Estudio fitoquímico de la especie vegetal Piper eriopodon y determinación de su actividad citotóxica
The cytotoxic effect of different Colombian Piper plants was determined by the MTT assay in human cancer cell lines A549 (lung), PC-3 (prostate) and MDAMB-231 (breast). The most potent cytotoxic effect was found in the leaves ethanolic extract of P. eriopodon with IC50 values less than 25 μg/mL. Aft...
- Autores:
-
Muñoz Cendales, Diego Ricardo
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/77848
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/77848
- Palabra clave:
- 540 - Química y ciencias afines
Cáncer
Apoptosis
Muerte independiente de caspasas
XIAP
Alquenilfenoles
Piper eriopodon
Cancer
Apoptosis
Caspase independent cell death
XIAP
Alkenylphenols
Piper eriopodon
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_c7ca7041fb7aa550b6cd8bb0ad577045 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/77848 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio fitoquímico de la especie vegetal Piper eriopodon y determinación de su actividad citotóxica |
title |
Estudio fitoquímico de la especie vegetal Piper eriopodon y determinación de su actividad citotóxica |
spellingShingle |
Estudio fitoquímico de la especie vegetal Piper eriopodon y determinación de su actividad citotóxica 540 - Química y ciencias afines Cáncer Apoptosis Muerte independiente de caspasas XIAP Alquenilfenoles Piper eriopodon Cancer Apoptosis Caspase independent cell death XIAP Alkenylphenols Piper eriopodon |
title_short |
Estudio fitoquímico de la especie vegetal Piper eriopodon y determinación de su actividad citotóxica |
title_full |
Estudio fitoquímico de la especie vegetal Piper eriopodon y determinación de su actividad citotóxica |
title_fullStr |
Estudio fitoquímico de la especie vegetal Piper eriopodon y determinación de su actividad citotóxica |
title_full_unstemmed |
Estudio fitoquímico de la especie vegetal Piper eriopodon y determinación de su actividad citotóxica |
title_sort |
Estudio fitoquímico de la especie vegetal Piper eriopodon y determinación de su actividad citotóxica |
dc.creator.fl_str_mv |
Muñoz Cendales, Diego Ricardo |
dc.contributor.advisor.spa.fl_str_mv |
Cuca Suarez, Luis Enrique |
dc.contributor.author.spa.fl_str_mv |
Muñoz Cendales, Diego Ricardo |
dc.contributor.researchgroup.spa.fl_str_mv |
Química de Productos Naturales Vegetales Bioactivos |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines |
topic |
540 - Química y ciencias afines Cáncer Apoptosis Muerte independiente de caspasas XIAP Alquenilfenoles Piper eriopodon Cancer Apoptosis Caspase independent cell death XIAP Alkenylphenols Piper eriopodon |
dc.subject.proposal.spa.fl_str_mv |
Cáncer Apoptosis Muerte independiente de caspasas XIAP Alquenilfenoles Piper eriopodon |
dc.subject.proposal.eng.fl_str_mv |
Cancer Apoptosis Caspase independent cell death XIAP Alkenylphenols Piper eriopodon |
description |
The cytotoxic effect of different Colombian Piper plants was determined by the MTT assay in human cancer cell lines A549 (lung), PC-3 (prostate) and MDAMB-231 (breast). The most potent cytotoxic effect was found in the leaves ethanolic extract of P. eriopodon with IC50 values less than 25 μg/mL. After different chromatographic techniques, nine alkenylphenols (1 - 9) were isolated from the ethanolic extract of leaves from P. eriopodon and their molecular structures were identified by the analysis of the spectroscopic data (IR; NMR 1H, 13C 1D and 2D; HRESIMS), as well as by comparison of the spectral data with those reported in the literature. Of note, compounds 2, 3, 4, 5, 6, 7, 8 and 9 were reported for the first time. All isolated compounds showed cytotoxicity against the human cancer cell lines U373 (glioblastoma) and MCF7 (breast) with IC50 values in a range of 1.78 - 40.14 μg/mL. The higher cytotoxic effect of compounds 1, 2 and 3 was also shown by MTT assay using additional cancer cell lines A549 (lung), PC-3 (prostate) and non-tumourigenic HUVEC and human breast MCF10 cells. Compound 1 was the most potent inhibitor of human cancer cell viability, follow by compounds 2 and 1 respectively. Compounds 1 and 2 induced apoptosis through mitochondrial permeabilization and caspase activation while compound 3 acted on cell fate via caspase-independent/non-apoptotic mechanisms, likely involving mitochondrial dysfunctions and aberrant generation of reactive oxygen species (ROS). Finally, in silico modelling and molecular approaches suggested that all molecules inhibit XIAP by binding to XIAP-BIR3 domain. The results confirm the therapeutic potential of isolated compounds from P. eriopodon and demonstrates that XIAP is a key determinant of tumor control, at the molecular crossroad of caspase-dependent/independent cell death pathways. |
publishDate |
2020 |
dc.date.accessioned.spa.fl_str_mv |
2020-07-24T16:54:26Z |
dc.date.available.spa.fl_str_mv |
2020-07-24T16:54:26Z |
dc.date.issued.spa.fl_str_mv |
