Implementation of some Bayesian Filters for structural system identification

gráficos, tablas

Autores:
Jaramillo Moreno, Sebastian
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2018
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82084
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82084
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines
Sistemas Estructurales
Structural Systems
Bayesian filters
Bayesian inference
Kalman filter
Unscented Kalman filter
Particle filter
Filtros bayesianos
Inferencia bayesiana
Filtro de Kalman
Filtro de Kalman Unscented
Filtro de Partículas
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_c78b86631efb298c7911df8aabc31769
oai_identifier_str oai:repositorio.unal.edu.co:unal/82084
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Implementation of some Bayesian Filters for structural system identification
dc.title.translated.spa.fl_str_mv Implementación de algunos Filtros Bayesianos para la identificación de sistemas estructurales
title Implementation of some Bayesian Filters for structural system identification
spellingShingle Implementation of some Bayesian Filters for structural system identification
620 - Ingeniería y operaciones afines
Sistemas Estructurales
Structural Systems
Bayesian filters
Bayesian inference
Kalman filter
Unscented Kalman filter
Particle filter
Filtros bayesianos
Inferencia bayesiana
Filtro de Kalman
Filtro de Kalman Unscented
Filtro de Partículas
title_short Implementation of some Bayesian Filters for structural system identification
title_full Implementation of some Bayesian Filters for structural system identification
title_fullStr Implementation of some Bayesian Filters for structural system identification
title_full_unstemmed Implementation of some Bayesian Filters for structural system identification
title_sort Implementation of some Bayesian Filters for structural system identification
dc.creator.fl_str_mv Jaramillo Moreno, Sebastian
dc.contributor.advisor.none.fl_str_mv Alvarez Marín, Diego Andrés
dc.contributor.author.none.fl_str_mv Jaramillo Moreno, Sebastian
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines
topic 620 - Ingeniería y operaciones afines
Sistemas Estructurales
Structural Systems
Bayesian filters
Bayesian inference
Kalman filter
Unscented Kalman filter
Particle filter
Filtros bayesianos
Inferencia bayesiana
Filtro de Kalman
Filtro de Kalman Unscented
Filtro de Partículas
dc.subject.lemb.spa.fl_str_mv Sistemas Estructurales
dc.subject.lemb.eng.fl_str_mv Structural Systems
dc.subject.proposal.eng.fl_str_mv Bayesian filters
Bayesian inference
Kalman filter
Unscented Kalman filter
Particle filter
dc.subject.proposal.spa.fl_str_mv Filtros bayesianos
Inferencia bayesiana
Filtro de Kalman
Filtro de Kalman Unscented
Filtro de Partículas
description gráficos, tablas
publishDate 2018
dc.date.issued.none.fl_str_mv 2018-12
dc.date.accessioned.none.fl_str_mv 2022-08-24T21:38:00Z
dc.date.available.none.fl_str_mv 2022-08-24T21:38:00Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Image
Text
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82084
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82084
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [Ahsan and O’Connor, 1994] Ahsan, M. and O’Connor, K. M. (1994). A reappraisal of the kalman filtering technique, as applied in river flow forecasting. Journal of Hydrology, 161(1-4):197–226.
[Arulampalam et al., 2002] Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on signal processing, 50(2):174–188.
[Bertsekas and Tsitsiklis, 2002] Bertsekas, D. P. and Tsitsiklis, J. N. (2002). Introduction to probability, volume 1. Athena Scientific Belmont, MA.
[Bouc, 1967] Bouc, R. (1967). Forced vibrations of mechanical systems with hysteresis. In Proc. of the Fourth Conference on Nonlinear Oscillations, Prague.
[Chen, 1998] Chen, C.-T. (1998). Linear system theory and design. Oxford University Press, Inc.
[Clough and Penzien, 1995] Clough, R. W. and Penzien, J. (1995). Dynamics of Structures. Berkeley: Computers & Structures, Inc.
[Doucet et al., 2001] Doucet, A., De Freitas, N., and Gordon, N. (2001). An introduction to sequential monte carlo methods. Sequential Monte Carlo Methods in Practice, pages 3–13.
[Doucet et al., 2000] Doucet, A., Godsill, S., and Andrieu, C. (2000). On sequential monte carlo sampling methods for bayesian filtering. Statistics and computing.
