Nonlinear duality and multiplier theorems

The main purpose of this paper is to extend the John theorem on nonlinear programming with inequality contraints and the Mangasarian-Fromovitz theorem on nonlinear programming with mixed constraints to any real normed linear space. In addition, for the John theorem assuming Frechet differentiability...

Full description

Autores:
Azpeitia, Alfonso G.
Tipo de recurso:
Article of journal
Fecha de publicación:
1987
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/42888
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/42888
http://bdigital.unal.edu.co/32986/
Palabra clave:
John theorem
nonlinear programming
theorem Mangasarian-Fromovitz
restrictions mixed
linear space
finite dimensional
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_c90561915120d0e0b8ba6c3792f63ab0
oai_identifier_str oai:repositorio.unal.edu.co:unal/42888
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Azpeitia, Alfonso G.61e20902-3080-4cc1-8a38-691fdccf239c3002019-06-28T11:17:55Z2019-06-28T11:17:55Z1987https://repositorio.unal.edu.co/handle/unal/42888http://bdigital.unal.edu.co/32986/The main purpose of this paper is to extend the John theorem on nonlinear programming with inequality contraints and the Mangasarian-Fromovitz theorem on nonlinear programming with mixed constraints to any real normed linear space. In addition, for the John theorem assuming Frechet differentiability, the standard conclusion that the multiplier vector is not zero is sharpened to the nonvanishing of the subvector of those components corresponding to the constraints which are not linear affine. The only tools used are generalizations of the duality theorem of linear programming, and hence of the Farkas lemma, to the case of a primal real linear space of any dimension with no topological restrictions. It is shown that these generalizations are direct consequence of the ordiry duality theorem of linear programming in finite dimension.application/pdfspaUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticashttp://revistas.unal.edu.co/index.php/recolma/article/view/32728Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRevista Colombiana de Matemáticas; Vol. 21, núm. 1 (1987); 13-24 0034-7426Azpeitia, Alfonso G. (1987) Nonlinear duality and multiplier theorems. Revista Colombiana de Matemáticas; Vol. 21, núm. 1 (1987); 13-24 0034-7426 .Nonlinear duality and multiplier theoremsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTJohn theoremnonlinear programmingtheorem Mangasarian-Fromovitzrestrictions mixedlinear spacefinite dimensionalORIGINAL32728-121128-1-PB.pdfapplication/pdf2650900https://repositorio.unal.edu.co/bitstream/unal/42888/1/32728-121128-1-PB.pdf2d1c70988a6f1265f8d5d89d551dd8c5MD51THUMBNAIL32728-121128-1-PB.pdf.jpg32728-121128-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg5881https://repositorio.unal.edu.co/bitstream/unal/42888/2/32728-121128-1-PB.pdf.jpg572b7018b440b1a786644d4b9b8843cbMD52unal/42888oai:repositorio.unal.edu.co:unal/428882024-02-07 23:08:52.818Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Nonlinear duality and multiplier theorems
title Nonlinear duality and multiplier theorems
spellingShingle Nonlinear duality and multiplier theorems
John theorem
nonlinear programming
theorem Mangasarian-Fromovitz
restrictions mixed
linear space
finite dimensional
title_short Nonlinear duality and multiplier theorems
title_full Nonlinear duality and multiplier theorems
title_fullStr Nonlinear duality and multiplier theorems
title_full_unstemmed Nonlinear duality and multiplier theorems
title_sort Nonlinear duality and multiplier theorems
dc.creator.fl_str_mv Azpeitia, Alfonso G.
dc.contributor.author.spa.fl_str_mv Azpeitia, Alfonso G.
dc.subject.proposal.spa.fl_str_mv John theorem
nonlinear programming
theorem Mangasarian-Fromovitz
restrictions mixed
linear space
finite dimensional
topic John theorem
nonlinear programming
theorem Mangasarian-Fromovitz
restrictions mixed
linear space
finite dimensional
description The main purpose of this paper is to extend the John theorem on nonlinear programming with inequality contraints and the Mangasarian-Fromovitz theorem on nonlinear programming with mixed constraints to any real normed linear space. In addition, for the John theorem assuming Frechet differentiability, the standard conclusion that the multiplier vector is not zero is sharpened to the nonvanishing of the subvector of those components corresponding to the constraints which are not linear affine. The only tools used are generalizations of the duality theorem of linear programming, and hence of the Farkas lemma, to the case of a primal real linear space of any dimension with no topological restrictions. It is shown that these generalizations are direct consequence of the ordiry duality theorem of linear programming in finite dimension.
publishDate 1987
dc.date.issued.spa.fl_str_mv 1987
dc.date.accessioned.spa.fl_str_mv 2019-06-28T11:17:55Z
dc.date.available.spa.fl_str_mv 2019-06-28T11:17:55Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/42888
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/32986/
url https://repositorio.unal.edu.co/handle/unal/42888
http://bdigital.unal.edu.co/32986/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/recolma/article/view/32728
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas
Revista Colombiana de Matemáticas
dc.relation.ispartofseries.none.fl_str_mv Revista Colombiana de Matemáticas; Vol. 21, núm. 1 (1987); 13-24 0034-7426
dc.relation.references.spa.fl_str_mv Azpeitia, Alfonso G. (1987) Nonlinear duality and multiplier theorems. Revista Colombiana de Matemáticas; Vol. 21, núm. 1 (1987); 13-24 0034-7426 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacuional de Colombia; Sociedad Colombiana de matemáticas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/42888/1/32728-121128-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/42888/2/32728-121128-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 2d1c70988a6f1265f8d5d89d551dd8c5
572b7018b440b1a786644d4b9b8843cb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089561730449408