Desempeño sostenible en el diseño y gestión de cadenas de abastecimiento bajo condiciones de incertidumbre. Aplicación a la producción de biocombustibles a partir de caña de azúcar

gráficos, tablas

Autores:
Carvajal Beltrán, Jimmy Alexander
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82239
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82239
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines
Cadenas de abastecimiento -- Metodología -- Toma de decisiones -- Modelos matemáticos
Cadenas de abastecimiento
programación estocástica de dos etapas
Cadenas de Markov
Optimización multi-objetivo
Biocombustibles
Caña de azúcar
Desempeño sostenible
Distribución justa del beneficio
Supply chains
Two-stage stochastic programming
Markov chains
Multi-objective optimization
Biofuels, sugarcane
Sustainable performance
Fair profit distribution
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_c73325bd59b3e1858b724c710e2746d3
oai_identifier_str oai:repositorio.unal.edu.co:unal/82239
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Desempeño sostenible en el diseño y gestión de cadenas de abastecimiento bajo condiciones de incertidumbre. Aplicación a la producción de biocombustibles a partir de caña de azúcar
dc.title.translated.eng.fl_str_mv Designing supply chain under uncertain conditions from sustainable performance perspective. An application at sugarcane based biofuel production
title Desempeño sostenible en el diseño y gestión de cadenas de abastecimiento bajo condiciones de incertidumbre. Aplicación a la producción de biocombustibles a partir de caña de azúcar
spellingShingle Desempeño sostenible en el diseño y gestión de cadenas de abastecimiento bajo condiciones de incertidumbre. Aplicación a la producción de biocombustibles a partir de caña de azúcar
620 - Ingeniería y operaciones afines
Cadenas de abastecimiento -- Metodología -- Toma de decisiones -- Modelos matemáticos
Cadenas de abastecimiento
programación estocástica de dos etapas
Cadenas de Markov
Optimización multi-objetivo
Biocombustibles
Caña de azúcar
Desempeño sostenible
Distribución justa del beneficio
Supply chains
Two-stage stochastic programming
Markov chains
Multi-objective optimization
Biofuels, sugarcane
Sustainable performance
Fair profit distribution
title_short Desempeño sostenible en el diseño y gestión de cadenas de abastecimiento bajo condiciones de incertidumbre. Aplicación a la producción de biocombustibles a partir de caña de azúcar
title_full Desempeño sostenible en el diseño y gestión de cadenas de abastecimiento bajo condiciones de incertidumbre. Aplicación a la producción de biocombustibles a partir de caña de azúcar
title_fullStr Desempeño sostenible en el diseño y gestión de cadenas de abastecimiento bajo condiciones de incertidumbre. Aplicación a la producción de biocombustibles a partir de caña de azúcar
title_full_unstemmed Desempeño sostenible en el diseño y gestión de cadenas de abastecimiento bajo condiciones de incertidumbre. Aplicación a la producción de biocombustibles a partir de caña de azúcar
title_sort Desempeño sostenible en el diseño y gestión de cadenas de abastecimiento bajo condiciones de incertidumbre. Aplicación a la producción de biocombustibles a partir de caña de azúcar
dc.creator.fl_str_mv Carvajal Beltrán, Jimmy Alexander
dc.contributor.advisor.none.fl_str_mv Sarache, William
Costa, Yasel
dc.contributor.author.none.fl_str_mv Carvajal Beltrán, Jimmy Alexander
dc.contributor.researchgroup.spa.fl_str_mv Innovación y desarrollo Tecnológico
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines
topic 620 - Ingeniería y operaciones afines
Cadenas de abastecimiento -- Metodología -- Toma de decisiones -- Modelos matemáticos
Cadenas de abastecimiento
programación estocástica de dos etapas
Cadenas de Markov
Optimización multi-objetivo
Biocombustibles
Caña de azúcar
Desempeño sostenible
Distribución justa del beneficio
Supply chains
Two-stage stochastic programming
Markov chains
Multi-objective optimization
Biofuels, sugarcane
Sustainable performance
Fair profit distribution
dc.subject.lemb.spa.fl_str_mv Cadenas de abastecimiento -- Metodología -- Toma de decisiones -- Modelos matemáticos
dc.subject.proposal.spa.fl_str_mv Cadenas de abastecimiento
programación estocástica de dos etapas
Cadenas de Markov
Optimización multi-objetivo
Biocombustibles
Caña de azúcar
Desempeño sostenible
Distribución justa del beneficio
dc.subject.proposal.eng.fl_str_mv Supply chains
Two-stage stochastic programming
Markov chains
Multi-objective optimization
Biofuels, sugarcane
Sustainable performance
Fair profit distribution
description gráficos, tablas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-09-02T12:42:10Z
dc.date.available.none.fl_str_mv 2022-09-02T12:42:10Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Image
Text
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82239
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82239
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abdul-Jalbar, B., Colebrook, M., Dorta-Guerra, R., & Gutiérrez, J. M. (2016). Centralized and decentralized inventory policies for a single-vendor two-buyer system with permissible delay in payments. Computers & Operations Research, 74, 187-195. https://doi.org/10.1016/j.cor.2016.04.030
Adam, N.-R. B., Dauhoo, M. Z., Khoodaruth, A. A. H., & Elahee, M. K. (2016). A two-stage stochastic programming optimisation for sugar-ethanol-electricity production from sugarcane: A case study of Mauritius. International Journal of Mathematical Modelling and Numerical Optimisation, 7(1), 20-32.
Adam, N.-R. B., Dauhoo, M. Z., Khoodaruth, A. A. H., & Elahee, M. K. (2016). A two-stage stochastic programming optimisation for sugar-ethanol-electricity production from sugarcane: A case study of Mauritius. International Journal of Mathematical Modelling and Numerical Optimisation, 7(1), 20-32.
Ahumada, O., & Villalobos, J. R. (2009). Application of planning models in the agri-food supply chain: A review. European Journal of Operational Research, 196(1), 1-20. https://doi.org/10.1016/j.ejor.2008.02.014
Ahumada, O., & Villalobos, J. R. (2011). A tactical model for planning the production and distribution of fresh produce. Annals of Operations Research, 190(1), 339-358. https://doi.org/10.1007/s10479-009-0614-4
Alonso Pippo, W., Luengo, C. A., Alonsoamador Morales Alberteris, L., Garzone, P., & Cornacchia, G. (2011). Energy Recovery from Sugarcane-Trash in the Light of 2nd Generation Biofuel. Part 2: Socio-Economic Aspects and Techno-Economic Analysis. Waste and Biomass Valorization, 2(3), 257-266. https://doi.org/10.1007/s12649-011-9069-3
Alonso-Pippo, W., Luengo, C. A., Alonsoamador Morales Alberteris, L., García del Pino, G., & Duvoisin, S. (2013). Practical implementation of liquid biofuels: The transferability of the Brazilian experiences. Energy Policy, 60, 70-80. https://doi.org/10.1016/j.enpol.2013.04.038
Álvarez-Rodríguez, D. A., Normey-Rico, J. E., & Flesch, R. C. C. (2017). Model predictive control for inventory management in biomass manufacturing supply chains. International Journal of Production Research, 55(12), 3596-3608. https://doi.org/10.1080/00207543.2017.1315191
Amu, L.G., Garcia, J.A., Galvis , D.E., & Rubiano, O. (2013). Optimisation of harvest resources in a colombian sugar mill by use of simulation models. Proceedings of the International Society of Sugar Cane Technologists, 28, 2042-2049. http://bonsucro.com/site/wp-content/uploads/2013/02/ISSCT-Development-Bonsucro-Standard-Viart-N-and-Rein-P-2013.pdf
Asocaña. (2017). Más que azúcar, una fuente de energía renovable para el país. https://www.asocana.org/documentos/562017-ED2FFB51-00FF00,000A000,878787,C3C3C3,0F0F0F,B4B4B4,FF00FF,2D2D2D.pdf
Baghalian, A., Rezapour, S., & Farahani, R. Z. (2013). Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case. European Journal of Operational Research, 227(1), 199-215. https://doi.org/10.1016/j.ejor.2012.12.017
Ballou, R. H. (2007). Business logistics/supply chain management: Planning, organizing, and controlling the supply chain. Pearson Education India.
Banco Interamericano de Desarrollo (BID). (2012). “Evaluación del ciclo de vida de la cadena de producción de biocombustibles en Colombia”.
Barbosa-Póvoa, A. P., da Silva, C., & Carvalho, A. (2017). Opportunities and Challenges in Sustainable Supply Chain: An Operations Research Perspective. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2017.10.036
Barrett, C. B. (2021). Overcoming Global Food Security Challenges through Science and Solidarity. American Journal of Agricultural Economics, 103(2), 422-447. https://doi.org/10.1111/ajae.12160
Behzadi, G., O’Sullivan, M. J., Olsen, T. L., & Zhang, A. (2017). Agribusiness Supply Chain Risk Management: A Review of Quantitative Decision Models. Omega. https://doi.org/10.1016/j.omega.2017.07.005
Bekkering, J., Broekhuis, A. A., & van Gemert, W. J. T. (2010). Optimisation of a green gas supply chain – A review. Bioresource Technology, 101(2), 450-456. https://doi.org/10.1016/j.biortech.2009.08.106
Benoît, C., Norris, G. A., Valdivia, S., Ciroth, A., Moberg, A., Bos, U., Prakash, S., Ugaya, C., & Beck, T. (2010). The guidelines for social life cycle assessment of products: Just in time! The International Journal of Life Cycle Assessment, 15(2), 156-163. https://doi.org/10.1007/s11367-009-0147-8
Bertsimas, D., Farias, V. F., & Trichakis, N. (2011). The Price of Fairness. Operations Research, 59(1), 17-31. https://doi.org/10.1287/opre.1100.0865
Bezuidenhout, C. N., & Singels, A. (2007a). Operational forecasting of South African sugarcane production: Part 1 – System description. Agricultural Systems, 92(1), 23-38. https://doi.org/10.1016/j.agsy.2006.02.001
Bezuidenhout, C. N., & Singels, A. (2007b). Operational forecasting of South African sugarcane production: Part 2 – System evaluation. Agricultural Systems, 92(1), 39-51. https://doi.org/10.1016/j.agsy.2006.03.002
Bhattacharya, A. (2006). A goal programming approach for developing pre-harvest forecasts of crop yield. Journal of the Operational Research Society, 57(8). http://www.tandfonline.com/doi/abs/10.1057/palgrave.jors.2602098?needAccess=true&
Birge, J. R., & Louveaux, F. (2011). Introduction to stochastic programming. Springer Science & Business Media.