2020-07-23 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Muñoz, D & Cuca, L. (2020). Estudio fitoquímico de la especie vegetal Piper eriopodon y determinación de su actividad citotóxica. Universidad Nacional de Colombia, Bogotá, Colombia. |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/77848 |
identifier_str_mv |
Muñoz, D & Cuca, L. (2020). Estudio fitoquímico de la especie vegetal Piper eriopodon y determinación de su actividad citotóxica. Universidad Nacional de Colombia, Bogotá, Colombia. |
url |
https://repositorio.unal.edu.co/handle/unal/77848 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Shen, B. A New Golden Age of Natural Products Drug Discovery. Cell 2015, 163 (6), 1297–1300. Harvey, A. L.; Edrada-Ebel, R.; Quinn, R. J. The Re-Emergence of Natural Products for Drug Discovery in the Genomics Era. Nat. Rev. Drug Discov. 2015, 14 (2), 111–129. Guerra, A. R.; Duarte, M. F.; Duarte, I. F. Targeting Tumor Metabolism with Plant-Derived Natural Products: Emerging Trends in Cancer Therapy. J. Agric. Food Chem. 2018, 66 (41), 10663–10658. Carocho, M.; Ferreira, I. The Role of Phenolic Compounds in the Fight against Cancer – A Review. Anticancer. Agents Med. Chem. 2013, No. 13, 1236–1258. Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 2018, 5 (93), 1–16. Jafari, S.; Saeidnia, S.; Abdollahi, M. Role of Natural Phenolic Compounds in Cancer Chemoprevention via Regulation of the Cell Cycle. Curr. Pharm. Biotechnol. 2014. Diaz, L. E.; Munoz, D. R.; Prieto, R. E.; Cuervo, S. A.; Gonzalez, D. L.; Guzman, J. D.; Bhakta, S. Antioxidant, Antitubercular and Cytotoxic Activities of Piper imperiale. Molecules 2012, 17 (4), 4142–4157. Wang, Y.-H.; Lee, K.-H.; Long, C.-L.; Morris-Natschke, S.; Niu, H.-M.; Yang, J. Anticancer Principles from Medicinal Piper Plants. J. Tradit. Complement. Med. 2014, 4 (1), 8–16. Parmar, V. S.; Jain, S. C.; Gupta, S.; Talwar, S.; Rajwanshi, V. K.; Kumar, R.; Azim, A.; Malhotra, S.; Kumar, N.; Jain, R.; et al. Polyphenols and Alkaloids from Piper Species. Phytochemistry 1998, 49 (4), 1069–1078. Valdivia, C.; Marquez, N.; Eriksson, J.; Vilaseca, A.; Muñoz, E.; Sterner, O. Bioactive Alkenylphenols from Piper obliquum. Bioorganic Med. Chem. 2008, 16 (7), 4120–4126. Ali, I.; Satti, N. K.; Dutt, P.; Prasad, R.; Khan, I. A. Hydroxychavicol: A Phytochemical Targeting Cutaneous Fungal Infections. Sci. Rep. 2016, 6 (37867), 1–20. Mgbeahuruike, E. E.; Yrjönen, T.; Vuorela, H.; Holm, Y. Bioactive Compounds from Medicinal Plants: Focus on Piper Species. South African J. Bot. 2017, 112, 54–69. Sanubol, A.; Chaveerach, A.; Tanee, T.; Sudmoon, R. Pre-Clinical Evaluation of Extracts and Essential Oils from Betel-like Scent Piper Species Identifed Potential Cancer Treatment. African J. Tradit. Complement. Altern. Med. AJTCAM 2017, 14 (1), 89–102. Rekha, V. P. B.; Kollipara, M.; Srinivasa Gupta, B. R. S. S.; Bharath, Y.; Pulicherla, K. K. A Review on Piper betle L.: Nature’s Promising Medicinal Reservoir. Am. J. Ethnomedicine 2014, 1 (5), 276–289. Durant-Archibold, A. A.; Santana, A. I.; Gupta, M. P. Ethnomedical Uses and Pharmacological Activities of Most Prevalent Species of Genus Piper in Panama: A Review. J. Ethnopharmacol. 2018, 217, 63–82. Gundala, S. R.; Yang, C.; Mukkavilli, R.; Paranjpe, R.; Brahmbhatt, M.; Pannu, V.; Cheng, A.; Reid, M. D.; Aneja, R. Hydroxychavicol, a Betel Leaf Component, Inhibits Prostate Cancer through ROS-Driven DNA Damage and Apoptosis. Toxicol. Appl. Pharmacol. 2014, 280, 86–96. Benfica, P. L.; Ávila, R. I. de; Rodrigues, B. D. S.; Cortez, A. P.; Batista, A. C.; Gaeti, M. P. N.; Lima, E. M.; Rezende, K. R.; Valadares, M. C. 4-Nerolidylcatechol: Apoptosis by Mitochondrial Mechanisms with Reduction in Cyclin D1 at G0/G1 Stage of the Chronic Myelogenous K562 Cell Line. Pharm. Biol. 2017, 55 (1), 1899–1908. Piska, K.; Gunia-Krzyżak, A.; Koczurkiewicz, P.; Wójcik-Pszczoła, K.; Pękala, E. Piperlongumine (Piplartine) as a Lead Compound for Anticancer Agents – Synthesis and Properties of Analogues: A Mini-Review. Eur. J. Med. Chem. 2018, 156, 13–20. Orjala, J.; Mian, P.; Rali, T.; Sticher, O. Gibbilimbols A-D, Cytotoxic and Antibacterial Alkenylphenols from Piper gibbilimbum. J. Nat. Prod. 1998, 61 (7), 939–941. Hanahan, D.; Weinberg, R. A. Hallmarks of Cancer: The next Generation. Cell 2011, 144 (5), 646–674. Fulda, S.; Vucic, D. Targeting IAP Proteins for Therapeutic Intervention in Cancer. Nat. Rev. Drug Discov. 2012, 11 (4), 331–331. Lalaoui, N.; Vaux, D. L. Recent Advances in Understanding Inhibitor of Apoptosis Proteins. F1000Research. 2018, pp 1–15. Rathore, R.; McCallum, J. E.; Varghese, E.; Florea, A.-M.; Büsselberg, D. Overcoming Chemotherapy Drug Resistance by Targeting Inhibitors of Apoptosis Proteins (IAPs). Apoptosis 2017, 22 (7), 898–919. Schimmer, a D.; Dalili, S.; Batey, R. a; Riedl, S. J. Targeting XIAP for the Treatment of Malignancy. Cell Death Differ. 