Automatic Identification of Calcareous Lithologies Using Support Vector Machines, Borehole Logs and Fractal Dimension of Borehole Electrical Imaging

In this research algorithms of support vector machine (SVM) and a logic function were applied to identify automatically sections of carbonate rocks in wells located in the former Barco Concession, Catatumbo Basin - Colombia. During training stages the SVMs use neutron, photoelectric factor and gamma...

Full description

Autores:
Leal, Jorge Alberto
Ochoa, Luis Hernan
Contreras, Carmen Cecilia
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/68581
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/68581
http://bdigital.unal.edu.co/69614/
Palabra clave:
55 Ciencias de la tierra / Earth sciences and geology
aprendizaje de máquinas
máquinas de soporte vectorial
registros de pozo
registro de imágenes
dimensión fractal
litologías calcáreas
Cuenca de Catatumbo.
machine learning
support vector machines
borehole logs
image logs
fractal dimension
calcareous lithologies
Catatumbo Basin.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_c88047fd0d3e49b1bf941f5904fe65d8
oai_identifier_str oai:repositorio.unal.edu.co:unal/68581
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Automatic Identification of Calcareous Lithologies Using Support Vector Machines, Borehole Logs and Fractal Dimension of Borehole Electrical Imaging
title Automatic Identification of Calcareous Lithologies Using Support Vector Machines, Borehole Logs and Fractal Dimension of Borehole Electrical Imaging
spellingShingle Automatic Identification of Calcareous Lithologies Using Support Vector Machines, Borehole Logs and Fractal Dimension of Borehole Electrical Imaging
55 Ciencias de la tierra / Earth sciences and geology
aprendizaje de máquinas
máquinas de soporte vectorial
registros de pozo
registro de imágenes
dimensión fractal
litologías calcáreas
Cuenca de Catatumbo.
machine learning
support vector machines
borehole logs
image logs
fractal dimension
calcareous lithologies
Catatumbo Basin.
title_short Automatic Identification of Calcareous Lithologies Using Support Vector Machines, Borehole Logs and Fractal Dimension of Borehole Electrical Imaging
title_full Automatic Identification of Calcareous Lithologies Using Support Vector Machines, Borehole Logs and Fractal Dimension of Borehole Electrical Imaging
title_fullStr Automatic Identification of Calcareous Lithologies Using Support Vector Machines, Borehole Logs and Fractal Dimension of Borehole Electrical Imaging
title_full_unstemmed Automatic Identification of Calcareous Lithologies Using Support Vector Machines, Borehole Logs and Fractal Dimension of Borehole Electrical Imaging
title_sort Automatic Identification of Calcareous Lithologies Using Support Vector Machines, Borehole Logs and Fractal Dimension of Borehole Electrical Imaging
dc.creator.fl_str_mv Leal, Jorge Alberto
Ochoa, Luis Hernan
Contreras, Carmen Cecilia
dc.contributor.author.spa.fl_str_mv Leal, Jorge Alberto
Ochoa, Luis Hernan
Contreras, Carmen Cecilia
dc.subject.ddc.spa.fl_str_mv 55 Ciencias de la tierra / Earth sciences and geology
topic 55 Ciencias de la tierra / Earth sciences and geology
aprendizaje de máquinas
máquinas de soporte vectorial
registros de pozo
registro de imágenes
dimensión fractal
litologías calcáreas
Cuenca de Catatumbo.
machine learning
support vector machines
borehole logs
image logs
fractal dimension
calcareous lithologies
Catatumbo Basin.
dc.subject.proposal.spa.fl_str_mv aprendizaje de máquinas
máquinas de soporte vectorial
registros de pozo
registro de imágenes
dimensión fractal
litologías calcáreas
Cuenca de Catatumbo.
machine learning
support vector machines
borehole logs
image logs
fractal dimension
calcareous lithologies
Catatumbo Basin.
