Efecto de fuentes de calcio en parámetros fisiológicos y rendimiento de papa (Solanum tuberosum L., grupo Phureja) en condiciones de déficit hídrico
ilustraciones, gráficas, tablas
- Autores:
-
Cárdenas Pira, Wendy Tatiana
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/78743
- Palabra clave:
- 630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación
Estrés de sequia
Rendimiento de cultivos
Calcio
Papa
drought stress
crop yield
calcium
potatoes
Inicio de tuberización
Estado hídrico foliar
Pérdida de electrolitos
Conductancia estomática
Rendimiento en tubérculo
Tolerancia al estrés
Tuber initiation
Leaf water status
Electrolyte leakage
Stomatal conductance
Tuber yield
Stress tolerance
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_c747f0b14362909694290ce4a876cb6a |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/78743 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Efecto de fuentes de calcio en parámetros fisiológicos y rendimiento de papa (Solanum tuberosum L., grupo Phureja) en condiciones de déficit hídrico |
title |
Efecto de fuentes de calcio en parámetros fisiológicos y rendimiento de papa (Solanum tuberosum L., grupo Phureja) en condiciones de déficit hídrico |
spellingShingle |
Efecto de fuentes de calcio en parámetros fisiológicos y rendimiento de papa (Solanum tuberosum L., grupo Phureja) en condiciones de déficit hídrico 630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación Estrés de sequia Rendimiento de cultivos Calcio Papa drought stress crop yield calcium potatoes Inicio de tuberización Estado hídrico foliar Pérdida de electrolitos Conductancia estomática Rendimiento en tubérculo Tolerancia al estrés Tuber initiation Leaf water status Electrolyte leakage Stomatal conductance Tuber yield Stress tolerance |
title_short |
Efecto de fuentes de calcio en parámetros fisiológicos y rendimiento de papa (Solanum tuberosum L., grupo Phureja) en condiciones de déficit hídrico |
title_full |
Efecto de fuentes de calcio en parámetros fisiológicos y rendimiento de papa (Solanum tuberosum L., grupo Phureja) en condiciones de déficit hídrico |
title_fullStr |
Efecto de fuentes de calcio en parámetros fisiológicos y rendimiento de papa (Solanum tuberosum L., grupo Phureja) en condiciones de déficit hídrico |
title_full_unstemmed |
Efecto de fuentes de calcio en parámetros fisiológicos y rendimiento de papa (Solanum tuberosum L., grupo Phureja) en condiciones de déficit hídrico |
title_sort |
Efecto de fuentes de calcio en parámetros fisiológicos y rendimiento de papa (Solanum tuberosum L., grupo Phureja) en condiciones de déficit hídrico |
dc.creator.fl_str_mv |
Cárdenas Pira, Wendy Tatiana |
dc.contributor.advisor.spa.fl_str_mv |
Moreno Fonseca, Liz Patricia Rodriguez Molano, Luis Ernesto |
dc.contributor.author.spa.fl_str_mv |
Cárdenas Pira, Wendy Tatiana |
dc.contributor.researchgroup.spa.fl_str_mv |
Fisiología y Estrés Abiótico en Plantas |
dc.subject.ddc.spa.fl_str_mv |
630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación |
topic |
630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantación Estrés de sequia Rendimiento de cultivos Calcio Papa drought stress crop yield calcium potatoes Inicio de tuberización Estado hídrico foliar Pérdida de electrolitos Conductancia estomática Rendimiento en tubérculo Tolerancia al estrés Tuber initiation Leaf water status Electrolyte leakage Stomatal conductance Tuber yield Stress tolerance |
dc.subject.agrovoc.spa.fl_str_mv |
Estrés de sequia Rendimiento de cultivos Calcio Papa |
dc.subject.agrovoc.eng.fl_str_mv |
drought stress crop yield calcium potatoes |
dc.subject.proposal.spa.fl_str_mv |
Inicio de tuberización Estado hídrico foliar Pérdida de electrolitos Conductancia estomática Rendimiento en tubérculo Tolerancia al estrés |
dc.subject.proposal.eng.fl_str_mv |
Tuber initiation Leaf water status Electrolyte leakage Stomatal conductance Tuber yield Stress tolerance |
description |
ilustraciones, gráficas, tablas |
publishDate |
2020 |
dc.date.issued.spa.fl_str_mv |
2020-11-05 |
dc.date.accessioned.spa.fl_str_mv |
2021-01-14T20:23:55Z |
dc.date.available.spa.fl_str_mv |
2021-01-14T20:23:55Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/78743 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/78743 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Ahmadi, S., Andersen, M., Flauborg, F., Poulsen, R., Jensen, C., Sepaskhak, A., Hansen, S. 2010. Effects of irrigation strategies and soils on field-grown potatoes: gas exchange and xylem ABA. Agricultural Water Management. 97(10): 1486–1494. DOI: https://doi.org/10.1016/j.agwat.2010.05.002 Ariza, W. 2017. Respuestas fisiológicas, bioquímicas y rendimiento en tres variedades de papa criolla (Solanum tuberosum grupo Phureja) en déficit hídrico. Tesis de Maestría. Universidad Nacional de Colombia. Bogotá, Colombia. 72 pp. Ariza, W., Rodriguez, L., Moreno-Echeverry, D., Guerrero, C., Moreno, L. 2020. Effect of wáter deficit on some physiological and bichemical responses of the yellow dipoloid potato (Solanum tuberosum L. Griup Phureja). Agronomía Colombiana. 38(1): 48. DOI: 10.15446/agron.colomb.v38n1.78982 Ashraf, M., Akram, N., Al-Qurainy, F., Foolad, M. 2011. Drought tolerance: roles of organic osmolytes, growth regulators, and mineral nutrients. Advances in Agronomy. 111: 249–296. DOI: https://doi.org/10.1016/B978-0-12-387689-8.00002-3 Atif, R., Shahid, L., Waqas, M., Ali, B., Rehman, M., Azeem, F., Nawaz, M., Wani, S., Chung, G. 2019. Insights on calcium-dependent protein kinases (CPKs) signaling for abiotic stress tolerance in plants. International Journal of Molecular Sciences. 20: 5298. DOI: 10.3390/ijms20215298 Banerjee, A., Roychoudhury, A. 2018. Abiotic Stress, Generation of Reactive Oxygen Species, and Their Consequences: An Overview. En: Singh, V., Singh, S., Tripathi, D., Prasad, S., Chauhan, D. Reactive Oxygen Species in Plants. Primera Edición. Pondicherry, India. 339 pp. Barragán, J. 2019. Descripción y análisis del abastecimiento en las principales centrales de abastos del país. Revista Papa. 49: 44-48. Basu, S., Ramegowda, V., Kumar, A., Pereira, A. 2016. Plant adaptation to drought stress. [version 1; referees: 3 approved] F1000Research 2016, 5(F1000 Faculty Rev):1554. DOI: 10.12688/f1000research.7678.1 Benam, K., Hassanpanah, D. 2007. Evaluation of different potato cultivars at different irrigation periods and different drought stages. Acta Horticulture. 729: 183–188. DOI: https://doi.org/10.17660/ActaHortic.2007.729.28 Cabello, R., De Mendiburu, F., Bonierbale, M., Monneveux, P., Roca, W., Chujoy, E. 2012. Large-Scale Evaluation of Potato Improved Varieties, Genetic Stocks and Landraces for Drought Tolerance. American Journal of Potato Research. 89(5): 400-410. DOI: https://doi.org/10.1007/s12230-012- 9260-5 Cámara de Comercio de Bogotá. 2015. Manual Papa. Programa de apoyo agrícola y agroindustrial. 53 pp. Deblonde, K., Ledent, F. 2001. Effects of moderate drought conditions on green leaf number, stem height, leaf length and tuber yield of potato cultivars. European Journal of Agronomy. 14:31–41. DOI: 10.1016/S1161-0301(00)00081-2 FAOSTAT. 2018. Food and Agriculture Organization of United Nations. Consultado: 16 de abril de 2020, en: http://www.fao.org/faostat/es/#data/QC Hassanpanah, D. 2009. Effects of water deficit and potassium humate on tuber yield and yield component of potato cultivars in Ardabil region, Iran. Research Journal of Environmental Sciences. 3: 351−356. DOI: 10.3923/rjes.2009.351.356 Heidari, M., Amirfazli, N., Ghorbani, H., Zafarian, F. 2019. Calcium chloride and drought stress changed grain yield and physiological traits in sesame (Sesamum indicum L.). Scientia Agriculturae Bohemica. 50(4): 211–218. DOI: 10.2478/sab-2019-0029 Hijmans, R. 2003. The effect of climate change on global potato production. American Journal of Potato Research. 80: 271–279. DOI: https://doi.org/10.1007/BF02855363 Hosseini, S., Réthoré, E., Pluchon, S., Ali, N., Billiot, B., Yvin, J. 2019. Calcium application enhances drought stress tolerance in sugar beet and promotes plant biomass and beetroot sucrose concentration. International Journal of Molecular Sciences. 20: 3777. DOI: 10.3390/ijms20153777 Jędrzejuk, A., Łukaszewska, A., Pacholczak, A. 2016. Effects of CaCl2 solutions to alleviate drought stress effects in potted ornamentals Salvia splendens and Ageratum houstonianum. Acta Agrobot. 69(3): 1-11. DOI: http://dx.doi.org/10.5586/ aa.1686 Jefferies, R. 1993. Use of a simulation model to assess possible strategies of drought tolerance in potato (Solanum tuberosum L.). Agricultural Systems. 41: 93–104. DOI: https://doi.org/10.1016/0308-521X(93)90083-E Kaczmarek, M., Fedorowicz-Stronska, O., Głowacka, K., Waskiewicz, A., Sadowski, J., 2017. CaCl2 treatment improves drought stress tolerance in barley (Hordeum vulgare L.). Acta Physiologiae Plantarum. 39: 41. DOI: 10.1007/s11738-016-2336-y Koch, M., Naumann, M., Pawelzik, E., Gransee, A., Thiel, K. 2019. The importance of nutrient management for potato production part I: plant nutrition and yield. Potato Research. 63: 97-119. DOI: https://doi.org/10.1007/s11540-019-09431-2 Lahlou, O., Ouattar, S., Ledent, J.-F. 2003. The effect of drought and cultivar on growth parameters, yield and yield components of potato. Agronomie. 23(3): 257-268. DOI: https://doi.org/10.1051/agro:2002089 Li, Z., Tan, X.F., Lu, K., Liu, Z.M., Wu, L.L., 2017. The effect of CaCl2 on calcium content, photosynthesis, and chlorophyll fluorescence of tung tree seedlings under drought conditions. Photosynthetica. 55(3): 553-560. DOI: 10.1007/s11099-016-0676-x Lobato, C., Olivieri, P., Altamiranda, G., Wolski, A., Daleo, R. et al. 2008. Phosphite compounds reduce disease severity in potato seed tubers and foliage. European Journal of Plant Pathology. 122: 349-358. DOI: 10.1007/s10658-008-9299-9 Ma, S.-Y., Wu, W.-H. 2007. AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Molecular Biology. 65(4): 511–518. DOI: 10.1007/s11103-007-9187-2 Mahmud, A., Hossain, M., Zakari, M., Khalaque, M., Karim, M. 2015. Effects of water stress on plant canopy, yield attributes and yield of potato. Kasetsart J. (Nat. Sci.). 49: 491-505. Monneveux, P., Ramírez, A., Pino, M. 2013. Drought tolerance in potato (S. tuberosum L.): Can we learn from drought tolerance research in cereals?. Plant Science. 205–206: 76–86. DOI: 10.1016/j.plantsci.2013.01.011 Moreno, D. 2017. Respuesta fisiológica y bioquímica de cuatro variedades de papa criolla (Solanum tuberosum L. Grupo Phureja) a condiciones de sequía. Tesis de Maestría. Universidad Nacional de Colombia. Bogotá, Colombia. 73 pp. Naeem, M., Naeem, M.S., Ahmad, R., Ihsan, M. Z., Yasin, M., Hussain, Y., Fahd, S., 2018. Foliar calcium spray confers drought stress tolerance in maize via modulation of plant growth, water relations, proline content and hydrogen peroxide activity. Archives of Agronomy and Soil Science. 64(1): 116-131. DOI: 10.1080/03650340.2017.1327713 Naumann, M., Koch, M., Pawelzik, E., Gransee, A., Thiel, H. 2019. The Importance of Nutrient Management for Potato Production Part II: Plant Nutrition and Tuber Quality. Potato Research. 63: 121–137. DOI: https://doi.org/10.1007/s11540-019-09431-2 Nayyar, H., Kaushal, S.K., 2002. Alleviation of negative effects of water stress in two contrasting wheat genotypes by calcium and abscisic acid. Biologia plantarum. 45: 65–70. DOI: https://doi.org/10.1023/A:1015132019686 Nayyar, H., 2003. Accumulation of osmolytes and osmotic adjustment in waterstressed wheat (Triticum aestivum) and maize (Zea mays) as affected by calcium and its antagonists. Environmental and Experimental Botany. 50: 253-264. DOI: 10.1016/s0098-8472(03)00038-8 Ngadze, E., Countibo, T., Icishahayo, D., van der Waals, J. 2014. Effect of calcium soil amendments on phenolic compounds and soft rot resistance in potato tubers. Crop Protection. 62: 40-45. DOI: http://dx.doi.org/10.1016/j.cropro.2014.04.009 Ngadze, E. 2018. Calcium soil amendment increases resistance of potato to blackleg and soft rot pathogens. African Journal of Food, Agriculture, Nutrition and Development. 18(1): 12976-12991. DOI: 10.18697/ajfand.81.16220 Obidiegwu, J., Bryan, G., Jones, H., Prashar, A. 2015. Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Frontiers in plant science. 6: 1-23. DOI: https://doi.org/10.3389/fpls.2015.00542 Ozgen, S., Palta, J. 2004. Supplemental calcium application influences potato tuber number and size. HortScience. 40(1): 102-105. DOI: 10.21273/HORTSCI.40.1.102 Porter, G., Opena, G., Bradbury, W., McBurnie, J., Sisson, J. 1999. Soil management and supplemental irrigation effects on potato: I. Soil properties, tuber yield, and quality. Agronomy Journal. 91: 416-425. DOI: 10.2134/agronj1999.00021962009 100030010x Ramírez, A., Yactayo, W., Rens, R., Rolando, L., Palacios, S., Mendiburu, F. de., Mares, V., Barreda, C., Loayza, H., Monneveux, P., Zotarelli, L., Khan, A., Quiroz, R. 2016. Defining biological thresholds associated to plant water status for monitoring water restriction effects: Stomatal conductance and photosynthesis recovery as key indicators in potato. Agricultural Water Management. 177: 369-378. DOI: http://dx.doi.org/10.1016/j.agwat.2016.08.028 Rodríguez, L., Ñústez, E., Estrada, N. 2009. Criolla Latina, Criolla Paisa y Criolla Colombia, nuevos cultivares de papa criolla para el departamento de Antioquia (Colombia). Agronomía Colombiana. 27(3): 289-303. Rodríguez-Pérez, L., Ñústez, C., Moreno, L. 2017. Drought stress affects physiological parameters but not tuber yield in three Andean potato (Solanum tuberosum L.) cultivars. Agronomía Colombiana. 35(2): 158-170. DOI: 10.15446/agron.colomb.v35n2.65901 Sabry, N., AbdElhady, S. 2015. Calcium and potassium fertilization may enhance potato yield and quality. sabryMiddle East Journal of Agriculture Research. 4(4): 991-998. Schapire, A., Valpuesta, V., Botella, M. 2009. Plasma membrane repair in plants. Trends Plant Sci. 14: 645–652. DOI: https://doi.org/10.1016/j.tplants.2009.09.004 Seifu, Y., Deneke, S. 2017. Effect of calcium chloride and calcium nitrate on potato (Solanum tuberosum L.) growth and yield. Journal of Horticulture. DOI: 10.4172/2376-0354.1000207 Sharma, P., Bhushan, A., Shnaker, R., Pessarakli, M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany. DOI: http://dx.doi.org/10.1155/2012/217037 Song, Y., Roe, H. 2008. The role and regulation of Trxl, a cytosolic thioredoxin in Schizosaccharomyces pombe. The Journal of Microbiology. 46: 408–414. DOI: 10.1007/s12275-008-0076-4 Tourneux, C., Devaux, A., Camacho, R., Mamani, P., Ledent, J.-F. 2003. Effect of water shortage on six potato genotypes in the highlands of Bolivia (II): water relations, physiological parameters. Agronomie. 23(2): 181-190. DOI: https://doi.org/10.1051/agro:2002080 Upadhyaya, H., Kumar, S., Kumar, B. 2011. CaCl2 improves post-drought recovery potential in Camellia sinensis (L) O. Kuntze. Plant Cell Reports. 30: 495–503. DOI: 10.1007/s00299-010-0958-x Waddell, T., Gupta, C., Moncrief, F., Rosen, J., Steele, D. 1999. Irrigation and nitrogen management effects on potato yield, tuber quality, and nitrogen uptake. Agronomy Journal. 91: 991–997. Wang, F-X., Kang, Y., Liu, S-P., Hou, X-Y. 2007. Effects of soil matric potential on potato growth under drip irrigation in the North China Plain. Agricultural water management. 88: 34-42. DOI: 10.1016/j.agwat.2006.08.006 Wang, X., Lv, S., Han, X., Guan, X., Shi, X., Kang, J., Zhang, L., Cao, B., Li, C., Wang, G. 2019. The calcium-dependent protein kinase CPK33 mediates strigolactone-induced stomatal closure in Arabidopsis thaliana. Frontiers in Plant Science. 10: 1630. DOI: 10.3389/fpls.2019.01630 Xu, C., Li, X., Zhang, L., 2013. The effect of calcium chloride on growth, photosynthesis, and antioxidant responces of Zoysia japonica under drought conditions. PLOS One. 8(7): e68214. DOI: https://doi.org/10.1371/journal.pone.0068214 Zingaretti, M., Inacio, C., Pereira, M., Paz, A., Franca, C. 2013. Water stress and agriculture responses of organisms to water stress (pp. 151–179). Rijeka: InTech. Abdel-Basset, R. 1998. Calcium channels and membrane disorders induced by drought stress in Vicia faba plants supplemented with calcium. Acta Physiologiae Plantarum. 20(2):149–153. DOI: http://dx.doi.org/10.1007/s11738-998-0006-4 Abou El-Yazied A. 2011. Foliar application of glycine betaine and chelated calcium improves seed production and quality of common bean (Phaseolus vulgaris L.) under water stress conditions. Research Journal of Biological Sciences. 7: 357–370. Ahanger, M., Morad-Talab, N., Abd-Allah, E., Ahmad, P., Hajiboland, R. 2016. Plant growth under drought stress: significance of mineral nutrients. pp: 649-688. In: Ahmad, P. 2016. Water stress and crop plants: a sustainable approach. DOI: https://doi.org/10.1002/9781119054450.ch37 Allen, G., Chu, S., Schumacher, K., Shimazaki, C., Vafeados, D., Kemper, A., Hawke, S., Tallman, G., Tsien, R., Harper, J., Chory, J., Schoreder, J. 2000. Alteration of stimulus-specic guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science. 289: 2338-2342. DOI: https://doi.org/10.1126/science.289.5488.2338 Allen, G., Chu, P., Harrington, C., Schumacher, K., Hoffmann, T., Tang, Y., Grill, E., Schroeder, J. 2001. A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature. 411: 1053-1057. DOI: https://doi-org.ezproxy.unal.edu.co/10.1038/35082575 Amede, T., Schubert, S., Stahr K. 2003. Mechanisms of drought resistance in grain legumes I: osmotic adjustment. Ethiopian Journal of Science. 