Partial differential equations with non-homogenous boundary conditions
Boundary value problems of partial differential equations are very often solved by the method of «separation of variables» or Fourier method. The method can be used without any difflculty in homogenous problems, that is, in prohlems where de differential equation and the boundary conditions are homo...
- Autores:
-
Sandoval, René W.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 1969
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/42134
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/42134
http://bdigital.unal.edu.co/32231/
- Palabra clave:
- Differential equations
method of separation of variables
inhomogenous
Advanced calculus
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_c8908002254b64c56800b38e58604a79 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/42134 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sandoval, René W.715615da-b694-43df-9d48-2ad63011e6e13002019-06-28T10:33:29Z2019-06-28T10:33:29Z1969https://repositorio.unal.edu.co/handle/unal/42134http://bdigital.unal.edu.co/32231/Boundary value problems of partial differential equations are very often solved by the method of «separation of variables» or Fourier method. The method can be used without any difflculty in homogenous problems, that is, in prohlems where de differential equation and the boundary conditions are homogenous. Most of the textbooks concentrate their attention on such problems and for the inhomogenous case they merely' suggest using an integral transform procedure. Nevertheless the Fourier method may be extented to treat the inhomogenous problems. A recent text by Tolstov (see reference 1), treats the case when the differential equation is not homogenous but not the case when the boundary conditions are also inhomogenous. Kaplan (see reference 2), in his Advanced Calculus treats relatively simple cases of inhomogenous boundary conditions.application/pdfspaUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticashttp://revistas.unal.edu.co/index.php/recolma/article/view/31712Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRevista Colombiana de Matemáticas; Vol. 3, núm. 1 (1969); 1-23 0034-7426Sandoval, René W. (1969) Partial differential equations with non-homogenous boundary conditions. Revista Colombiana de Matemáticas; Vol. 3, núm. 1 (1969); 1-23 0034-7426 .Partial differential equations with non-homogenous boundary conditionsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTDifferential equationsmethod of separation of variablesinhomogenousAdvanced calculusORIGINAL31712-115671-1-PB.pdfapplication/pdf5982906https://repositorio.unal.edu.co/bitstream/unal/42134/1/31712-115671-1-PB.pdfd60ea6deeb197b9ecb672f7409d04c5dMD51THUMBNAIL31712-115671-1-PB.pdf.jpg31712-115671-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg8965https://repositorio.unal.edu.co/bitstream/unal/42134/2/31712-115671-1-PB.pdf.jpgdbc8fdff7a4f585451c44f791cdb6378MD52unal/42134oai:repositorio.unal.edu.co:unal/421342024-02-03 23:07:01.835Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Partial differential equations with non-homogenous boundary conditions |
title |
Partial differential equations with non-homogenous boundary conditions |
spellingShingle |
Partial differential equations with non-homogenous boundary conditions Differential equations method of separation of variables inhomogenous Advanced calculus |
title_short |
Partial differential equations with non-homogenous boundary conditions |
title_full |
Partial differential equations with non-homogenous boundary conditions |
title_fullStr |
Partial differential equations with non-homogenous boundary conditions |
title_full_unstemmed |
Partial differential equations with non-homogenous boundary conditions |
title_sort |
Partial differential equations with non-homogenous boundary conditions |
dc.creator.fl_str_mv |
Sandoval, René W. |
dc.contributor.author.spa.fl_str_mv |
Sandoval, René W. |
dc.subject.proposal.spa.fl_str_mv |
Differential equations method of separation of variables inhomogenous Advanced calculus |
topic |
Differential equations method of separation of variables inhomogenous Advanced calculus |
description |
Boundary value problems of partial differential equations are very often solved by the method of «separation of variables» or Fourier method. The method can be used without any difflculty in homogenous problems, that is, in prohlems where de differential equation and the boundary conditions are homogenous. Most of the textbooks concentrate their attention on such problems and for the inhomogenous case they merely' suggest using an integral transform procedure. Nevertheless the Fourier method may be extented to treat the inhomogenous problems. A recent text by Tolstov (see reference 1), treats the case when the differential equation is not homogenous but not the case when the boundary conditions are also inhomogenous. Kaplan (see reference 2), in his Advanced Calculus treats relatively simple cases of inhomogenous boundary conditions. |
publishDate |
1969 |
dc.date.issued.spa.fl_str_mv |
1969 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-28T10:33:29Z |
dc.date.available.spa.fl_str_mv |
2019-06-28T10:33:29Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/42134 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/32231/ |
url |
https://repositorio.unal.edu.co/handle/unal/42134 http://bdigital.unal.edu.co/32231/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
http://revistas.unal.edu.co/index.php/recolma/article/view/31712 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas Revista Colombiana de Matemáticas |
dc.relation.ispartofseries.none.fl_str_mv |
Revista Colombiana de Matemáticas; Vol. 3, núm. 1 (1969); 1-23 0034-7426 |
dc.relation.references.spa.fl_str_mv |
Sandoval, René W. (1969) Partial differential equations with non-homogenous boundary conditions. Revista Colombiana de Matemáticas; Vol. 3, núm. 1 (1969); 1-23 0034-7426 . |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacuional de Colombia; Sociedad Colombiana de matemáticas |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/42134/1/31712-115671-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/42134/2/31712-115671-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
d60ea6deeb197b9ecb672f7409d04c5d dbc8fdff7a4f585451c44f791cdb6378 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089889726070784 |