Neural network based system identification of a pmsm under load fluctuation

A neural network based approach is applied to model a PMSM. A multilayer recurrent network provides a near term fundamental current prediction using as an input the fundamental components of the voltage signals and the speed. The PMSM model proposed can be implemented in a condition based maintenanc...

Full description

Autores:
Quiroga Méndez, Jabid Eduardo
Cartes, David
Edrington, Chris
Tipo de recurso:
Article of journal
Fecha de publicación:
2009
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/26910
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/26910
http://bdigital.unal.edu.co/17958/
Palabra clave:
System
Identification
PMSM
Neural Network
Recurrent Networks.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_c8bab1082e9fc0aa44a41c8b8e745668
oai_identifier_str oai:repositorio.unal.edu.co:unal/26910
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Quiroga Méndez, Jabid Eduardofcc1628f-98b2-41ac-a88c-8befa55ca2ea300Cartes, David49624309-a265-4502-8643-9a65efb71b0b300Edrington, Chrisd5082633-27f2-40ea-bf8a-7bd0a6f75c2f3002019-06-25T23:45:11Z2019-06-25T23:45:11Z2009https://repositorio.unal.edu.co/handle/unal/26910http://bdigital.unal.edu.co/17958/A neural network based approach is applied to model a PMSM. A multilayer recurrent network provides a near term fundamental current prediction using as an input the fundamental components of the voltage signals and the speed. The PMSM model proposed can be implemented in a condition based maintenance to perform fault detection, integrity assessment and aging process. The model is validated using a 15 hp PMSM experimental setup. The acquisition system is developed using Matlab®/Simulink® with dSpace® as an interface to the hardware, i.e. PMSM drive system. The model shows generalization capabilities and a satisfactory performance in the fundamental current determination on line under no load and load fluctuations.text/htmlspaUniversidad Nacional de Colombia Sede Medellínhttp://revistas.unal.edu.co/index.php/dyna/article/view/13685Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaDyna; Vol. 76, núm. 160 (2009); 273-282 DYNA; Vol. 76, núm. 160 (2009); 273-282 2346-2183 0012-7353Quiroga Méndez, Jabid Eduardo and Cartes, David and Edrington, Chris (2009) Neural network based system identification of a pmsm under load fluctuation. Dyna; Vol. 76, núm. 160 (2009); 273-282 DYNA; Vol. 76, núm. 160 (2009); 273-282 2346-2183 0012-7353 .Neural network based system identification of a pmsm under load fluctuationArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTSystemIdentificationPMSMNeural NetworkRecurrent Networks.ORIGINAL13685-39796-1-PB.pdfapplication/pdf599132https://repositorio.unal.edu.co/bitstream/unal/26910/1/13685-39796-1-PB.pdfdfd64ef4f1ef0bc3ef7491a931fd2479MD5113685-39765-1-PB.htmtext/html40921https://repositorio.unal.edu.co/bitstream/unal/26910/2/13685-39765-1-PB.htmc046a8afeddc340ded11b01132fc6d99MD52THUMBNAIL13685-39796-1-PB.pdf.jpg13685-39796-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg9185https://repositorio.unal.edu.co/bitstream/unal/26910/3/13685-39796-1-PB.pdf.jpgbb31f2bb3014a94478de280cee4c36baMD53unal/26910oai:repositorio.unal.edu.co:unal/269102022-11-06 23:03:44.873Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Neural network based system identification of a pmsm under load fluctuation
title Neural network based system identification of a pmsm under load fluctuation
spellingShingle Neural network based system identification of a pmsm under load fluctuation
System
Identification
PMSM
Neural Network
Recurrent Networks.
title_short Neural network based system identification of a pmsm under load fluctuation
title_full Neural network based system identification of a pmsm under load fluctuation
title_fullStr Neural network based system identification of a pmsm under load fluctuation
title_full_unstemmed Neural network based system identification of a pmsm under load fluctuation
title_sort Neural network based system identification of a pmsm under load fluctuation
dc.creator.fl_str_mv Quiroga Méndez, Jabid Eduardo
Cartes, David
Edrington, Chris
dc.contributor.author.spa.fl_str_mv Quiroga Méndez, Jabid Eduardo
Cartes, David
Edrington, Chris
dc.subject.proposal.spa.fl_str_mv System
Identification
PMSM
Neural Network
Recurrent Networks.
topic System
Identification
PMSM
Neural Network
Recurrent Networks.
description A neural network based approach is applied to model a PMSM. A multilayer recurrent network provides a near term fundamental current prediction using as an input the fundamental components of the voltage signals and the speed. The PMSM model proposed can be implemented in a condition based maintenance to perform fault detection, integrity assessment and aging process. The model is validated using a 15 hp PMSM experimental setup. The acquisition system is developed using Matlab®/Simulink® with dSpace® as an interface to the hardware, i.e. PMSM drive system. The model shows generalization capabilities and a satisfactory performance in the fundamental current determination on line under no load and load fluctuations.
publishDate 2009
dc.date.issued.spa.fl_str_mv 2009
dc.date.accessioned.spa.fl_str_mv 2019-06-25T23:45:11Z
dc.date.available.spa.fl_str_mv 2019-06-25T23:45:11Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/26910
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/17958/
url https://repositorio.unal.edu.co/handle/unal/26910
http://bdigital.unal.edu.co/17958/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/dyna/article/view/13685
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Dyna
Dyna
dc.relation.ispartofseries.none.fl_str_mv Dyna; Vol. 76, núm. 160 (2009); 273-282 DYNA; Vol. 76, núm. 160 (2009); 273-282 2346-2183 0012-7353
dc.relation.references.spa.fl_str_mv Quiroga Méndez, Jabid Eduardo and Cartes, David and Edrington, Chris (2009) Neural network based system identification of a pmsm under load fluctuation. Dyna; Vol. 76, núm. 160 (2009); 273-282 DYNA; Vol. 76, núm. 160 (2009); 273-282 2346-2183 0012-7353 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv text/html
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/26910/1/13685-39796-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/26910/2/13685-39765-1-PB.htm
https://repositorio.unal.edu.co/bitstream/unal/26910/3/13685-39796-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv dfd64ef4f1ef0bc3ef7491a931fd2479
c046a8afeddc340ded11b01132fc6d99
bb31f2bb3014a94478de280cee4c36ba
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089875059638272