2006, 13 (2), 179–188. Tamanini, E.; Buck, I. M.; Chessari, G.; Chiarparin, E.; Day, J. E. H.; Frederickson, M.; Griffiths-Jones, C. M.; Hearn, K.; Heightman, T. D.; Iqbal, A.; et al. Discovery of a Potent Non-Peptidomimetic, Small-Molecule Antagonist of Cellular Inhibitor of Apoptosis Protein 1 (CIAP1) and X-Linked Inhibitor of Apoptosis Protein (XIAP). J. Med. Chem. 2017, 60 (11), 4611–4625. Cong, H.; Xu, L.; Wu, Y.; Qu, Z.; Bian, T.; Zhang, W.; Xing, C.; Zhuang, C. Inhibitor of Apoptosis Protein (IAP) Antagonists in Anticancer Agent Discovery: Current Status and Perspectives. J. Med. Chem. 2019, 62 (12), 5750–5772. Riss, T. L.; Moravec, R. A.; Niles, A. L.; Duellman, S.; Benink, H. A.; Worzella, T. J.; Minor, L. Cell Viability Assays. In Assay Guidance Manual; Eli Lilly & Company and the National Center for Advancing Translational Sciences, 2004. Bizzozero, L.; Cazzato, D.; Cervia, D.; Assi, E.; Simbari, F.; Pagni, F.; De Palma, C.; Monno, A.; Verdelli, C.; Querini, P. R.; et al. Acid Sphingomyelinase Determines Melanoma Progression and Metastatic Behaviour via the Microphtalmia-Associated Transcription Factor Signalling Pathway. Cell Death Differ. 2014, 21, 507–520. Perrotta, C.; Buonanno, F.; Zecchini, S.; Giavazzi, A.; Proietti Serafini, F.; Catalani, E.; Guerra, L.; Belardinelli, M. C.; Picchietti, S.; Fausto, A. M.; et al. Climacostol Reduces Tumour Progression in a Mouse Model of Melanoma via the P53-Dependent Intrinsic Apoptotic Programme. Sci. Rep. 2016, 6 (27281), 1–14. Assi, E.; Cervia, D.; Bizzozero, L.; Capobianco, A.; Pambianco, S.; Morisi, F.; De Palma, C.; Moscheni, C.; Pellegrino, P.; Clementi, E.; et al. Modulation of Acid Sphingomyelinase in Melanoma Reprogrammes the Tumour Immune Microenvironment. Mediators Inflamm. 2015, 2015 (130482), 1–13. Vantaggiato, C.; Castelli, M.; Giovarelli, M.; Orso, G.; Bassi, M. T.; Clementi, E.; De Palma, C. The Fine Tuning of Drp1-Dependent Mitochondrial Remodeling and Autophagy Controls Neuronal Differentiation. Front. Cell. Neurosci. 2019, 13 (120), 1–20. Chessari, G.; Buck, I. M.; Day, J. E. H.; Day, P. J.; Iqbal, A.; Johnson, C. N.; Lewis, E. J.; Martins, V.; Miller, D.; Reader, M.; et al. Fragment-Based Drug Discovery Targeting Inhibitor of Apoptosis Proteins: Discovery of a Non-Alanine Lead Series with Dual Activity Against CIAP1 and XIAP. J. Med. Chem. 2015, 58 (16), 6574–6588. Pfisterer, P. H.; Wolber, G.; Efferth, T.; Rollinger, J. M.; Stuppner, H. Natural Products in Structure-Assisted Design of Molecular Cancer Therapeutics. Curr. Pharm. Des. 2010, 16 (15), 1718–1741. Muñoz, D.; Sandoval-Hernandez, A.; Delgado, W.; Arboleda, G.; Cuca, L. In Vitro Anticancer Screening of Colombian Plants from Piper Genus (Piperaceae). J. Pharmacogn. Phyther. 2018, 10 (9), 174–181. May, J. E.; Donaldson, C.; Gynn, L.; Ruth Morse, H. Chemotherapy-Induced Genotoxic Damage to Bone Marrow Cells: Long-Term Implications. Mutagenesis 2018, 33, 241– 251. Wang, Y.; Probin, V.; Zhou, D. Cancer Therapy-Induced Residual Bone Marrow Injury: Mechanisms of Induction and Implication for Therapy. Curr. Cancer Ther. Rev. 2006, 2 (3), 271–279. Moloney, J. N.; Cotter, T. G. ROS Signalling in the Biology of Cancer. Semin. Cell Dev. Biol. 2018, 80, 50–64. Tait, S. W. G.; Green, D. R. Caspase-Independent Cell Death: Leaving the Set without the final Cut. Oncogene 2008, 27, 6452–6461. Ye, J.; Zhang, R.; Wu, F.; Zhai, L.; Wang, K.; Xiao, M.; Xie, T.; Sui, X. Non-Apoptotic Cell Death in Malignant Tumor Cells and Natural Compounds. Cancer Lett. 2018, 420, 210–227. Galluzzi, L.; Kepp, O.; Chan, F. K.-M.; Kroemer, G. Necroptosis: Mechanisms and relevance to Disease. Annu. Rev. Pathol. Mech. Dis. 2017, 12 (4), 1–28. Green, D. R. The Coming Decade of Cell Death Research: Five Riddles. Cell 2019, 177, 1094–1107. Galluzzi, L.; Vitale, I.; Aaronson, S. A.; Abrams, J. M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D. W.; et al. Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018, 25, 486–541. Holze, C.; Michaudel, C.; MacKowiak, C.; Haas, D. A.; Benda, C.; Hubel, P.; Pennemann, F. L.; Schnepf, D.; Wettmarshausen, J.; Braun, M.; et al. Oxeiptosis, a ROS-Induced Caspase- Independent Apoptosis-like Cell-Death Pathway Article. Nat. Immunol. 2018, 19 (2), 130–140. Chai, J.; Shiozaki, E.; Srinivasula, S. M.; Wu, Q.; Dataa, P.; Alnemri, E. S.; Shi, Y. Structural Basis of Caspase-7 Inhibition by XIAP. Cell 2001, 104, 769–780. Shiozaki, E. N.; Chai, J.; Rigotti, D. J.; Riedl, S. J.; Li, P.; Srinivasula, S. M.; Alnemri, E. S.; Fairman, R.; Shi, Y. Mechanism of XIAP-Mediated Inhibition of Caspase-9. Mol. Cell 2003, 11, 519–527. Suzuki, Y.; Nakabayashi, Y.; Nakata, K.; Reed, J. C.; Takahashi, R. X-Linked Inhibitor of Apoptosis Protein (XIAP) Inhibits Caspase-3 and -7 in Distinct Modes. J. Biol. Chem. 2001, 276 (29), 27058–27063. Lewis, J.; Burstein, E.; Reffey, S. B.; Bratton, S. B.; Roberts, A. B.; Duckett, C. S. Uncoupling of the Signaling and Caspase-Inhibitory Properties of X-Linked Inhibitor of Apoptosis. J. Biol. Chem. 2004, 279 (10), 9023–9029. Wicki, S.; Gurzeler, U.; Wong, W. W. L.; Jost, P. J.; Bachmann, D.; Kaufmann, T. Loss of XIAP Facilitates Switch to TNFα-Induced Necroptosis in Mouse Neutrophils. Cell Death Dis. 2016, 7, 1–13. Yabal, M.; Jost, P. J. XIAP as a Regulator of Inflammatory Cell Death: The TNF and RIP3 Angle. Mol. Cell. Oncol. 