26: 37–46. DOI: 10.4314/sinet.v26i1.18198 Andjelkovic, V. 2018. Introductory Chapter: Climate Changes and Abiotic Stress. En: Plants, Plant, Abiotic Stress and Responses to Climate Change. IntechOpen. DOI: 10.5772/intechopen.76102. Available from: https: //www.intechopen.com/books/plant-abioticstress-and-responses-to-climate-change/introductory-chapterclimate-changes-and-abiotic-stress-in-plants Arshi, A., Abdin, Z., Iqbal, M. 2006. Effect of CaCl2 on growth performance, photosynthetic efficiency and nitrogen assimilation of Cichorium intybus L. grown under NaCl stress. Acta Physiologiae Plantarum. 28: 137-147. DOI: 10.1007/s11738-006-0040-z. Bartels. D., Ramanjulu, S. 2005. Drought and salt tolerance in plants. Plant Sciences. 24: 23-58. DOI: https://doi.org/10.1080/07352680590910410 Berkowitz, G., Zhang, X., Mercier, R., Leng, Q., Lawton, M., 2000. Co-expression of calcium-dependent protein kinase with the inward rectified guard cell Kchannel KAT1 alters current parameters in Xenopus laevis oocytes. Plant and Cell Physiology. 41(6): 785-790. DOI: 10.1093/pcp/41.6.785 Blatt, R., Grabov, A. 1997. Signalling gates in abscisic acid-mediated control fo guard cell ion channels. Physiologia Plantarum. 100: 481–490. Bosch, M., Hepler, P. 2005. Pectin methylesterases and pectin dynamics in pollen tubes. Plant Cell. 17: 3219–3226. DOI: https://doi.org/10.1105/tpc.105.037473 Bouché, N., Yellin, A., Snedden, W., Fromm, H. 2005. Plant specific calmodulin-binding proteins. Annual Review of Plant Biology. 56: 435–466. DOI: 10.1146/annurev.arplant.56.032604.144224 Boyer, J. 2009. Cell wall biosynthesis and the molecular mechanism of plant enlargement. Functional Plant Biology. 36: 383–394. DOI: https://doi.org/10.1071/FP09048 Bundó, M., Coca, M. 2017. Calcium-dependent protein kinase OsCPK10 mediates both drought tolerance and blast disease resistance in rice plants. Journal of Experimental Botany. 68(11): 2963–2975. DOI: 10.1093/jxb/erx145 Cadet, F., Meunier, J. 1988. Spinach (Spinacia oleracea) chloroplast sedoheptulose-1,7- bisphosphatase. Activation and deactivation, and immunological relationship to fructose-1,6-bisphosphatase. Biochemical Journal. 253: 243–248. DOI: 10.1042/bj2530243 Campo, S., Baldrich, P., Messenguer, J., Lalanne, E., Coca, M., Segundo, B. 2014. Overexpression of a Calcium-Dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. Plant Physiology. 165: 688-704. DOI: https://doi.org/10.1104/pp.113.230268 Chai, M., Chen, Q., An, R., Chen, Y., Chen, J., Wang, X. 2005. NADK2, an Arabidopsis chloroplastic NAD kinase, plays a vital role in both chlorophyll synthesis and chloroplast protection. Plant Molecular Biology. 59: 553–564. DOI: 10.1007/s11103-005-6802-y Charles, S., Halliwell, B. 1980. Action of calcium ions on spinach (Spinacia oleracea) chloroplast fructose bisphosphatase and other enzymes of the Calvin cycle. Biochemical Journal. 188: 775–779. DOI: 10.1042/bj1880775 Chen, J., Xue, B., Xia, X., Yin, W. 2013. A novel calcium-dependent protein kinase gene from Populus euphratica, confers both drought and cold stress tolerance. Biochemical and Biophysical Research Communications. 441(3): 630–636. DOI: 10.1016/j.bbrc.2013.10.103 Clarkson, T. 1993. Roots and the delivery of solutes to the xylem. Philos. Trans. R. Soc. Lond. B 341, 5–7. DOI: 10.1098/rstb.1993.0086 Cushman, J. 2001. Osmoregulation in plants: implications for agriculture. American Zoologis. 41: 758-769. Dubrovina, A., Kiselev, K., Khristenko, V., Aleynova, O. 2015. VaCPK20, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., mediates cold and drought stress tolerance. Journal of Plant Physiology. 185: 1–12. DOI: 10.1016/j.jplph.2015.05.020 Dulai, S., Molnár, I., Prónay, J., Csernák, Á., Tarnai, R., Molnár-Láng, M. 2006. Effects of drought on photosynthetic parameters and heat stability of PSII in wheat and in Aegilops species originating from dry habitats. Acta Biologica Szegediensis. 50: 11-17. Eichert, T., Burkhardt, J., 2001. Quantification of stomatal uptake of ionic solutes using a new model system. Journal of Experimental Botany. 52(357): 771–781. DOI: 10.1093/jexbot/52.357.771 Ettinger, W., Clear, A., Fanning, K., Peck, M. 1999. Identification of a Ca2+/H+ antiport in the plant chloroplast thylakoid membrane. Plant Physiology. 119(4): 1379–1386. DOI: 10.1104/pp.119.4.1379 Fageria, N., Barbosa, M., Moreira, A., Guimaraes, M. 2009. Foliar fertilization of crop plants. Journal of Plant Nutrition. 32: 1044-1064. DOI: 10.1080/01904160902872826 Fan, D. 2019. The effect of calcium to maize seedlings under drought stress. American Journal of Plant Sciences. 10: 1391-1396. DOI: https://doi.org/10.4236/ajps.2019.108099 Farquhar, G., Sharkey, D. 1982. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology. 33: 317-345. Fernández, V., Sotiropoulos, T., Brown, P. 2015. Fertilización Foliar: Principios Científicos y Práctica de Campo. Primera edición. IFA, Paris, Francia. 156 pp. Fernández, V., Pimentel, C., Behamonde, H. 2020. Salt hydration and drop drying of two model calcium salts: implications for foliar nutrient absorption and deposition. Journal of Plant Nutrition and Soil Science. 183: 592-601. DOI: 10.1002/jpln.202000168 Flechner, A., Dressen, U., Westhoff, P., Henze, K., Schnarrenberger, C., Martin, W. 1996. Molecular characterization of transketolase (EC 2.2.1.1) active in the Calvin cycle of spinach chloroplasts. Plant Mol. Biol. 32: 475–484. Geng, S., Zhao, Y., Tang, L., Zhang, R., Sun, M., Guo, H., Kong, X., Li, A., Mao, L. 2011. Molecular evolution of two duplicated CDPK genes CPK7 and CPK12 in grass species: A case study in wheat (Triticum aestivum L.). Gene. 475(2): 94–103. DOI: 10.1016/j.gene.2010.12.015 Gorecka, K., Konopka-Postupolska, D., Hennig, J., Buchet, R., Pikula, S. 2005. Peroxidase activity of annexin 1 from Arabidopsis thaliana. Biochemical and Biophysical Research Communications. 336: 868–875. DOI: 10.1016/j.bbrc.2005.08.181 Guimarães, F.A.V., de Lacerda, C.F., Marques, E.C., Alcantâra de Miranda, M.R., Braga de Abreu, C.E., Prisco, J.T., Gomes-Filho, E., 2011. Calcium can moderate changes on membrane structure and lipid composition in cowpea plants under salt stress. Plant Growth Regulation. 65(1): 55–63. DOI: https://doi.org/10.1007/s10725-011-9574-1 Han, S., Tang, R., Anderson, L., Woerner, T., Pei, Z. 2003. A cell surface receptor mediates extracellular Ca(2+) sensing in guard cells. Nature. 425: 196–200. DOI: 10.1038/nature01932 Hare, P., Cress, A. 1997. Metabolic implications of stress induced proline accumulation in plants. Plant Growth Regulation. 21: 79-102. DOI: https://doi.org/10.1023/A:1005703923347 Harker, F., Ferguson, I., 1991. Effects of surfactants on calcium penetration of cuticles isolated from apple fruit. Scientia Horticulturae. 46(3-4): 225–233. DOI: https://doi.org/10.1016/0304-4238(91)90045-Z Harper, J., Breton, G., Harmon, A. 2004. Decoding Ca2+ signals through plant protein kinases. Annual Review of Plant Biology. 55: 263–288. DOI: 10.1146/annurev.arplant.55.031903.141627 Harper, J., Harmon, A. 2005. Plants, symbiosis and parasites: a calcium signalling connection. Nature Reviews Molecular Cell Biology. 6: 555–566. DOI: 10.1038/nrm1679 Hashimoto, K., Kudla, J. 2011. Calcium decoding mechanisms in plants. Biochimie. 93(12): 2054–2059. DOI: 10.1016/j.biochi.2011.05.019 Hepler, K., Winship, J. 2010. Calcium at the cell wall-cytoplast interface. Journal of Integrative Plant Biology. 52(2): 147–160. DOI: 10.1111/j.1744-7909.2010.00923.x Hertig, C., Wolosiuk, R. 1980. A dual effect of Ca2+ on chloroplast fructose-1,6- bisphosphatase, Biochemical and Biophysical Research Communications. 97: 325–333. DOI: https://doi.org/10.1016/S0006-291X(80)80171-9 Hirschi, K. 2004 The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiology. 136: 2438-2442. DOI: https://doi.org/10.1104/pp.104.046490 Ho, S.-L., Huang, L.-F., Lu, C.-A., He, S.-L., Wang, C.-C., Yu, S.-P., Chen, J., Yu, S.-M. 2013. Sugar starvation-and GA-inducible calcium-dependent protein kinase 1 feedback regulates GA biosynthesis and activates a 14-3-3 protein to confer drought tolerance in rice seedlings. Plant Molecular Biology. 81(4-5): 347–361. DOI: 10.1007/s11103-012-0006-z Hochmal, A., Schulze, S., Trompelt, K., Hippler, M. 2015. Calcium-dependent regulation of photosynthesis. Biochimica et Biophysica Acta. 1847: 993–1003. DOI: http://dx.doi.org/10.1016/j.bbabio.2015.02.010 Hong-Bo, S., Li-Ye, C., Ming-An, S. 2008. Calcium as a versatile plant signal transducer under soil water stress. Bioessays. 30: 634–641. DOI: http://dx.doi.org/10.1002/bies.20770 Hu, W., Tian, S., Di, Q., Duan, S., Dai, K. 2018. Effects of exogenous calcium on mesophyll cell ultrastructure, gas exchange, and photosystem II in tobacco (Nicotiana tabacum Linn.) under drought stress. Photosynthetica. 56(4): 1204-1211. DOI: 10.1007/s11099-018-0822-8 Huang, J., Hirji, R., Adam, L., Rozwadowski, K., Hammerlindl, J., Keller, W., Selvaraj, G. 2000. Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiology. 122: 747-756. DOI: https://doi.org/10.1104/pp.122.3.747 Jones, G., Lunt, R. The function of calcium in plants. 1967. The Botanical Review. 33: 407-426. Kannan, S. 2010. Foliar Fertilization for Sustainable Crop Production. En: Lichtfouse E. (eds) Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming. Sustainable Agriculture Reviews, vol 4. Springer, Dordrecht. Kerstiens, G. 2006. Water transport in plant cuticles: an update. Journal of Experimental Botany. 57: 2493–2499. DOI: 10.1093/jxb/erl017 Knight, H., Trewavas, A., Knight, M. 1997. Calcium signaling in Arabidopsis thaliana responding to drought and salinity. The Plant Journal. 12: 911-922. DOI: 10.1046/j.1365-313x.1997.12051067.x Kohorn, D., Kobayashi, M., Johansen, S., Friedman, P., Fischer, A., Byers, N. 2006. Wall-associated kinase 1 (WAK1) is crosslinked in endomembranes, and transport to the cell surface requires correct cell-wall synthesis. Journal of Cell Science. 119: 2282–2290. DOI: 10.1242/jcs.02968 Kolthoff, I., Sandell, E., Meehan, E., Bruckenstein, S. 1969. Quantitative Chemical Analysis, Vol. 826. London: Macmillan Konopka-Postupolska, D. 2007. Annexins: putative linkers in dynamic membrane-cytoskeleton interactions in plant cells. Protoplasma. 230: 203–215. DOI: https://doi.org/10.1007/s00709-006-0234-7 Kovács-Bogdán, E., Soll, J., Bölter, B. 2010. Protein import into chloroplasts: the Tic complex and its regulation. Biochimica et Biophysica Acta - Molecular Cell Research. 1803(6): 740–747. DOI: 10.1016/j.bbamcr.2010.01.015 Kovács-Bogdán, E. Benz, J., Soll, J., Bolter, B. 2011. Tic20 forms a channel independent of Tic110 in chloroplasts. BMC Plant Biology. 11: 133. DOI: https://doi.org/10.1186/1471-2229-11-133 Kraemer, T., Hunsche, M., Noga, G. 2009. Cuticular calcium penetration is directly related to the area covered by calcium within droplet spread area. Scientia Horticulturae. 120: 201-206. DOI: 10.1016/j.scienta.2008.10.015 Kreimer, G., Melkonian, M., Latzko, E. 1985. An electrogenic uniport mediates lightdependent Ca2+ influx into intact spinach chloroplasts. FEBS Lett. 180: 253–258. DOI: https://doi.org/10.1016/0014-5793(85)81081-4 Kreimer, G., Surek, B., Woodrow, I., Latzko, E. 1987. Calcium binding by spinach stromal proteins. Planta. 171: 259–265. DOI: https://doi.org/10.1007/BF00391103 Kukuczka, B., Magneschi, L., Petroutsos, D., Steinbeck, J., Bald, T., Powikrowska, M., Fufezan, C., Finazzi, G., Hippler, M. 2014. Proton gradient regulation5-like1-mediated cyclic electron flow is crucial for acclimation to anoxia and complementary to nonphotochemical quenching in stress adaptation. Plant Physiology. 165: 1604–1617. DOI: https://doi.org/10.1104/pp.114.240648 Laohavisit, A., Mortimer, J., Demidchik, V., Coxon, M., Stancombe, A., Macpherson, N., Brownlee, C., Hofmann, A., Webb, A., Miedema, H., Battey, H., Davies, M. 2009. Zea mays annexins modulate cytosolic free Ca2+ and generate a Ca2+-permeable conductance. Plant Cell. 21: 479–493. DOI: 10.1105/tpc.108.059550 Larkindale, J., Knight, M., 2002. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiology. 128(2): 682-695. DOI: 10.1104/pp.010320 Leister, D., Shikanai, T. 2013. Complexities and protein complexes in the antimycin Asensitive pathway of cyclic electron flow in plants. Frontiers in Plant Science. 4: 161. DOI: https://doi.org/10.3389/fpls.2013.00161 Li, Z., Tan, X., Lu, K., Liu, Z., Wu, L. 2017. The effect of CaCl2 on calcium content, photosynthesis, and chlorophyll fluorescence of tung tree seedlings under drought conditions. Photosynthetica. 55(3): 553-560. DOI: 10.1007/s11099-016-0676-x Liu, G., Chen, J., Wang, X. 2006. VfCPK1, a gene encoding calcium-dependent protein kinase from Vicia faba, is induced by drought and abscisic acid. Plant, Cell and Environment. 29: 2091–2099. DOI: https://doi.org/10.1111/j.1365-3040.2006.01582.x Luan, S. 2009. The CBL-CIPK network in plant calcium signaling. Trends in Plant Science. 14: 37–42. DOI: 10.1016/j.tplants.2008.10.005. Ma, R., Zhang, M., Li, B., Du, G., Wang, J., Chen, J. 2005. The effects of exogenous Ca2+ on endogenous polyamine levels and drought-resistant traits of spring wheat grown under arid conditions. Journal of Arid Environments. 63: 177-190. DOI: 10.1016/j.jaridenv.2005.01.021. Maatihus, F. 2009. Pfysiological functions of mineral macronutrients. Current Opinion in Plant Biology. 12: 250-258. DOI: 10.1016/j.pbi.2009.04.003 Marschner, P., 2012. Marschner's Mineral Nutrition of Higher Plants. Third Edition. Elsevier. pp: 174-176. McAinsh, M., Pittman, J. 2009 Shaping the calcium signature. New Phytologist. 181:275-294. DOI: 10.1111/j.1469-8137.2008.02682.x. McCormack, E., Tsai, Y., Braam, J. 2005. Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends in Plant Science. 10: 383–389. DOI: 10.1016/j.tplants.2005.07.001 Miedema, H., Bothwell, F., Brownlee, C., Davies, M. 2001. Calcium uptake by plant cells—channels and pumps acting in concert. Trends in Plant Science. 6: 514–519. DOI: 10.1016/S1360-1385(01)02124-0. Mohanta, T., Yadav, D., Khan, A., Hashem, A., Abd Allah, E., Al-Harrasi, A. 2019. Molecular Players of EF-hand Containing Calcium Signaling Event in Plants. International Journal of Molecular Sciences. 20(6): 1476. DOI: 10.3390/ijms20061476 Mori, I., Murata, Y., Yang, Y., Munemasa, S., Wang, Y., Andreoli, S., Tiriac, H., Alonso, J., Harper, J., Ecker, J., Kwak, J., Schroeder, J. 2006. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+ -permeable channels and stomatal closure. PLoS Biol. 4(19): 1749-1762. DOI: https://doi.org/10.1371/journal.pbio.0040327 Naeem, M., Naeem, M., Ahmad, R., Ahmad, R. 2017. Foliar-applied calcium induces drought stress tolerance in maize by manipulating osmolyte accumulation and antioxidative responses. Pakistan Journal of Botany. 49: 427–434. Nebenführ, A., Staehelin, L. 2001. Mobile factories: Golgi dynamics in plant cells. Trends in Plant Science. 6: 160–167. DOI: 10.1016/s1360-1385(01)01891-x Nomura, H., Komori, T., Kobori, M., Nakahira, Y., Shiina T. 2008. Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure. The Plant Journal. 53(6): 988–998. DOI: 10.1111/j.1365-313X.2007.03390.x Nomura, H., Komori, T., Uemura, S., Kanda, Y., Shimotani, K., Nakai, K., Furuichi, T., Takebayashi, K., Sugimoto, T., Sano, S., Suwastika, I., Fukusaki, E., Yoshioka, H., Nakahira, Y., Shiina, T. 2012. Chloroplast-mediated activation of plant immune signaling in Arabidopsis. Nature Communications. 3: 926. DOI: 10.1038/ncomms1926 Plieth, C., Vollbehr, S. 2012. Calcium promotes activity and confers heat stability on plant peroxidases. Plant Signaling & Behavior. 7: 650–660. DOI: 10.4161/psb.20065 Proseus, E, Boyer, S. 2007. Tension required for pectate chemistry to control growth in Chara corallina. Journal of Experimental Botany. 58: 4283–4292. DOI: 10.1093/jxb/erm318. Qiang, L., Jianhua, C., Longjiang, Y., Maoteng, L., Jinjing, L., Lu, G. 2012. Effects on physiological characteristics of Honeysuckle. (Lonicera japonica Thunb) and the role of exogenous calcium under drought stress. Plant Omics: J Plant Mol Biol Omic. 5(1): 1–5. Reid, J., Sayer, R., 2003. Heterogeneous atmospheric aerosol chemistry: laboratory studies of chemistry on water droplets. Chemical Society Reviews. 32(2): 70–79. DOI: 10.1039/b204463n Rentel, C., Knight, M. 2004. Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiology. 135:1471–1479. DOI: https://doi.org/10.1104/pp.104.042663 Riederer, M., 2006. Thermodynamics of the water permeability of plant cuticles: characterization of the polar pathway. Journal of Experimental Botany. 57(12): 2937–2942. DOI: 10.1093/jxb/erl053 Rocha, A., Mehlmer, N., Stael, S., Mair, A., Parvin, N., Chigri, F., Teige, M., Vothknecht, U. 2014. Phosphorylation of Arabidopsis transketolase at Ser428 provides a potential paradigm for the metabolic control of chloroplast carbon metabolism. Biochemical Journal. 458: 313–322. DOI: 10.1042/BJ20130631 Roh, M., Shingles, R., Cleveland, M., McCarty, R. 1998. Direct measurement of calcium transport across chloroplast inner-envelope vesicles. Plant Physiology. 118: 1447–1454. DOI: https://doi.org/10.1104/pp.118.4.1447 Romheld, V., El-Fouly, M. 1999. Foliar nutrient application. challenge and limits in crop production. In: Proc. 2nd International Workshop on "Foliar Fertilization" Bangkok, Thailand, 1-32. Ruiz, J., Sánchez, E., García, P., Lopez-Lefebre, L., Rivero, R., Romero, L. 2002. Proline metabolism and NAD kinase activity in greenbean plants subjected to cold-shock. Phytochemistry. 59(5): 473–478. DOI: 10.1016/s0031-9422(01)00481-2 Schapire, A., Voigt, B., Jasik, J., Rosado, A., Lopez-Cobollo, R., Menzel, D., Salinas, J., Mancuso, S., Valpuesta, V., Baluska, F., Botella, M. 2008. Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability. Plant Cell. 20: 3374– 3388. DOI: https://doi.org/10.1105/tpc.108.063859 Schönherr, J. 2000. Calcium chloride penetrates plant cuticles via aqueous pores. Planta. 