Blanco, V., Carpente, L., Hinojosa, Y., & Puerto, J. (2010). Planning for Agricultural Forage Harvesters and Trucks: Model, Heuristics, and Case Study. Networks and Spatial Economics, 10(3), 321-343. https://doi.org/10.1007/s11067-009-9120-0
Bocca, F. F., & Rodrigues, L. H. A. (2016). The effect of tuning, feature engineering, and feature selection in data mining applied to rainfed sugarcane yield modelling. Computers and Electronics in Agriculture, 128, 67-76. https://doi.org/10.1016/j.compag.2016.08.015
Bojesen, M., Skov-Petersen, H., & Gylling, M. (2015). Forecasting the potential of Danish biogas production – Spatial representation of Markov chains. Biomass and Bioenergy, 81, 462-472. https://doi.org/10.1016/j.biombioe.2015.07.030
Borgonovo, E., Gatti, S., & Peccati, L. (2010). What drives value creation in investment projects? An application of sensitivity analysis to project finance transactions. European Journal of Operational Research, 205(1), 227-236. https://doi.org/10.1016/j.ejor.2009.12.006
Borodin, V., Bourtembourg, J., Hnaien, F., & Labadie, N. (2016). Handling uncertainty in agricultural supply chain management: A state of the art. European Journal of Operational Research, 254(2), 348-359. https://doi.org/10.1016/j.ejor.2016.03.057
Bot, P., van Donk, D. P., Pennink, B., & Simatupang, T. M. (2015). Uncertainties in the Bidirectional Biodiesel Supply Chain. Journal of Cleaner Production, 95, 174-183. https://doi.org/10.1016/j.jclepro.2015.02.064
Branco, J. E. H., Branco, D. H., de Aguiar, E. M., Caixeta Filho, J. V., & Rodrigues, L. (2019). Study of optimal locations for new sugarcane mills in Brazil: Application of a MINLP network equilibrium model. Biomass and Bioenergy, 127, 105249.
Brandenburg, M., Govindan, K., Sarkis, J., & Seuring, S. (2014). Quantitative models for sustainable supply chain management: Developments and directions. European Journal of Operational Research, 233(2), 299-312. https://doi.org/10.1016/j.ejor.2013.09.032
Bubicz, M. E., Barbosa-Póvoa, A. P. F. D., & Carvalho, A. (2019). Incorporating social aspects in sustainable supply chains: Trends and future directions. Journal of Cleaner Production, 237, 117500. https://doi.org/10.1016/j.jclepro.2019.06.331
Budzianowski, W. M., & Postawa, K. (2016). Total Chain Integration of sustainable biorefinery systems. Applied Energy, 184, 1432-1446. https://doi.org/10.1016/j.apenergy.2016.06.050
Caixeta-Filho, J. V. (2006). Orange harvesting scheduling management: A case study. Journal of the Operational Research Society, 57(6), 637-642. https://doi.org/10.1057/palgrave.jors.2602041
Campos-Guzmán, V., García-Cáscales, M. S., Espinosa, N., & Urbina, A. (2019). Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies. Renewable and Sustainable Energy Reviews, 104, 343-366. https://doi.org/10.1016/j.rser.2019.01.031
Cardoso, T. F., Chagas, M. F., Rivera, E. C., Cavalett, O., Morais, E. R., Geraldo, V. C., Braunbeck, O., da Cunha, M. P., Cortez, L. A. B., & Bonomi, A. (2015). A vertical integration simplified model for straw recovery as feedstock in sugarcane biorefineries. Biomass and Bioenergy, 81, 216-223. https://doi.org/10.1016/j.biombioe.2015.07.003
Carvajal, J., Sarache, W., & Costa, Y. (2019). Addressing a robust decision in the sugarcane supply chain: Introduction of a new agricultural investment project in Colombia. Computers and Electronics in Agriculture, 157, 77-89. https://doi.org/10.1016/j.compag.2018.12.030
Castaño, F., Rossi, A., Sevaux, M., & Velasco, N. (2014). A column generation approach to extend lifetime in wireless sensor networks with coverage and connectivity constraints. Computers & Operations Research, 52, 220-230.
Castaño, F., Velasco, N., & Carvajal, J. (2019). Content-Based Conference Scheduling Optimization. IEEE Latin America Transactions, 17(04), 597-606.
Chen, Y., Wang, S., Yao, J., Li, Y., & Yang, S. (2018). Socially responsible supplier selection and sustainable supply chain development: A combined approach of total interpretive structural modeling and fuzzy analytic network process. Business Strategy and the Environment, 27(8), 1708-1719. https://doi.org/10.1002/bse.2236
Colin, E. C. (2009). Mathematical programming accelerates implementation of agro-industrial sugarcane complex. European Journal of Operational Research, 199(1), 232-235. https://doi.org/10.1016/j.ejor.2008.11.016
Congreso de Colombia. (2014). LEY 1715 DE 2014 Diario Oficial No. 49.150. Bogotá, DC: Imprenta Nacional. Retrieved, 9, 2017.
Congreso de Colombia. (2019). LEY 1955 DE 2019, Plan Nacional de Desarrollo 2018-2022. “Pacto por Colombia, Pacto por la Equidad”. http://www.suin-juriscol.gov.co/viewDocument.asp?ruta=Leyes/30036488
Costa, A. M., dos Santos, L. M. R., Alem, D. J., & Santos, R. H. S. (2011). Sustainable vegetable crop supply problem with perishable stocks. Annals of Operations Research. https://doi.org/10.1007/s10479-010-0830-y
Council of Supply Chain Management Professionals, CSCMP. (2017). CSCMP Supply Chain Management Definitions and Glossary.
da Silva, A. F., & Marins, F. A. S. (2014). A Fuzzy Goal Programming model for solving aggregate production-planning problems under uncertainty: A case study in a Brazilian sugar mill. Energy Economics, 45, 196-204. https://doi.org/10.1016/j.eneco.2014.07.005
da Silva, A. F., Marins, F. A. S., & Dias, E. X. (2015). Addressing uncertainty in sugarcane harvest planning through a revised multi-choice goal programming model. Applied Mathematical Modelling, 39(18), 5540-5558. https://doi.org/10.1016/j.apm.2015.01.007
Darby-Dowman, K., Barker, S., Audsley, E., & Parsons, D. (2000). A two-stage stochastic programming with recourse model for determining robust planting plans in horticulture. Journal of the Operational Research Society, 51(1), 83-89. https://doi.org/10.1057/palgrave.jors.2600858
Das, R., Shaw, K., & Irfan, Mohd. (2020). Supply chain network design considering carbon footprint, water footprint, supplier’s social risk, solid waste, and service level under the uncertain condition. Clean Technologies and Environmental Policy, 22(2), 337-370. https://doi.org/10.1007/s10098-019-01785-y
Davis, K. F., Gephart, J. A., Emery, K. A., Leach, A. M., Galloway, J. N., & D’Odorico, P. (2016). Meeting future food demand with current agricultural resources. Global Environmental Change, 39, 125-132. https://doi.org/10.1016/j.gloenvcha.2016.05.004
De Oliveira Florentino, H., De Lima, A. D., De Carvalho, L. R., Balbo, A. R., & Homem, T. P. D. (2011). Multiobjective 0-1 integer programming for the use of sugarcane residual biomass in energy cogeneration. International Transactions in Operational Research, 18(5), 605-615. https://doi.org/10.1111/j.1475-3995.2011.00818.x
de Oliveira Florentino, H., & Pato, M. V. (2014). A bi-objective genetic approach for the selection of sugarcane varieties to comply with environmental and economic requirements. Journal of the Operational Research Society, 65(6), 842-854. https://doi.org/10.1057/jors.2013.21
de Oliveira Florentino, H., & Pereira Sartori, M. M. (2003). Game theory in sugarcane crop residue and available energy optimization. Biomass and Bioenergy, 25(1), 29-34. https://doi.org/10.1016/S0961-9534(02)00189-7
de Souza Dias, M. O., Maciel Filho, R., Mantelatto, P. E., Cavalett, O., Rossell, C. E. V., Bonomi, A., & Leal, M. R. L. V. (2015). Sugarcane processing for ethanol and sugar in Brazil. Environmental Development, 15, 35-51.
Departamento Nacional de Planeación. (2008). Lineamientos de politica para promover la produccion sostenible de biocombustibles en Colombia (Documento CONPES 3510). DNP Bogotá, Colombia.
dos Reis Ferreira, R. A., da Silva Meireles, C., Assunção, R. M. N., Barrozo, M. A. S., & Soares, R. R. (2020). Optimization of the oxidative fast pyrolysis process of sugarcane straw by TGA and DSC analyses. Biomass and Bioenergy, 134, 105456.
Du, C., Dias, L. C., & Freire, F. (2019). Robust multi-criteria weighting in comparative LCA and S-LCA: A case study of sugarcane production in Brazil. Journal of Cleaner Production, 218, 708-717. https://doi.org/10.1016/j.jclepro.2019.02.035
Dunford, R. W., Marti, C. E., & Mittelhammer, R. C. (1985). A Case Study of Rural Land Prices at the Urban Fringe Including Subjective Buyer Expectations. Land Economics, 61(1), 10. https://doi.org/10.2307/3146135
Ebadian, M., van Dyk, S., McMillan, J. D., & Saddler, J. (2020). Biofuels policies that have encouraged their production and use: An international perspective. Energy Policy, 147, 111906. https://doi.org/10.1016/j.enpol.2020.111906
Eizenberg, E., & Jabareen, Y. (2017). Social Sustainability: A New Conceptual Framework. Sustainability, 9(1), 68. https://doi.org/10.3390/su9010068
El Espectador. (2021, septiembre 20). ELESPECTADOR.COM. ELESPECTADOR.COM. https://www.elespectador.com/judicial/megaproyecto-de-produccion-de-etanol-el-alcaravan-fue-un-fracaso-contraloria/
Elkington, J. (1997). Cannibals with forks. The triple bottom line of 21st century, 73.