2015, 2 (1), 1–2. Nikolovska-Coleska, Z.; Xu, L.; Hu, Z.; Tomita, Y.; Li, P.; Roller, P. P.; Wang, R.; Fang, X.; Guo, R.; Zhang, M.; et al. Discovery of Embelin as a Cell-Permeable, Small-Molecular Weight Inhibitor of XIAP through Structure-Based Computational Screening of a Traditional Herbal Medicine Three-Dimensional Structure Database. J. Med. Chem. 2004, 47 (10), 2430–2440. Johnson, C. N.; Ahn, J. S.; Buck, I. M.; Chiarparin, E.; Day, J. E. H.; Hopkins, A.; Howard, S.; Lewis, E. J.; Martins, V.; Millemaggi, A.; et al. A Fragment-Derived Clinical Candidate for Antagonism of X-Linked and Cellular Inhibitor of Apoptosis Proteins: 1-(6-[(4- Fluorophenyl)Methyl]-5-(Hydroxymethyl)-3,3-Dimethyl-1 H,2 H,3 H-Pyrrolo[3,2- b]Pyridin-1-Yl)-2-[(2 R,5 R)-5-Methyl-2-([(3R)-3-Methylmor. J. Med. Chem. 2018, 61 (16), 7314–7329. Kashkar, H. X-Linked Inhibitor of Apoptosis: A Chemoresistance Factor or a Hollow Promise. Clin. Cancer Res. 2010, 16 (18), 4496–4503. Wang, S.; Bai, L.; Lu, J. Targeting Inhibitors of Apoptosis Proteins ( IAPs ) For New Breast Cancer Therapeutics. J. Mammary Gland Biol. Neoplasia 2012, 17, 217–228. Schimmer, A. D.; Welsh, K.; Pinilla, C.; Wang, Z.; Krajewska, M.; Bonneau, M. J.; Pedersen, I. M.; Kitada, S.; Scott, F. L.; Bailly-Maitre, B.; et al. Small-Molecule Antagonists of Apoptosis Suppressor XIAP Exhibit Broad Antitumor Activity. Cancer Cell 2004, 5, 25– 35. Obexer, P.; Ausserlechner, M. J. X-Linked Inhibitor of Apoptosis Protein – a Critical Death Resistance Regulator and Therapeutic Target for Personalized Cancer Therapy. Front. Oncol. 2014, 4 (197), 1–9. Fulda, S. Promises and Challenges of Smac Mimetics as Cancer Therapeutics. Clin. Cancer Res. 2015, 21 (22), 5030–5036. Motaghed, M.; Al-Hassan, F. M.; Hamid, S. S. Cellular Responses with Thymoquinone Treatment in Human Breast Cancer Cell Line MCF-7. Pharmacognosy Res. 2013, 5 (3), 200–206. Barzegar, E.; Fouladdel, S.; Komeili Movahhed, T.; Atashpour, S.; Ghahremani, M. H.; Ostad, S. N.; Azizi, E. Effects of Berberine on Proliferation, Cell Cycle Distribution and Apoptosis of Human Breast Cancer T47D and MCF7 Cell Lines. Iran. J. Basic Med. Sci. 2015, 18, 334–342. Hahm, E. R.; Singh, S. V. Withaferin A-Induced Apoptosis in Human Breast Cancer Cells Is Associated with Suppression of Inhibitor of Apoptosis Family Protein Expression. Cancer Lett. 2013, 334, 101–108. Paramasivam, A.; Sambantham, S.; Shabnam, J.; Vijayashree, J.; Jayaraman, G. Anti-Cancer Effects of Thymoquinone in Mouse Neuroblastoma ( Neuro-2a ) Cells through Caspase-3 Activation with down-Regulation of XIAP. Toxicol. Lett. 2012, 213 (2), 151– 159. Sambade, C.; Helena, M.; Lima, R. T.; Martins, M. Specific Downregulation of Bcl-2 and XIAP by RNAi Enhances the Effects of Chemotherapeutic Agents in MCF-7 Human Breast Cancer Cells. Cancer Gene Ther. 2004, 11, 309–316. Sensintaffar, J.; Scott, F. L.; Peach, R.; Hager, J. H. XIAP Is Not Required for Human Tumor Cell Survival in the Absence of an Exogenous Death Signal. BMC Cancer 2010, 10 (11), 1–13. Zhang, Y.; Wang, Y.; Gao, W.; Zhang, R.; Han, X.; Jia, M.; Guan, W. Transfer of SiRNA against XIAP Induces Apoptosis and Reduces Tumor Cells Growth Potential in Human Breast Cancer in Vitro and in Vivo. Breast Cancer Res. Treat. 2006, 96, 267–277. Foster, F. M.; Owens, T. W.; Tanianis-Hughes, J.; Clarke, R. B.; Brennan, K.; Bundred, N. J.; Streuli, C. H. Targeting Inhibitor of Apoptosis Proteins in Combination with ErbB Antagonists in Breast Cancer. Breast Cancer Res. 2009, 11 (3), 1–13. Montero, J.; Letai, A. Why Do BCL-2 Inhibitorswork and Where Should We Use Them in the Clinic? Cell Death Differ. 2018, 25, 56–64. Delbridge, A. R. D.; Strasser, A. The BCL-2 Protein Family, BH3-Mimetics and Cancer Therapy. Cell Death Differ. 2015, 22, 1071–1080. Huang, X.; Wu, Z.; Mei, Y.; Wu, M. XIAP Inhibits Autophagy via XIAP-Mdm2-P53 Signalling. EMBO J. 2013, 32 (16), 2204–2216. Merlo, P.; Cecconi, F. XIAP : Inhibitor of Two Worlds. EMBO J. 2013, 32 (16), 2187–2188. Goncharov, T.; Hedayati, S.; Mulvihill, M. M.; Izrael-Tomasevic, A.; Zobel, K.; Jeet, S.; Fedorova, A. V.; Eidenschenk, C.; DeVoss, J.; Yu, K.; et al. Disruption of XIAP-RIP2 Association Blocks NOD2-Mediated Inflammatory Signaling. Mol. Cell 2018, 69, 551–565. Giampazolias, E.; Zunino, B.; Dhayade, S.; Bock, F.; Cloix, C.; Cao, K.; Roca, A.; Lopez, J.; Ichim, G.; Proïcs, E.; et al. Mitochondrial Permeabilization Engages NF-ΚB-Dependent Anti-Tumour Activity under Caspase Deficiency. Nat. Cell Biol. 2017, 19 (9), 1116–1129. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.spa.spa.fl_str_mv |
Acceso abierto |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia Acceso abierto http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
167 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Doctorado en Ciencias - Química |
dc.publisher.department.spa.fl_str_mv |
Departamento de Química |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/77848/1/80040049.2020.pdf https://repositorio.unal.edu.co/bitstream/unal/77848/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/77848/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/77848/4/80040049.2020.pdf.jpg |