212: 112–118. Schönherr, J. 2001. Cuticular penetration of calcium salts: effects of humidity, anions, and adjuvants. Journal of Plant Nutrition and Soil Science. 164: 225–231. Schumaker, K., Sze, H. 1985. A Ca2+/H+ antiport system driven by the proton electrochemical gradient of a tonoplast H+-ATPase from oat roots. Plant Physiology. 79: 1111-1117. DOI: https://doi.org/10.1104/pp.79.4.1111 Shabbir, R., Ahsraf, M., Waraich, E., Ahmad, R. 2015. Combined effects of drought stress and NPK foliar spray on growth, physiological processes and nutrient uptake in wheat. Pakistan Journal of Botany. 47: 1207–1216. Shao, B., Song, Y., Chu, Y. 2008. Advances of calcium signals involved in plant anti-drought. Comptes Rendus Biologies. 331: 587–596. DOI: 10.1016/j.crvi.2008.03.012. Shi, S., Li, S., Asim, M., Mao, J., Xu, D., Ullah, Z., Liu, G., Wang, Q., Liu, H. 2018. The Arabidopsis calcium-dependent protein kinases (CDPKs) and their roles in plant growth regulation and abiotic stress responses. International Journal of Molecular Sciences. 19(7): 1900. DOI: 10.3390/ijms19071900 Siddiqui, M.., Al-Whaibi M., Basalah, M. 2011. Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L. Protoplasma. 248: 503-511. DOI: 10.1007/s00709-010-0197-6 Singh, A., Sagar, S., Biswas, D. 2017. Calcium dependent protein kinase, a versatile player in plant stress management and development. Critical Reviews in Plant Sciences. 36(5-6): 336–352. DOI: https://doi.org/10.1080/07352689.2018.1428438 Stael, S., Rocha, A., Wimberger, T., Anrather, D., Vothknecht, U., Teige, M. 2012. Crosstalk between calcium signalling and protein phosphorylation at the thylakoid. Journal of Experimental Botany. 63 (4): 1725–1733. DOI: 10.1093/jxb/err403 Stael, S., Wurzinger, B., Mair, A., Mehlmer, N., Vothknecht, C., Teige, M. 2011. Plant organellar calcium signalling: an emerging field. Journal of Experimental Botany. 63: 1525–1542. DOI:10.1093/jxb/err394 Sun, C., Johnson, J., Cai, D., Sherameti, I., Oelmuller, R., Lou, B. 2010. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. Journal of Plant Physiology. 167: 1009–1017. DOI: 10.1016/j.jplph.2010.02.013 Sutter, JU., Homann, U., Thiel, G. 2000. Ca2+-stimulated exocytosis in maize coleoptile cells. Plant Cell. 12: 1127–1136. DOI: https://doi.org/10.1105/tpc.12.7.1127 Syam Prakash, S., Jayabaskaran, C. 2006. Heterologous expression and biochemical characterization of two calcium-dependent protein kinase isoforms CaCPK1 and CaCPK2 from chickpea. Journal of Plant Physiology. 163(11): 1083–1093. DOI: 10.1016/j.jplph.2006.04.005 Szalonek, M., Sierpien, B., Rymaszewski, W., Gieczewska, K., Garstka, M., Lichocka, M., Sass, L., Paul, K., Vass, I., Vankova, R., Dobrev, P., Szczesny, P., Marczewski, W., Krusiewicz, D., Strzelczyk-Zyta, D., Hennig, J., Konopka-Postupolska, D. 2015. Potato Annexin STANN1 promotes drought tolerance and mitigates light stress in transgenic Solanum tuberosum L. plants. PLoS ONE. 10(7): e0132683. DOI: 10.1371/journal.pone.0132683 Sze, H., Liang, F., Hwang, I., Curran, A., Harper, J. 2000. Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast. Annu Rev Plant Physiol Plant Mol Biol. 51: 433-462. DOI: 10.1146/annurev.arplant.51.1.433 Takahashi, H., Watanabe, A., Tanaka, A., Hashida, S., Kawai-Yamada, M., Sonoike, K., Uchimiya, H. 2006. Chloroplast NAD kinase is essential for energy transduction through the xanthophyll cycle in photosynthesis. Plant and Cell Physiology. 47: 1678–1682. DOI: https://doi.org/10.1093/pcp/pcl029 Tang, R-J., Luan, S. 2017. Regulation of calcium and magnesium homeostasis in plants: from transporters to signaling network. Current Opinion in Plant Biology. 39: 97–105. DOI: http://dx.doi.org/10.1016/j.pbi.2017.06.009 Terashima, M., Petroutsos, D., Hudig, M., Tolstygina, I., Trompelt, K., Gabelein, P., Fufezan, C., Kudla, J., Weinl, S., Finazzi, G., Hippler, M. 2012. Calcium-dependent regulation of cyclic photosynthetic electron transfer by a CAS, ANR1, and PGRL1 complex. Proceedings of the National Academy of Sciences. 109(43): 17717–17722. DOI: https://doi.org/10.1073/pnas.1207118109 Thor, K. 2019. Calcium-Nutrient and Messenger. Frontiers in Plant Science. 10:440. DOI: 10.3389/fpls.2019.00440 Tredenick, E., Farrel, T., Forster, W. 2018. Mathematical modeling of diffusion of a hydrophilic ionic fertilizer in plant cuticles: surfactant and hygroscopic effects. Frontiers in Plant Science. 9: 1888. DOI: https://doi.org/10.3389/fpls.2018.01888 Val, J., Fernandez, V. 2011. In-season calcium-spray formulations improve calcium balance and fruit quality traits of peach. Journal of Plant Nutrition and Soil Science. 174:465-472. DOI: 10.1002/jpln.201000181 Vivek, P., Tuteja, N., Soniya, E. 2013. CDPK1 from ginger promotes salinity and drought stress tolerance without yield penalty by improving growth and photosynthesis in Nicotiana tabacum. PLoS ONE. 8(10): e76392. DOI: https://doi.org/10.1371/journal.pone.0076392 Waller, J., Dhanoa, P., Schumann, U., Mullen, R., Snedden, W. 2010. Subcellular and tissue localization of NAD kinases from Arabidopsis: compartmentalization of de novo NADP biosynthesis. Planta. 231(2): 305–317. DOI: 10.1007/s00425-009-1047-7 Wang, W., Chen, J., Liu, T., Han, A., Simon, M., Dong, X., He, J., Zheng, H. 2014. Regulation of the calcium-sensing receptor in both stomatal movement and photosynthetic electron transport is crucial for water use efficiency and drought tolerance in Arabidopsis. Journal of Experimental Botany. 65(1): 223–234. DOI: 10.1093/jxb/ert362 Wang, Z., Li, J., Jia, C., Xu, B., Jin, Z. 2016. Molecular cloning and expression analysis of eight calcium-dependent protein kinase (CDPK) genes from banana (Musa acuminata L. AAA group, cv. Cavendish). South African Journal of Botany. 104: 134–141. DOI: https://doi.org/10.1016/j.sajb.2015.10.004 Wang, Y., Kang, Y., Ma, C., Miao, R., Wu, C., Long, Y., Ge, T., Wu, Z., Hou, X., Zhang, J., Qi, Z. 2017. CNGC2 is a Ca2+ influx channel that prevents accumulation of apoplastic Ca2+ in the leaf. Plant Physiology. 173: 1342–1354. DOI: 10.1104/pp.16.01222 Wei, S., Hu, W., Deng, X., Zhang, Y., Liu, X., Zhao, X., Luo, Q., Jin, Z., Li, Y., Zhou, S. 2014. A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility. BMC Plant Biol. 14: 133. DOI: 10.1186/1471-2229-14-133 Weinl, S., Held, H., Schlucking, K., Steinhorst, L., Kuhlgert, S., Hippler, M., Kudla, J. 2008. A plastid protein crucial for Ca2+-regulated stomatal responses. New Phytologist. 179(3): 675–686. DOI: 10.1111/j.1469-8137.2008.02492.x Weinl, S., Kudla, J. 2009. The CBL-CIPK Ca2+-decoding signaling network: function and perspectives. New Phytologist. 184: 517–528. DOI: 10.1111/j.1469-8137.2009.02938.x White, J., Bowen, C., Demidchik, V., Nichols, C., Davies, M. 2002. Genes for calcium-permeable channels in the plasma membrane of plant root cells. Biochim. Biophys. Acta Biomembr. 1564: 299–309. DOI: 10.1016/S0005-2736(02)00509-6 White, J., Broadley, M. 2003. Calcium in plants. Annals of Botany. 92(4): 487-511. DOI: 10.1093/aob/mcg164 Xu, J., Tian, Y.-S., Peng, R.-H., Xiong, A.-S., Zhu, B., Jin, X.-F., Gao, F., Fu, X.-Y., Hou, X.-L., Yao, Q.-H. 2010. AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta. 231(6): 1251–1260. DOI: 10.1007/s00425-010-1122-0 Yang, B., Liu, Z., Zhou, S., Ou, L., Dai, X., Ma, Y., Zhang, Z., Chen, W., Li, X., Liang, C., Yang, S., Zou, X. 2016. Exogenous Ca2+ alleviates waterlogging-caused damages to pepper. Photosynthetica. 54: 620-629. DOI: https://doi.org/10.1007/s11099-016-0200-3 Zandalinas, S., Mittler, R., Balfagón, D., Arbona, V., Gómez-Cadenas, A. 2018. Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum. 162(1): 2–12. DOI: 10.1111/ppl.12540 Zou, J. J., Wei, F. J., Wang, C., Wu, J. J., Ratnasekera, D., Liu, W. X., Wu, W. H. 2010. Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress. Plant Physiology. 154(3): 1232–1243. DOI: 10.1104/pp.110.157545 Zou, J.-J., Li, X.-D., Ratnasekera, D., Wang, C., Liu, W.-X., Song, L.-F., Zhang, W.-Z., Wu, W.-H. 2015. Arabidopsis Calcium-Dependent Protein Kinase8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. Plant Cell. 27: 1445–1460. DOI: https://doi.org/10.1105/tpc.15.00144 Abdel-Rahman, M., El-Sayed, M.D., Rady, M.M., 2018. Response of water deficit-stressed Vigna unguiculata performances to silicon, proline or methionine foliar application. Scientia Horticulturae. 228: 132-144. DOI: 10.1016/j.scienta.2017.10.008 Anjum, S.A., Xie, X.Y., Wang, L.C., Saleem, M.F., Man, C., Lei, W., 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research. 6(9): 2026-2032. DOI: 10.5897/AJAR10.027 Evans, N., McAinsh, M., Hetherington, A., Knight, M. 2005. ROS perception in Arabidopsis thaliana: the ozone induced calcium response. The Plant Journal. 41: 615–626. DOI: https://doi.org/10.1111/j.1365-313X.2004.02325.x Harb, A., Krishnan, A., Ambavaram, M., Pereira, A. 2010. Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiology. 154: 1254-1271. DOI: 10.1104/pp.110.161752 Hojati, M., Modarres-Sanavy, S.A., Ghanati, F., Panahi, M. 2011. Hexaconazole induces antioxidant protection and apigenin-7- glucoside accumulation in Matricaria chamomilla plants subjected to drought stress. The Journal of Plant Physiology. 168: 782-791. DOI: 10.1016/j.jplph.2010.11.009. Hopper, D., Ghan, R., Cramer, G. 2014. A rapid dehydration leaf assay reveals stomatal response differences in grapevine genotypes. Horiculture Research. 1(2). DOI: 10.1038/hortres.2014.2 Hosseini, S., Réthoré, E., Pluchon, S., Ali, N., Billiot, B., Yvin, J. 2019. Calcium application enhances drought stress tolerance in sugar beet and promotes plant biomass and beetroot sucrose concentration. International Journal of Molecular Sciences. 20: 3777. DOI: 10.3390/ijms20153777 Hsiao, T., 1973. Plant responses to water stress. Ann. Rev. Plant Physiol. 24, 519 - 570. Ishibashi, Y., Yamaguchi, H., Yuasa, T., Iwaya-Inoue, M., Arima, S., Zheng, S. 2011. Hydrogen peroxide spraying alleviates drought stress in soybean plants. Journal of Plant Physiology. 168: 1562-1567. DOI: 10.1016/j.jplph.2011.02.003 Jäger, K., Fábián, A., Eitel, G., Szabó, G., Deák, C., Barnabás, B., Papp, I. 2014. A morpho-physiological approach differentiates bread wheat cultivars of contrasting tolerance under cyclic water stress. Journal of Plant Physiology. 171: 1256–1266. DOI: http://dx.doi.org/10.1016/j.jplph.2014.04.013 Jefferies, A. 1993. Use of a simulation model to assess possible strategies of drought tolerance in potato (Solanum tuberosum L.). Agricultural Systems. 41: 93–104. DOI: https://doi.org/10.1016/0308-521X(93)90083-E Jefferies, R. 1995. Physiology of crop response to drought. En Modelling of Crops Under Conditions Limiting … (pp. 61-74). DOI: https://doi.org/10.1007/978-94-011-0051-9_4 Kalina, D., Plich, J., Strzelczyk-Żyta, D., Śliwka, J., Marczewski, W. 2016. The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of ‘Katahdin’-derived potato cultivars. Breeding Science. 66(2): 328-331. DOI: https://doi.org/10.1270/jsbbs.66.328 Kosma, D., Bourdenx, B., Bernard, A., Parsons, E., Lü, S., Joubès, J., Jenks, M. 2009 The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiology. 151: 1918–29. DOI: 10.1104/pp.109.141911 Kuppinger, L., Auber, E., Farfan, K, Bonierbale, M., Asch, F. 2014. Effects of drought stress on crop development, growth and chlorophyll fluorescence in five potato clones. p. 54. In: Tielkes, E. (ed.). Bridging the gap between increasing knowledge and decreasing resources. Czech University of Life Sciences, Prague. Larkindale, J., Knight, M. 2002. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiology. 128: 682-695. DOI: 10.1104/pp.010320 Lawlor, D., Cornic, G. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment. 25(2): 275-294. DOI: https://doi.org/10.1046/j.0016- 8025.2001.00814.x Lobato, C., Olivieri, P., Altamiranda, G., Wolski, A., Daleo, R., Caldiz, D., Andreu, A. 2008. Phosphite compounds reduce disease severity in potato seed tubers and foliage. European Journal of Plant Pathology. 122: 349-358. DOI: 10.1007/s10658-008-9299-9 Mao, J., Ni, T., Wang, S., Chen, F., 2008. Effects of exogenous calcium on some physiological characteristics of Jatropha curcas L. under drought stress. Journal of Sichuan University. 45(3): 669-673. Miranda-Apodaca, J., Pérez-López, U., Lacuesta, M., Mena-Peite, A., Muñoz-Rueda, A. 2018. The interaction between drought and elevated CO2 in water relations in two grassland species is species-specific. Journal of Plan Physiology. 220: 193-202. DOI: https://doi.org/10.1016/j.jplph.2017.11.006 Opena, G-B., Porter, G-A., 1999. Soil management and supplemental irrigation effects on potato. II. Root growth. Agronomy Journal. 91: 426–431. DOI: http://dx.doi.org/10.2134/agronj1999.00021962009100030011x Pino, T. 2016. Estrés hídrico y térmico en papas, avances y protocolos. Santiago, Chile. Instituto de Investigaciones Agropecuarias. Boletín INIA Nº 331. 148p Pieczynski, M., Marczewski, W., Hennig, J., Dolata, J., Bielewicz, D., Piontek, P., Wyrzykowska, A., Krusiewicz, D., Strzelczyk-Zyta, D., Konopka-Postupolska, D. Krzeslowska, M., Jarmolowski, A., Szweykowska-Kulinska, Z. 2013. Down-regulation of CBP80 gene expression as a strategy to engineer a drought-tolerant potato. Plant Biotechnology Journal. 11: 459–469. DOI: 10.1111/pbi.12032. Riederer, M., Schreiber, L. 2001. Protecting against water loss: analysis of the barrier properties of plant cuticles. Journal of Experimental Botany. 52: 2023–32. DOI: 10.1093/jexbot/52.363.2023. Ristic, Z., Jenks, M. 2002. Leaf cuticle and water loss in maize lines differing in dehydration avoidance. Journal of Plant Physiology. 59:645–651. DOI: 10.1078/0176-1617-0743 Ruíz, J. 2010. Cambio climático en temperatura, precipitación y humedad relativa para Colombia usando modelos meteorológicos de alta resolución (Panorama 2011-2010). Nota técnica del Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). Bogotá, Colombia. 91 pp. Savić, J., Dragićević, I., Pantelić, D., Ojlača, J., Momcilovic, I., 2012. Expression of small heat shock proteins and heat tolerance in potato (Solanum tuberosum L.). Archives of Biological Sciences. 64(1): 135-144. Schafleitner, R., Gutierrez Rosales, R. O., Gaudin, A., Alvarado Aliaga, C. A., Martinez, G. N., Tincopa Marca, L. R., … Bonierbale, M. 2007. Capturing candidate drought tolerance traits in two native Andean potato clones by transcription profiling of field grown plants under water stress. Plant Physiology and Biochemistry. 45(9): 673- 690. DOI: https://doi.org/10.1016/j.plaphy.2007.06.003 Schapire, A., Valpuesta, V., Botella, M. 2009. Plasma membrane repair in plants. Trends in Plant Science. 14, 645–652. DOI: https://doi.org/10.1016/j.tplants.2009.09.004 Scholander, P. F., Badstreet, E. D., Hemmingsen, E. A., Hammel, H. T., 1965. Sap pressure in vascular plants. Proceedings of the National Academy of Sciences. 148(3668): 339-346. DOI: 10.1126/science.148.3668.339 Shan, C., Liang, Z. 2010. Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Science. 178: 130-139. DOI: 10.1016/j.plantsci.2009.11.002. Shi, S., Fan, M., Iwama, K., Li, F., Zhang, Z., Jia, L. 2015. Physiological basis of drought tolerance in potato grown under long-term water deficiency. International Journal of Plant Production. 9(2): 305-320. DOI: https://doi.org/10.22069/ijpp.2015.2050 Singh, D., Sale, P., Pallaghy, C., Singh, V. 2000. Role of proline and leaf expansion rate in the recovery of stressed white clover leaves with increased phosphorus concentration. New Phytologist. 146(2): 261-269. DOI: https://doi.org/10.1046/j.1469-8137.2000.00643.x Szalonek, M., Sierpien, B., Rymaszewski, W., Gieczewska, K., Garstka, M., Lichocka, M., Sass, L., Paul, K., Vass, I., Vankova, E., Dobrev, P., Szczesny, P., Marckzewski,W… Konopka- Postupolska, D. 2015. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants. PLOS ONE. 10(7): 1-38. DOI: https://doi.org/10.1371/journal.pone.0132683 Tourneux, C., Devaux, A., Camacho, M., Mamani, P., Ledent, J. 2003. Effects of water shortage on six potato genotypes in the highlands of Bolivia (I): morphological parameters, growth and yield. Agronomie. 23:169–179. DOI: 10.1051/agro:2002079 Tuteja, N., Mahajan, S. 2007. Calcium Signaling Network in Plants. An Overview. Plant Signaling y Behavior. 2(2): 79-85. DOI: 10.4161/psb.2.2.4176 Villa, M., Barrientos, J., 2012. Incremento de la rentabilidad económica en el cultivo de papa criolla mediante fertilización con manganeso. Revista Colombiana De Ciencias Hortícolas. 6(1): 67-75. DOI: https://doi.org/10.17584/rcch.2012v6i1.1282 Vos, J., Oyarzún, P. 1987. Photosynthesis and stomatal conductance of potato leaves? effects of leaf age, irradiance, and leaf water potential. Photosynthesis Research. 11(3): 253-264. DOI: https://doi.org/10.1007/BF00055065 Yuan, B.-Z., Nishiyama, S., Kang, Y. 2003. Effects of different irrigation regimes on the growth and yield of drip irrigated potato. Agricultural Water Management. 63(3): 153-167. DOI: https://doi.org/10.1016/S0378-3774(03)00174-4 Zhang, L., Mei, G., Shiqing, L., Shengxiu, L., Zongsuo, L. 2011. Modulation of plant growth, water status and antioxidantive system of two maize (Zea mays L.) cultivars induced by exogenous glycinebetaine under long term mild drought stress. Pakistan Journal of Botany. 43: 1587-1594. Zhang, D., Du, Q., Zhang, Z., Jiao, X., Song, X., Li, J. 2017. Vapour pressure deficit control in relation to water transport and water productivity in greenhouse tomato production during summer. SCieNtiFiC Reports. 7: 43461. DOI: 10.1038/srep43461 Agili, S., Nyende, B., Ngamau, K., Masinde, P. 2012. Selection, yield evaluation, drought tolerance indices of orange-flesh sweet potato (Ipomoea batatas Lam) hybrid clone. Journal of Nutrition & Food Sciences. 