Eskandarpour, M., Dejax, P., Miemczyk, J., & Péton, O. (2015). Sustainable supply chain network design: An optimization-oriented review. Omega, 54, 11-32. https://doi.org/10.1016/j.omega.2015.01.006
Espinoza-Pérez, A. T., Camargo, M., Narváez-Rincón, P. C., & Alfaro-Marchant, M. (2017). Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis. Renewable and Sustainable Energy Reviews, 69, 350-359. https://doi.org/10.1016/j.rser.2016.11.084
Esteso, A., Alemany, M. M. E., & Ortiz, A. (2018). Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models. International Journal of Production Research, 56(13), 4418-4446. https://doi.org/10.1080/00207543.2018.1447706
Fahimnia, B., Sarkis, J., & Davarzani, H. (2015). Green supply chain management: A review and bibliometric analysis. International Journal of Production Economics, 162, 101-114. https://doi.org/10.1016/j.ijpe.2015.01.003
Farahani, R. Z., Hekmatfar, M., Fahimnia, B., & Kazemzadeh, N. (2014). Hierarchical facility location problem: Models, classifications, techniques, and applications. Computers & Industrial Engineering, 68, 104-117. https://doi.org/10.1016/j.cie.2013.12.005
Faria, L. F. F., Silva, J. E. A. R., Faria, L. F. F., & Silva, J. E. A. R. (2015). Effects of maintenance management procedures in sugarcane mechanic harvesting system equipment. Engenharia Agrícola, 35(6), 1187-1197. https://doi.org/10.1590/1809-4430-Eng.Agric.v35n6p1187-1197/2015
Fathollahi-Fard, A. M., Hajiaghaei-Keshteli, M., & Mirjalili, S. (2018). Multi-objective stochastic closed-loop supply chain network design with social considerations. Applied Soft Computing, 71, 505-525. https://doi.org/10.1016/j.asoc.2018.07.025
Fattahi, M., & Govindan, K. (2018). A multi-stage stochastic program for the sustainable design of biofuel supply chain networks under biomass supply uncertainty and disruption risk: A real-life case study. Transportation Research Part E: Logistics and Transportation Review, 118, 534-567. https://doi.org/10.1016/j.tre.2018.08.008
Fedebiocombustibles. (2021, enero 1). Federación Nacional de Biocombustibles de Colombia, Marco Normativo de los biocombustibles en Colombia. fedebiocombustibles.com. http://www.fedebiocombustibles.com/v3/estadistica-mostrar_info-titulo-Alcohol_Carburante_(Etanol).htm
Florentino, H. de O., Irawan, C., Aliano, A. F., Jones, D. F., Cantane, D. R., & Nervis, J. J. (2018). A multiple objective methodology for sugarcane harvest management with varying maturation periods. Annals of Operations Research, 267(1-2), 153-177. https://doi.org/10.1007/s10479-017-2568-2
Florentino, H. de O., Jones, D. F., Irawan, C. A., Ouelhadj, D., Khosravi, B., & Cantane, D. R. (2020). An optimization model for combined selecting, planting and harvesting sugarcane varieties. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03610-y
Florio, M., & Colautti, S. (2005). A logistic growth theory of public expenditures: A study of five countries over 100 years. Public Choice, 122(3-4), 355-393. https://doi.org/10.1007/s11127-005-3900-y
Furlan, F. F., Costa, C. B. B., de Castro Fonseca, G., de Pelegrini Soares, R., Secchi, A. R., da Cruz, A. J. G., & de Campos Giordano, R. (2012). Assessing the production of first and second generation bioethanol from sugarcane through the integration of global optimization and process detailed modeling. Computers & Chemical Engineering, 43, 1-9.
Gao, J., & You, F. (2019). A stochastic game theoretic framework for decentralized optimization of multi-stakeholder supply chains under uncertainty. Computers & Chemical Engineering, 122, 31-46. https://doi.org/10.1016/j.compchemeng.2018.05.016
Gatti, S. (2013). Project finance in theory and practice: Designing, structuring, and financing private and public projects. Academic Press.
Ghaderi, H., Pishvaee, M. S., & Moini, A. (2016). Biomass supply chain network design: An optimization-oriented review and analysis. Industrial Crops and Products, 94, 972-1000. https://doi.org/10.1016/j.indcrop.2016.09.027
Gheewala, S., Silalertruksa, T., Nilsalab, P., Mungkung, R., Perret, S., & Chaiyawannakarn, N. (2014). Water Footprint and Impact of Water Consumption for Food, Feed, Fuel Crops Production in Thailand. Water, 6(6), 1698-1718. https://doi.org/10.3390/w6061698
Giannakis, M., & Papadopoulos, T. (2016). Supply chain sustainability: A risk management approach. International Journal of Production Economics, 171, 455-470. https://doi.org/10.1016/j.ijpe.2015.06.032
Gilani, H., & Sahebi, H. (2020). A multi-objective robust optimization model to design sustainable sugarcane-to-biofuel supply network: The case of study. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00639-8
Gnansounou, E., Pachón, E. R., Sinsin, B., Teka, O., Togbé, E., & Mahamane, A. (2020). Using agricultural residues for sustainable transportation biofuels in 2050: Case of West Africa. Bioresource Technology, 305, 123080. https://doi.org/10.1016/j.biortech.2020.123080
Gobierno Digital Colombia. (2018). Datos abiertos Ministerio de Minas y energia Colombia. https://www.datos.gov.co/Minas-y-Energ-a/Tarifas-aplicadas-de-Gas-Natural/ek3f-5wn4/data
Govindan, K., Fattahi, M., & Keyvanshokooh, E. (2017). Supply chain network design under uncertainty: A comprehensive review and future research directions. European Journal of Operational Research, 263(1), 108-141. https://doi.org/10.1016/j.ejor.2017.04.009
Govindan, K., Shaw, M., & Majumdar, A. (2020). Social Sustainability Tensions in Multi-tier Supply Chain: A Systematic Literature Review towards Conceptual Framework Development. Journal of Cleaner Production, 123075. https://doi.org/10.1016/j.jclepro.2020.123075
Grimsey, D., & Lewis, M. (2007). Public private partnerships: The worldwide revolution in infrastructure provision and project finance. Edward Elgar Publishing.
Grunow, M., Günther, H.-O., & Westinner, R. (2007). Supply optimization for the production of raw sugar. International Journal of Production Economics, 110(1-2), 224-239. https://doi.org/10.1016/j.ijpe.2007.02.019
Guo, M., van Dam, K. H., Touhami, N. O., Nguyen, R., Delval, F., Jamieson, C., & Shah, N. (2020). Multi-level system modelling of the resource-food-bioenergy nexus in the global south. Energy, 197, 117196. https://doi.org/10.1016/j.energy.2020.117196
Haberl, H., Wackernagel, M., & Wrbka, T. (2004). Land use and sustainability indicators. An introduction. Land Use Policy, 21(3), 193-198. https://doi.org/10.1016/j.landusepol.2003.10.004
Hahn, M. H., & Ribeiro, R. V. (1999). Heuristic guided simulator for the operational planning of the transport of sugar cane. Journal of the Operational Research Society, 50(5), 451-459.
Haj Hasan, A., & Avami, A. (2018). Comparative assessment of bioethanol supply chain: Insights from Iran. Biofuels, 1-9. https://doi.org/10.1080/17597269.2018.1496385
Hall, J., Matos, S., & Silvestre, B. (2012). Understanding why firms should invest in sustainable supply chains: A complexity approach. International Journal of Production Research, 50(5), 1332-1348. https://doi.org/10.1080/00207543.2011.571930
Hasani, A., & Khosrojerdi, A. (2016). Robust global supply chain network design under disruption and uncertainty considering resilience strategies: A parallel memetic algorithm for a real-life case study. Transportation Research Part E: Logistics and Transportation Review, 87, 20-52. https://doi.org/10.1016/j.tre.2015.12.009
Henao, R., Sarache, W., & Gómez, I. (2019). Lean manufacturing and sustainable performance: Trends and future challenges. Journal of Cleaner Production, 208, 99-116. https://doi.org/10.1016/j.jclepro.2018.10.116
Henao, R., Sarache, W., & Gomez, I. (2021). A social performance metrics framework for sustainable manufacturing. International Journal of Industrial and Systems Engineering, 38(2), 167-197.
Higgins, A. (2006). Scheduling of road vehicles in sugarcane transport: A case study at an Australian sugar mill. European Journal of Operational Research, 170(3), 987-1000. https://doi.org/10.1016/j.ejor.2004.07.055
Higgins, A., Antony, G., Sandell, G., Davies, I., Prestwidge, D., & Andrew, B. (2004). A framework for integrating a complex harvesting and transport system for sugar production. Agricultural Systems, 82(2), 99-115. https://doi.org/10.1016/j.agsy.2003.12.004
Higgins, A., & Davies, I. (2005). A simulation model for capacity planning in sugarcane transport. Computers and Electronics in Agriculture, 47(2), 85-102. https://doi.org/10.1016/j.compag.2004.10.006
Higgins, A. J. (1999). Optimizing cane supply decisions within a sugar mill region. Journal of Scheduling, 2(5), 229-244.
Higgins, A. J. (2002). Australian Sugar Mills Optimize Harvester Rosters to Improve Production. Interfaces, 32(3), 15-25. https://doi.org/10.1287/inte.32.3.15.41
Higgins, A. J., & Laredo, L. A. (2006). Improving harvesting and transport planning within a sugar value chain. Journal of the Operational Research Society, 57(4), 367-376. https://doi.org/10.1057/palgrave.jors.2602024
Higgins, A. J., & Muchow, R. C. (2003). Assessing the potential benefits of alternative cane supply arrangements in the Australian sugar industry. Agricultural Systems, 76(2), 623-638.
Higgins, A., Muchow, R. C., Rudd, A. V., & Ford, A. W. (1998). Optimising harvest date in sugar production: A case study for the Mossman mill region in Australia I. Development of operations research model and solution. Field Crops Research, 57, 153-162.
Higgins, A., Thorburn, P., Archer, A., & Jakku, E. (2007). Opportunities for value chain research in sugar industries. Agricultural Systems, 94(3), 611-621. https://doi.org/10.1016/j.agsy.2007.02.011
Hua, Z., Jun, L., Zhaonian, Y., Sanji, G., Yingying, Y., & Zhaoli, L. (2013). Agronomic techniques to sugarcane mechanical seeding [J]. Journal of Chinese Agricultural Mechanization, 1, 020.
Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., & van Zelm, R. (2017). ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22(2), 138-147. https://doi.org/10.1007/s11367-016-1246-y
Illukpitiya, P., Yanagida, J. F., Ogoshi, R., & Uehara, G. (2013). Sugar-ethanol-electricity co-generation in Hawai’i: An application of linear programming (LP) for optimizing strategies. Biomass and Bioenergy, 48, 203-212. https://doi.org/10.1016/j.biombioe.2012.11.003
J. W. Mishoe, J. W. Jones, & G. J. Gascho. (1979). Harvesting Scheduling of Sugarcane for Optimum Biomass Production. Transactions of the ASAE, 22(6), 1299-1304. https://doi.org/10.13031/2013.35202
Jaehn, F. (2016). Sustainable Operations. European Journal of Operational Research, 253(2), 243-264. https://doi.org/10.1016/j.ejor.2016.02.046
Jahani, H., Abbasi, B., & Talluri, S. (2019). Supply Chain Network Redesign: A Technical Note on Optimising Financial Performance. Decision Sciences, deci.12374. https://doi.org/10.1111/deci.12374
Jena, S. D., & Poggi, M. (2013). Harvest planning in the Brazilian sugar cane industry via mixed integer programming. European Journal of Operational Research, 230(2), 374-384. https://doi.org/10.1016/j.ejor.2013.04.011
Jiao, Z., Higgins, A. J., & Prestwidge, D. B. (2005). An integrated statistical and optimisation approach to increasing sugar production within a mill region. Computers and Electronics in Agriculture, 48(2), 170-181. https://doi.org/10.1016/j.compag.2005.03.004
Jin, S., Jeong, S., & Kim, K. (2017). A Linkage Model of Supply Chain Operation and Financial Performance for Economic Sustainability of Firm. Sustainability, 9(1), 139. https://doi.org/10.3390/su9010139
Joelsson, E., Erdei, B., Galbe, M., & Wallberg, O. (2016). Techno-economic evaluation of integrated first- and second-generation ethanol production from grain and straw. Biotechnology for Biofuels, 9, 1. https://doi.org/10.1186/s13068-015-0423-8
Jonker, J. G. G., Junginger, H. M., Verstegen, J. A., Lin, T., Rodríguez, L. F., Ting, K. C., Faaij, A. P. C., & van der Hilst, F. (2016). Supply chain optimization of sugarcane first generation and eucalyptus second generation ethanol production in Brazil. Applied Energy, 173, 494-510. https://doi.org/10.1016/j.apenergy.2016.04.069
Junqueira, R. de Á. R., & Morabito, R. (2019). Modeling and solving a sugarcane harvest front scheduling problem. International Journal of Production Economics, 213, 150-160.