bitstream.checksum.fl_str_mv |
21161d32bcea22d5f0340dbf27f3f7b8 42fd4ad1e89814f5e4a476b409eb708c 6f3f13b02594d02ad110b3ad534cd5df 9bb68c89b72d919f941d4d22a664cf92 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089913419694080 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cuca Suarez, Luis Enrique37a99195-fb27-461b-8816-f2919eecd27cMuñoz Cendales, Diego Ricardoa2e5c6d0-0190-4030-a490-9636c674897cQuímica de Productos Naturales Vegetales Bioactivos2020-07-24T16:54:26Z2020-07-24T16:54:26Z2020-07-23Muñoz, D & Cuca, L. (2020). Estudio fitoquímico de la especie vegetal Piper eriopodon y determinación de su actividad citotóxica. Universidad Nacional de Colombia, Bogotá, Colombia.https://repositorio.unal.edu.co/handle/unal/77848The cytotoxic effect of different Colombian Piper plants was determined by the MTT assay in human cancer cell lines A549 (lung), PC-3 (prostate) and MDAMB-231 (breast). The most potent cytotoxic effect was found in the leaves ethanolic extract of P. eriopodon with IC50 values less than 25 μg/mL. After different chromatographic techniques, nine alkenylphenols (1 - 9) were isolated from the ethanolic extract of leaves from P. eriopodon and their molecular structures were identified by the analysis of the spectroscopic data (IR; NMR 1H, 13C 1D and 2D; HRESIMS), as well as by comparison of the spectral data with those reported in the literature. Of note, compounds 2, 3, 4, 5, 6, 7, 8 and 9 were reported for the first time. All isolated compounds showed cytotoxicity against the human cancer cell lines U373 (glioblastoma) and MCF7 (breast) with IC50 values in a range of 1.78 - 40.14 μg/mL. The higher cytotoxic effect of compounds 1, 2 and 3 was also shown by MTT assay using additional cancer cell lines A549 (lung), PC-3 (prostate) and non-tumourigenic HUVEC and human breast MCF10 cells. Compound 1 was the most potent inhibitor of human cancer cell viability, follow by compounds 2 and 1 respectively. Compounds 1 and 2 induced apoptosis through mitochondrial permeabilization and caspase activation while compound 3 acted on cell fate via caspase-independent/non-apoptotic mechanisms, likely involving mitochondrial dysfunctions and aberrant generation of reactive oxygen species (ROS). Finally, in silico modelling and molecular approaches suggested that all molecules inhibit XIAP by binding to XIAP-BIR3 domain. The results confirm the therapeutic potential of isolated compounds from P. eriopodon and demonstrates that XIAP is a key determinant of tumor control, at the molecular crossroad of caspase-dependent/independent cell death pathways.En este trabajo, se evaluó el efecto citotóxico de diferentes especies colombianas del género Piper, por medio del ensayo del MTT en líneas celulares de cáncer humano A549 (pulmón), PC-3 (próstata) y MDA-MB-231 (mama). El extracto etanólico de hojas de P. eriopodon presentó el mayor efecto citotóxico con valores de IC50 por debajo de 25 μg/mL; y su fraccionamiento llevó al aislamiento de nueve compuestos (1-9) de tipo alquenilfenol. Los compuestos 2, 3, 4, 5, 6, 7, 8 y 9 son reportados por primera vez y sus estructuras químicas fueron establecidas por medio del análisis detallado de sus datos espectroscópicos (IR; RMN 1H, 13C 1D y 2D, HRESIMS) y la comparación con los datos reportados en la literatura. Todos los compuestos aislados mostraron tener propiedades citotóxicas en líneas celulares de cáncer humano U373 (glioblastoma) y MCF7 (mama) con valores de IC50 en un rango de 1.78 a 40.14 μg/mL. Los compuestos 1, 2 y 3 presentaron el efecto citotóxico más potente y fueron adicionalmente evaluados en células tumorales A549 (pulmón) y PC-3 (próstata), así como en células no tumorales HUVEC y MCF10. El compuesto 3 fue el inhibidor más potente en la viabilidad celular, seguido de los compuestos 2 y 1 respectivamente. Adicionalmente, se determinó que los compuestos 1 y 2 inducen apoptosis por medio de permeabilización mitocondrial y activación de caspasas, mientras que el compuesto 3 induce muerte celular independiente de caspasas que involucra disfunción mitocondrial y una producción aberrante de especies reactivas de oxígeno (ROS). Finalmente, se realizaron estudios in silico con el fin de evaluar el potencial efecto antagonista sobre la proteína XIAP, encontrando que los tres compuestos evaluados podrían unirse al dominio BIR3 de la proteína XIAP. Estos resultados confirman el potencial farmacológico que tienen los compuestos aislados de P. eriopodon y permiten demostrar el papel fundamental que tiene la proteína XIAP en el control de tumores, proporcionando información importante sobre la participación de XIAP en mecanismos de muerte celular tanto dependientes como independientes de caspasas.ColcienciasConvocatoria Nacional para estudios de Doctorado en Colombia "Francisco José de Caldas" No 528 de 2011Línea de Investigación: Bioprospección en agentes terapéuticosDoctorado167application/pdfspa540 - Química y ciencias afinesCáncerApoptosisMuerte independiente de caspasasXIAPAlquenilfenolesPiper eriopodonCancerApoptosisCaspase independent cell deathXIAPAlkenylphenolsPiper eriopodonEstudio fitoquímico de la especie vegetal Piper eriopodon y determinación de su actividad citotóxicaTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06TextBogotá - Ciencias - Doctorado en Ciencias - QuímicaDepartamento de QuímicaUniversidad Nacional de Colombia - Sede BogotáShen, B. A New Golden Age of Natural Products Drug Discovery. Cell 2015, 163 (6), 1297–1300.Harvey, A. L.; Edrada-Ebel, R.; Quinn, R. J. The Re-Emergence of Natural Products for Drug Discovery in the Genomics Era. Nat. Rev. Drug Discov. 