2:3. DOI: http://dx.doi.org/10.4172/2155-9600.1000138 Allen, R., Pereira, L., Raes, D., Smith, M. 1998. Crop evapotranspiration —guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. Food and Agriculture Organization, Rome. Anjum, N., Sofo, A., Scopa, A., Roychoudhury, A., Gill, S., Iqbal, M., Lukatkin, A., Pereira, E., Duarte, A., Ahmad, I. 2015. Lipids and proteins—major targets of oxidative modifications in abiotic stressed plants. Environmental Science and Pollution Research. 22: 4099–4121. DOI: 10.1007/s11356-014-3917-1. Arshi, A., Abdin, M., Iqbal, M. 2006. Effect of CaCl2 on growth performance, photosynthetic efficiency and nitrogen assimilation of Cichorium intybus L. grown under NaCl stress. Acta Physiologiae Plantarum. 28: 137-147. DOI:10.1007/ s11738-006-0040-z Banik, P., Zeng, W., Tai, H., Bizimungu, B., Tanino, K. 2016. Effects of drought acclimation on drought stress resistance in potato (Solanum tuberosum L.) genotypes. Environmental and Experimental Botany. 126: 76- 89. DOI: https://doi.org/10.1016/j.envexpbot.2016.01.008 Basu, P., Sharma, A., Sukumaran, N. 1998. Changes in net photosynthetic rate and chlorophyll fluorescence in potato leaves induced by water stress. Photosynthetica. 35: 13-19. DOI: https://doi.org/10.1023/A:1006801311105 Basu, S., RamegoDHa, V., Kumar, A., Pereira, A., 2016. Plant adaptation to drought stress. [version 1; peer review: 3 approved] F1000Research 2016, 5(F1000 Faculty Rev): 1554. DOI: 10.12688/f1000research.7678.1 Blokhina, O., Virolinen, E., Fagerstedt, V. 2003. Antioxidants, oxidative damage and oxygen deprivation stress. Annals of Botany. 91: 179-194. DOI: 10.1093/aob/mcf118. Bouslama, M., Schapaugh, W. 1984. Stress tolerance in soybean. Part 1: evaluation of three screening techniques for heat and drought tolerance. Crop Science. 24: 933–937. DOI: https://doi.org/10.2135/cropsci1984.0011183X002400050026x Bussis, D., Heineke, D., 1998. Acclimation of potato plants to polyethylene glycol-induced water deficit. I. Photosynthesis and metabolism. Journal of Experimental Botany. 49: 1349–1360. DOI: 10.1093/jexbot/49.325.1349 Butler, H., Martina, F., Roberts, M., Adamse, S., McAinsh, M. 2020. Observation of nutrient uptake at the adaxial surface of leaves of tomato (Solanum lycopersicum) using Raman spectroscopy. Analytical letters. 53(4): 536-562. DOI: https://doi.org/10.1080/00032719.2019.1658199 Carson, L., Ozores-Hampton, M., Morgan, K., 2016. Correlation of petiole sap nitrate-nitrogen concentration measured by ion selective electrode, leaf tissue nitrogen concentration, and tomato yield in Florida. Journal of Plant Nutrition. 39(12): 1809-1819. DOI: 10.1080/01904167.2016.1187743 Chen, H., Jiang, J-G. 2010. Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environmental Reviews. 18: 309-319. DOI: https://doi.org/10.1139/A10-014 CIP. 2010. Procedimientos para pruebas de evaluación estándar de clones avanzados de papa. Centro Internacional de la Papa (CIP). Lima, Perú. 151 pp. Cruz de Carvalho, M.H., 2008. Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signaling and Behavior. 3(3): 156-165. DOI: 10.4161/psb.3.3.553 Dalla Costa, L., Delle Vedove, G., Gianquinto, G., Giovanardi, R., Peressotti, A. 1997. Yield, water use efficiency and nitrogen uptake in potato: influence of drought stress. Potato Research. 40(1): 19-34. DOI: https://doi.org/10.1007/BF02407559 Deblonde, K., Ledent, F. 2001. Effects of moderate drought conditions on green leaf number, stem height, leaf length and tuber yield of potato cultivars. The European Journal of Agronomy. 14:31–41. Del Pozo, A., Ovalle, C., Espinoza, S., Barahona, V., Gerding, M., Humphries, A., 2017.Water relations and use-efficiency, plant survival and productivity of nine alfalfa (Medicago sativa L.) cultivars in dryland Mediterranean conditions. The European Journal of Agronomy. 84: 16-22. DOI: 10.1016/j.eja.2016.12.002 Evers, D., Lefevre, I., Legay, S., Lamoureux, D., Hausman, J.-F., Rosales, R. O.G., Marca, L.R., Hoffmann, L., Bonierbale, M., Schafleitner, R., 2010. Identification of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach. Journal of Experimental Botany. 61: 2327–2343. DOI: 10.1093/jxb/erq060 Fallas, R., Bertsch, F. 2014. Análisis del estado nutrimental del cultivo de la papa en Costa Rica con base en información existente. Agronomía Costarricense. 38(1): 199-206. Farshadfar, E., Sutka, J. 2002. Screening drought tolerance criteria in maize. Acta Agronomica Hungarica. 50(4):411-416. DOI: 10.1556/AAgr.50.2002.4.3 Fernandez, G. 1992. Effective selection criteria for assessing plant stress tolerance. En: Kuo CG (ed) Adaptation of food crops to temperature and water stress. Asian Vegetable Research and Development Center, Shanhua, pp 257–270. Fischer, R., Maurer, R. 1978. Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research. 29: 897–912. DOI: 10.1071/AR9780897 Franco-Navarro, J., Brumos, J., Rosales, M., Cubero-Font, P., Talon, M., Colmenero-Flores, J. 2016. Chloride regulates leaf cell size and water relations in tobacco plants. Journal of Experimental Botany. 67: 873–891. DOI: 10.1093/jxb/erv502 Franco-Navarro, J., Rosales, M., Álvarez, R., Cubero-Font, P., Calvo, P., Díaz-Espejo, A., Colmenero-Flores, J. 2019. Chloride as macronutrient increases water use eficiency by anatomically-driven reduced stomatal conductance and increased mesophyll difusion to CO2. The Plant Journal. 99: 815–831. DOI: https://doi.org/10.1111/tpj.14423 Gavuzzi, P., Rizza, F., Palumbo, M., Campaline, R., Ricciardi, G., Borghi, B. 1997. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Plant Science. 77: 523-531. Geiger, D., Maierhofer, T., Al-Rasheid, K., Scherzer, S., Mumm, P., Liese, A., Ache, P., Welmann, C., Marten, I., Grill, E., Romeis, T., Hedrich, R. 2011. Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci. Signal. 4, ra32. DOI: https://doi.org/ 10.1126/scisignal.2001346 Golestani-Araghi, S., Assad, M., 1998. Evaluation of four screening techniques for drought resistance and their relationship to yield reduction ratio in wheat. Euphytica. 103: 293-299. DOI: https://doi.org/10.1023/A:1018307111569 Goyer, A., 2017. Maximizing the nutritional potential of potato: the case of folato. Potato Research. 60(3-4): 319-325. DOI: https://doi.org/10.1007/s11540-018-9374-3 Hossain, A., Sears, A., Cox, T., Paulsen, G. 1990. Desiccation tolerance and its relationship to assimilate partitioning in winter wheat. Crop Physiology & Metabolism. 30: 622–627. DOI: https://doi.org/10.2135/cropsci1990.0011183X003000030030x Hsiao, T., 1973. Plant responses to water stress. Annual Review of Plant Physiology. 24: 519 - 570. Huang, G.T., Ma, S. L., Bai, P.L.P., Zhang, L., Ma, H., Jia, P., Liu, J., Zhong, M., Guo, Z. F., 2012., Signal traduction during cold, salt and drought stresses in plants. Molecular Biology Reports. 39: 969-987. DOI: 10.1007/s11033-011-0823-1 Jefferies, R.A. 1993. Use of a simulation model to assess possible strategies of drought tolerance in potato (Solanum tuberosum L.). Agricultural Systems. 41: 93–104. DOI: https://doi.org/10.1016/0308-521X(93)90083-E Jefferies, R. A. 1995. Physiology of crop response to drought. En Modelling of Crops Under Conditions Limiting. pp. 61-74. DOI: https://doi.org/10.1007/978-94-011-0051-9_4 Kaczmarek, M., Fedorowicz-Stronska, O., Głowacka, K., Waskiewicz, A., Sadowski, J., 2017. CaCl2 treatment improves drought stress tolerance in barley (Hordeum vulgare L.). Acta Physiologiae Plantarum. 39:41. DOI: 10.1007/s11738-016-2336-y Kapotis, G., Zervoudakis, G., Veltsistas, T., Salahas, G., 2003. Comparison of chlorophyll meter readings with leaf chlorophyll concentration in Amaranthus vlitus: correlation with physiological processes. Russian Journal of Plant Physiology. 50(3): 395-397. DOI: https://doi.org/10.1023/A:1023886623645 Khammari, I., Galavi, M., Ghanbari, A., Solouki, M., Poorchaman, M. 2012. The effect of drought stress and nitrogen levels on antioxidant enzymes, proline and yield of Indian Senna (Cassia angustifolia L.). Journal of Medicinal Plants Research. 11: 2125e2130. DOI: https://doi.org/10.5897/JMPR11.1105 Khushboo., Bhardwaj, K., Singh, P., Raina, M., Sharma, V., Kumar, D. 2018. Exogenous application of calcium chloride in wheat genotypes alleviates negative effect of drought stress by modulating antioxidant machinery and enhanced osmolyte accumulation. In Vitro Cellular & Developmental Biology – Plant. 54:495–507. DOI: https://doi.org/10.1007/s11627-018-9912-3 Laanemets, K., Brandt, B., Li, J., Merilo, E., Wang, Y.F., Keshwani, M.M., Taylor, S.S., Kollist, H., Schroeder, J.I., 2013. Calcium-Dependent and -Independent Stomatal Signaling Network and Compensatory Feedback Control of Stomatal Opening via Ca2+ Sensitivity Priming[W]. Plant Physiology. 163: 504–513 Li, J., Z. Cang., Jiao, F., Bai, X., Zhang, D., Zhai, R., 2017a. Influence of drought stress on photosynthetic characteristics and protective enzymes of potato at seedling stage. Journal of the Saudi Society of Agricultural Sciences. 16: 82-88. DOI: http://dx.doi.org/10.1016/j.jssas.2015.03.001 Li, Z., Tan, X.F., Lu, K., Liu, Z.M., Wu, L.L., 2017b. The effect of CaCl2 on calcium content, photosynthesis, and chlorophyll fluorescence of tung tree seedlings under drought conditions. Photosynthetica. 55(3): 553-560. DOI: 10.1007/s11099-016-0676-x Liu, F., Jensen, C.R., Shahanzari, A., Andersen, M.N., Jacobsen, S.E., 2005. ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Science. 168: 831–836. DOI: 10.1016/j.plantsci.2004.10.016 MADR (Ministerio de Agricultura y Desarrollo Rural). 2013. A un paso de ser Ley de la República, Proyecto que crea el Fondo para el Fomento de la Papa. https://BRw.minagricultura.gov.co/noticias/Paginas/A-un-paso-de-ser-Ley-de-la-Rep%C3%BAblica,-Proyecto-que-crea-el-Fondo-para-el-Fomento-de-la-Papa.aspx (Consulta 1 Julio 2019) Martínez, C., Moreno, U. 1992. Expresiones fisiológicas de resistencia a la sequía en dos variedades de papa sometidas a estrés hídrico en condiciones de campo. Revista Brasileira de Fisiologia Vegetal. 4(1): 33-38. Recuperado a partir de http://www.cnpdia.embrapa.br/rbfv/pdfs/v4n1p33.pdf Masoumi, A., Kafi, M., Khazaei, H., Davari, K. 2010. Effect of drought stress on water status, electrolyte leakage and enzymatic antioxidants of Kochia (Kochia scoparia) under saline condition. Pakistan Journal of Botany. 42(5): 3517-3524. DOI: Meise, P., Sedding, S., Uptmoor, R., Ordon, F., Schum, A. 2018. Impact of nitrogen supply on leaf water relations and physiological traits in a set of potato (Solanum tuberosum L.) cultivars under drought stress. Journal of agronomy and crop science. 1-16. DOI: 10.1111/jac.12266 Morales, A., Morales, A., Rodriguez del Sol, D. 2016. Agronomical indicators for determination of potato (Solanum tuberosum L.) tolerance to drought. Agrisot. 22(1): 1-7. Munemasa, S., Hauser, F., Park, J., Waadt, R., Brandt, B., Schroeder, J. 2015. Mechanisms of abscisic acid-mediated control of stomata! aperture. Current Opinion in Plant Biology. 28: 154–162. DOI: 10.1016/j.pbi.2015.10.010 Niño, C., 2017. Revista Papa. Fedepapa. 44: 1 -47. Pardo, J.M., 2010. Biotechnology of water and salinity stress tolerance. Current Opinion in Biotechnology. 21(2): 185-196. DOI: https://doi.org/10.1016/j.copbio.2010.02.005 Pastenes, C., Pimentel, P., Lillo, J. 2005. Leaf movements and photoinhibition in relation to water stress in field-grown beans. Journal of Experimental Botany. 56(411): 425-433. DOI: https://doi.org/10.1093/jxb/eri061 Pérez-Pérez, J., Robles, J., Tovar, J., Botía, P. 2009. Response to drought and salt stress of lemon ‘Fino 49’ under field conditions: water relations, osmotic adjustment and gas exchange. Scientia Horticulturae. 122: 83–90. DOI: https://doi.org/10.1016/j.scienta.2009.04.009 Pieczynski, M., Marczewski, W., Hennig, J., Dolata, J., Bielewicz, D., Piontek, P., Wyrzykowska, A., Krusiewicz, D., Strzelczyk-Zyta, D., Konopka-Postupolska, D. Krzeslowska, M., Jarmolowski, A., Szweykowska-Kulinska, Z.. 2013. Down-regulation of CBP80 gene expression as a strategy to engineer a drought-tolerant potato. Plant Biotechnology Journal. 11: 459–469. DOI: 10.1111/pbi.12032. Ramírez, D., Rolando, J., Yactayo, W., Monneveux, P., Mares, V., Quiroz, R. 2015. Improving potato drought tolerance through the induction of long-term water stress memory. Plant Science. 238: 26-32. DOI: https://doi.org/10.1016/j.plantsci.2015.05.016 Ramírez-Gil, J.G., Morales-Osorio, J.G., 2018. Microbial dynamics in the soil and presence of the avocado wilt complex in plots cultivated with avocado cv. Hass under ENSO phenomena (El Niño – La Niña). Scientia Horticulturae. 240: 273-280. DOI: https://doi.org/10.1016/j.scienta.2018.06.047 Rezayian, M., Niknam, V., Ebrahimzadeh, H. 2018. Improving tolerance against drought in canola by penconazole and calcium. Pesticide Biochemistry and Physiology. 149: 123–136. DOI: https://doi.org/10.1016/j.pestbp.2018.06.007 Rodríguez, L., Ñústez, E., Estrada, N., 2009. Criolla Latina, Criolla Paisa y Criolla Colombia, nuevos cultivares de papa criolla para el departamento de Antioquia (Colombia). Agronomía Colombiana. 27(3): 289-303. Rosielle, A., Hamblin, J. 1981. Theoretical aspect of selection for yield in stress and non-stress environment. Crop Science. 21: 943-946. DOI: https://doi.org/10.2135/cropsci1981.0011183X002100060033x Rudack, K., Seddig, S., Sprenger, H., Köhl, K., Uptmoor, R., Ordon, F., 2017. Drought stress-induced changes in starch yield and physiological traits in potato. Journal of Agronomy and Crop Science. 1-12. DOI: https://doi.org/10.1111/jac.12224 Ruehr, N., Grote, R., Mayr, S., Arneth, A. 2019. Beyond the extreme: recovery of carbon and water relations in woody plants following heat and drought stress. Tree Physiology. 39: 1285–1299. DOI:10.1093/treephys/tpz032 Schafleitner, R., Gutierrez, R., Espino, R., Gaudin, A., Pérez, J., Martínez, M., Domínguez, A., Tincopa, L., Alvarado, C., Numberto, G., Bonierbale, M., 2007. Field screening for variation of drought tolerance in Solanum tuberosum L. by agronomical, physiological and genetic analysis. Potato Research. 50: 71–85. DOI: https://doi.org/10.1007/s11540-007-9030-9 Schapire, A.L., Valpuesta, V., Botella, M.A., 2009. Plasma membrane repair in plants. Trends in Plant Science. 14(1): 654-652. DOI: 10.1016/j.tplants.2009.09.004 Sharma, P., Bhushan, J.A., Shnaker, D.R., Pessarakli, M., 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany. DOI: http://dx.doi.org/10.1155/2012/217037 Silva, E., Ferreira-Silvaa, E., Viégas, R., Gomes, R. 2010. The role of organic and inorganic solutes in the osmotic adjustment of drought-stressed Jatropha curcas plants. Environmental and Experimental Botany. 69: 279–285. DOI: 10.1016/j.envexpbot.2010.05.001 Singh, R., Parihar, P.., Singh, S., Mishra, R., Singh, V., Prasada, S. 2017. Reactive oxygen species signaling and stomatal movement: Current updates and future perspectives. Redox Biology. 11: 213-218. DOI: 10.1016/j.redox.2016.11.006 Teixeira, J., Pereira, S. 2006. High salinity and drought act on an organ-dependent manner on potato glutamine synthetase expression and accumulation. Journal of Experimental Botany. 60: 121-126. DOI: 10.1016/j.envexpbot.2006.09.003 Wang, Y., Kang, Y., Ma, C., Miao, R., Wu, C., Long, Y., Ge, T., Wu, Z., Hou, X., Zhang, J., Qi, Z. 2017. CNGC2 is a Ca2+ influx channel that prevents accumulation of apoplastic Ca2+ in the leaf. Plant Physiol. 173: 1342–1354. DOI: 10.1104/pp.16.01222 Wang, Q., Yang, S., Wan, S., Li, X. 2019. The significance of calcium in photosynthesis. International Journal of Molecular Scinces. 20: 1353. DOI: 10.3390/ijms20061353 Wege, S., Gilliham, M. Henderson, S. 2017. Chloride: not simply a ‘cheap osmoticum’, but a beneficial plant macronutrient. Journal of Experimental Botany. 68: 3057–3069. DOI: https://doi.org/10.1093/jxb/erx050 Yactayo, W., Ramírez, D. A., Gutiérrez, R., Mares, V., Posadas, A., Quiroz, R. 2013. Effect of partial root- zone drying irrigation timing on potato tuber yield and water use efficiency. Agricultural Water Management. 123: 65-70. DOI: https://doi.org/10.1016/j.agwat.2013.03.009 Ashraf, M., Akram, N., Al-Qurainy, F., Foolad, M. 2011. Drought tolerance: roles of organic osmolytes, growth regulators, and mineral nutrients. Advances in Agronomy. 111:249–296. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xix, 99 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias |
dc.publisher.department.spa.fl_str_mv |
Escuela de posgrados |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/78743/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/78743/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/78743/1/1024550720.2020.pdf https://repositorio.unal.edu.co/bitstream/unal/78743/4/1024550720.2020.pdf.jpg |
bitstream.checksum.fl_str_mv |