description In this research algorithms of support vector machine (SVM) and a logic function were applied to identify automatically sections of carbonate rocks in wells located in the former Barco Concession, Catatumbo Basin - Colombia. During training stages the SVMs use neutron, photoelectric factor and gamma ray logs as input; also mean and variance of resistivity acquired for image tool and fractal dimension of resistive images. The first SVM employs in the training stage intervals manually interpreted of fossiliferous limestone, performed by a specialized geologist integrating information of core-logs correlation of a pilot well; afterwards, in classification stages, this SVM automatically recognizes intervals with fossiliferous limestone only using logs data of any well of the field. The second SVM was also trained with nuclear logs, resistivity and fractal dimension, but in this case, with information of intervals composed of calcareous shales interbedded with limestone, recognizing automatically these rock associations during classification stage without interpretations of a geologist as input data. Additionally, a logic function was applied to intervals with photoelectric factor ≥ 4 and all sections not classified by the SVMs were grouped as laminated calcareous rocks. The SVMs and logic function show accuracy of 98.76 %, 94.02 % and 94.60 % respectively in six evaluated wells and might be applied to other wells in the field that have the same dataset. This methodology is highly dependent of the data quality and all intervals affected by bad borehole condition have to be removed prior its application in order to avoid wrong interpretations. Finally, the whole model has to be recalibrated to be applied in other fields of the basin.
publishDate 2018
dc.date.issued.spa.fl_str_mv 2018-04-01
dc.date.accessioned.spa.fl_str_mv 2019-07-03T07:11:27Z
dc.date.available.spa.fl_str_mv 2019-07-03T07:11:27Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2339-3459
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/68581
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/69614/
identifier_str_mv ISSN: 2339-3459
url https://repositorio.unal.edu.co/handle/unal/68581
http://bdigital.unal.edu.co/69614/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/esrj/article/view/68320
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Earth Sciences Research Journal
Earth Sciences Research Journal
dc.relation.references.spa.fl_str_mv Leal, Jorge Alberto and Ochoa, Luis Hernan and Contreras, Carmen Cecilia (2018) Automatic Identification of Calcareous Lithologies Using Support Vector Machines, Borehole Logs and Fractal Dimension of Borehole Electrical Imaging. Earth Sciences Research Journal, 22 (2). pp. 75-82. ISSN 2339-3459
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Geociencia
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/68581/1/68320-391085-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/68581/2/68320-391085-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 3d30e22cce3cf92812581c1301d0b021
1d68382e437fe9f65d4732ead48ffcf9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089603592749056
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Leal, Jorge Albertobaac4c70-301a-4bb2-b3ed-f239c17d46b0300Ochoa, Luis Hernane072c6ba-9356-4a0d-bc79-5ecc22161c1d300Contreras, Carmen Cecilia03eba7b4-14e6-42a9-aa8e-82260d10f0de3002019-07-03T07:11:27Z2019-07-03T07:11:27Z2018-04-01ISSN: 2339-3459https://repositorio.unal.edu.co/handle/unal/68581http://bdigital.unal.edu.co/69614/In this research algorithms of support vector machine (SVM) and a logic function were applied to identify automatically sections of carbonate rocks in wells located in the former Barco Concession, Catatumbo Basin - Colombia. During training stages the SVMs use neutron, photoelectric factor and gamma ray logs as input; also mean and variance of resistivity acquired for image tool and fractal dimension of resistive images. The first SVM employs in the training stage intervals manually interpreted of fossiliferous limestone, performed by a specialized geologist integrating information of core-logs correlation of a pilot well; afterwards, in classification stages, this SVM automatically recognizes intervals with fossiliferous limestone only using logs data of any well of the field. The second SVM was also trained with nuclear logs, resistivity and fractal dimension, but