Karp, S. G., Medina, J. D. C., Letti, L. A. J., Woiciechowski, A. L., de Carvalho, J. C., Schmitt, C. C., de Oliveira Penha, R., Kumlehn, G. S., & Soccol, C. R. (2021). Bioeconomy and biofuels: The case of sugarcane ethanol in Brazil. Biofuels, Bioproducts and Biorefining, n/a(n/a). https://doi.org/10.1002/bbb.2195
Khamjan, W., Khamjan, S., & Pathumnakul, S. (2013). Determination of the locations and capacities of sugar cane loading stations in Thailand. Computers & Industrial Engineering, 66(4), 663-674. https://doi.org/10.1016/j.cie.2013.09.006
Khan, S. A. R., Yu, Z., Golpira, H., Sharif, A., & Mardani, A. (2021). A state-of-the-art review and meta-analysis on sustainable supply chain management: Future research directions. Journal of Cleaner Production, 278, 123357. https://doi.org/10.1016/j.jclepro.2020.123357
Khatiwada, D., Leduc, S., Silveira, S., & McCallum, I. (2016). Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil. Renewable Energy, 85, 371-386. https://doi.org/10.1016/j.renene.2015.06.009
Kittilertpaisan, K., & Pathumnakul, S. (2017). Integrating a multiple crop year routing design for sugarcane harvesters to plant a new crop. Computers and Electronics in Agriculture, 136, 58-70. https://doi.org/10.1016/j.compag.2017.03.001
Kostin, A. M., Guillén-Gosálbez, G., Mele, F. D., Bagajewicz, M. J., & Jiménez, L. (2010). Integrating pricing policies in the strategic planning of supply chains: A case study of the sugar cane industry in Argentina. En S. Pierucci & G. B. Ferraris (Eds.), Computer Aided Chemical Engineering (Vol. 28, pp. 103-108). Elsevier. https://doi.org/10.1016/S1570-7946(10)28018-5
Kostin, A. M., Guillén-Gosálbez, G., Mele, F. D., Bagajewicz, M. J., & Jiménez, L. (2011). A novel rolling horizon strategy for the strategic planning of supply chains. Application to the sugar cane industry of Argentina. Computers & Chemical Engineering, 35(11), 2540-2563. https://doi.org/10.1016/j.compchemeng.2011.04.006
Kostin, A. M., Guillén-Gosálbez, G., Mele, F. D., Bagajewicz, M. J., & Jiménez, L. (2012). Design and planning of infrastructures for bioethanol and sugar production under demand uncertainty. Chemical Engineering Research and Design, 90(3), 359-376. https://doi.org/10.1016/j.cherd.2011.07.013
Kravanja, Z., & Čuček, L. (2013). Multi-objective optimisation for generating sustainable solutions considering total effects on the environment. Applied Energy, 101, 67-80. https://doi.org/10.1016/j.apenergy.2012.04.025
Kulkarni, V. G. (2016). Modeling and analysis of stochastic systems. Chapman and Hall/CRC.
Kumar, N., Patel, S. S., Chalodia, A. L., Vadaviya, O. U., Pandya, H. R., Pisal, R. R., Dakhore, K. K., & Patel, M. L. (2015). Markov chain and incomplete Gamma distribution analysis of weekly rainfall over Navsari region of south Gujarat. Mausam, 10.
Kusumastuti, R. D., Donk, D. P. van, & Teunter, R. (2016). Crop-related harvesting and processing planning: A review. International Journal of Production Economics, 174, 76-92. https://doi.org/10.1016/j.ijpe.2016.01.010
Le Gal, P.-Y., Le Masson, J., Bezuidenhout, C. N., & Lagrange, L. F. (2009). Coupled modelling of sugarcane supply planning and logistics as a management tool. Computers and Electronics in Agriculture, 68(2), 168-177. https://doi.org/10.1016/j.compag.2009.05.006
Le Gal, P.-Y., Lyne, P. W. L., Meyer, E., & Soler, L.-G. (2008). Impact of sugarcane supply scheduling on mill sugar production: A South African case study. Agricultural Systems, 96(1), 64-74. https://doi.org/10.1016/j.agsy.2007.05.006
Leduc, S., Starfelt, F., Dotzauer, E., Kindermann, G., McCallum, I., Obersteiner, M., & Lundgren, J. (2010). Optimal location of lignocellulosic ethanol refineries with polygeneration in Sweden. Energy, 35(6), 2709-2716. https://doi.org/10.1016/j.energy.2009.07.018
Lejars, C., Le Gal, P.-Y., & Auzoux, S. (2008). A decision support approach for cane supply management within a sugar mill area. Computers and Electronics in Agriculture, 60(2), 239-249. https://doi.org/10.1016/j.compag.2007.08.008
Liobikiene, G., Balezentis, T., Streimikiene, D., & Chen, X. (2019). Evaluation of bioeconomy in the context of strong sustainability. Sustainable Development, 27(5), 955-964. https://doi.org/10.1002/sd.1984
Liu, L., Parlar, M., & Zhu, S. X. (2007). Pricing and Lead Time Decisions in Decentralized Supply Chains. Management Science, 53(5), 713-725. https://doi.org/10.1287/mnsc.1060.0653
Liu, S., & Papageorgiou, L. G. (2018). Fair profit distribution in multi-echelon supply chains via transfer prices. Omega, 80, 77-94. https://doi.org/10.1016/j.omega.2017.08.010
Londoño, L. (2017). Desempeño de la Agroindustria de la Caña en Colombia 2016-2017, Performance of the Agroindustry of the Sugarcane in Colombia 2016-2017 (pp. 1-32). http://www.asocana.org//documentos/2452017.pdf
Longinidis, P., & Georgiadis, M. C. (2011). Integration of financial statement analysis in the optimal design of supply chain networks under demand uncertainty. International Journal of Production Economics, 129(2), 262-276. https://doi.org/10.1016/j.ijpe.2010.10.018
Longinidis, P., & Georgiadis, M. C. (2013). Managing the trade-offs between financial performance and credit solvency in the optimal design of supply chain networks under economic uncertainty. Computers & Chemical Engineering, 48, 264-279. https://doi.org/10.1016/j.compchemeng.2012.09.019
Longinidis, P., & Georgiadis, M. C. (2014). Integration of sale and leaseback in the optimal design of supply chain networks. Omega, 47, 73-89. https://doi.org/10.1016/j.omega.2013.08.004
Longinidis, P., Georgiadis, M. C., & Kozanidis, G. (2015). Integrating Operational Hedging of Exchange Rate Risk in the Optimal Design of Global Supply Chain Networks. Industrial & Engineering Chemistry Research, 54(24), 6311-6325. https://doi.org/10.1021/acs.iecr.5b00349
Lopez Milan, E., Miquel Fernandez, S., & Pla Aragones, L. M. (2006). Sugar cane transportation in Cuba, a case study. European Journal of Operational Research, 174(1), 374-386. https://doi.org/10.1016/j.ejor.2005.01.028
Lowe, T. J., & Preckel, P. V. (2004). Decision Technologies for Agribusiness Problems: A Brief Review of Selected Literature and a Call for Research. Manufacturing & Service Operations Management, 6(3), 201-208. https://doi.org/10.1287/msom.1040.0051
Macowski, D. H., Bonfim-Rocha, L., Orgeda, R., Camilo, R., & Ravagnani, M. A. S. S. (2020). Multi-objective optimization of the Brazilian industrial sugarcane scenario: A profitable and ecological approach. Clean Technologies and Environmental Policy, 22(3), 591-611. https://doi.org/10.1007/s10098-019-01802-0
Mallawaarachchi, T., & Quiggin, J. (2001). Modelling socially optimal land allocations for sugar cane growing in North Queensland: A linked mathematical programming and choice modelling study. Australian Journal of Agricultural and Resource Economics, 45(3), 383-409. https://doi.org/10.1111/1467-8489.00149
Marin, F., Jones, J. W., & Boote, K. J. (2017). A Stochastic Method for Crop Models: Including Uncertainty in a Sugarcane Model. Agronomy Journal, 109(2), 483. https://doi.org/10.2134/agronj2016.02.0103
Martínez-Guido, SergioI., Betzabe González-Campos, J., Ponce-Ortega, JoséM., Nápoles-Rivera, F., & El-Halwagi, MahmoudM. (2016). Optimal reconfiguration of a sugar cane industry to yield an integrated biorefinery. Clean Technologies and Environmental Policy, 18(2), 553-562. https://doi.org/10.1007/s10098-015-1039-1
Martinez-Hernandez, E. (2017). Trends in sustainable process design—From molecular to global scales. Current Opinion in Chemical Engineering, 17, 35-41. https://doi.org/10.1016/j.coche.2017.05.005
Matindi, R., Masoud, M., Hobson, P., Kent, G., & Liu, S. Q. (2018). Harvesting and transport operations to optimise biomass supply chain and industrial biorefinery processes. International Journal of Industrial Engineering Computations, 265-288. https://doi.org/10.5267/j.ijiec.2017.9.001
Matis, J. H., Saito, T., Grant, W. E., Iwig, W. C., & Ritchie, J. T. (1985). A Markov chain approach to crop yield forecasting. Agricultural Systems, 18(3), 171-187. https://doi.org/10.1016/0308-521X(85)90030-7
Maxwell, D., & van der Vorst, R. (2003). Developing sustainable products and services. Journal of Cleaner Production, 11(8), 883-895. https://doi.org/10.1016/S0959-6526(02)00164-6
Meemken, E.-M., Barrett, C. B., Michelson, H. C., Qaim, M., Reardon, T., & Sellare, J. (2021). Sustainability standards in global agrifood supply chains. Nature Food, 2(10), 758-765. https://doi.org/10.1038/s43016-021-00360-3
Mele, F. D., Kostin, A. M., Guillén-Gosálbez, G., & Jiménez, L. (2011). Multiobjective Model for More Sustainable Fuel Supply Chains. A Case Study of the Sugar Cane Industry in Argentina. Industrial & Engineering Chemistry Research, 50(9), 4939-4958. https://doi.org/10.1021/ie101400g
Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management – A review. European Journal of Operational Research, 196(2), 401-412. https://doi.org/10.1016/j.ejor.2008.05.007
Messmann, L., Zender, V., Thorenz, A., & Tuma, A. (2020). How to quantify social impacts in strategic supply chain optimization: State of the art. Journal of Cleaner Production, 257, 120459. https://doi.org/10.1016/j.jclepro.2020.120459
Meza-Palacios, R., Aguilar-Lasserre, A. A., Morales-Mendoza, L. F., Pérez-Gallardo, J. R., Rico-Contreras, J. O., & Avarado-Lassman, A. (2019). Life cycle assessment of cane sugar production: The environmental contribution to human health, climate change, ecosystem quality and resources in México. Journal of Environmental Science and Health, Part A, 54(7), 668-678. https://doi.org/10.1080/10934529.2019.1579537
Ministerio de Ciencia, Tecnología e Innovación. (2019). Descripción de focos y líneas de investigación. https://minciencias.gov.co/sites/default/files/upload/convocatoria/anexo_1._descripcion_de_focos_y_lineas_de_investigacion.pdf
Ministerio Minas y Energía. (2018). Resolución 40185. República de Colombia.