[Farrar and Worden, 2012] Farrar, C. R. and Worden, K. (2012). Structural health monitoring: a machine learning perspective. John Wiley & Sons.
[Majidi Khalilabad et al., 2018] Majidi Khalilabad, N., Mollazadeh, M., Akbarpour, A., and Khorashadizadeh, S. a. (2018). Leak detection in water distribution system using non-linear kalman filter. International Journal of Optimization in Civil Engineering.
[Mendenhall et al., 2012] Mendenhall, W., Beaver, R. J., and Beaver, B. M. (2012). Introduction to probability and statistics. Cengage Learning.
[Papoulis and Pillai, 2002] Papoulis, A. and Pillai, S. U. (2002). Probability, random variables, and stochastic processes. Tata McGraw-Hill Education.
[Särkkä, 2013] Särkkä, S. (2013). Bayesian Filtering and Smoothing. Bayesian Filtering and Smoothing. Cambridge University Press.
[Wan and Van Der Merwe, 2001] Wan, E. A. and Van Der Merwe, R. (2001). The unscented kalman filter. Kalman filtering and neural networks.
[Wikipedia, 2018] Wikipedia (2018). Bouc–wen model of hysteresis. https:// en.wikipedia.org/wiki/Bouc-Wen_model_of_hysteresis. [Online; accessed 7- November-2018].
[Wu and Smyth, 2007] Wu, M. and Smyth, A. W. (2007). Application of the unscented kalman filter for real-time nonlinear structural system identification. Structural Control and Health Monitoring.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 90 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Ingeniería Civil
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Civil
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería y Arquitectura
dc.publisher.place.spa.fl_str_mv Manizales, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Manizales
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82084/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82084/2/114026.2018.pdf
https://repositorio.unal.edu.co/bitstream/unal/82084/3/114026.2018.pdf.jpg
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
cff2a612f0feb6bafff7f19a0a555170
02e52d01c8074165c7e0973644353653
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089396667809792
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Alvarez Marín, Diego Andrésd383c3aef5a53c7df5fa6f1fa9be0f0fJaramillo Moreno, Sebastian3e8b63c9c01b61f17e7ede98052102c92022-08-24T21:38:00Z2022-08-24T21:38:00Z2018-12https://repositorio.unal.edu.co/handle/unal/82084Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/gráficos, tablasThe present study deals with three different methods for structural identification: the Kalman filter, the Unscented Kalman filter and the Particle filter. The Kalman filter is a known filter for state estimation in linear systems. To perform the estimation in non-linear systems, methods such as the Unscented Kalman filter and the Particle filter were developed. The Unscented Kalman filter uses the Unscented transform to approximate the different distributions to a Gaussian, allowing it to have certain similarities with the Kalman filter. The Particle filter uses Monte Carlo methods to generate samples of arbitrary probability distributions in various dimensions, which are propagated through the system in order to approximate values of the new probability distribution. Finally, a set of examples are made that allow to compare the accuracy and computational speed of the different filters and evaluate their performance. (Texto tomado de la fuente)El presente estudio trata tres diferentes métodos para identificación estructural: el Filtro de Kalman, el Filtro de Kalman Unscented y el Filtro de Partículas. El Filtro de Kalman es un conocido Filtro para la estimación de estados en sistemas lineales. Para realizar la estimación en sistemas no-lineales, se desarrollaron métodos como el Filtro de Kalman Unscented y el Filtro de Partículas. El Filtro de Kalman Unscented usa la transformada Unscented para aproximar las diferentes distribuciones a Gaussianas, permitiéndole tener ciertas similitudes con el Filtro de Kalman. El Filtro de Partículas usa métodos de Monte Carlo para generar muestras de distribuciones de probabilidad arbitrarias en varias dimensiones, las cuales se propagan por el sistema para conocer una forma aproximada de la nueva distribución de probabilidad. Finalmente, se