e2f63a891b6ceb28c3078128251851bf 217700a34da79ed616c2feb68d4c5e06 aa3ba262f656cb3906551be4e50a5e92 83694ab09045d370ab0eb9697cf4762d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089447028817920 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Moreno Fonseca, Liz Patricia88fd0503-2fdc-4ce5-8693-e30417a7f0e9Rodriguez Molano, Luis Ernestoe4de7578354587f660b257170b82a511Cárdenas Pira, Wendy Tatianac32eb872-0c05-4c2a-abf4-e3c142774061Fisiología y Estrés Abiótico en Plantas2021-01-14T20:23:55Z2021-01-14T20:23:55Z2020-11-05https://repositorio.unal.edu.co/handle/unal/78743Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasCon la variabilidad climática se espera un aumento en la ocurrencia de sequías, que disminuyen significativamente el rendimiento del cultivo de papa, por lo cual es necesario generar estrategias para mitigar los efectos del déficit hídrico. El objetivo de este trabajo fue evaluar el efecto de la aplicación de calcio (Ca) en las respuestas fisiológicas y rendimiento de Solanum tuberosum L. grupo Phureja cultivar Criolla Colombia en déficit hídrico. Se realizaron dos ensayos bajo invernadero en la Universidad Nacional de Colombia (Bogotá). En el primero, entre los 44 y 54 días después de siembra (dds), se realizaron aplicaciones de Ca de forma edáfica (E): CaCl2 (3 g planta-1), CaCl2 (4,5 g planta-1), Ca(NO3)2 (4,5 g planta-1), Ca(NO3)2 (7 g planta-1), Ca(NO3)2+B (6 g planta-1) y Ca(NO3)2+B (9 g planta-1), y foliar (F): CaCl2 (10 mM planta-1), CaCl2 (20 mM planta-1), Ca(NO3)2 (10 mMplanta-1) y Ca(NO3)2 (20 mM planta-1). 55 dds las plantas se sometieron a riego continuo (BR) y déficit hídrico durante siete días (DH). DH redujo el contenido relativo de agua (CRA, 22,1%) y el rendimiento de tubérculo (RT, 26,7%), mientras que aumentó la pérdida de electrolitos (PE, 97,3%). Se observó una rápida recuperación al estrés tras la rehidratación y mitigación con aplicaciones de CaCl2–20-F-DH, CaCl2–4,5-E-DH y Ca(NO3)2–7-E-DH, presentando menor PE (<21,2%), mayor CRA (>12,6%) y RT (>15,6%), respecto a DH. En el segundo ensayo, entre los 34 y 44 dds se realizaron aplicaciones edáficas (E) de CaO (2,4 g planta-1), CaCl2 (4,5 g planta-1) y Ca(NO3)2 (7 g planta-1), y foliares (F) de Gluconato de Ca (4,6 cm3L-1), CaCl2 (20 mM planta-1) y Ca(NO3)2 (20 mM planta-1). 45 dds se sometieron a BR y DH por diez días. DH redujo el CRA (30,4%) y la conductancia estomática (CE, 89,1%), incrementó la PE (40,3%) y disminuyó el RT (44,3%). Las plantas con CaCl2–4,5-E-DH, CaCl2–20-F-DH y Ca(NO3)2–20-F-DH presentaron rendimientos e índices de tolerancia similares a las plantas BR. CaCl2–4,5-E-DH presentó mejor respuesta en las variables evaluadas con menor PE (25,2%), mayor CRA (10,5%) y RT (30,5%), respecto a DH. Las aplicaciones de CaCl2–20- F-DH, CaCl2–4,5-E-DH, Ca(NO3)2–20-F-DH y Ca(NO3)2–7-E-DH, mitigaron los efectos del déficit hídrico en papa, lo que puede estar relacionado con las funciones del Ca en el metabolismo celular, a través de la mejora del estado hídrico foliar, la estabilidad de las membranas celulares y la conductancia estomática, aumentando así el rendimiento. (Texto tomado de la fuente).Changes in weather patterns lead to an increase in drought occurrence, which reduces tuber yield in potato. Therefore, it is necessary to generate new alternatives for mitigating the water deficit effects on potato plants. The objective of this work was to assess the impact of calcium (Ca) sources applications on physiological and yield parameters under water deficit in Solanum tuberosum L. Phureja Group cultivar Criolla Colombia. Two research works were conducted in a greenhouse located in Universidad Nacional de Colombia (Bogotá). In the first test, 44 and 54 days after sowing (das), calcium was applied in edaphic (E) sources: CaCl2 (3 g plant-1), CaCl2 (4.5 g plant-1), Ca(NO3)2 (4.5 g plant-1), Ca(NO3)2 (7 g plant-1), Ca(NO3)2+B (6 g plant-1) and Ca(NO3)2+B (9 g plant-1); and foliar (F): CaCl2 (10 mM plant-1), CaCl2 (20 mM plant-1), Ca(NO3)2 (10 mM plant-1) y Ca(NO3)2 (20 mM plant-1). Fifty-five das the plants were subjected to two water regimes: Well-Watered (WW), and Water Deficit (WD), under irrigation suspension for seven days. WD reduced the relative water content (RWC, 22.1%) and tuber yield (TY, 26.7%); meanwhile, electrolyte leakage increased (EL, 97.3%). Recovery was observed in DH treatments after rewatering. Stress mitigation was reported with CaCl2–20-F-DH, CaCl2–4.5-E-DH, and Ca(NO3)2–7-E-DH applications. It presented lower EL (<21.2%), higher RWC (>12.6%), and higher TY (>15.6%), compared to WD plants. In the second test, between 34 and 44 das, calcium was applied in edaphic (E) sources: CaO (2.4 g plant-1), CaCl2 (4.5 g plant-1), and Ca(NO3)2 (7 g plant-1), and foliar (F): Ca gluconate (4.6 cm3 L-1), CaCl2 (20 mM plant-1) and Ca(NO3)2 (20 mM plant-1). Forty-five das, the plants were subjected to WW and WD for ten days. WD reduced RWC (30.4%) and stomatal conductance (gs, 89.1%); electrolyte leakage increased (40.3%), and TY decreased (55.3%), compared to plants WW. Plants with CaCl2–4.5-E-DH, CaCl2–20-F-DH, and Ca(NO3)2–20-F-DH presented TY and stress tolerance index similar to BR. CaCl2–4.5-E-DH had the best effect with lower EL (25.2%), higher RWC (10.5%), and TY (30.5%), compared to WD plants. CaCl2–20- F-DH, CaCl2–4.5-E-DH, Ca(NO3)2–20-F-DH and Ca(NO3)2–7-E-DH, mitigated the effects of water deficit in potato. These responses can be related to the Ca effect on cellular metabolism, which increased yield, as it improves leaf water status, membrane integrity, and stomatal conductance.MaestríaMagíster en Ciencias AgrariasCiencias Agronómicasxix, 99 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencias AgrariasEscuela de posgradosFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónEstrés de sequiaRendimiento de cultivosCalcioPapadrought stresscrop yieldcalciumpotatoesInicio de tuberizaciónEstado hídrico foliarPérdida de electrolitosConductancia estomáticaRendimiento en tubérculoTolerancia al estrésTuber initiationLeaf water statusElectrolyte leakageStomatal conductanceTuber yieldStress toleranceEfecto de fuentes de calcio en parámetros fisiológicos y rendimiento de papa (Solanum tuberosum L., grupo Phureja) en condiciones de déficit hídricoTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAhmadi, S., Andersen, M., Flauborg, F., Poulsen, R., Jensen, C., Sepaskhak, A., Hansen, S. 2010. Effects of irrigation strategies and soils on field-grown potatoes: gas exchange and xylem ABA. Agricultural Water Management. 97(10): 1486–1494. DOI: https://doi.org/10.1016/j.agwat.2010.05.002Ariza, W. 2017. Respuestas fisiológicas, bioquímicas y rendimiento en tres variedades de papa criolla (Solanum tuberosum grupo Phureja) en déficit hídrico. Tesis de Maestría. Universidad Nacional de Colombia. Bogotá, Colombia. 72 pp.Ariza, W., Rodriguez, L., Moreno-Echeverry, D., Guerrero, C., Moreno, L. 2020. Effect of wáter deficit on some physiological and bichemical responses of the yellow dipoloid potato (Solanum tuberosum L. Griup Phureja). Agronomía Colombiana. 38(1): 48. DOI: 10.15446/agron.colomb.v38n1.78982Ashraf, M., Akram, N., Al-Qurainy, F., Foolad, M. 2011. Drought tolerance: roles of organic osmolytes, growth regulators, and mineral nutrients. Advances in Agronomy. 111: 249–296. DOI: https://doi.org/10.1016/B978-0-12-387689-8.00002-3Atif, R., Shahid, L., Waqas, M., Ali, B., Rehman, M., Azeem, F., Nawaz, M., Wani, S., Chung, G. 2019. Insights on calcium-dependent protein kinases (CPKs) signaling for abiotic stress tolerance in plants. International Journal of Molecular Sciences. 20: 5298. DOI: 10.3390/ijms20215298Banerjee, A., Roychoudhury, A. 2018. Abiotic Stress, Generation of Reactive Oxygen Species, and Their Consequences: An Overview. En: Singh, V., Singh, S., Tripathi, D., Prasad, S., Chauhan, D. Reactive Oxygen Species in Plants. Primera Edición. Pondicherry, India. 339 pp.Barragán, J. 2019. Descripción y análisis del abastecimiento en las principales centrales de abastos del país. Revista Papa. 49: 44-48.Basu, S., Ramegowda, V., Kumar, A., Pereira, A. 2016. Plant adaptation to drought stress. [version 1; referees: 3 approved] F1000Research 2016, 5(F1000 Faculty Rev):1554. DOI: 10.12688/f1000research.7678.1Benam, K., Hassanpanah, D. 2007. Evaluation of different potato cultivars at different irrigation periods and different drought stages. Acta Horticulture. 729: 183–188. DOI: https://doi.org/10.17660/ActaHortic.2007.729.28Cabello, R., De Mendiburu, F., Bonierbale, M., Monneveux, P., Roca, W., Chujoy, E. 2012. Large-Scale Evaluation of Potato Improved Varieties, Genetic Stocks and Landraces for Drought Tolerance. American Journal of Potato Research. 89(5): 400-410. DOI: https://doi.org/10.1007/s12230-012- 9260-5Cámara de Comercio de Bogotá. 2015. Manual Papa. Programa de apoyo agrícola y agroindustrial. 53 pp.Deblonde, K., Ledent, F. 2001. Effects of moderate drought conditions on green leaf number, stem height, leaf length and tuber yield of potato cultivars. European Journal of Agronomy. 14:31–41. DOI: 10.1016/S1161-0301(00)00081-2FAOSTAT. 2018. Food and Agriculture Organization of United Nations. Consultado: 16 de abril de 2020, en: http://www.fao.org/faostat/es/#data/QCHassanpanah, D. 2009. Effects of water deficit and potassium humate on tuber yield and yield component of potato cultivars in Ardabil region, Iran. Research Journal of Environmental Sciences. 3: 351−356. DOI: 10.3923/rjes.2009.351.356Heidari, M., Amirfazli, N., Ghorbani, H., Zafarian, F. 2019. Calcium chloride and drought stress changed grain yield and physiological traits in sesame (Sesamum indicum L.). Scientia Agriculturae Bohemica. 50(4): 211–218. DOI: 10.2478/sab-2019-0029Hijmans, R. 2003. The effect of climate change on global potato production. American Journal of Potato Research. 80: 271–279. DOI: https://doi.org/10.1007/BF02855363Hosseini, S., Réthoré, E., Pluchon, S., Ali, N., Billiot, B., Yvin, J. 2019. Calcium application enhances drought stress tolerance in sugar beet and promotes plant biomass and beetroot sucrose concentration. International Journal of Molecular Sciences. 20: 3777. DOI: 10.3390/ijms20153777Jędrzejuk, A., Łukaszewska, A., Pacholczak, A. 2016. Effects of CaCl2 solutions to alleviate drought stress effects in potted ornamentals Salvia splendens and Ageratum houstonianum. Acta Agrobot. 69(3): 1-11. DOI: http://dx.doi.org/10.5586/ aa.1686Jefferies, R. 1993. Use of a simulation model to assess possible strategies of drought tolerance in potato (Solanum tuberosum L.). Agricultural Systems. 41: 93–104. DOI: https://doi.org/10.1016/0308-521X(93)90083-EKaczmarek, M., Fedorowicz-Stronska, O., Głowacka, K., Waskiewicz, A., Sadowski, J., 2017. CaCl2 treatment improves drought stress tolerance in barley (Hordeum vulgare L.). Acta Physiologiae Plantarum. 39: 41. DOI: 10.1007/s11738-016-2336-yKoch, M., Naumann, M., Pawelzik, E., Gransee, A., Thiel, K. 2019. The importance of nutrient management for potato production part I: plant nutrition and yield. Potato Research. 63: 97-119. DOI: https://doi.org/10.1007/s11540-019-09431-2Lahlou, O., Ouattar, S., Ledent, J.-F. 2003. The effect of drought and cultivar on growth parameters, yield and yield components of potato. Agronomie. 23(3): 257-268. DOI: https://doi.org/10.1051/agro:2002089Li, Z., Tan, X.F., Lu, K., Liu, Z.M., Wu, L.L., 2017. The effect of CaCl2 on calcium content, photosynthesis, and chlorophyll fluorescence of tung tree seedlings under drought conditions. Photosynthetica. 55(3): 553-560. DOI: 10.1007/s11099-016-0676-xLobato, C., Olivieri, P., Altamiranda, G., Wolski, A., Daleo, R. et al. 2008. Phosphite compounds reduce disease severity in potato seed tubers and foliage. European Journal of Plant Pathology. 122: 349-358. DOI: 10.1007/s10658-008-9299-9Ma, S.-Y., Wu, W.-H. 2007. AtCPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Molecular Biology. 65(4): 511–518. DOI: 10.1007/s11103-007-9187-2Mahmud, A., Hossain, M., Zakari, M., Khalaque, M., Karim, M. 2015. Effects of water stress on plant canopy, yield attributes and yield of potato. Kasetsart J. (Nat. Sci.). 49: 491-505.Monneveux, P., Ramírez, A., Pino, M. 2013. Drought tolerance in potato (S. tuberosum L.): Can we learn from drought tolerance research in cereals?. Plant Science. 205–206: 76–86. DOI: 10.1016/j.plantsci.2013.01.011Moreno, D. 2017. Respuesta fisiológica y bioquímica de cuatro variedades de papa criolla (Solanum tuberosum L. Grupo Phureja) a condiciones de sequía. Tesis de Maestría. Universidad Nacional de Colombia. Bogotá, Colombia. 73 pp.Naeem, M., Naeem, M.S., Ahmad, R., Ihsan, M. Z., Yasin, M., Hussain, Y., Fahd, S., 2018. Foliar calcium spray confers drought stress tolerance in maize via modulation of plant growth, water relations, proline content and hydrogen peroxide activity. Archives of Agronomy and Soil Science. 64(1): 116-131. DOI: 10.1080/03650340.2017.1327713Naumann, M., Koch, M., Pawelzik, E., Gransee, A., Thiel, H. 2019. The Importance of Nutrient Management for Potato Production Part II: Plant Nutrition and Tuber Quality. Potato Research. 63: 121–137. DOI: https://doi.org/10.1007/s11540-019-09431-2Nayyar, H., Kaushal, S.K., 2002. Alleviation of negative effects of water stress in two contrasting wheat genotypes by calcium and abscisic acid. Biologia plantarum. 45: 65–70. DOI: https://doi.org/10.1023/A:1015132019686Nayyar, H., 2003. Accumulation of osmolytes and osmotic adjustment in waterstressed wheat (Triticum aestivum) and maize (Zea mays) as affected by calcium and its antagonists. Environmental and Experimental Botany. 50: 253-264. DOI: 10.1016/s0098-8472(03)00038-8Ngadze, E., Countibo, T., Icishahayo, D., van der Waals, J. 2014. Effect of calcium soil amendments on phenolic compounds and soft rot resistance in potato tubers. Crop Protection. 62: 40-45. DOI: http://dx.doi.org/10.1016/j.cropro.2014.04.009Ngadze, E. 2018. Calcium soil amendment increases resistance of potato to blackleg and soft rot pathogens. African Journal of Food, Agriculture, Nutrition and Development. 18(1): 12976-12991. DOI: 10.18697/ajfand.81.16220Obidiegwu, J., Bryan, G., Jones, H., Prashar, A. 2015. Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Frontiers in plant science. 6: 1-23. DOI: https://doi.org/10.3389/fpls.2015.00542Ozgen, S., Palta, J. 2004. Supplemental calcium application influences potato tuber number and size. HortScience. 40(1): 102-105. DOI: 10.21273/HORTSCI.40.1.102Porter, G., Opena, G., Bradbury, W., McBurnie, J., Sisson, J. 1999. Soil management and supplemental irrigation effects on potato: I. Soil properties, tuber yield, and quality. Agronomy Journal. 91: 416-425. DOI: 10.2134/agronj1999.00021962009 100030010xRamírez, A., Yactayo, W., Rens, R., Rolando, L., Palacios, S., Mendiburu, F. de., Mares, V., Barreda, C., Loayza, H., Monneveux, P., Zotarelli, L., Khan, A., Quiroz, R. 2016. Defining biological thresholds associated to plant water status for monitoring water restriction effects: Stomatal conductance and photosynthesis recovery as key indicators in potato. Agricultural Water Management. 177: 369-378. DOI: http://dx.doi.org/10.1016/j.agwat.2016.08.028Rodríguez, L., Ñústez, E., Estrada, N. 2009. Criolla Latina, Criolla Paisa y Criolla Colombia, nuevos cultivares de papa criolla para el departamento de Antioquia (Colombia). Agronomía Colombiana. 27(3): 289-303.Rodríguez-Pérez, L., Ñústez, C., Moreno, L. 2017. Drought stress affects physiological parameters but not tuber yield in three Andean potato (Solanum tuberosum L.) cultivars. Agronomía Colombiana. 35(2): 158-170. DOI: 10.15446/agron.colomb.v35n2.65901Sabry, N., AbdElhady, S. 2015. Calcium and potassium fertilization may enhance potato yield and quality. sabryMiddle East Journal of Agriculture Research. 4(4): 991-998.Schapire, A., Valpuesta, V., Botella, M. 2009. Plasma membrane repair in plants. Trends Plant Sci. 14: 645–652. DOI: https://doi.org/10.1016/j.tplants.2009.09.004Seifu, Y., Deneke, S. 2017. Effect of calcium chloride and calcium nitrate on potato (Solanum tuberosum L.) growth and yield. Journal of Horticulture. DOI: 10.4172/2376-0354.1000207Sharma, P., Bhushan, A., Shnaker, R., Pessarakli, M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany. DOI: http://dx.doi.org/10.1155/2012/217037Song, Y., Roe, H. 2008. The role and regulation of Trxl, a cytosolic thioredoxin in Schizosaccharomyces pombe. The Journal of Microbiology. 46: 408–414. DOI: 10.1007/s12275-008-0076-4Tourneux, C., Devaux, A., Camacho, R., Mamani, P., Ledent, J.-F. 2003. Effect of water shortage on six potato genotypes in the highlands of Bolivia (II): water relations, physiological parameters. Agronomie. 23(2): 181-190. DOI: https://doi.org/10.1051/agro:2002080Upadhyaya, H., Kumar, S., Kumar, B. 2011. CaCl2 improves post-drought recovery potential in Camellia sinensis (L) O. Kuntze. Plant Cell Reports. 30: 495–503. DOI: 10.1007/s00299-010-0958-xWaddell, T., Gupta, C., Moncrief, F., Rosen, J., Steele, D. 1999. Irrigation and nitrogen management effects on potato yield, tuber quality, and nitrogen uptake. Agronomy Journal. 91: 991–997.Wang, F-X., Kang, Y., Liu, S-P., Hou, X-Y. 2007. Effects of soil matric potential on potato growth under drip irrigation in the North China Plain. Agricultural water management. 88: 34-42. DOI: 10.1016/j.agwat.2006.08.006Wang, X., Lv, S., Han, X., Guan, X., Shi, X., Kang, J., Zhang, L., Cao, B., Li, C., Wang, G. 2019. The calcium-dependent protein kinase CPK33 mediates strigolactone-induced stomatal closure in Arabidopsis thaliana. Frontiers in Plant Science. 10: 1630. DOI: 10.3389/fpls.2019.01630Xu, C., Li, X., Zhang, L., 2013. The effect of calcium chloride on growth, photosynthesis, and antioxidant responces of Zoysia japonica under drought conditions. PLOS One. 8(7): e68214. DOI: https://doi.org/10.1371/journal.pone.0068214Zingaretti, M., Inacio, C., Pereira, M., Paz, A., Franca, C. 2013. Water stress and agriculture responses of organisms to water stress (pp. 151–179). Rijeka: InTech.Abdel-Basset, R. 1998. Calcium channels and membrane disorders induced by drought stress in Vicia faba plants supplemented with calcium. Acta Physiologiae Plantarum. 20(2):149–153. DOI: http://dx.doi.org/10.1007/s11738-998-0006-4Abou El-Yazied A. 2011. Foliar application of glycine betaine and chelated calcium improves seed production and quality of common bean (Phaseolus vulgaris L.) under water stress conditions. Research Journal of Biological Sciences. 7: 357–370.Ahanger, M., Morad-Talab, N., Abd-Allah, E., Ahmad, P., Hajiboland, R. 2016. Plant growth under drought stress: significance of mineral nutrients. pp: 649-688. In: Ahmad, P. 2016. Water stress and crop plants: a sustainable approach. DOI: https://doi.org/10.1002/9781119054450.ch37Allen, G., Chu, S., Schumacher, K., Shimazaki, C., Vafeados, D., Kemper, A., Hawke, S., Tallman, G., Tsien, R., Harper, J., Chory, J., Schoreder, J. 2000. Alteration of stimulus-specic guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science. 