Mohammadi, A., Abbasi, A., Alimohammadlou, M., Eghtesadifard, M., & Khalifeh, M. (2017). Optimal design of a multi-echelon supply chain in a system thinking framework: An integrated financial-operational approach. Computers & Industrial Engineering, 114, 297-315. https://doi.org/10.1016/j.cie.2017.10.019
Morales Chávez, M. M., Sarache, W., & Costa, Y. (2018). Towards a comprehensive model of a biofuel supply chain optimization from coffee crop residues. Transportation Research Part E: Logistics and Transportation Review, 116, 136-162. https://doi.org/10.1016/j.tre.2018.06.001
Morales Chavez, M. M., Sarache, W., Costa, Y., & Soto, J. (2020). Multiobjective stochastic scheduling of upstream operations in a sustainable sugarcane supply chain. Journal of Cleaner Production, 276, 123305. https://doi.org/10.1016/j.jclepro.2020.123305
Morales-Chávez, M. M., Soto-Mejía, J. A., & Sarache, W. A. (2016). A mixed-integer linear programming model for harvesting, loading and transporting sugarcane. A case study in Peru. DYNA, 83(195), 173-179. https://doi.org/10.15446/dyna.v83n195.49490
Mota, B., Gomes, M. I., Carvalho, A., & Barbosa-Povoa, A. P. (2015). Towards supply chain sustainability: Economic, environmental and social design and planning. Journal of Cleaner Production, 105, 14-27. https://doi.org/10.1016/j.jclepro.2014.07.052
Muchow, R. C., Higgins, A. J., Rudd, A. V., & Ford, A. W. (1998). Optimising harvest date in sugar production: A case study for the Mossman mill region in Australia: II. Sensitivity to crop age and crop class distribution. Field Crops Research, 57(3), 243-251.
Mutenurea, M., Čučekb, L., Isafiade, A. J., & Kravanjab, Z. (2016). Synthesis of South Africa’s Biomass to Bioethanol Supply Network. CHEMICAL ENGINEERING, 52.
Mutran, V. M., Ribeiro, C. O., Nascimento, C. A. O., & Chachuat, B. (2020). Risk-conscious optimization model to support bioenergy investments in the Brazilian sugarcane industry. Applied Energy, 258, 113978. https://doi.org/10.1016/j.apenergy.2019.113978
Oliveira, J. B., Lima, R. S., & Montevechi, J. A. B. (2016). Perspectives and relationships in Supply Chain Simulation: A systematic literature review. Simulation Modelling Practice and Theory, 62, 166-191. https://doi.org/10.1016/j.simpat.2016.02.001
Ometto, A. R., Hauschild, M. Z., & Roma, W. N. L. (2009). Lifecycle assessment of fuel ethanol from sugarcane in Brazil. Int J Life Cycle Assess, 12.
Osaki, M. R., & Seleghim Jr, P. (2017). Bioethanol and power from integrated second generation biomass: A Monte Carlo simulation. Energy Conversion and Management, 141, 274-284.
Osmani, A., & Zhang, J. (2013). Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties. Energy, 59, 157-172. https://doi.org/10.1016/j.energy.2013.07.043
Paiva, R. P. O., & Morabito, R. (2009). An optimization model for the aggregate production planning of a Brazilian sugar and ethanol milling company. Annals of Operations Research, 169(1), 117-130. https://doi.org/10.1007/s10479-008-0428-9
Pashangpour, R., Faghihi, F., & Soleymani, S. (2018). Optimized scheduling for electric lift trucks in a sugarcane agro-industry based on thermal, biomass and solar resources. International Journal of Environmental Science and Technology, 15(11), 2349-2358.
Pathumnakul S., & Nakrachata-Amon T. (2015). The Applications of Operations Research in Harvest Planning: A Case Study of the Sugarcane Industry in Thailand. Journal of Japan Industrial Management Association, 65(4E), 328-333. https://doi.org/10.11221/jima.65.328
Pelletier, N., Ustaoglu, E., Benoit, C., Norris, G., Rosenbaum, E., Vasta, A., & Sala, S. (2018). Social sustainability in trade and development policy. The International Journal of Life Cycle Assessment, 23(3), 629-639. https://doi.org/10.1007/s11367-016-1059-z
Pereira, R. D., Badino, A. C., & Cruz, A. J. (2020). Framework Based on Artificial Intelligence to Increase Industrial Bioethanol Production. Energy & Fuels, 34(4), 4670-4677.
Piewthongngam, K., Pathumnakul, S., & Setthanan, K. (2009). Application of crop growth simulation and mathematical modeling to supply chain management in the Thai sugar industry. Agricultural Systems, 102(1-3), 58-66. https://doi.org/10.1016/j.agsy.2009.07.002
Ramirez, C. A. M. (2017). Asocaña. Sector Agroindustrial de la Caña. https://www.asocana.org/
Ramirez, C. A. M. (2021a). Balance azucarero colombiano Asocaña 2000—2020 (toneladas). Asocaña - Sector Agroindustrial de la Caña. http://www.asocana.org/modules/documentos/5528.aspx
Ramirez, C. A. M. (2021b). Informe anual 2019—2020. Asocaña - Sector Agroindustrial de la Caña. http://www.asocana.org/modules/documentos/15398.aspx
Rojas, L. S. B. (2011). OPORTUNIDADES Y AMENAZAS DE LOS BIOCOMBUSTIBLES EN COLOMBIA [PONTIFICIA UNIVERSIDAD JAVERIANA]. https://repository.javeriana.edu.co/bitstream/handle/10554/12377/BuenoRojasLucySikint2011.pdf?sequence=1
UPME. (2018). BOLETÍN ESTADÍSTICO DE MINAS Y ENERGÍA 2016—2018. Unidad de Planeación Minero Energética, UPME. Bogotá. https://www1.upme.gov.co/PromocionSector/SeccionesInteres/Documents/Boletines/Boletin_Estadistico_2018.pdf
dc.relation.references.eng.fl_str_mv Pitakaso, R., & Sethanan, K. (2019). Adaptive large neighborhood search for scheduling sugarcane inbound logistics equipment and machinery under a sharing infield resource system. Computers and Electronics in Agriculture, 158, 313-325. https://doi.org/10.1016/j.compag.2019.02.001
Plà, L. M., Sandars, D. L., & Higgins, A. J. (2014). A perspective on operational research prospects for agriculture. Journal of the Operational Research Society, 65(7), 1078-1089. https://doi.org/10.1057/jors.2013.45
Polo, A., Peña, N., Muñoz, D., Cañón, A., & Escobar, J. W. (2018). Robust design of a closed-loop supply chain under uncertainty conditions integrating financial criteria. Omega. https://doi.org/10.1016/j.omega.2018.09.003
Poltroniere, S. C., Aliano Filho, A., Caversan, A. S., Balbo, A. R., & Florentino, H. de O. (2021). Integrated planning for planting and harvesting sugarcane and energy-cane for the production of sucrose and energy. Computers and Electronics in Agriculture, 184, 105956. https://doi.org/10.1016/j.compag.2020.105956
Prasara-A, J., & Gheewala, S. H. (2016). Sustainability of sugarcane cultivation: Case study of selected sites in north-eastern Thailand. Journal of Cleaner Production, 134, 613-622. https://doi.org/10.1016/j.jclepro.2015.09.029
Procaña. (2018). Colombian sugarcane Industry: Description. http://www.procana.org/new/quienes-somos/presentacion-del-sector.html
Qureshi, M. E., Qureshi, S. E., Bajracharya, K., & Kirby, M. (2008). Integrated Biophysical and Economic ModellingFramework to Assess Impacts of Alternative Groundwater Management Options. Water Resources Management, 22(3), 321-341. https://doi.org/10.1007/s11269-007-9164-1
Qureshi, M. E., Qureshi, S. E., & Wegener, M. K. (2007). Economic implications of alternative mill mud management options in the Australian sugar industry. Agricultural Economics, 36(1), 113-122.
Ramezani, M., Kimiagari, A. M., & Karimi, B. (2014). Closed-loop supply chain network design: A financial approach. Applied Mathematical Modelling, 38(15-16), 4099-4119. https://doi.org/10.1016/j.apm.2014.02.004
Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W.-P., Suh, S., Weidema, B. P., & Pennington, D. W. (2004). Life cycle assessment. Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment International, 30(5), 701-720. https://doi.org/10.1016/j.envint.2003.11.005
Renouf, M. A., Wegener, M. K., & Pagan, R. J. (2010). Life cycle assessment of Australian sugarcane production with a focus on sugarcane growing. The International Journal of Life Cycle Assessment, 15(9), 927-937. https://doi.org/10.1007/s11367-010-0226-x
Reynolds, C., Buckley, J., Weinstein, P., & Boland, J. (2014). Are the Dietary Guidelines for Meat, Fat, Fruit and Vegetable Consumption Appropriate for Environmental Sustainability? A Review of the Literature. Nutrients, 6(6), 2251-2265. https://doi.org/10.3390/nu6062251
Rivera-Cadavid, L., Manyoma-Velásquez, P. C., & Manotas-Duque, D. F. (2019). Supply Chain Optimization for Energy Cogeneration Using Sugarcane Crop Residues (SCR). Sustainability, 11(23), 6565.
Rosa, W. (Ed.). (2017). Transforming Our World: The 2030 Agenda for Sustainable Development. En A New Era in Global Health. Springer Publishing Company. https://doi.org/10.1891/9780826190123.ap02
Ross, S. M. (2014). Introduction to probability models. Academic press.