realiza una serie de ejemplos que permiten comparar la precisión y la velocidad computacional de los diferentes filtros y evaluar su desempeño.Ganador de la Convocatoria: “Mejores Trabajos de Grado de Pregrado” Versión XXVIII - Resolución 010 de 2019PregradoIngeniero CivilIngeniería Civilxviii, 90 páginasapplication/pdfengUniversidad Nacional de ColombiaManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Ingeniería CivilDepartamento de Ingeniería CivilFacultad de Ingeniería y ArquitecturaManizales, ColombiaUniversidad Nacional de Colombia - Sede Manizales620 - Ingeniería y operaciones afinesSistemas EstructuralesStructural SystemsBayesian filtersBayesian inferenceKalman filterUnscented Kalman filterParticle filterFiltros bayesianosInferencia bayesianaFiltro de KalmanFiltro de Kalman UnscentedFiltro de PartículasImplementation of some Bayesian Filters for structural system identificationImplementación de algunos Filtros Bayesianos para la identificación de sistemas estructuralesTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fImageText[Ahsan and O’Connor, 1994] Ahsan, M. and O’Connor, K. M. (1994). A reappraisal of the kalman filtering technique, as applied in river flow forecasting. Journal of Hydrology, 161(1-4):197–226.[Arulampalam et al., 2002] Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on signal processing, 50(2):174–188.[Bertsekas and Tsitsiklis, 2002] Bertsekas, D. P. and Tsitsiklis, J. N. (2002). Introduction to probability, volume 1. Athena Scientific Belmont, MA.[Bouc, 1967] Bouc, R. (1967). Forced vibrations of mechanical systems with hysteresis. In Proc. of the Fourth Conference on Nonlinear Oscillations, Prague.[Chen, 1998] Chen, C.-T. (1998). Linear system theory and design. Oxford University Press, Inc.[Clough and Penzien, 1995] Clough, R. W. and Penzien, J. (1995). Dynamics of Structures. Berkeley: Computers & Structures, Inc.[Doucet et al., 2001] Doucet, A., De Freitas, N., and Gordon, N. (2001). An introduction to sequential monte carlo methods. Sequential Monte Carlo Methods in Practice, pages 3–13.[Doucet et al., 2000] Doucet, A., Godsill, S., and Andrieu, C. (2000). On sequential monte carlo sampling methods for bayesian filtering. Statistics and computing.[Farrar and Worden, 2012] Farrar, C. R. and Worden, K. (2012). Structural health monitoring: a machine learning perspective. John Wiley & Sons.[Majidi Khalilabad et al., 2018] Majidi Khalilabad, N., Mollazadeh, M., Akbarpour, A., and Khorashadizadeh, S. a. (2018). Leak detection in water distribution system using non-linear kalman filter. International Journal of Optimization in Civil Engineering.[Mendenhall et al., 2012] Mendenhall, W., Beaver, R. J., and Beaver, B. M. (2012). Introduction to probability and statistics. Cengage Learning.[Papoulis and Pillai, 2002] Papoulis, A. and Pillai, S. U. (2002). Probability, random variables, and stochastic processes. Tata McGraw-Hill Education.[Särkkä, 2013] Särkkä, S. (2013). Bayesian Filtering and Smoothing. Bayesian Filtering and Smoothing. Cambridge University Press.[Wan and Van Der Merwe, 2001] Wan, E. A. and Van Der Merwe, R. (2001). The unscented kalman filter. Kalman filtering and neural networks.[Wikipedia, 2018] Wikipedia (2018). Bouc–wen model of hysteresis. https:// en.wikipedia.org/wiki/Bouc-Wen_model_of_hysteresis. [Online; accessed 7- November-2018].[Wu and Smyth, 2007] Wu, M. and Smyth, A. W. (2007). Application of the unscented kalman filter for real-time nonlinear structural system identification. Structural Control and Health Monitoring.BibliotecariosEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unal.edu.co/bitstream/unal/82084/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINAL114026.2018.pdf114026.2018.pdfTesis de Ingeniería Civilapplication/pdf10478064https://repositorio.unal.edu.co/bitstream/unal/82084/2/114026.2018.pdfcff2a612f0feb6bafff7f19a0a555170MD52THUMBNAIL114026.2018.pdf.jpg114026.2018.pdf.jpgGenerated Thumbnailimage/jpeg3861https://repositorio.unal.edu.co/bitstream/unal/82084/3/114026.2018.pdf.jpg02e52d01c8074165c7e0973644353653MD53unal/82084oai:repositorio.unal.edu.co:unal/820842024-08-09 23:20:44.766Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=