289: 2338-2342. DOI: https://doi.org/10.1126/science.289.5488.2338Allen, G., Chu, P., Harrington, C., Schumacher, K., Hoffmann, T., Tang, Y., Grill, E., Schroeder, J. 2001. A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature. 411: 1053-1057. DOI: https://doi-org.ezproxy.unal.edu.co/10.1038/35082575Amede, T., Schubert, S., Stahr K. 2003. Mechanisms of drought resistance in grain legumes I: osmotic adjustment. Ethiopian Journal of Science. 26: 37–46. DOI: 10.4314/sinet.v26i1.18198Andjelkovic, V. 2018. Introductory Chapter: Climate Changes and Abiotic Stress. En: Plants, Plant, Abiotic Stress and Responses to Climate Change. IntechOpen. DOI: 10.5772/intechopen.76102. Available from: https: //www.intechopen.com/books/plant-abioticstress-and-responses-to-climate-change/introductory-chapterclimate-changes-and-abiotic-stress-in-plantsArshi, A., Abdin, Z., Iqbal, M. 2006. Effect of CaCl2 on growth performance, photosynthetic efficiency and nitrogen assimilation of Cichorium intybus L. grown under NaCl stress. Acta Physiologiae Plantarum. 28: 137-147. DOI: 10.1007/s11738-006-0040-z.Bartels. D., Ramanjulu, S. 2005. Drought and salt tolerance in plants. Plant Sciences. 24: 23-58. DOI: https://doi.org/10.1080/07352680590910410Berkowitz, G., Zhang, X., Mercier, R., Leng, Q., Lawton, M., 2000. Co-expression of calcium-dependent protein kinase with the inward rectified guard cell Kchannel KAT1 alters current parameters in Xenopus laevis oocytes. Plant and Cell Physiology. 41(6): 785-790. DOI: 10.1093/pcp/41.6.785Blatt, R., Grabov, A. 1997. Signalling gates in abscisic acid-mediated control fo guard cell ion channels. Physiologia Plantarum. 100: 481–490.Bosch, M., Hepler, P. 2005. Pectin methylesterases and pectin dynamics in pollen tubes. Plant Cell. 17: 3219–3226. DOI: https://doi.org/10.1105/tpc.105.037473Bouché, N., Yellin, A., Snedden, W., Fromm, H. 2005. Plant specific calmodulin-binding proteins. Annual Review of Plant Biology. 56: 435–466. DOI: 10.1146/annurev.arplant.56.032604.144224Boyer, J. 2009. Cell wall biosynthesis and the molecular mechanism of plant enlargement. Functional Plant Biology. 36: 383–394. DOI: https://doi.org/10.1071/FP09048Bundó, M., Coca, M. 2017. Calcium-dependent protein kinase OsCPK10 mediates both drought tolerance and blast disease resistance in rice plants. Journal of Experimental Botany. 68(11): 2963–2975. DOI: 10.1093/jxb/erx145Cadet, F., Meunier, J. 1988. Spinach (Spinacia oleracea) chloroplast sedoheptulose-1,7- bisphosphatase. Activation and deactivation, and immunological relationship to fructose-1,6-bisphosphatase. Biochemical Journal. 253: 243–248. DOI: 10.1042/bj2530243Campo, S., Baldrich, P., Messenguer, J., Lalanne, E., Coca, M., Segundo, B. 2014. Overexpression of a Calcium-Dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. Plant Physiology. 165: 688-704. DOI: https://doi.org/10.1104/pp.113.230268Chai, M., Chen, Q., An, R., Chen, Y., Chen, J., Wang, X. 2005. NADK2, an Arabidopsis chloroplastic NAD kinase, plays a vital role in both chlorophyll synthesis and chloroplast protection. Plant Molecular Biology. 59: 553–564. DOI: 10.1007/s11103-005-6802-yCharles, S., Halliwell, B. 1980. Action of calcium ions on spinach (Spinacia oleracea) chloroplast fructose bisphosphatase and other enzymes of the Calvin cycle. Biochemical Journal. 188: 775–779. DOI: 10.1042/bj1880775Chen, J., Xue, B., Xia, X., Yin, W. 2013. A novel calcium-dependent protein kinase gene from Populus euphratica, confers both drought and cold stress tolerance. Biochemical and Biophysical Research Communications. 441(3): 630–636. DOI: 10.1016/j.bbrc.2013.10.103Clarkson, T. 1993. Roots and the delivery of solutes to the xylem. Philos. Trans. R. Soc. Lond. B 341, 5–7. DOI: 10.1098/rstb.1993.0086Cushman, J. 2001. Osmoregulation in plants: implications for agriculture. American Zoologis. 41: 758-769.Dubrovina, A., Kiselev, K., Khristenko, V., Aleynova, O. 2015. VaCPK20, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., mediates cold and drought stress tolerance. Journal of Plant Physiology. 185: 1–12. DOI: 10.1016/j.jplph.2015.05.020Dulai, S., Molnár, I., Prónay, J., Csernák, Á., Tarnai, R., Molnár-Láng, M. 2006. Effects of drought on photosynthetic parameters and heat stability of PSII in wheat and in Aegilops species originating from dry habitats. Acta Biologica Szegediensis. 50: 11-17.Eichert, T., Burkhardt, J., 2001. Quantification of stomatal uptake of ionic solutes using a new model system. Journal of Experimental Botany. 52(357): 771–781. DOI: 10.1093/jexbot/52.357.771Ettinger, W., Clear, A., Fanning, K., Peck, M. 1999. Identification of a Ca2+/H+ antiport in the plant chloroplast thylakoid membrane. Plant Physiology. 119(4): 1379–1386. DOI: 10.1104/pp.119.4.1379Fageria, N., Barbosa, M., Moreira, A., Guimaraes, M. 2009. Foliar fertilization of crop plants. Journal of Plant Nutrition. 32: 1044-1064. DOI: 10.1080/01904160902872826Fan, D. 2019. The effect of calcium to maize seedlings under drought stress. American Journal of Plant Sciences. 10: 1391-1396. DOI: https://doi.org/10.4236/ajps.2019.108099Farquhar, G., Sharkey, D. 1982. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology. 33: 317-345.Fernández, V., Sotiropoulos, T., Brown, P. 2015. Fertilización Foliar: Principios Científicos y Práctica de Campo. Primera edición. IFA, Paris, Francia. 156 pp.Fernández, V., Pimentel, C., Behamonde, H. 2020. Salt hydration and drop drying of two model calcium salts: implications for foliar nutrient absorption and deposition. Journal of Plant Nutrition and Soil Science. 183: 592-601. DOI: 10.1002/jpln.202000168Flechner, A., Dressen, U., Westhoff, P., Henze, K., Schnarrenberger, C., Martin, W. 1996. Molecular characterization of transketolase (EC 2.2.1.1) active in the Calvin cycle of spinach chloroplasts. Plant Mol. Biol. 32: 475–484.Geng, S., Zhao, Y., Tang, L., Zhang, R., Sun, M., Guo, H., Kong, X., Li, A., Mao, L. 2011. Molecular evolution of two duplicated CDPK genes CPK7 and CPK12 in grass species: A case study in wheat (Triticum aestivum L.). Gene. 475(2): 94–103. DOI: 10.1016/j.gene.2010.12.015Gorecka, K., Konopka-Postupolska, D., Hennig, J., Buchet, R., Pikula, S. 2005. Peroxidase activity of annexin 1 from Arabidopsis thaliana. Biochemical and Biophysical Research Communications. 336: 868–875. DOI: 10.1016/j.bbrc.2005.08.181Guimarães, F.A.V., de Lacerda, C.F., Marques, E.C., Alcantâra de Miranda, M.R., Braga de Abreu, C.E., Prisco, J.T., Gomes-Filho, E., 2011. Calcium can moderate changes on membrane structure and lipid composition in cowpea plants under salt stress. Plant Growth Regulation. 65(1): 55–63. DOI: https://doi.org/10.1007/s10725-011-9574-1Han, S., Tang, R., Anderson, L., Woerner, T., Pei, Z. 2003. A cell surface receptor mediates extracellular Ca(2+) sensing in guard cells. Nature. 425: 196–200. DOI: 10.1038/nature01932Hare, P., Cress, A. 1997. Metabolic implications of stress induced proline accumulation in plants. Plant Growth Regulation. 21: 79-102. DOI: https://doi.org/10.1023/A:1005703923347Harker, F., Ferguson, I., 1991. Effects of surfactants on calcium penetration of cuticles isolated from apple fruit. Scientia Horticulturae. 46(3-4): 225–233. DOI: https://doi.org/10.1016/0304-4238(91)90045-ZHarper, J., Breton, G., Harmon, A. 2004. Decoding Ca2+ signals through plant protein kinases. Annual Review of Plant Biology. 55: 263–288. DOI: 10.1146/annurev.arplant.55.031903.141627Harper, J., Harmon, A. 2005. Plants, symbiosis and parasites: a calcium signalling connection. Nature Reviews Molecular Cell Biology. 6: 555–566. DOI: 10.1038/nrm1679Hashimoto, K., Kudla, J. 2011. Calcium decoding mechanisms in plants. Biochimie. 93(12): 2054–2059. DOI: 10.1016/j.biochi.2011.05.019Hepler, K., Winship, J. 2010. Calcium at the cell wall-cytoplast interface. Journal of Integrative Plant Biology. 52(2): 147–160. DOI: 10.1111/j.1744-7909.2010.00923.xHertig, C., Wolosiuk, R. 1980. A dual effect of Ca2+ on chloroplast fructose-1,6- bisphosphatase, Biochemical and Biophysical Research Communications. 97: 325–333. DOI: https://doi.org/10.1016/S0006-291X(80)80171-9Hirschi, K. 2004 The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiology. 136: 2438-2442. DOI: https://doi.org/10.1104/pp.104.046490Ho, S.-L., Huang, L.-F., Lu, C.-A., He, S.-L., Wang, C.-C., Yu, S.-P., Chen, J., Yu, S.-M. 2013. Sugar starvation-and GA-inducible calcium-dependent protein kinase 1 feedback regulates GA biosynthesis and activates a 14-3-3 protein to confer drought tolerance in rice seedlings. Plant Molecular Biology. 81(4-5): 347–361. DOI: 10.1007/s11103-012-0006-zHochmal, A., Schulze, S., Trompelt, K., Hippler, M. 2015. Calcium-dependent regulation of photosynthesis. Biochimica et Biophysica Acta. 1847: 993–1003. DOI: http://dx.doi.org/10.1016/j.bbabio.2015.02.010Hong-Bo, S., Li-Ye, C., Ming-An, S. 2008. Calcium as a versatile plant signal transducer under soil water stress. Bioessays. 30: 634–641. DOI: http://dx.doi.org/10.1002/bies.20770Hu, W., Tian, S., Di, Q., Duan, S., Dai, K. 2018. Effects of exogenous calcium on mesophyll cell ultrastructure, gas exchange, and photosystem II in tobacco (Nicotiana tabacum Linn.) under drought stress. Photosynthetica. 56(4): 1204-1211. DOI: 10.1007/s11099-018-0822-8Huang, J., Hirji, R., Adam, L., Rozwadowski, K., Hammerlindl, J., Keller, W., Selvaraj, G. 2000. Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiology. 122: 747-756. DOI: https://doi.org/10.1104/pp.122.3.747Jones, G., Lunt, R. The function of calcium in plants. 1967. The Botanical Review. 33: 407-426.Kannan, S. 2010. Foliar Fertilization for Sustainable Crop Production. En: Lichtfouse E. (eds) Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming. Sustainable Agriculture Reviews, vol 4. Springer, Dordrecht.Kerstiens, G. 2006. Water transport in plant cuticles: an update. Journal of Experimental Botany. 57: 2493–2499. DOI: 10.1093/jxb/erl017Knight, H., Trewavas, A., Knight, M. 1997. Calcium signaling in Arabidopsis thaliana responding to drought and salinity. The Plant Journal. 12: 911-922. DOI: 10.1046/j.1365-313x.1997.12051067.xKohorn, D., Kobayashi, M., Johansen, S., Friedman, P., Fischer, A., Byers, N. 2006. Wall-associated kinase 1 (WAK1) is crosslinked in endomembranes, and transport to the cell surface requires correct cell-wall synthesis. Journal of Cell Science. 119: 2282–2290. DOI: 10.1242/jcs.02968Kolthoff, I., Sandell, E., Meehan, E., Bruckenstein, S. 1969. Quantitative Chemical Analysis, Vol. 826. London: MacmillanKonopka-Postupolska, D. 2007. Annexins: putative linkers in dynamic membrane-cytoskeleton interactions in plant cells. Protoplasma. 230: 203–215. DOI: https://doi.org/10.1007/s00709-006-0234-7Kovács-Bogdán, E., Soll, J., Bölter, B. 2010. Protein import into chloroplasts: the Tic complex and its regulation. Biochimica et Biophysica Acta - Molecular Cell Research. 1803(6): 740–747. DOI: 10.1016/j.bbamcr.2010.01.015Kovács-Bogdán, E. Benz, J., Soll, J., Bolter, B. 2011. Tic20 forms a channel independent of Tic110 in chloroplasts. BMC Plant Biology. 11: 133. DOI: https://doi.org/10.1186/1471-2229-11-133Kraemer, T., Hunsche, M., Noga, G. 2009. Cuticular calcium penetration is directly related to the area covered by calcium within droplet spread area. Scientia Horticulturae. 120: 201-206. DOI: 10.1016/j.scienta.2008.10.015Kreimer, G., Melkonian, M., Latzko, E. 1985. An electrogenic uniport mediates lightdependent Ca2+ influx into intact spinach chloroplasts. FEBS Lett. 180: 253–258. DOI: https://doi.org/10.1016/0014-5793(85)81081-4Kreimer, G., Surek, B., Woodrow, I., Latzko, E. 1987. Calcium binding by spinach stromal proteins. Planta. 171: 259–265. DOI: https://doi.org/10.1007/BF00391103Kukuczka, B., Magneschi, L., Petroutsos, D., Steinbeck, J., Bald, T., Powikrowska, M., Fufezan, C., Finazzi, G., Hippler, M. 2014. Proton gradient regulation5-like1-mediated cyclic electron flow is crucial for acclimation to anoxia and complementary to nonphotochemical quenching in stress adaptation. Plant Physiology. 165: 1604–1617. DOI: https://doi.org/10.1104/pp.114.240648Laohavisit, A., Mortimer, J., Demidchik, V., Coxon, M., Stancombe, A., Macpherson, N., Brownlee, C., Hofmann, A., Webb, A., Miedema, H., Battey, H., Davies, M. 2009. Zea mays annexins modulate cytosolic free Ca2+ and generate a Ca2+-permeable conductance. Plant Cell. 21: 479–493. DOI: 10.1105/tpc.108.059550Larkindale, J., Knight, M., 2002. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiology. 128(2): 682-695. DOI: 10.1104/pp.010320Leister, D., Shikanai, T. 2013. Complexities and protein complexes in the antimycin Asensitive pathway of cyclic electron flow in plants. Frontiers in Plant Science. 4: 161. DOI: https://doi.org/10.3389/fpls.2013.00161Li, Z., Tan, X., Lu, K., Liu, Z., Wu, L. 2017. The effect of CaCl2 on calcium content, photosynthesis, and chlorophyll fluorescence of tung tree seedlings under drought conditions. Photosynthetica. 55(3): 553-560. DOI: 10.1007/s11099-016-0676-xLiu, G., Chen, J., Wang, X. 2006. VfCPK1, a gene encoding calcium-dependent protein kinase from Vicia faba, is induced by drought and abscisic acid. Plant, Cell and Environment. 29: 2091–2099. DOI: https://doi.org/10.1111/j.1365-3040.2006.01582.xLuan, S. 2009. The CBL-CIPK network in plant calcium signaling. Trends in Plant Science. 14: 37–42. DOI: 10.1016/j.tplants.2008.10.005.Ma, R., Zhang, M., Li, B., Du, G., Wang, J., Chen, J. 2005. The effects of exogenous Ca2+ on endogenous polyamine levels and drought-resistant traits of spring wheat grown under arid conditions. Journal of Arid Environments. 63: 177-190. DOI: 10.1016/j.jaridenv.2005.01.021.Maatihus, F. 2009. Pfysiological functions of mineral macronutrients. Current Opinion in Plant Biology. 12: 250-258. DOI: 10.1016/j.pbi.2009.04.003Marschner, P., 2012. Marschner's Mineral Nutrition of Higher Plants. Third Edition. Elsevier. pp: 174-176.McAinsh, M., Pittman, J. 2009 Shaping the calcium signature. New Phytologist. 181:275-294. DOI: 10.1111/j.1469-8137.2008.02682.x.McCormack, E., Tsai, Y., Braam, J. 2005. Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends in Plant Science. 10: 383–389. DOI: 10.1016/j.tplants.2005.07.001Miedema, H., Bothwell, F., Brownlee, C., Davies, M. 2001. Calcium uptake by plant cells—channels and pumps acting in concert. Trends in Plant Science. 6: 514–519. DOI: 10.1016/S1360-1385(01)02124-0.Mohanta, T., Yadav, D., Khan, A., Hashem, A., Abd Allah, E., Al-Harrasi, A. 2019. Molecular Players of EF-hand Containing Calcium Signaling Event in Plants. International Journal of Molecular Sciences. 20(6): 1476. DOI: 10.3390/ijms20061476Mori, I., Murata, Y., Yang, Y., Munemasa, S., Wang, Y., Andreoli, S., Tiriac, H., Alonso, J., Harper, J., Ecker, J., Kwak, J., Schroeder, J. 2006. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+ -permeable channels and stomatal closure. PLoS Biol. 4(19): 1749-1762. DOI: https://doi.org/10.1371/journal.pbio.0040327Naeem, M., Naeem, M., Ahmad, R., Ahmad, R. 2017. Foliar-applied calcium induces drought stress tolerance in maize by manipulating osmolyte accumulation and antioxidative responses. Pakistan Journal of Botany. 49: 427–434.Nebenführ, A., Staehelin, L. 2001. Mobile factories: Golgi dynamics in plant cells. Trends in Plant Science. 6: 160–167. DOI: 10.1016/s1360-1385(01)01891-xNomura, H., Komori, T., Kobori, M., Nakahira, Y., Shiina T. 2008. Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure. The Plant Journal. 53(6): 988–998. DOI: 10.1111/j.1365-313X.2007.03390.xNomura, H., Komori, T., Uemura, S., Kanda, Y., Shimotani, K., Nakai, K., Furuichi, T., Takebayashi, K., Sugimoto, T., Sano, S., Suwastika, I., Fukusaki, E., Yoshioka, H., Nakahira, Y., Shiina, T. 2012. Chloroplast-mediated activation of plant immune signaling in Arabidopsis. Nature Communications. 3: 926. DOI: 10.1038/ncomms1926Plieth, C., Vollbehr, S. 2012. Calcium promotes activity and confers heat stability on plant peroxidases. Plant Signaling & Behavior. 7: 650–660. DOI: 10.4161/psb.20065Proseus, E, Boyer, S. 2007. Tension required for pectate chemistry to control growth in Chara corallina. Journal of Experimental Botany. 58: 4283–4292. DOI: 10.1093/jxb/erm318.Qiang, L., Jianhua, C., Longjiang, Y., Maoteng, L., Jinjing, L., Lu, G. 2012. Effects on physiological characteristics of Honeysuckle. (Lonicera japonica Thunb) and the role of exogenous calcium under drought stress. Plant Omics: J Plant Mol Biol Omic. 5(1): 1–5.Reid, J., Sayer, R., 2003. Heterogeneous atmospheric aerosol chemistry: laboratory studies of chemistry on water droplets. Chemical Society Reviews. 32(2): 70–79. DOI: 10.1039/b204463nRentel, C., Knight, M. 2004. Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiology. 135:1471–1479. DOI: https://doi.org/10.1104/pp.104.042663Riederer, M., 2006. Thermodynamics of the water permeability of plant cuticles: characterization of the polar pathway. Journal of Experimental Botany. 57(12): 2937–2942. DOI: 10.1093/jxb/erl053Rocha, A., Mehlmer, N., Stael, S., Mair, A., Parvin, N., Chigri, F., Teige, M., Vothknecht, U. 2014. Phosphorylation of Arabidopsis transketolase at Ser428 provides a potential paradigm for the metabolic control of chloroplast carbon metabolism. Biochemical Journal. 458: 313–322. DOI: 10.1042/BJ20130631Roh, M., Shingles, R., Cleveland, M., McCarty, R. 1998. Direct measurement of calcium transport across chloroplast inner-envelope vesicles. Plant Physiology. 