2015, 14 (2), 111–129.Guerra, A. R.; Duarte, M. F.; Duarte, I. F. Targeting Tumor Metabolism with Plant-Derived Natural Products: Emerging Trends in Cancer Therapy. J. Agric. Food Chem. 2018, 66 (41), 10663–10658.Carocho, M.; Ferreira, I. The Role of Phenolic Compounds in the Fight against Cancer – A Review. Anticancer. Agents Med. Chem. 2013, No. 13, 1236–1258.Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 2018, 5 (93), 1–16.Jafari, S.; Saeidnia, S.; Abdollahi, M. Role of Natural Phenolic Compounds in Cancer Chemoprevention via Regulation of the Cell Cycle. Curr. Pharm. Biotechnol. 2014.Diaz, L. E.; Munoz, D. R.; Prieto, R. E.; Cuervo, S. A.; Gonzalez, D. L.; Guzman, J. D.; Bhakta, S. Antioxidant, Antitubercular and Cytotoxic Activities of Piper imperiale. Molecules 2012, 17 (4), 4142–4157.Wang, Y.-H.; Lee, K.-H.; Long, C.-L.; Morris-Natschke, S.; Niu, H.-M.; Yang, J. Anticancer Principles from Medicinal Piper Plants. J. Tradit. Complement. Med. 2014, 4 (1), 8–16.Parmar, V. S.; Jain, S. C.; Gupta, S.; Talwar, S.; Rajwanshi, V. K.; Kumar, R.; Azim, A.; Malhotra, S.; Kumar, N.; Jain, R.; et al. Polyphenols and Alkaloids from Piper Species. Phytochemistry 1998, 49 (4), 1069–1078.Valdivia, C.; Marquez, N.; Eriksson, J.; Vilaseca, A.; Muñoz, E.; Sterner, O. Bioactive Alkenylphenols from Piper obliquum. Bioorganic Med. Chem. 2008, 16 (7), 4120–4126.Ali, I.; Satti, N. K.; Dutt, P.; Prasad, R.; Khan, I. A. Hydroxychavicol: A Phytochemical Targeting Cutaneous Fungal Infections. Sci. Rep. 2016, 6 (37867), 1–20.Mgbeahuruike, E. E.; Yrjönen, T.; Vuorela, H.; Holm, Y. Bioactive Compounds from Medicinal Plants: Focus on Piper Species. South African J. Bot. 2017, 112, 54–69.Sanubol, A.; Chaveerach, A.; Tanee, T.; Sudmoon, R. Pre-Clinical Evaluation of Extracts and Essential Oils from Betel-like Scent Piper Species Identifed Potential Cancer Treatment. African J. Tradit. Complement. Altern. Med. AJTCAM 2017, 14 (1), 89–102.Rekha, V. P. B.; Kollipara, M.; Srinivasa Gupta, B. R. S. S.; Bharath, Y.; Pulicherla, K. K. A Review on Piper betle L.: Nature’s Promising Medicinal Reservoir. Am. J. Ethnomedicine 2014, 1 (5), 276–289.Durant-Archibold, A. A.; Santana, A. I.; Gupta, M. P. Ethnomedical Uses and Pharmacological Activities of Most Prevalent Species of Genus Piper in Panama: A Review. J. Ethnopharmacol. 2018, 217, 63–82.Gundala, S. R.; Yang, C.; Mukkavilli, R.; Paranjpe, R.; Brahmbhatt, M.; Pannu, V.; Cheng, A.; Reid, M. D.; Aneja, R. Hydroxychavicol, a Betel Leaf Component, Inhibits Prostate Cancer through ROS-Driven DNA Damage and Apoptosis. Toxicol. Appl. Pharmacol. 2014, 280, 86–96.Benfica, P. L.; Ávila, R. I. de; Rodrigues, B. D. S.; Cortez, A. P.; Batista, A. C.; Gaeti, M. P. N.; Lima, E. M.; Rezende, K. R.; Valadares, M. C. 4-Nerolidylcatechol: Apoptosis by Mitochondrial Mechanisms with Reduction in Cyclin D1 at G0/G1 Stage of the Chronic Myelogenous K562 Cell Line. Pharm. Biol. 2017, 55 (1), 1899–1908.Piska, K.; Gunia-Krzyżak, A.; Koczurkiewicz, P.; Wójcik-Pszczoła, K.; Pękala, E. Piperlongumine (Piplartine) as a Lead Compound for Anticancer Agents – Synthesis and Properties of Analogues: A Mini-Review. Eur. J. Med. Chem. 2018, 156, 13–20.Orjala, J.; Mian, P.; Rali, T.; Sticher, O. Gibbilimbols A-D, Cytotoxic and Antibacterial Alkenylphenols from Piper gibbilimbum. J. Nat. Prod. 1998, 61 (7), 939–941.Hanahan, D.; Weinberg, R. A. Hallmarks of Cancer: The next Generation. Cell 2011, 144 (5), 646–674.Fulda, S.; Vucic, D. Targeting IAP Proteins for Therapeutic Intervention in Cancer. Nat. Rev. Drug Discov. 2012, 11 (4), 331–331.Lalaoui, N.; Vaux, D. L. Recent Advances in Understanding Inhibitor of Apoptosis Proteins. F1000Research. 2018, pp 1–15.Rathore, R.; McCallum, J. E.; Varghese, E.; Florea, A.-M.; Büsselberg, D. Overcoming Chemotherapy Drug Resistance by Targeting Inhibitors of Apoptosis Proteins (IAPs). Apoptosis 2017, 22 (7), 898–919.Schimmer, a D.; Dalili, S.; Batey, R. a; Riedl, S. J. Targeting XIAP for the Treatment of Malignancy. Cell Death Differ. 