonvanishing of the subvector of those components corresponding to the constraints which are not linear affine. The only tools used are generalizations of the duality theorem of linear programming, and hence of the Farkas lemma, to the case of a primal real linear space of any dimension with no topological restrictions. It is shown that these generalizations are direct consequence of the ordiry duality theorem of linear programming in finite dimension. |
publishDate |
1987 |
dc.date.issued.spa.fl_str_mv |
1987 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-28T11:17:55Z |
dc.date.available.spa.fl_str_mv |
2019-06-28T11:17:55Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/42888 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/32986/ |
url |
https://repositorio.unal.edu.co/handle/unal/42888 http://bdigital.unal.edu.co/32986/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
http://revistas.unal.edu.co/index.php/recolma/article/view/32728 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas Revista Colombiana de Matemáticas |
dc.relation.ispartofseries.none.fl_str_mv |
Revista Colombiana de Matemáticas; Vol. 21, núm. 1 (1987); 13-24 0034-7426 |
dc.relation.references.spa.fl_str_mv |
Azpeitia, Alfonso G. (1987) Nonlinear duality and multiplier theorems. Revista Colombiana de Matemáticas; Vol. 21, núm. 1 (1987); 13-24 0034-7426 . |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacuional de Colombia; Sociedad Colombiana de matemáticas |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/42888/1/32728-121128-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/42888/2/32728-121128-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
2d1c70988a6f1265f8d5d89d551dd8c5 572b7018b440b1a786644d4b9b8843cb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089561730449408 |