in this case, with information of intervals composed of calcareous shales interbedded with limestone, recognizing automatically these rock associations during classification stage without interpretations of a geologist as input data. Additionally, a logic function was applied to intervals with photoelectric factor ≥ 4 and all sections not classified by the SVMs were grouped as laminated calcareous rocks. The SVMs and logic function show accuracy of 98.76 %, 94.02 % and 94.60 % respectively in six evaluated wells and might be applied to other wells in the field that have the same dataset. This methodology is highly dependent of the data quality and all intervals affected by bad borehole condition have to be removed prior its application in order to avoid wrong interpretations. Finally, the whole model has to be recalibrated to be applied in other fields of the basin.En esta investigación algoritmos de máquinas de vector de soporte (MVS) y una función lógica fueron aplicados para identificar automáticamente secciones con rocas carbonáticas en pozos ubicados en la antigua Concesión Barco, Cuenca de Catatumbo - Colombia. Durante las etapas de clasificación las MVS utilizan registros de neutrón, factor fotoeléctrico y rayos gamma como entrada; también media y varianza de la resistividad adquirida por herramientas de imágenes y dimensión fractal de imágenes resistivas. La primera MVS emplea en la etapa de entrenamiento intervalos manualmente interpretados de calizas fosilíferas, realizado por un geólogo especialista integrando información de correlación núcleo-registro de un pozo piloto; posteriormente, en etapas de clasificación, esta MVS automáticamente reconoce intervalos con calizas fosilíferas utilizando solamente datos de registros de cualquier pozo del campo. La segunda MVS fue también entrenada con registros nucleares, resistivos y dimensión fractal, pero en este caso, con información de intervalos compuestos de lutitas calcáreas intercaladas con calizas, reconociendo automáticamente estas asociaciones de rocas durante la etapa de clasificación sin requerir interpretaciones de un geólogo como dato de entrada. Adicionalmente, se aplicó una función lógica a intervalos con factor fotoeléctrico ≥ 4 y todas las secciones no clasificados por las MVS fueron agrupadas como rocas calcáreas laminadas. Las MVS y la función lógica mostraron precisiones de 98.76%, 94.02% y 94.60% respectivamente en seis pozos evaluados y podrían ser aplicado a otros pozos del campo que tengan el mismo conjunto de datos. Esta metodología es altamente dependiente de la calidad de los datos, por consiguiente, todos los intervalos afectados por malas condiciones del pozo tienen que ser removidos antes de ser aplicados para evitar interpretaciones erróneas. Finalmente, todo el modelo debe ser recalibrado para ser aplicado en otros campos de la cuenca.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Geocienciahttps://revistas.unal.edu.co/index.php/esrj/article/view/68320Universidad Nacional de Colombia Revistas electrónicas UN Earth Sciences Research JournalEarth Sciences Research JournalLeal, Jorge Alberto and Ochoa, Luis Hernan and Contreras, Carmen Cecilia (2018) Automatic Identification of Calcareous Lithologies Using Support Vector Machines, Borehole Logs and Fractal Dimension of Borehole Electrical Imaging. Earth Sciences Research Journal, 22 (2). pp. 75-82. ISSN 2339-345955 Ciencias de la tierra / Earth sciences and geologyaprendizaje de máquinasmáquinas de soporte vectorialregistros de pozoregistro de imágenesdimensión fractallitologías calcáreasCuenca de Catatumbo.machine learningsupport vector machinesborehole logsimage logsfractal dimensioncalcareous lithologiesCatatumbo Basin.Automatic Identification of Calcareous Lithologies Using Support Vector Machines, Borehole Logs and Fractal Dimension of Borehole Electrical ImagingArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL68320-391085-1-PB.pdfapplication/pdf2639878https://repositorio.unal.edu.co/bitstream/unal/68581/1/68320-391085-1-PB.pdf3d30e22cce3cf92812581c1301d0b021MD51THUMBNAIL68320-391085-1-PB.pdf.jpg68320-391085-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg8112https://repositorio.unal.edu.co/bitstream/unal/68581/2/68320-391085-1-PB.pdf.jpg1d68382e437fe9f65d4732ead48ffcf9MD52unal/68581oai:repositorio.unal.edu.co:unal/685812023-06-04 23:03:19.89Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co