Rota, C., Pugliese, P., Hashem, S., & Zanasi, C. (2018). Assessing the level of collaboration in the Egyptian organic and fair trade cotton chain. Journal of Cleaner Production, 170, 1665-1676. https://doi.org/10.1016/j.jclepro.2016.10.011
Sahebi, H., Nickel, S., & Ashayeri, J. (2014). Strategic and tactical mathematical programming models within the crude oil supply chain context—A review. Computers & Chemical Engineering, 68, 56-77. https://doi.org/10.1016/j.compchemeng.2014.05.008
Santibañez-Aguilar, J. E., González-Campos, J. B., Ponce-Ortega, J. M., Serna-González, M., & El-Halwagi, M. M. (2014). Optimal planning and site selection for distributed multiproduct biorefineries involving economic, environmental and social objectives. Journal of Cleaner Production, 65, 270-294. https://doi.org/10.1016/j.jclepro.2013.08.004
Santoro, E., Soler, E. M., & Cherri, A. C. (2017). Route optimization in mechanized sugarcane harvesting. Computers and Electronics in Agriculture, 141, 140-146. https://doi.org/10.1016/j.compag.2017.07.013
Saranwong, S., & Likasiri, C. (2017). Bi-level programming model for solving distribution center problem: A case study in Northern Thailand’s sugarcane management. Computers & Industrial Engineering, 103, 26-39. https://doi.org/10.1016/j.cie.2016.10.031
Sarkar, B., Mridha, B., Pareek, S., Sarkar, M., & Thangavelu, L. (2021). A flexible biofuel and bioenergy production system with transportation disruption under a sustainable supply chain network. Journal of Cleaner Production, 317, 128079. https://doi.org/10.1016/j.jclepro.2021.128079
Sartori, M. M. P., de Oliveira Florentino, H., Basta, C., & Leão, A. L. (2001). Determination of the optimal quantity of crop residues for energy in sugarcane crop management using linear programming in variety selection and planting strategy. Energy, 26(11), 1031-1040.
Scully, M. J., Norris, G. A., Alarcon Falconi, T. M., & MacIntosh, D. L. (2021). Carbon intensity of corn ethanol in the United States: State of the science. Environmental Research Letters, 16(4), 043001. https://doi.org/10.1088/1748-9326/abde08
Semboloni, F. (2006). The CityDev Project: An Interactive Multi-agent Urban Model on the Web. En J. Portugali (Ed.), Complex Artificial Environments (pp. 155-163). Springer-Verlag. https://doi.org/10.1007/3-540-29710-3_10
Semenzato, R. (1995). A simulation study of sugar cane harvesting. Agricultural Systems, 47(4), 427-437. https://doi.org/10.1016/0308-521X(95)92108-I
Seuring, S., & Müller, M. (2008). From a literature review to a conceptual framework for sustainable supply chain management. Journal of Cleaner Production, 16(15), 1699-1710. https://doi.org/10.1016/j.jclepro.2008.04.020
Shafie, S. M., Othman, Z., & Hami, N. (2020). Optimum location of biomass waste residue power plant in northern region: Economic and environmental assessment. International Journal of Energy Economics and Policy, 10(1), 150.
Shapiro, A. (2003). Monte Carlo Sampling Methods. En Handbooks in Operations Research and Management Science (Vol. 10, pp. 353-425). Elsevier. https://doi.org/10.1016/S0927-0507(03)10006-0
Shukla, M., & Jharkharia, S. (2013). Agri‐fresh produce supply chain management: A state‐of‐the‐art literature review. International Journal of Operations & Production Management, 33(2), 114-158. https://doi.org/10.1108/01443571311295608
Sihombing, L., Latief, Y., Rarasati, A. D., & Wibowo, A. (2018). Utilizing uncertainty management to analyze the uncertainty of toll road land acquisition. International Journal of Civil Engineering and Technology, 9(6), 1221-1228. Scopus.
Simchi-Levi, D., Chen, X., & Bramel, J. (2005). The logic of logistics. Theory, Algorithms, and Applications for Logistics and Supply Chain Management.
Sørensen, C. G., & Bochtis, D. D. (2010). Conceptual model of fleet management in agriculture. Biosystems Engineering, 105(1), 41-50. https://doi.org/10.1016/j.biosystemseng.2009.09.009
Soto-Silva, W. E., González-Araya, M. C., Oliva-Fernández, M. A., & Plà-Aragonés, L. M. (2017). Optimizing fresh food logistics for processing: Application for a large Chilean apple supply chain. Computers and Electronics in Agriculture, 136, 42-57. https://doi.org/10.1016/j.compag.2017.02.020
Soto-Silva, W. E., Nadal-Roig, E., González-Araya, M. C., & Pla-Aragones, L. M. (2016). Operational research models applied to the fresh fruit supply chain. European Journal of Operational Research, 251(2), 345-355. https://doi.org/10.1016/j.ejor.2015.08.046
Sowlati, T. (2016). Modeling of forest and wood residues supply chains for bioenergy and biofuel production. En Biomass Supply Chains for Bioenergy and Biorefining (pp. 167-190). Elsevier. https://doi.org/10.1016/B978-1-78242-366-9.00008-3
Soysal, M., Bloemhof-Ruwaard, J. M., Meuwissen, M. P., & van der Vorst, J. G. (2012). A review on quantitative models for sustainable food logistics management. International Journal on Food System Dynamics, 3(2), 136-155.
Standfield, L., Comans, T., & Scuffham, P. (2014). Markov modeling and discrete event simulation in health care: A systematic comparison. International Journal of Technology Assessment in Health Care, 30(2), 165-172. https://doi.org/10.1017/S0266462314000117
Stray, B. J., van Vuuren, J. H., & Bezuidenhout, C. N. (2012). An optimisation-based seasonal sugarcane harvest scheduling decision support system for commercial growers in South Africa. Computers and Electronics in Agriculture, 83, 21-31. https://doi.org/10.1016/j.compag.2012.01.009
Sun, F., Aguayo, M. M., Ramachandran, R., & Sarin, S. C. (2018). Biomass feedstock supply chain design–a taxonomic review and a decomposition-based methodology. International Journal of Production Research, 56(17), 5626-5659.
Sun, O., & Fan, N. (2020). A Review on Optimization Methods for Biomass Supply Chain: Models and Algorithms, Sustainable Issues, and Challenges and Opportunities. Process Integration and Optimization for Sustainability. https://doi.org/10.1007/s41660-020-00108-9
Teixeira, E. dos S., Rangel, S., Florentino, H. de O., & de Araujo, S. A. (2021). A review of mathematical optimization models applied to the sugarcane supply chain. International Transactions in Operational Research.
Tsolakis, N. K., Keramydas, C. A., Toka, A. K., Aidonis, D. A., & Iakovou, E. T. (2014). Agrifood supply chain management: A comprehensive hierarchical decision-making framework and a critical taxonomy. Biosystems Engineering, 120, 47-64. https://doi.org/10.1016/j.biosystemseng.2013.10.014
UN. (2017). United Nations sustainable development agenda. United Nations Sustainable Development. http://www.un.org/sustainabledevelopment/development-agenda/
Valin, H., Sands, R. D., van der Mensbrugghe, D., Nelson, G. C., Ahammad, H., Blanc, E., Bodirsky, B., Fujimori, S., Hasegawa, T., Havlik, P., Heyhoe, E., Kyle, P., Mason-D’Croz, D., Paltsev, S., Rolinski, S., Tabeau, A., van Meijl, H., von Lampe, M., & Willenbockel, D. (2014). The future of food demand: Understanding differences in global economic models. Agricultural Economics, 45(1), 51-67. https://doi.org/10.1111/agec.12089
van den Wall Bake, J. D., Junginger, M., Faaij, A., Poot, T., & Walter, A. (2009). Explaining the experience curve: Cost reductions of Brazilian ethanol from sugarcane. Biomass and Bioenergy, 33(4), 644-658. https://doi.org/10.1016/j.biombioe.2008.10.006
van Eijck, J., Batidzirai, B., & Faaij, A. (2014). Current and future economic performance of first and second generation biofuels in developing countries. Applied Energy, 135, 115-141. https://doi.org/10.1016/j.apenergy.2014.08.015
Verweij, B., Ahmed, S., Kleywegt, A. J., Nemhauser, G., & Shapiro, A. (2003). The Sample Average Approximation Method Applied to Stochastic Routing Problems: A Computational Study. Computational Optimization and Applications, 24(2), 289-333. https://doi.org/10.1023/A:1021814225969
Will M. Bertrand, J., & Fransoo, J. C. (2002). Operations management research methodologies using quantitative modeling. International Journal of Operations & Production Management, 22(2), 241-264.
Wu, D., Baron, O., & Berman, O. (2009). Bargaining in competing supply chains with uncertainty. European Journal of Operational Research, 197(2), 548-556.
Yue, D., & You, F. (2014). Game-theoretic modeling and optimization of multi-echelon supply chain design and operation under Stackelberg game and market equilibrium. Computers & Chemical Engineering, 71, 347-361. https://doi.org/10.1016/j.compchemeng.2014.08.010
Yue, D., You, F., & Snyder, S. W. (2014). Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges. Computers & Chemical Engineering, 66, 36-56. https://doi.org/10.1016/j.compchemeng.2013.11.016
Zahraee, S. M. (2020). Biomass supply chain environmental and socio-economic analysis: 40-Years comprehensive review of methods, decision issues, sustainability challenges, and the way forward. Biomass and Bioenergy, 33.