2006, 13 (2), 179–188.Tamanini, E.; Buck, I. M.; Chessari, G.; Chiarparin, E.; Day, J. E. H.; Frederickson, M.; Griffiths-Jones, C. M.; Hearn, K.; Heightman, T. D.; Iqbal, A.; et al. Discovery of a Potent Non-Peptidomimetic, Small-Molecule Antagonist of Cellular Inhibitor of Apoptosis Protein 1 (CIAP1) and X-Linked Inhibitor of Apoptosis Protein (XIAP). J. Med. Chem. 2017, 60 (11), 4611–4625.Cong, H.; Xu, L.; Wu, Y.; Qu, Z.; Bian, T.; Zhang, W.; Xing, C.; Zhuang, C. Inhibitor of Apoptosis Protein (IAP) Antagonists in Anticancer Agent Discovery: Current Status and Perspectives. J. Med. Chem. 2019, 62 (12), 5750–5772.Riss, T. L.; Moravec, R. A.; Niles, A. L.; Duellman, S.; Benink, H. A.; Worzella, T. J.; Minor, L. Cell Viability Assays. In Assay Guidance Manual; Eli Lilly & Company and the National Center for Advancing Translational Sciences, 2004.Bizzozero, L.; Cazzato, D.; Cervia, D.; Assi, E.; Simbari, F.; Pagni, F.; De Palma, C.; Monno, A.; Verdelli, C.; Querini, P. R.; et al. Acid Sphingomyelinase Determines Melanoma Progression and Metastatic Behaviour via the Microphtalmia-Associated Transcription Factor Signalling Pathway. Cell Death Differ. 2014, 21, 507–520.Perrotta, C.; Buonanno, F.; Zecchini, S.; Giavazzi, A.; Proietti Serafini, F.; Catalani, E.; Guerra, L.; Belardinelli, M. C.; Picchietti, S.; Fausto, A. M.; et al. Climacostol Reduces Tumour Progression in a Mouse Model of Melanoma via the P53-Dependent Intrinsic Apoptotic Programme. Sci. Rep. 2016, 6 (27281), 1–14.Assi, E.; Cervia, D.; Bizzozero, L.; Capobianco, A.; Pambianco, S.; Morisi, F.; De Palma, C.; Moscheni, C.; Pellegrino, P.; Clementi, E.; et al. Modulation of Acid Sphingomyelinase in Melanoma Reprogrammes the Tumour Immune Microenvironment. Mediators Inflamm. 2015, 2015 (130482), 1–13.Vantaggiato, C.; Castelli, M.; Giovarelli, M.; Orso, G.; Bassi, M. T.; Clementi, E.; De Palma, C. The Fine Tuning of Drp1-Dependent Mitochondrial Remodeling and Autophagy Controls Neuronal Differentiation. Front. Cell. Neurosci. 2019, 13 (120), 1–20.Chessari, G.; Buck, I. M.; Day, J. E. H.; Day, P. J.; Iqbal, A.; Johnson, C. N.; Lewis, E. J.; Martins, V.; Miller, D.; Reader, M.; et al. Fragment-Based Drug Discovery Targeting Inhibitor of Apoptosis Proteins: Discovery of a Non-Alanine Lead Series with Dual Activity Against CIAP1 and XIAP. J. Med. Chem. 2015, 58 (16), 6574–6588.Pfisterer, P. H.; Wolber, G.; Efferth, T.; Rollinger, J. M.; Stuppner, H. Natural Products in Structure-Assisted Design of Molecular Cancer Therapeutics. Curr. Pharm. Des. 2010, 16 (15), 1718–1741.Muñoz, D.; Sandoval-Hernandez, A.; Delgado, W.; Arboleda, G.; Cuca, L. In Vitro Anticancer Screening of Colombian Plants from Piper Genus (Piperaceae). J. Pharmacogn. Phyther. 2018, 10 (9), 174–181.May, J. E.; Donaldson, C.; Gynn, L.; Ruth Morse, H. Chemotherapy-Induced Genotoxic Damage to Bone Marrow Cells: Long-Term Implications. Mutagenesis 2018, 33, 241– 251.Wang, Y.; Probin, V.; Zhou, D. Cancer Therapy-Induced Residual Bone Marrow Injury: Mechanisms of Induction and Implication for Therapy. Curr. Cancer Ther. Rev. 2006, 2 (3), 271–279.Moloney, J. N.; Cotter, T. G. ROS Signalling in the Biology of Cancer. Semin. Cell Dev. Biol. 2018, 80, 50–64.Tait, S. W. G.; Green, D. R. Caspase-Independent Cell Death: Leaving the Set without the final Cut. Oncogene 2008, 27, 6452–6461.Ye, J.; Zhang, R.; Wu, F.; Zhai, L.; Wang, K.; Xiao, M.; Xie, T.; Sui, X. Non-Apoptotic Cell Death in Malignant Tumor Cells and Natural Compounds. Cancer Lett. 2018, 420, 210–227.Galluzzi, L.; Kepp, O.; Chan, F. K.-M.; Kroemer, G. Necroptosis: Mechanisms and relevance to Disease. Annu. Rev. Pathol. Mech. Dis. 2017, 12 (4), 1–28.Green, D. R. The Coming Decade of Cell Death Research: Five Riddles. Cell 2019, 177, 1094–1107.Galluzzi, L.; Vitale, I.; Aaronson, S. A.; Abrams, J. M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D. W.; et al. Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018, 25, 486–541.Holze, C.; Michaudel, C.; MacKowiak, C.; Haas, D. A.; Benda, C.; Hubel, P.; Pennemann, F. L.; Schnepf, D.; Wettmarshausen, J.; Braun, M.; et al. Oxeiptosis, a ROS-Induced Caspase- Independent Apoptosis-like Cell-Death Pathway Article. Nat. Immunol. 2018, 19 (2), 130–140.Chai, J.; Shiozaki, E.; Srinivasula, S. M.; Wu, Q.; Dataa, P.; Alnemri, E. S.; Shi, Y. Structural Basis of Caspase-7 Inhibition by XIAP. Cell 2001, 104, 769–780.Shiozaki, E. N.; Chai, J.; Rigotti, D. J.; Riedl, S. J.; Li, P.; Srinivasula, S. M.; Alnemri, E. S.; Fairman, R.; Shi, Y. Mechanism of XIAP-Mediated Inhibition of Caspase-9. Mol. Cell 2003, 11, 519–527.Suzuki, Y.; Nakabayashi, Y.; Nakata, K.; Reed, J. C.; Takahashi, R. X-Linked Inhibitor of Apoptosis Protein (XIAP) Inhibits Caspase-3 and -7 in Distinct Modes. J. Biol. Chem. 2001, 276 (29), 27058–27063.Lewis, J.; Burstein, E.; Reffey, S. B.; Bratton, S. B.; Roberts, A. B.; Duckett, C. S. Uncoupling of the Signaling and Caspase-Inhibitory Properties of X-Linked Inhibitor of Apoptosis. J. Biol. Chem. 2004, 279 (10), 9023–9029.Wicki, S.; Gurzeler, U.; Wong, W. W. L.; Jost, P. J.; Bachmann, D.; Kaufmann, T. Loss of XIAP Facilitates Switch to TNFα-Induced Necroptosis in Mouse Neutrophils. Cell Death Dis. 2016, 7, 1–13.Yabal, M.; Jost, P. J. XIAP as a Regulator of Inflammatory Cell Death: The TNF and RIP3 Angle. Mol. Cell. Oncol. 