Estimation of the particle size distribution of colloids from multiangle dynamic light scattering measurements with particle swarm optimization
In this paper particle Swarm Optimization (PSO) algorithms are applied to estimate the particle size distribution (PSD) of a colloidal system from the average PSD diameters, which are measured by multi-angle dynamic light scattering. The system is considered a nonlinear inverse problem, and for this...
- Autores:
-
Bermeo Varón, Leonardo Antonio
Caicedo, Eduardo
Clementi, Luis
Vega, Jorge
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2015
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/67688
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/67688
http://bdigital.unal.edu.co/68717/
- Palabra clave:
- 62 Ingeniería y operaciones afines / Engineering
Swarm Intelligence
Dynamic Light Scattering
Inverse Problem
Particle Swarm Optimization
Particle Size Distribution.
Inteligencia de enjambres
dispersión de luz dinámica
problemas inversos
optimización por enjambre de partículas
distribución de tamaño de partículas
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | In this paper particle Swarm Optimization (PSO) algorithms are applied to estimate the particle size distribution (PSD) of a colloidal system from the average PSD diameters, which are measured by multi-angle dynamic light scattering. The system is considered a nonlinear inverse problem, and for this reason the estimation procedure requires a Tikhonov regularization method. The inverse problem is solved through several PSO strategies. The evaluated PSOs are tested through three simulated examples corresponding to polysty-rene (PS) latexes with different PSDs, and two experimental examples obtained by simply mixing 2 PS standards. In general, the evalu-ation results of the PSOs are excellent; and particularly, the PSO with the Trelea’s parameter set shows a better performance than other implemented PSOs. |
---|