118: 1447–1454. DOI: https://doi.org/10.1104/pp.118.4.1447Romheld, V., El-Fouly, M. 1999. Foliar nutrient application. challenge and limits in crop production. In: Proc. 2nd International Workshop on "Foliar Fertilization" Bangkok, Thailand, 1-32.Ruiz, J., Sánchez, E., García, P., Lopez-Lefebre, L., Rivero, R., Romero, L. 2002. Proline metabolism and NAD kinase activity in greenbean plants subjected to cold-shock. Phytochemistry. 59(5): 473–478. DOI: 10.1016/s0031-9422(01)00481-2Schapire, A., Voigt, B., Jasik, J., Rosado, A., Lopez-Cobollo, R., Menzel, D., Salinas, J., Mancuso, S., Valpuesta, V., Baluska, F., Botella, M. 2008. Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability. Plant Cell. 20: 3374– 3388. DOI: https://doi.org/10.1105/tpc.108.063859Schönherr, J. 2000. Calcium chloride penetrates plant cuticles via aqueous pores. Planta. 212: 112–118.Schönherr, J. 2001. Cuticular penetration of calcium salts: effects of humidity, anions, and adjuvants. Journal of Plant Nutrition and Soil Science. 164: 225–231.Schumaker, K., Sze, H. 1985. A Ca2+/H+ antiport system driven by the proton electrochemical gradient of a tonoplast H+-ATPase from oat roots. Plant Physiology. 79: 1111-1117. DOI: https://doi.org/10.1104/pp.79.4.1111Shabbir, R., Ahsraf, M., Waraich, E., Ahmad, R. 2015. Combined effects of drought stress and NPK foliar spray on growth, physiological processes and nutrient uptake in wheat. Pakistan Journal of Botany. 47: 1207–1216.Shao, B., Song, Y., Chu, Y. 2008. Advances of calcium signals involved in plant anti-drought. Comptes Rendus Biologies. 331: 587–596. DOI: 10.1016/j.crvi.2008.03.012.Shi, S., Li, S., Asim, M., Mao, J., Xu, D., Ullah, Z., Liu, G., Wang, Q., Liu, H. 2018. The Arabidopsis calcium-dependent protein kinases (CDPKs) and their roles in plant growth regulation and abiotic stress responses. International Journal of Molecular Sciences. 19(7): 1900. DOI: 10.3390/ijms19071900Siddiqui, M.., Al-Whaibi M., Basalah, M. 2011. Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L. Protoplasma. 248: 503-511. DOI: 10.1007/s00709-010-0197-6Singh, A., Sagar, S., Biswas, D. 2017. Calcium dependent protein kinase, a versatile player in plant stress management and development. Critical Reviews in Plant Sciences. 36(5-6): 336–352. DOI: https://doi.org/10.1080/07352689.2018.1428438Stael, S., Rocha, A., Wimberger, T., Anrather, D., Vothknecht, U., Teige, M. 2012. Crosstalk between calcium signalling and protein phosphorylation at the thylakoid. Journal of Experimental Botany. 63 (4): 1725–1733. DOI: 10.1093/jxb/err403Stael, S., Wurzinger, B., Mair, A., Mehlmer, N., Vothknecht, C., Teige, M. 2011. Plant organellar calcium signalling: an emerging field. Journal of Experimental Botany. 63: 1525–1542. DOI:10.1093/jxb/err394Sun, C., Johnson, J., Cai, D., Sherameti, I., Oelmuller, R., Lou, B. 2010. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. Journal of Plant Physiology. 167: 1009–1017. DOI: 10.1016/j.jplph.2010.02.013Sutter, JU., Homann, U., Thiel, G. 2000. Ca2+-stimulated exocytosis in maize coleoptile cells. Plant Cell. 12: 1127–1136. DOI: https://doi.org/10.1105/tpc.12.7.1127Syam Prakash, S., Jayabaskaran, C. 2006. Heterologous expression and biochemical characterization of two calcium-dependent protein kinase isoforms CaCPK1 and CaCPK2 from chickpea. Journal of Plant Physiology. 163(11): 1083–1093. DOI: 10.1016/j.jplph.2006.04.005Szalonek, M., Sierpien, B., Rymaszewski, W., Gieczewska, K., Garstka, M., Lichocka, M., Sass, L., Paul, K., Vass, I., Vankova, R., Dobrev, P., Szczesny, P., Marczewski, W., Krusiewicz, D., Strzelczyk-Zyta, D., Hennig, J., Konopka-Postupolska, D. 2015. Potato Annexin STANN1 promotes drought tolerance and mitigates light stress in transgenic Solanum tuberosum L. plants. PLoS ONE. 10(7): e0132683. DOI: 10.1371/journal.pone.0132683Sze, H., Liang, F., Hwang, I., Curran, A., Harper, J. 2000. Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast. Annu Rev Plant Physiol Plant Mol Biol. 51: 433-462. DOI: 10.1146/annurev.arplant.51.1.433Takahashi, H., Watanabe, A., Tanaka, A., Hashida, S., Kawai-Yamada, M., Sonoike, K., Uchimiya, H. 2006. Chloroplast NAD kinase is essential for energy transduction through the xanthophyll cycle in photosynthesis. Plant and Cell Physiology. 47: 1678–1682. DOI: https://doi.org/10.1093/pcp/pcl029Tang, R-J., Luan, S. 2017. Regulation of calcium and magnesium homeostasis in plants: from transporters to signaling network. Current Opinion in Plant Biology. 39: 97–105. DOI: http://dx.doi.org/10.1016/j.pbi.2017.06.009Terashima, M., Petroutsos, D., Hudig, M., Tolstygina, I., Trompelt, K., Gabelein, P., Fufezan, C., Kudla, J., Weinl, S., Finazzi, G., Hippler, M. 2012. Calcium-dependent regulation of cyclic photosynthetic electron transfer by a CAS, ANR1, and PGRL1 complex. Proceedings of the National Academy of Sciences. 109(43): 17717–17722. DOI: https://doi.org/10.1073/pnas.1207118109Thor, K. 2019. Calcium-Nutrient and Messenger. Frontiers in Plant Science. 10:440. DOI: 10.3389/fpls.2019.00440Tredenick, E., Farrel, T., Forster, W. 2018. Mathematical modeling of diffusion of a hydrophilic ionic fertilizer in plant cuticles: surfactant and hygroscopic effects. Frontiers in Plant Science. 9: 1888. DOI: https://doi.org/10.3389/fpls.2018.01888Val, J., Fernandez, V. 2011. In-season calcium-spray formulations improve calcium balance and fruit quality traits of peach. Journal of Plant Nutrition and Soil Science. 174:465-472. DOI: 10.1002/jpln.201000181Vivek, P., Tuteja, N., Soniya, E. 2013. CDPK1 from ginger promotes salinity and drought stress tolerance without yield penalty by improving growth and photosynthesis in Nicotiana tabacum. PLoS ONE. 8(10): e76392. DOI: https://doi.org/10.1371/journal.pone.0076392Waller, J., Dhanoa, P., Schumann, U., Mullen, R., Snedden, W. 2010. Subcellular and tissue localization of NAD kinases from Arabidopsis: compartmentalization of de novo NADP biosynthesis. Planta. 231(2): 305–317. DOI: 10.1007/s00425-009-1047-7Wang, W., Chen, J., Liu, T., Han, A., Simon, M., Dong, X., He, J., Zheng, H. 2014. Regulation of the calcium-sensing receptor in both stomatal movement and photosynthetic electron transport is crucial for water use efficiency and drought tolerance in Arabidopsis. Journal of Experimental Botany. 65(1): 223–234. DOI: 10.1093/jxb/ert362Wang, Z., Li, J., Jia, C., Xu, B., Jin, Z. 2016. Molecular cloning and expression analysis of eight calcium-dependent protein kinase (CDPK) genes from banana (Musa acuminata L. AAA group, cv. Cavendish). South African Journal of Botany. 104: 134–141. DOI: https://doi.org/10.1016/j.sajb.2015.10.004Wang, Y., Kang, Y., Ma, C., Miao, R., Wu, C., Long, Y., Ge, T., Wu, Z., Hou, X., Zhang, J., Qi, Z. 2017. CNGC2 is a Ca2+ influx channel that prevents accumulation of apoplastic Ca2+ in the leaf. Plant Physiology. 173: 1342–1354. DOI: 10.1104/pp.16.01222Wei, S., Hu, W., Deng, X., Zhang, Y., Liu, X., Zhao, X., Luo, Q., Jin, Z., Li, Y., Zhou, S. 2014. A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility. BMC Plant Biol. 14: 133. DOI: 10.1186/1471-2229-14-133Weinl, S., Held, H., Schlucking, K., Steinhorst, L., Kuhlgert, S., Hippler, M., Kudla, J. 2008. A plastid protein crucial for Ca2+-regulated stomatal responses. New Phytologist. 179(3): 675–686. DOI: 10.1111/j.1469-8137.2008.02492.xWeinl, S., Kudla, J. 2009. The CBL-CIPK Ca2+-decoding signaling network: function and perspectives. New Phytologist. 184: 517–528. DOI: 10.1111/j.1469-8137.2009.02938.xWhite, J., Bowen, C., Demidchik, V., Nichols, C., Davies, M. 2002. Genes for calcium-permeable channels in the plasma membrane of plant root cells. Biochim. Biophys. Acta Biomembr. 1564: 299–309. DOI: 10.1016/S0005-2736(02)00509-6White, J., Broadley, M. 2003. Calcium in plants. Annals of Botany. 92(4): 487-511. DOI: 10.1093/aob/mcg164Xu, J., Tian, Y.-S., Peng, R.-H., Xiong, A.-S., Zhu, B., Jin, X.-F., Gao, F., Fu, X.-Y., Hou, X.-L., Yao, Q.-H. 2010. AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta. 231(6): 1251–1260. DOI: 10.1007/s00425-010-1122-0Yang, B., Liu, Z., Zhou, S., Ou, L., Dai, X., Ma, Y., Zhang, Z., Chen, W., Li, X., Liang, C., Yang, S., Zou, X. 2016. Exogenous Ca2+ alleviates waterlogging-caused damages to pepper. Photosynthetica. 54: 620-629. DOI: https://doi.org/10.1007/s11099-016-0200-3Zandalinas, S., Mittler, R., Balfagón, D., Arbona, V., Gómez-Cadenas, A. 2018. Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum. 162(1): 2–12. DOI: 10.1111/ppl.12540Zou, J. J., Wei, F. J., Wang, C., Wu, J. J., Ratnasekera, D., Liu, W. X., Wu, W. H. 2010. Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress. Plant Physiology. 154(3): 1232–1243. DOI: 10.1104/pp.110.157545Zou, J.-J., Li, X.-D., Ratnasekera, D., Wang, C., Liu, W.-X., Song, L.-F., Zhang, W.-Z., Wu, W.-H. 2015. Arabidopsis Calcium-Dependent Protein Kinase8 and CATALASE3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. Plant Cell. 27: 1445–1460. DOI: https://doi.org/10.1105/tpc.15.00144Abdel-Rahman, M., El-Sayed, M.D., Rady, M.M., 2018. Response of water deficit-stressed Vigna unguiculata performances to silicon, proline or methionine foliar application. Scientia Horticulturae. 228: 132-144. DOI: 10.1016/j.scienta.2017.10.008Anjum, S.A., Xie, X.Y., Wang, L.C., Saleem, M.F., Man, C., Lei, W., 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research. 6(9): 2026-2032. DOI: 10.5897/AJAR10.027Evans, N., McAinsh, M., Hetherington, A., Knight, M. 2005. ROS perception in Arabidopsis thaliana: the ozone induced calcium response. The Plant Journal. 41: 615–626. DOI: https://doi.org/10.1111/j.1365-313X.2004.02325.xHarb, A., Krishnan, A., Ambavaram, M., Pereira, A. 2010. Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiology. 154: 1254-1271. DOI: 10.1104/pp.110.161752Hojati, M., Modarres-Sanavy, S.A., Ghanati, F., Panahi, M. 2011. Hexaconazole induces antioxidant protection and apigenin-7- glucoside accumulation in Matricaria chamomilla plants subjected to drought stress. The Journal of Plant Physiology. 168: 782-791. DOI: 10.1016/j.jplph.2010.11.009.Hopper, D., Ghan, R., Cramer, G. 2014. A rapid dehydration leaf assay reveals stomatal response differences in grapevine genotypes. Horiculture Research. 1(2). DOI: 10.1038/hortres.2014.2Hosseini, S., Réthoré, E., Pluchon, S., Ali, N., Billiot, B., Yvin, J. 2019. Calcium application enhances drought stress tolerance in sugar beet and promotes plant biomass and beetroot sucrose concentration. International Journal of Molecular Sciences. 20: 3777. DOI: 10.3390/ijms20153777Hsiao, T., 1973. Plant responses to water stress. Ann. Rev. Plant Physiol. 24, 519 - 570.Ishibashi, Y., Yamaguchi, H., Yuasa, T., Iwaya-Inoue, M., Arima, S., Zheng, S. 2011. Hydrogen peroxide spraying alleviates drought stress in soybean plants. Journal of Plant Physiology. 168: 1562-1567. DOI: 10.1016/j.jplph.2011.02.003Jäger, K., Fábián, A., Eitel, G., Szabó, G., Deák, C., Barnabás, B., Papp, I. 2014. A morpho-physiological approach differentiates bread wheat cultivars of contrasting tolerance under cyclic water stress. Journal of Plant Physiology. 171: 1256–1266. DOI: http://dx.doi.org/10.1016/j.jplph.2014.04.013Jefferies, A. 1993. Use of a simulation model to assess possible strategies of drought tolerance in potato (Solanum tuberosum L.). Agricultural Systems. 41: 93–104. DOI: https://doi.org/10.1016/0308-521X(93)90083-EJefferies, R. 1995. Physiology of crop response to drought. En Modelling of Crops Under Conditions Limiting … (pp. 61-74). DOI: https://doi.org/10.1007/978-94-011-0051-9_4Kalina, D., Plich, J., Strzelczyk-Żyta, D., Śliwka, J., Marczewski, W. 2016. The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of ‘Katahdin’-derived potato cultivars. Breeding Science. 66(2): 328-331. DOI: https://doi.org/10.1270/jsbbs.66.328Kosma, D., Bourdenx, B., Bernard, A., Parsons, E., Lü, S., Joubès, J., Jenks, M. 2009 The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiology. 151: 1918–29. DOI: 10.1104/pp.109.141911Kuppinger, L., Auber, E., Farfan, K, Bonierbale, M., Asch, F. 2014. Effects of drought stress on crop development, growth and chlorophyll fluorescence in five potato clones. p. 54. In: Tielkes, E. (ed.). Bridging the gap between increasing knowledge and decreasing resources. Czech University of Life Sciences, Prague.Larkindale, J., Knight, M. 2002. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiology. 128: 682-695. DOI: 10.1104/pp.010320Lawlor, D., Cornic, G. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment. 25(2): 275-294. DOI: https://doi.org/10.1046/j.0016- 8025.2001.00814.xLobato, C., Olivieri, P., Altamiranda, G., Wolski, A., Daleo, R., Caldiz, D., Andreu, A. 2008. Phosphite compounds reduce disease severity in potato seed tubers and foliage. European Journal of Plant Pathology. 122: 349-358. DOI: 10.1007/s10658-008-9299-9Mao, J., Ni, T., Wang, S., Chen, F., 2008. Effects of exogenous calcium on some physiological characteristics of Jatropha curcas L. under drought stress. Journal of Sichuan University. 45(3): 669-673.Miranda-Apodaca, J., Pérez-López, U., Lacuesta, M., Mena-Peite, A., Muñoz-Rueda, A. 2018. The interaction between drought and elevated CO2 in water relations in two grassland species is species-specific. Journal of Plan Physiology. 220: 193-202. DOI: https://doi.org/10.1016/j.jplph.2017.11.006Opena, G-B., Porter, G-A., 1999. Soil management and supplemental irrigation effects on potato. II. Root growth. Agronomy Journal. 91: 426–431. DOI: http://dx.doi.org/10.2134/agronj1999.00021962009100030011xPino, T. 2016. Estrés hídrico y térmico en papas, avances y protocolos. Santiago, Chile. Instituto de Investigaciones Agropecuarias. Boletín INIA Nº 331. 148pPieczynski, M., Marczewski, W., Hennig, J., Dolata, J., Bielewicz, D., Piontek, P., Wyrzykowska, A., Krusiewicz, D., Strzelczyk-Zyta, D., Konopka-Postupolska, D. Krzeslowska, M., Jarmolowski, A., Szweykowska-Kulinska, Z. 2013. Down-regulation of CBP80 gene expression as a strategy to engineer a drought-tolerant potato. Plant Biotechnology Journal. 11: 459–469. DOI: 10.1111/pbi.12032.Riederer, M., Schreiber, L. 2001. Protecting against water loss: analysis of the barrier properties of plant cuticles. Journal of Experimental Botany. 52: 2023–32. DOI: 10.1093/jexbot/52.363.2023.Ristic, Z., Jenks, M. 2002. Leaf cuticle and water loss in maize lines differing in dehydration avoidance. Journal of Plant Physiology. 59:645–651. DOI: 10.1078/0176-1617-0743Ruíz, J. 2010. Cambio climático en temperatura, precipitación y humedad relativa para Colombia usando modelos meteorológicos de alta resolución (Panorama 2011-2010). Nota técnica del Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). Bogotá, Colombia. 91 pp.Savić, J., Dragićević, I., Pantelić, D., Ojlača, J., Momcilovic, I., 2012. Expression of small heat shock proteins and heat tolerance in potato (Solanum tuberosum L.). Archives of Biological Sciences. 64(1): 135-144.Schafleitner, R., Gutierrez Rosales, R. O., Gaudin, A., Alvarado Aliaga, C. A., Martinez, G. N., Tincopa Marca, L. R., … Bonierbale, M. 2007. Capturing candidate drought tolerance traits in two native Andean potato clones by transcription profiling of field grown plants under water stress. Plant Physiology and Biochemistry. 45(9): 673- 690. DOI: https://doi.org/10.1016/j.plaphy.2007.06.003Schapire, A., Valpuesta, V., Botella, M. 2009. Plasma membrane repair in plants. Trends in Plant Science. 14, 645–652. DOI: https://doi.org/10.1016/j.tplants.2009.09.004Scholander, P. F., Badstreet, E. D., Hemmingsen, E. A., Hammel, H. T., 1965. Sap pressure in vascular plants. Proceedings of the National Academy of Sciences. 148(3668): 339-346. DOI: 10.1126/science.148.3668.339Shan, C., Liang, Z. 2010. Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Science. 178: 130-139. DOI: 10.1016/j.plantsci.2009.11.002.Shi, S., Fan, M., Iwama, K., Li, F., Zhang, Z., Jia, L. 2015. Physiological basis of drought tolerance in potato grown under long-term water deficiency. International Journal of Plant Production. 9(2): 305-320. DOI: https://doi.org/10.22069/ijpp.2015.2050Singh, D., Sale, P., Pallaghy, C., Singh, V. 2000. Role of proline and leaf expansion rate in the recovery of stressed white clover leaves with increased phosphorus concentration. New Phytologist. 146(2): 261-269. DOI: https://doi.org/10.1046/j.1469-8137.2000.00643.xSzalonek, M., Sierpien, B., Rymaszewski, W., Gieczewska, K., Garstka, M., Lichocka, M., Sass, L., Paul, K., Vass, I., Vankova, E., Dobrev, P., Szczesny, P., Marckzewski,W… Konopka- Postupolska, D. 2015. Potato Annexin STANN1 Promotes Drought Tolerance and Mitigates Light Stress in Transgenic Solanum tuberosum L. Plants. PLOS ONE. 10(7): 1-38. DOI: https://doi.org/10.1371/journal.pone.0132683Tourneux, C., Devaux, A., Camacho, M., Mamani, P., Ledent, J. 2003. Effects of water shortage on six potato genotypes in the highlands of Bolivia (I): morphological parameters, growth and yield. Agronomie. 23:169–179. DOI: 10.1051/agro:2002079Tuteja, N., Mahajan, S. 2007. Calcium Signaling Network in Plants. An Overview. Plant Signaling y Behavior. 2(2): 79-85. DOI: 10.4161/psb.2.2.4176Villa, M., Barrientos, J., 2012. Incremento de la rentabilidad económica en el cultivo de papa criolla mediante fertilización con manganeso. Revista Colombiana De Ciencias Hortícolas. 6(1): 67-75. DOI: https://doi.org/10.17584/rcch.2012v6i1.1282Vos, J., Oyarzún, P. 1987. Photosynthesis and stomatal conductance of potato leaves? effects of leaf age, irradiance, and leaf water potential. Photosynthesis Research. 11(3): 253-264. DOI: https://doi.org/10.1007/BF00055065Yuan, B.-Z., Nishiyama, S., Kang, Y. 2003. Effects of different irrigation regimes on the growth and yield of drip irrigated potato. Agricultural Water Management. 