2015, 2 (1), 1–2.Nikolovska-Coleska, Z.; Xu, L.; Hu, Z.; Tomita, Y.; Li, P.; Roller, P. P.; Wang, R.; Fang, X.; Guo, R.; Zhang, M.; et al. Discovery of Embelin as a Cell-Permeable, Small-Molecular Weight Inhibitor of XIAP through Structure-Based Computational Screening of a Traditional Herbal Medicine Three-Dimensional Structure Database. J. Med. Chem. 2004, 47 (10), 2430–2440.Johnson, C. N.; Ahn, J. S.; Buck, I. M.; Chiarparin, E.; Day, J. E. H.; Hopkins, A.; Howard, S.; Lewis, E. J.; Martins, V.; Millemaggi, A.; et al. A Fragment-Derived Clinical Candidate for Antagonism of X-Linked and Cellular Inhibitor of Apoptosis Proteins: 1-(6-[(4- Fluorophenyl)Methyl]-5-(Hydroxymethyl)-3,3-Dimethyl-1 H,2 H,3 H-Pyrrolo[3,2- b]Pyridin-1-Yl)-2-[(2 R,5 R)-5-Methyl-2-([(3R)-3-Methylmor. J. Med. Chem. 2018, 61 (16), 7314–7329.Kashkar, H. X-Linked Inhibitor of Apoptosis: A Chemoresistance Factor or a Hollow Promise. Clin. Cancer Res. 2010, 16 (18), 4496–4503.Wang, S.; Bai, L.; Lu, J. Targeting Inhibitors of Apoptosis Proteins ( IAPs ) For New Breast Cancer Therapeutics. J. Mammary Gland Biol. Neoplasia 2012, 17, 217–228.Schimmer, A. D.; Welsh, K.; Pinilla, C.; Wang, Z.; Krajewska, M.; Bonneau, M. J.; Pedersen, I. M.; Kitada, S.; Scott, F. L.; Bailly-Maitre, B.; et al. Small-Molecule Antagonists of Apoptosis Suppressor XIAP Exhibit Broad Antitumor Activity. Cancer Cell 2004, 5, 25– 35.Obexer, P.; Ausserlechner, M. J. X-Linked Inhibitor of Apoptosis Protein – a Critical Death Resistance Regulator and Therapeutic Target for Personalized Cancer Therapy. Front. Oncol. 2014, 4 (197), 1–9.Fulda, S. Promises and Challenges of Smac Mimetics as Cancer Therapeutics. Clin. Cancer Res. 2015, 21 (22), 5030–5036.Motaghed, M.; Al-Hassan, F. M.; Hamid, S. S. Cellular Responses with Thymoquinone Treatment in Human Breast Cancer Cell Line MCF-7. Pharmacognosy Res. 2013, 5 (3), 200–206.Barzegar, E.; Fouladdel, S.; Komeili Movahhed, T.; Atashpour, S.; Ghahremani, M. H.; Ostad, S. N.; Azizi, E. Effects of Berberine on Proliferation, Cell Cycle Distribution and Apoptosis of Human Breast Cancer T47D and MCF7 Cell Lines. Iran. J. Basic Med. Sci. 2015, 18, 334–342.Hahm, E. R.; Singh, S. V. Withaferin A-Induced Apoptosis in Human Breast Cancer Cells Is Associated with Suppression of Inhibitor of Apoptosis Family Protein Expression. Cancer Lett. 2013, 334, 101–108.Paramasivam, A.; Sambantham, S.; Shabnam, J.; Vijayashree, J.; Jayaraman, G. Anti-Cancer Effects of Thymoquinone in Mouse Neuroblastoma ( Neuro-2a ) Cells through Caspase-3 Activation with down-Regulation of XIAP. Toxicol. Lett. 2012, 213 (2), 151– 159.Sambade, C.; Helena, M.; Lima, R. T.; Martins, M. Specific Downregulation of Bcl-2 and XIAP by RNAi Enhances the Effects of Chemotherapeutic Agents in MCF-7 Human Breast Cancer Cells. Cancer Gene Ther. 2004, 11, 309–316.Sensintaffar, J.; Scott, F. L.; Peach, R.; Hager, J. H. XIAP Is Not Required for Human Tumor Cell Survival in the Absence of an Exogenous Death Signal. BMC Cancer 2010, 10 (11), 1–13.Zhang, Y.; Wang, Y.; Gao, W.; Zhang, R.; Han, X.; Jia, M.; Guan, W. Transfer of SiRNA against XIAP Induces Apoptosis and Reduces Tumor Cells Growth Potential in Human Breast Cancer in Vitro and in Vivo. Breast Cancer Res. Treat. 2006, 96, 267–277.Foster, F. M.; Owens, T. W.; Tanianis-Hughes, J.; Clarke, R. B.; Brennan, K.; Bundred, N. J.; Streuli, C. H. Targeting Inhibitor of Apoptosis Proteins in Combination with ErbB Antagonists in Breast Cancer. Breast Cancer Res. 2009, 11 (3), 1–13.Montero, J.; Letai, A. Why Do BCL-2 Inhibitorswork and Where Should We Use Them in the Clinic? Cell Death Differ. 2018, 25, 56–64.Delbridge, A. R. D.; Strasser, A. The BCL-2 Protein Family, BH3-Mimetics and Cancer Therapy. Cell Death Differ. 2015, 22, 1071–1080.Huang, X.; Wu, Z.; Mei, Y.; Wu, M. XIAP Inhibits Autophagy via XIAP-Mdm2-P53 Signalling. EMBO J. 2013, 32 (16), 2204–2216.Merlo, P.; Cecconi, F. XIAP : Inhibitor of Two Worlds. EMBO J. 2013, 32 (16), 2187–2188.Goncharov, T.; Hedayati, S.; Mulvihill, M. M.; Izrael-Tomasevic, A.; Zobel, K.; Jeet, S.; Fedorova, A. V.; Eidenschenk, C.; DeVoss, J.; Yu, K.; et al. Disruption of XIAP-RIP2 Association Blocks NOD2-Mediated Inflammatory Signaling. Mol. Cell 2018, 69, 551–565.Giampazolias, E.; Zunino, B.; Dhayade, S.; Bock, F.; Cloix, C.; Cao, K.; Roca, A.; Lopez, J.; Ichim, G.; Proïcs, E.; et al. Mitochondrial Permeabilization Engages NF-ΚB-Dependent Anti-Tumour Activity under Caspase Deficiency. Nat. Cell Biol. 2017, 19 (9), 1116–1129.ORIGINAL80040049.2020.pdf80040049.2020.pdfapplication/pdf40180711https://repositorio.unal.edu.co/bitstream/unal/77848/1/80040049.2020.pdf21161d32bcea22d5f0340dbf27f3f7b8MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.unal.edu.co/bitstream/unal/77848/3/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/77848/2/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD52THUMBNAIL80040049.2020.pdf.jpg80040049.2020.pdf.jpgGenerated Thumbnailimage/jpeg5304https://repositorio.unal.edu.co/bitstream/unal/77848/4/80040049.2020.pdf.jpg9bb68c89b72d919f941d4d22a664cf92MD54unal/77848oai:repositorio.unal.edu.co:unal/778482023-07-12 23:03:21.2Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg== |