63(3): 153-167. DOI: https://doi.org/10.1016/S0378-3774(03)00174-4Zhang, L., Mei, G., Shiqing, L., Shengxiu, L., Zongsuo, L. 2011. Modulation of plant growth, water status and antioxidantive system of two maize (Zea mays L.) cultivars induced by exogenous glycinebetaine under long term mild drought stress. Pakistan Journal of Botany. 43: 1587-1594.Zhang, D., Du, Q., Zhang, Z., Jiao, X., Song, X., Li, J. 2017. Vapour pressure deficit control in relation to water transport and water productivity in greenhouse tomato production during summer. SCieNtiFiC Reports. 7: 43461. DOI: 10.1038/srep43461Agili, S., Nyende, B., Ngamau, K., Masinde, P. 2012. Selection, yield evaluation, drought tolerance indices of orange-flesh sweet potato (Ipomoea batatas Lam) hybrid clone. Journal of Nutrition & Food Sciences. 2:3. DOI: http://dx.doi.org/10.4172/2155-9600.1000138Allen, R., Pereira, L., Raes, D., Smith, M. 1998. Crop evapotranspiration —guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. Food and Agriculture Organization, Rome.Anjum, N., Sofo, A., Scopa, A., Roychoudhury, A., Gill, S., Iqbal, M., Lukatkin, A., Pereira, E., Duarte, A., Ahmad, I. 2015. Lipids and proteins—major targets of oxidative modifications in abiotic stressed plants. Environmental Science and Pollution Research. 22: 4099–4121. DOI: 10.1007/s11356-014-3917-1.Arshi, A., Abdin, M., Iqbal, M. 2006. Effect of CaCl2 on growth performance, photosynthetic efficiency and nitrogen assimilation of Cichorium intybus L. grown under NaCl stress. Acta Physiologiae Plantarum. 28: 137-147. DOI:10.1007/ s11738-006-0040-zBanik, P., Zeng, W., Tai, H., Bizimungu, B., Tanino, K. 2016. Effects of drought acclimation on drought stress resistance in potato (Solanum tuberosum L.) genotypes. Environmental and Experimental Botany. 126: 76- 89. DOI: https://doi.org/10.1016/j.envexpbot.2016.01.008Basu, P., Sharma, A., Sukumaran, N. 1998. Changes in net photosynthetic rate and chlorophyll fluorescence in potato leaves induced by water stress. Photosynthetica. 35: 13-19. DOI: https://doi.org/10.1023/A:1006801311105Basu, S., RamegoDHa, V., Kumar, A., Pereira, A., 2016. Plant adaptation to drought stress. [version 1; peer review: 3 approved] F1000Research 2016, 5(F1000 Faculty Rev): 1554. DOI: 10.12688/f1000research.7678.1Blokhina, O., Virolinen, E., Fagerstedt, V. 2003. Antioxidants, oxidative damage and oxygen deprivation stress. Annals of Botany. 91: 179-194. DOI: 10.1093/aob/mcf118.Bouslama, M., Schapaugh, W. 1984. Stress tolerance in soybean. Part 1: evaluation of three screening techniques for heat and drought tolerance. Crop Science. 24: 933–937. DOI: https://doi.org/10.2135/cropsci1984.0011183X002400050026xBussis, D., Heineke, D., 1998. Acclimation of potato plants to polyethylene glycol-induced water deficit. I. Photosynthesis and metabolism. Journal of Experimental Botany. 49: 1349–1360. DOI: 10.1093/jexbot/49.325.1349Butler, H., Martina, F., Roberts, M., Adamse, S., McAinsh, M. 2020. Observation of nutrient uptake at the adaxial surface of leaves of tomato (Solanum lycopersicum) using Raman spectroscopy. Analytical letters. 53(4): 536-562. DOI: https://doi.org/10.1080/00032719.2019.1658199Carson, L., Ozores-Hampton, M., Morgan, K., 2016. Correlation of petiole sap nitrate-nitrogen concentration measured by ion selective electrode, leaf tissue nitrogen concentration, and tomato yield in Florida. Journal of Plant Nutrition. 39(12): 1809-1819. DOI: 10.1080/01904167.2016.1187743Chen, H., Jiang, J-G. 2010. Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environmental Reviews. 18: 309-319. DOI: https://doi.org/10.1139/A10-014CIP. 2010. Procedimientos para pruebas de evaluación estándar de clones avanzados de papa. Centro Internacional de la Papa (CIP). Lima, Perú. 151 pp.Cruz de Carvalho, M.H., 2008. Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signaling and Behavior. 3(3): 156-165. DOI: 10.4161/psb.3.3.553Dalla Costa, L., Delle Vedove, G., Gianquinto, G., Giovanardi, R., Peressotti, A. 1997. Yield, water use efficiency and nitrogen uptake in potato: influence of drought stress. Potato Research. 40(1): 19-34. DOI: https://doi.org/10.1007/BF02407559Deblonde, K., Ledent, F. 2001. Effects of moderate drought conditions on green leaf number, stem height, leaf length and tuber yield of potato cultivars. The European Journal of Agronomy. 14:31–41.Del Pozo, A., Ovalle, C., Espinoza, S., Barahona, V., Gerding, M., Humphries, A., 2017.Water relations and use-efficiency, plant survival and productivity of nine alfalfa (Medicago sativa L.) cultivars in dryland Mediterranean conditions. The European Journal of Agronomy. 84: 16-22. DOI: 10.1016/j.eja.2016.12.002Evers, D., Lefevre, I., Legay, S., Lamoureux, D., Hausman, J.-F., Rosales, R. O.G., Marca, L.R., Hoffmann, L., Bonierbale, M., Schafleitner, R., 2010. Identification of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach. Journal of Experimental Botany. 61: 2327–2343. DOI: 10.1093/jxb/erq060Fallas, R., Bertsch, F. 2014. Análisis del estado nutrimental del cultivo de la papa en Costa Rica con base en información existente. Agronomía Costarricense. 38(1): 199-206.Farshadfar, E., Sutka, J. 2002. Screening drought tolerance criteria in maize. Acta Agronomica Hungarica. 50(4):411-416. DOI: 10.1556/AAgr.50.2002.4.3Fernandez, G. 1992. Effective selection criteria for assessing plant stress tolerance. En: Kuo CG (ed) Adaptation of food crops to temperature and water stress. Asian Vegetable Research and Development Center, Shanhua, pp 257–270.Fischer, R., Maurer, R. 1978. Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research. 29: 897–912. DOI: 10.1071/AR9780897Franco-Navarro, J., Brumos, J., Rosales, M., Cubero-Font, P., Talon, M., Colmenero-Flores, J. 2016. Chloride regulates leaf cell size and water relations in tobacco plants. Journal of Experimental Botany. 67: 873–891. DOI: 10.1093/jxb/erv502Franco-Navarro, J., Rosales, M., Álvarez, R., Cubero-Font, P., Calvo, P., Díaz-Espejo, A., Colmenero-Flores, J. 2019. Chloride as macronutrient increases water use eficiency by anatomically-driven reduced stomatal conductance and increased mesophyll difusion to CO2. The Plant Journal. 99: 815–831. DOI: https://doi.org/10.1111/tpj.14423Gavuzzi, P., Rizza, F., Palumbo, M., Campaline, R., Ricciardi, G., Borghi, B. 1997. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Plant Science. 77: 523-531.Geiger, D., Maierhofer, T., Al-Rasheid, K., Scherzer, S., Mumm, P., Liese, A., Ache, P., Welmann, C., Marten, I., Grill, E., Romeis, T., Hedrich, R. 2011. Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci. Signal. 4, ra32. DOI: https://doi.org/ 10.1126/scisignal.2001346Golestani-Araghi, S., Assad, M., 1998. Evaluation of four screening techniques for drought resistance and their relationship to yield reduction ratio in wheat. Euphytica. 103: 293-299. DOI: https://doi.org/10.1023/A:1018307111569Goyer, A., 2017. Maximizing the nutritional potential of potato: the case of folato. Potato Research. 60(3-4): 319-325. DOI: https://doi.org/10.1007/s11540-018-9374-3Hossain, A., Sears, A., Cox, T., Paulsen, G. 1990. Desiccation tolerance and its relationship to assimilate partitioning in winter wheat. Crop Physiology & Metabolism. 30: 622–627. DOI: https://doi.org/10.2135/cropsci1990.0011183X003000030030xHsiao, T., 1973. Plant responses to water stress. Annual Review of Plant Physiology. 24: 519 - 570.Huang, G.T., Ma, S. L., Bai, P.L.P., Zhang, L., Ma, H., Jia, P., Liu, J., Zhong, M., Guo, Z. F., 2012., Signal traduction during cold, salt and drought stresses in plants. Molecular Biology Reports. 39: 969-987. DOI: 10.1007/s11033-011-0823-1Jefferies, R.A. 1993. Use of a simulation model to assess possible strategies of drought tolerance in potato (Solanum tuberosum L.). Agricultural Systems. 41: 93–104. DOI: https://doi.org/10.1016/0308-521X(93)90083-EJefferies, R. A. 1995. Physiology of crop response to drought. En Modelling of Crops Under Conditions Limiting. pp. 61-74. DOI: https://doi.org/10.1007/978-94-011-0051-9_4Kaczmarek, M., Fedorowicz-Stronska, O., Głowacka, K., Waskiewicz, A., Sadowski, J., 2017. CaCl2 treatment improves drought stress tolerance in barley (Hordeum vulgare L.). Acta Physiologiae Plantarum. 39:41. DOI: 10.1007/s11738-016-2336-yKapotis, G., Zervoudakis, G., Veltsistas, T., Salahas, G., 2003. Comparison of chlorophyll meter readings with leaf chlorophyll concentration in Amaranthus vlitus: correlation with physiological processes. Russian Journal of Plant Physiology. 50(3): 395-397. DOI: https://doi.org/10.1023/A:1023886623645Khammari, I., Galavi, M., Ghanbari, A., Solouki, M., Poorchaman, M. 2012. The effect of drought stress and nitrogen levels on antioxidant enzymes, proline and yield of Indian Senna (Cassia angustifolia L.). Journal of Medicinal Plants Research. 11: 2125e2130. DOI: https://doi.org/10.5897/JMPR11.1105Khushboo., Bhardwaj, K., Singh, P., Raina, M., Sharma, V., Kumar, D. 2018. Exogenous application of calcium chloride in wheat genotypes alleviates negative effect of drought stress by modulating antioxidant machinery and enhanced osmolyte accumulation. In Vitro Cellular & Developmental Biology – Plant. 54:495–507. DOI: https://doi.org/10.1007/s11627-018-9912-3Laanemets, K., Brandt, B., Li, J., Merilo, E., Wang, Y.F., Keshwani, M.M., Taylor, S.S., Kollist, H., Schroeder, J.I., 2013. Calcium-Dependent and -Independent Stomatal Signaling Network and Compensatory Feedback Control of Stomatal Opening via Ca2+ Sensitivity Priming[W]. Plant Physiology. 163: 504–513Li, J., Z. Cang., Jiao, F., Bai, X., Zhang, D., Zhai, R., 2017a. Influence of drought stress on photosynthetic characteristics and protective enzymes of potato at seedling stage. Journal of the Saudi Society of Agricultural Sciences. 16: 82-88. DOI: http://dx.doi.org/10.1016/j.jssas.2015.03.001Li, Z., Tan, X.F., Lu, K., Liu, Z.M., Wu, L.L., 2017b. The effect of CaCl2 on calcium content, photosynthesis, and chlorophyll fluorescence of tung tree seedlings under drought conditions. Photosynthetica. 55(3): 553-560. DOI: 10.1007/s11099-016-0676-xLiu, F., Jensen, C.R., Shahanzari, A., Andersen, M.N., Jacobsen, S.E., 2005. ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Science. 168: 831–836. DOI: 10.1016/j.plantsci.2004.10.016MADR (Ministerio de Agricultura y Desarrollo Rural). 2013. A un paso de ser Ley de la República, Proyecto que crea el Fondo para el Fomento de la Papa. https://BRw.minagricultura.gov.co/noticias/Paginas/A-un-paso-de-ser-Ley-de-la-Rep%C3%BAblica,-Proyecto-que-crea-el-Fondo-para-el-Fomento-de-la-Papa.aspx (Consulta 1 Julio 2019)Martínez, C., Moreno, U. 1992. Expresiones fisiológicas de resistencia a la sequía en dos variedades de papa sometidas a estrés hídrico en condiciones de campo. Revista Brasileira de Fisiologia Vegetal. 4(1): 33-38. Recuperado a partir de http://www.cnpdia.embrapa.br/rbfv/pdfs/v4n1p33.pdfMasoumi, A., Kafi, M., Khazaei, H., Davari, K. 2010. Effect of drought stress on water status, electrolyte leakage and enzymatic antioxidants of Kochia (Kochia scoparia) under saline condition. Pakistan Journal of Botany. 42(5): 3517-3524. DOI:Meise, P., Sedding, S., Uptmoor, R., Ordon, F., Schum, A. 2018. Impact of nitrogen supply on leaf water relations and physiological traits in a set of potato (Solanum tuberosum L.) cultivars under drought stress. Journal of agronomy and crop science. 1-16. DOI: 10.1111/jac.12266Morales, A., Morales, A., Rodriguez del Sol, D. 2016. Agronomical indicators for determination of potato (Solanum tuberosum L.) tolerance to drought. Agrisot. 22(1): 1-7.Munemasa, S., Hauser, F., Park, J., Waadt, R., Brandt, B., Schroeder, J. 2015. Mechanisms of abscisic acid-mediated control of stomata! aperture. Current Opinion in Plant Biology. 28: 154–162. DOI: 10.1016/j.pbi.2015.10.010Niño, C., 2017. Revista Papa. Fedepapa. 44: 1 -47.Pardo, J.M., 2010. Biotechnology of water and salinity stress tolerance. Current Opinion in Biotechnology. 21(2): 185-196. DOI: https://doi.org/10.1016/j.copbio.2010.02.005Pastenes, C., Pimentel, P., Lillo, J. 2005. Leaf movements and photoinhibition in relation to water stress in field-grown beans. Journal of Experimental Botany. 56(411): 425-433. DOI: https://doi.org/10.1093/jxb/eri061Pérez-Pérez, J., Robles, J., Tovar, J., Botía, P. 2009. Response to drought and salt stress of lemon ‘Fino 49’ under field conditions: water relations, osmotic adjustment and gas exchange. Scientia Horticulturae. 122: 83–90. DOI: https://doi.org/10.1016/j.scienta.2009.04.009Pieczynski, M., Marczewski, W., Hennig, J., Dolata, J., Bielewicz, D., Piontek, P., Wyrzykowska, A., Krusiewicz, D., Strzelczyk-Zyta, D., Konopka-Postupolska, D. Krzeslowska, M., Jarmolowski, A., Szweykowska-Kulinska, Z.. 2013. Down-regulation of CBP80 gene expression as a strategy to engineer a drought-tolerant potato. Plant Biotechnology Journal. 11: 459–469. DOI: 10.1111/pbi.12032.Ramírez, D., Rolando, J., Yactayo, W., Monneveux, P., Mares, V., Quiroz, R. 2015. Improving potato drought tolerance through the induction of long-term water stress memory. Plant Science. 238: 26-32. DOI: https://doi.org/10.1016/j.plantsci.2015.05.016Ramírez-Gil, J.G., Morales-Osorio, J.G., 2018. Microbial dynamics in the soil and presence of the avocado wilt complex in plots cultivated with avocado cv. Hass under ENSO phenomena (El Niño – La Niña). Scientia Horticulturae. 240: 273-280. DOI: https://doi.org/10.1016/j.scienta.2018.06.047Rezayian, M., Niknam, V., Ebrahimzadeh, H. 2018. Improving tolerance against drought in canola by penconazole and calcium. Pesticide Biochemistry and Physiology. 149: 123–136. DOI: https://doi.org/10.1016/j.pestbp.2018.06.007Rodríguez, L., Ñústez, E., Estrada, N., 2009. Criolla Latina, Criolla Paisa y Criolla Colombia, nuevos cultivares de papa criolla para el departamento de Antioquia (Colombia). Agronomía Colombiana. 27(3): 289-303.Rosielle, A., Hamblin, J. 1981. Theoretical aspect of selection for yield in stress and non-stress environment. Crop Science. 21: 943-946. DOI: https://doi.org/10.2135/cropsci1981.0011183X002100060033xRudack, K., Seddig, S., Sprenger, H., Köhl, K., Uptmoor, R., Ordon, F., 2017. Drought stress-induced changes in starch yield and physiological traits in potato. Journal of Agronomy and Crop Science. 1-12. DOI: https://doi.org/10.1111/jac.12224Ruehr, N., Grote, R., Mayr, S., Arneth, A. 2019. Beyond the extreme: recovery of carbon and water relations in woody plants following heat and drought stress. Tree Physiology. 39: 1285–1299. DOI:10.1093/treephys/tpz032Schafleitner, R., Gutierrez, R., Espino, R., Gaudin, A., Pérez, J., Martínez, M., Domínguez, A., Tincopa, L., Alvarado, C., Numberto, G., Bonierbale, M., 2007. Field screening for variation of drought tolerance in Solanum tuberosum L. by agronomical, physiological and genetic analysis. Potato Research. 50: 71–85. DOI: https://doi.org/10.1007/s11540-007-9030-9Schapire, A.L., Valpuesta, V., Botella, M.A., 2009. Plasma membrane repair in plants. Trends in Plant Science. 14(1): 654-652. DOI: 10.1016/j.tplants.2009.09.004Sharma, P., Bhushan, J.A., Shnaker, D.R., Pessarakli, M., 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany. DOI: http://dx.doi.org/10.1155/2012/217037Silva, E., Ferreira-Silvaa, E., Viégas, R., Gomes, R. 2010. The role of organic and inorganic solutes in the osmotic adjustment of drought-stressed Jatropha curcas plants. Environmental and Experimental Botany. 69: 279–285. DOI: 10.1016/j.envexpbot.2010.05.001Singh, R., Parihar, P.., Singh, S., Mishra, R., Singh, V., Prasada, S. 2017. Reactive oxygen species signaling and stomatal movement: Current updates and future perspectives. Redox Biology. 11: 213-218. DOI: 10.1016/j.redox.2016.11.006Teixeira, J., Pereira, S. 2006. High salinity and drought act on an organ-dependent manner on potato glutamine synthetase expression and accumulation. Journal of Experimental Botany. 60: 121-126. DOI: 10.1016/j.envexpbot.2006.09.003Wang, Y., Kang, Y., Ma, C., Miao, R., Wu, C., Long, Y., Ge, T., Wu, Z., Hou, X., Zhang, J., Qi, Z. 2017. CNGC2 is a Ca2+ influx channel that prevents accumulation of apoplastic Ca2+ in the leaf. Plant Physiol. 173: 1342–1354. DOI: 10.1104/pp.16.01222Wang, Q., Yang, S., Wan, S., Li, X. 2019. The significance of calcium in photosynthesis. International Journal of Molecular Scinces. 20: 1353. DOI: 10.3390/ijms20061353Wege, S., Gilliham, M. Henderson, S. 2017. Chloride: not simply a ‘cheap osmoticum’, but a beneficial plant macronutrient. Journal of Experimental Botany. 68: 3057–3069. DOI: https://doi.org/10.1093/jxb/erx050Yactayo, W., Ramírez, D. A., Gutiérrez, R., Mares, V., Posadas, A., Quiroz, R. 2013. Effect of partial root- zone drying irrigation timing on potato tuber yield and water use efficiency. Agricultural Water Management. 123: 65-70. DOI: https://doi.org/10.1016/j.agwat.2013.03.009Ashraf, M., Akram, N., Al-Qurainy, F., Foolad, M. 2011. Drought tolerance: roles of organic osmolytes, growth regulators, and mineral nutrients. Advances in Agronomy. 111:249–296.EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-83895https://repositorio.unal.edu.co/bitstream/unal/78743/2/license.txte2f63a891b6ceb28c3078128251851bfMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.unal.edu.co/bitstream/unal/78743/3/license_rdf217700a34da79ed616c2feb68d4c5e06MD53ORIGINAL1024550720.2020.pdf1024550720.2020.pdfTesis de Maestría en Ciencias Agrariasapplication/pdf1728101https://repositorio.unal.edu.co/bitstream/unal/78743/1/1024550720.2020.pdfaa3ba262f656cb3906551be4e50a5e92MD51THUMBNAIL1024550720.2020.pdf.jpg1024550720.2020.pdf.jpgGenerated Thumbnailimage/jpeg4551https://repositorio.unal.edu.co/bitstream/unal/78743/4/1024550720.2020.pdf.jpg83694ab09045d370ab0eb9697cf4762dMD54unal/78743oai:repositorio.unal.edu.co:unal/787432023-07-20 23:04:07.691Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg== |