Zandi Atashbar, N., Labadie, N., & Prins, C. (2018). Modelling and optimisation of biomass supply chains: A review. International Journal of Production Research, 56(10), 3482-3506. https://doi.org/10.1080/00207543.2017.1343506
Zheng, X.-X., Liu, Z., Li, K. W., Huang, J., & Chen, J. (2019). Cooperative game approaches to coordinating a three-echelon closed-loop supply chain with fairness concerns. International Journal of Production Economics, 212, 92-110. https://doi.org/10.1016/j.ijpe.2019.01.011
Ziolkowska, J. R. (2020). Biofuels technologies: An overview of feedstocks, processes, and technologies. En Biofuels for a More Sustainable Future (pp. 1-19). Elsevier. https://doi.org/10.1016/B978-0-12-815581-3.00001-4
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvi, 174 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Industria y Organizaciones
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Industrial
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería y Arquitectura
dc.publisher.place.spa.fl_str_mv Manizales, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Manizales
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82239/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82239/2/1110459365.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82239/3/1110459365.2022.pdf.jpg
bitstream.checksum.fl_str_mv b577153cc0e11f0aeb5fc5005dc82d8a
04b7aafdd43a6e774a6dba63a6fca384
d9513a82cae278126f30e59ae58644f9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089298957303808
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sarache, William546ec7b467c878938b5ead59844811de600Costa, Yaselc7b8a24e7b6ed20eb81f04d3706e6d98600Carvajal Beltrán, Jimmy Alexanderdd9c055c07e1eb318809d2c7382ae2eeInnovación y desarrollo Tecnológico2022-09-02T12:42:10Z2022-09-02T12:42:10Z2022https://repositorio.unal.edu.co/handle/unal/82239Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/gráficos, tablasLa producción de biocombustibles forma parte de las estrategias mundiales para la mitigación del calentamiento global, al buscar la reducción de las emisiones generadas por el consumo indiscriminado de combustible fósil. En ese sentido, se logró identificar en la literatura que, desde el punto de vista del diseño de cadenas de abastecimiento, la producción de biocombustibles ha sido poco estudiada, y en menor proporción, cuando se involucra la modelación matemática del componente agrícola. Esta cadena plantea sus propios retos, en términos del diseño, operación, integración de actores y fuentes de incertidumbre, las cuales afectan los sistemas biológicos y logísticos. Tales particularidades afectan también la factibilidad de la inversión a largo plazo, no solo desde la perspectiva económica, sino también, desde la dimensión social y ambiental. Basado en lo anterior, la situación problemática abordada en esta tesis doctoral se enmarca en la escasez de modelos de optimización para apoyar las decisiones de diseño y gestión de operaciones de la cadena de abastecimiento para la producción de biocombustible a partir de la caña de azúcar, que simultáneamente consideren el desempeño sostenible como criterio de evaluación y la vulnerabilidad de las decisiones frente a fuentes de incertidumbre. De acuerdo con el estado del arte, esta brecha de conocimiento es reconocida como un problema científico que requiere ser abordado y solucionado. Por lo tanto, la presente tesis doctoral propone una solución desde el enfoque cuantitativo, propio de la investigación de operaciones, a través del diseño y validación de un modelo de optimización multiobjetivo con parámetros estocásticos. El modelo integra las decisiones de diseño de la cadena de abastecimiento desde la perspectiva sostenible, considerando al eslabón agrícola y a la biorefinería. Además, se modelan las operaciones agrícolas propias de la producción de biomasa, la afectación de fuentes de incertidumbre sobre el rendimiento de los cultivos y la duración de la temporada de cosecha, ambos aspectos asociados con las condiciones climáticas. En ese sentido, esta tesis contribuye al estado del arte con un modelo estocástico, multi-periodo, que involucra las decisiones de diseño y gestión para múltiples actores, desde la perspectiva sostenible buscando un equilibrio entre: 1) el desempeño económico, por medio del valor económico agregado para los accionistas; 2) el social, compuesto por la distribución justa de los beneficios entre los eslabones de la cadena, la reducción de la huella de tierra, y la creación de puestos de trabajo; y 3) la minimización de los impactos ambientales ocasionados durante la producción de biomasa, el transporte de caña y la producción de biocombustible. El modelo fue aplicado en la evaluación de un proyecto de inversión en biocombustibles a partir de la caña azúcar en una nueva zona de expansión agrícola en Colombia. Este caso exhibió problemas de dimensión; sin embargo, el enfoque de modelamiento permitió enfrentar la complejidad computacional, a través de la implementación de una cadena de Markov para simular escenarios correlacionados de las fuentes de incertidumbre para instancias reales, al igual que implementar un modelo de programación lineal, omitiendo el uso de variables enteras o binarias. Los resultados demostraron la factibilidad del diseño de la cadena de abastecimiento y, además, se identificaron un conjunto de factores, tales como: el rendimiento del cultivo, el retraso de la construcción de la biorefinería, el precio de comercialización de caña de azúcar, la distancia entre las fincas y la industria, entre otros, como variables que influyen en el diseño de la cadena y su desempeño. (Texto tomado de la fuente)The production of biofuels is part of the world strategies for the mitigation of global warming, seeking to reduce emissions generated by the indiscriminate consumption of fossil fuels. In this sense, it was possible to identify in the literature that biofuel production, from the point of view of the supply chain, has been scared studied, and minor, in instances that agricultural echelon is involved. This supply chain poses relevant challenges, in terms of design, manage, integration of actors and sources of uncertainty, which affect biological (biomass production) and logistical systems. Such particularities also lead the long term investment feasibility, not only from the economic point of view, but also from the social and environmental dimension. Based on the above, the problematic situation addressed in this doctoral thesis is framed in the absence of optimization models to support design and operations management decisions in the sugarcane-based biofuel supply chain, simultaneously considering sustainable performance as an evaluation criterion and the vulnerability of decisions in the face of uncertainty sources. The problem was verified in the state-of-the-art evidencing that it is recognized as a scientific problem that needs to be addressed and solved. Consequently, this doctoral thesis proposes a solution from the quantitative approach, typical of operation research discipline, through design and validation of a multi-objective optimization model with stochastic parameters. The model integrates the design decisions of the supply chain considering the sustainable performance, integrating both, agricultural (supplier) and production stages (biorefinery). Additionally, it includes the modeling of the agricultural operations involved in biomass production, as well as the impact of sources of uncertainty on crop yields and the length of harvest season, both aspects associated and affected by weather conditions. In that sense, this thesis contributes to the state of the art with a multi-period, stochastic model, involving design and management decisions for multiple actors of agricultural and industrial echelons, from sustainable perspective seeking a balance between: economic performance, through economic value added for shareholders; social performance, composed by fairness profit distribution, reducing land footprint, and incenting the job creation; and reducing environmental impacts caused during biomass production, sugarcane transportation and biofuel production phases. The model was proven in case of study related with the assessment of a sugarcane-based biofuel investment project in a new agricultural expansion zone in Colombia. This case exhibited dimensional problems; however, the modeling approach allowed facing the computational complexity, through the implementation of a Markov chain to simulate correlated scenarios for real instances, as well as implementing a linear programming model, omitting the use of integer or binary variables. The results demonstrated a feasible design from a sustainable perspective. On the other hand, through a sensitivity analysis, a set of factors were identified, such as: crop yield, delay in the biorefinery construction process, sugarcane trade price, distance among farms and industry, and so on, as variables that influence the design and its performance.Ministerio de Ciencia Tecnología e Innovación Beca de doctorado Nacional - Convocatoria 757 de 2016DoctoradoDoctor en IngenieríaMétodos y modelos de optimización y estadística en ingeniería industrial y administrativaIndustrial, Organizaciones Y Logística xvi, 174 páginasapplication/pdfspaUniversidad Nacional de ColombiaManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Industria y OrganizacionesDepartamento de Ingeniería IndustrialFacultad de Ingeniería y ArquitecturaManizales, ColombiaUniversidad Nacional de Colombia - Sede Manizales620 - Ingeniería y operaciones afinesCadenas de abastecimiento -- Metodología -- Toma de decisiones -- Modelos matemáticosCadenas de abastecimientoprogramación estocástica de dos etapasCadenas de MarkovOptimización multi-objetivoBiocombustiblesCaña de azúcarDesempeño sostenibleDistribución justa del beneficioSupply chainsTwo-stage stochastic programmingMarkov chainsMulti-objective optimizationBiofuels, sugarcaneSustainable performanceFair profit distributionDesempeño sostenible en el diseño y gestión de cadenas de abastecimiento bajo condiciones de incertidumbre. Aplicación a la producción de biocombustibles a partir de caña de azúcarDesigning supply chain under uncertain conditions from sustainable performance perspective. An application at sugarcane based biofuel productionTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06ImageTextAbdul-Jalbar, B., Colebrook, M., Dorta-Guerra, R., & Gutiérrez, J. M. (2016). Centralized and decentralized inventory policies for a single-vendor two-buyer system with permissible delay in payments. Computers & Operations Research, 74, 187-195. https://doi.org/10.1016/j.cor.2016.04.030Adam, N.-R. B., Dauhoo, M. Z., Khoodaruth, A. A. H., & Elahee, M. K. (2016). A two-stage stochastic programming optimisation for sugar-ethanol-electricity production from sugarcane: A case study of Mauritius. International Journal of Mathematical Modelling and Numerical Optimisation, 7(1), 20-32.Adam, N.-R. B., Dauhoo, M. Z., Khoodaruth, A. A. H., & Elahee, M. K. (2016). A two-stage stochastic programming optimisation for sugar-ethanol-electricity production from sugarcane: A case study of Mauritius. International Journal of Mathematical Modelling and Numerical Optimisation, 7(1), 20-32.Ahumada, O., & Villalobos, J. R. (2009). Application of planning models in the agri-food supply chain: A review. European Journal of Operational Research, 196(1), 1-20. https://doi.org/10.1016/j.ejor.2008.02.014Ahumada, O., & Villalobos, J. R. (2011). A tactical model for planning the production and distribution of fresh produce. Annals of Operations Research, 190(1), 339-358. https://doi.org/10.1007/s10479-009-0614-4Alonso Pippo, W., Luengo, C. A., Alonsoamador Morales Alberteris, L., Garzone, P., & Cornacchia, G. (2011). Energy Recovery from Sugarcane-Trash in the Light of 2nd Generation Biofuel. Part 2: Socio-Economic Aspects and Techno-Economic Analysis. Waste and Biomass Valorization, 2(3), 257-266. https://doi.org/10.1007/s12649-011-9069-3Alonso-Pippo, W., Luengo, C. A., Alonsoamador Morales Alberteris, L., García del Pino, G., & Duvoisin, S. (2013). Practical implementation of liquid biofuels: The transferability of the Brazilian experiences. Energy Policy, 60, 70-80. https://doi.org/10.1016/j.enpol.2013.04.038Álvarez-Rodríguez, D. A., Normey-Rico, J. E., & Flesch, R. C. C. (2017). Model predictive control for inventory management in biomass manufacturing supply chains. International Journal of Production Research, 55(12), 3596-3608. https://doi.org/10.1080/00207543.2017.1315191Amu, L.G., Garcia, J.A., Galvis , D.E., & Rubiano, O. (2013). Optimisation of harvest resources in a colombian sugar mill by use of simulation models. Proceedings of the International Society of Sugar Cane Technologists, 28, 2042-2049. http://bonsucro.com/site/wp-content/uploads/2013/02/ISSCT-Development-Bonsucro-Standard-Viart-N-and-Rein-P-2013.pdfAsocaña. (2017). Más que azúcar, una fuente de energía renovable para el país. https://www.asocana.org/documentos/562017-ED2FFB51-00FF00,000A000,878787,C3C3C3,0F0F0F,B4B4B4,FF00FF,2D2D2D.pdfBaghalian, A., Rezapour, S., & Farahani, R. Z. (2013). Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case. European Journal of Operational Research, 227(1), 199-215. https://doi.org/10.1016/j.ejor.2012.12.017Ballou, R. H. (2007). Business logistics/supply chain management: Planning, organizing, and controlling the supply chain. Pearson Education India.Banco Interamericano de Desarrollo (BID). (2012). “Evaluación del ciclo de vida de la cadena de producción de biocombustibles en Colombia”.Barbosa-Póvoa, A. P., da Silva, C., & Carvalho, A. (2017). Opportunities and Challenges in Sustainable Supply Chain: An Operations Research Perspective. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2017.10.036Barrett, C. B. (2021). Overcoming Global Food Security Challenges through Science and Solidarity. American Journal of Agricultural Economics, 103(2), 422-447. https://doi.org/10.1111/ajae.12160Behzadi, G., O’Sullivan, M. J., Olsen, T. L., & Zhang, A. (2017). Agribusiness Supply Chain Risk Management: A Review of Quantitative Decision Models. Omega. https://doi.org/10.1016/j.omega.2017.07.005Bekkering, J., Broekhuis, A. A., & van Gemert, W. J. T. (2010). Optimisation of a green gas supply chain – A review. Bioresource Technology, 101(2), 450-456. https://doi.org/10.1016/j.biortech.2009.08.106Benoît, C., Norris, G. A., Valdivia, S., Ciroth, A., Moberg, A., Bos, U., Prakash, S., Ugaya, C., & Beck, T. (2010). The guidelines for social life cycle assessment of products: Just in time! The International Journal of Life Cycle Assessment, 15(2), 156-163. https://doi.org/10.1007/s11367-009-0147-8Bertsimas, D., Farias, V. F., & Trichakis, N. (2011). The Price of Fairness. Operations Research, 59(1), 17-31. https://doi.org/10.1287/opre.1100.0865Bezuidenhout, C. N., & Singels, A. (2007a). Operational forecasting of South African sugarcane production: Part 1 – System description. Agricultural Systems, 92(1), 23-38. https://doi.org/10.1016/j.agsy.2006.02.001Bezuidenhout, C. N., & Singels, A. (2007b). Operational forecasting of South African sugarcane production: Part 2 – System evaluation. Agricultural Systems, 92(1), 39-51. https://doi.org/10.1016/j.agsy.2006.03.002Bhattacharya, A. (2006). A goal programming approach for developing pre-harvest forecasts of crop yield. Journal of the Operational Research Society, 57(8). http://www.tandfonline.com/doi/abs/10.1057/palgrave.jors.2602098?needAccess=true&Birge, J. R., & Louveaux, F. (2011). Introduction to stochastic programming. Springer Science & Business Media.Blanco, V., Carpente, L., Hinojosa, Y., & Puerto, J. (2010). Planning for Agricultural Forage Harvesters and Trucks: Model, Heuristics, and Case Study. Networks and Spatial Economics, 10(3), 321-343. https://doi.org/10.1007/s11067-009-9120-0Bocca, F. F., & Rodrigues, L. H. A. (2016). The effect of tuning, feature engineering, and feature selection in data mining applied to rainfed sugarcane yield modelling. Computers and Electronics in Agriculture, 128, 67-76. https://doi.org/10.1016/j.compag.2016.08.015Bojesen, M., Skov-Petersen, H., & Gylling, M. (2015). Forecasting the potential of Danish biogas production – Spatial representation of Markov chains. Biomass and Bioenergy, 81, 462-472. https://doi.org/10.1016/j.biombioe.2015.07.030Borgonovo, E., Gatti, S., & Peccati, L. (2010). What drives value creation in investment projects? An application of sensitivity analysis to project finance transactions. European Journal of Operational Research, 205(1), 227-236. https://doi.org/10.1016/j.ejor.2009.12.006Borodin, V., Bourtembourg, J., Hnaien, F., & Labadie, N. (2016). Handling uncertainty in agricultural supply chain management: A state of the art. European Journal of Operational Research, 254(2), 348-359. https://doi.org/10.1016/j.ejor.2016.03.057Bot, P., van Donk, D. P., Pennink, B., & Simatupang, T. M. (2015). Uncertainties in the Bidirectional Biodiesel Supply Chain. Journal of Cleaner Production, 95, 174-183. https://doi.org/10.1016/j.jclepro.2015.02.064Branco, J. E. H., Branco, D. H., de Aguiar, E. M., Caixeta Filho, J. V., & Rodrigues, L. (2019). Study of optimal locations for new sugarcane mills in Brazil: Application of a MINLP network equilibrium model. Biomass and Bioenergy, 127, 105249.Brandenburg, M., Govindan, K., Sarkis, J., & Seuring, S. (2014). Quantitative models for sustainable supply chain management: Developments and directions. European Journal of Operational Research, 233(2), 299-312. https://doi.org/10.1016/j.ejor.2013.09.032Bubicz, M. E., Barbosa-Póvoa, A. P. F. D., & Carvalho, A. (2019). Incorporating social aspects in sustainable supply chains: Trends and future directions. Journal of Cleaner Production, 237, 117500. https://doi.org/10.1016/j.jclepro.2019.06.331Budzianowski, W. M., & Postawa, K. (2016). Total Chain Integration of sustainable biorefinery systems. Applied Energy, 184, 1432-1446. https://doi.org/10.1016/j.apenergy.2016.06.050Caixeta-Filho, J. V. (2006). Orange harvesting scheduling management: A case study. Journal of the Operational Research Society, 57(6), 637-642. https://doi.org/10.1057/palgrave.jors.2602041Campos-Guzmán, V., García-Cáscales, M. S., Espinosa, N., & Urbina, A. (2019). Life Cycle Analysis with Multi-Criteria Decision Making: A review of approaches for the sustainability evaluation of renewable energy technologies. Renewable and Sustainable Energy Reviews, 104, 343-366. https://doi.org/10.1016/j.rser.2019.01.031Cardoso, T. F., Chagas, M. F., Rivera, E. C., Cavalett, O., Morais, E. R., Geraldo, V. C., Braunbeck, O., da Cunha, M. P., Cortez, L. A. B., & Bonomi, A. (2015). A vertical integration simplified model for straw recovery as feedstock in sugarcane biorefineries. Biomass and Bioenergy, 81, 216-223. https://doi.org/10.1016/j.biombioe.2015.07.003Carvajal, J., Sarache, W., & Costa, Y. (2019). Addressing a robust decision in the sugarcane supply chain: Introduction of a new agricultural investment project in Colombia. Computers and Electronics in Agriculture, 157, 77-89. https://doi.org/10.1016/j.compag.2018.12.030Castaño, F., Rossi, A., Sevaux, M., & Velasco, N. (2014). A column generation approach to extend lifetime in wireless sensor networks with coverage and connectivity constraints. Computers & Operations Research, 52, 220-230.Castaño, F., Velasco, N., & Carvajal, J. (2019). Content-Based Conference Scheduling Optimization. IEEE Latin America Transactions, 17(04), 597-606.Chen, Y., Wang, S., Yao, J., Li, Y., & Yang, S. (2018). Socially responsible supplier selection and sustainable supply chain development: A combined approach of total interpretive structural modeling and fuzzy analytic network process. Business Strategy and the Environment, 27(8), 1708-1719. https://doi.org/10.1002/bse.2236Colin, E. C. (2009). Mathematical programming accelerates implementation of agro-industrial sugarcane complex. European Journal of Operational Research, 199(1), 232-235. https://doi.org/10.1016/j.ejor.2008.11.016Congreso de Colombia. (2014). LEY 1715 DE 2014 Diario Oficial No. 49.150. Bogotá, DC: Imprenta Nacional. Retrieved, 9, 2017.Congreso de Colombia. (2019). LEY 1955 DE 2019, Plan Nacional de Desarrollo 2018-2022. “Pacto por Colombia, Pacto por la Equidad”. http://www.suin-juriscol.gov.co/viewDocument.asp?ruta=Leyes/30036488Costa, A. M., dos Santos, L. M. R., Alem, D. J., & Santos, R. H. S. (2011). Sustainable vegetable crop supply problem with perishable stocks. Annals of Operations Research. https://doi.org/10.1007/s10479-010-0830-yCouncil of Supply Chain Management Professionals, CSCMP. (2017). CSCMP Supply Chain Management Definitions and Glossary.da Silva, A. F., & Marins, F. A. S. (2014). A Fuzzy Goal Programming model for solving aggregate production-planning problems under uncertainty: A case study in a Brazilian sugar mill. Energy Economics, 45, 196-204. https://doi.org/10.1016/j.eneco.2014.07.005da Silva, A. F., Marins, F. A. S., & Dias, E. X. (2015). Addressing uncertainty in sugarcane harvest planning through a revised multi-choice goal programming model. Applied Mathematical Modelling, 39(18), 5540-5558. https://doi.org/10.1016/j.apm.2015.01.007Darby-Dowman, K., Barker, S., Audsley, E., & Parsons, D. (2000). A two-stage stochastic programming with recourse model for determining robust planting plans in horticulture. Journal of the Operational Research Society, 51(1), 83-89. https://doi.org/10.1057/palgrave.jors.2600858Das, R., Shaw, K., & Irfan, Mohd. (2020). Supply chain network design considering carbon footprint, water footprint, supplier’s social risk, solid waste, and service level under the uncertain condition. Clean Technologies and Environmental Policy, 22(2), 337-370. https://doi.org/10.1007/s10098-019-01785-yDavis, K. F., Gephart, J. A., Emery, K. A., Leach, A. M., Galloway, J. N., & D’Odorico, P. (2016). Meeting future food demand with current agricultural resources. Global Environmental Change, 39, 125-132. https://doi.org/10.1016/j.gloenvcha.2016.05.004De Oliveira Florentino, H., De Lima, A. D., De Carvalho, L. R., Balbo, A. R., & Homem, T. P. D. (2011). Multiobjective 0-1 integer programming for the use of sugarcane residual biomass in energy cogeneration. International Transactions in Operational Research, 18(5), 605-615. https://doi.org/10.1111/j.1475-3995.2011.00818.xde Oliveira Florentino, H., & Pato, M. V. (2014). A bi-objective genetic approach for the selection of sugarcane varieties to comply with environmental and economic requirements. Journal of the Operational Research Society, 65(6), 842-854. https://doi.org/10.1057/jors.2013.21de Oliveira Florentino, H., & Pereira Sartori, M. M. (2003). Game theory in sugarcane crop residue and available energy optimization. Biomass and Bioenergy, 25(1), 29-34. https://doi.org/10.1016/S0961-9534(02)00189-7de Souza Dias, M. O., Maciel Filho, R., Mantelatto, P. E., Cavalett, O., Rossell, C. E. V., Bonomi, A., & Leal, M. R. L. V. (2015). Sugarcane processing for ethanol and sugar in Brazil. Environmental Development, 15, 35-51.Departamento Nacional de Planeación. (2008). Lineamientos de politica para promover la produccion sostenible de biocombustibles en Colombia (Documento CONPES 3510). DNP Bogotá, Colombia.dos Reis Ferreira, R. A., da Silva Meireles, C., Assunção, R. M. N., Barrozo, M. A. S., & Soares, R. R. (2020). Optimization of the oxidative fast pyrolysis process of sugarcane straw by TGA and DSC analyses. Biomass and Bioenergy, 134, 105456.Du, C., Dias, L. C., & Freire, F. (2019). Robust multi-criteria weighting in comparative LCA and S-LCA: A case study of sugarcane production in Brazil. Journal of Cleaner Production, 218, 708-717. https://doi.org/10.1016/j.jclepro.2019.02.035Dunford, R. W., Marti, C. E., & Mittelhammer, R. C. (1985). A Case Study of Rural Land Prices at the Urban Fringe Including Subjective Buyer Expectations. Land Economics, 61(1), 10. https://doi.org/10.2307/3146135Ebadian, M., van Dyk, S., McMillan, J. D., & Saddler, J. (2020). Biofuels policies that have encouraged their production and use: An international perspective. Energy Policy, 147, 111906. https://doi.org/10.1016/j.enpol.2020.111906Eizenberg, E., & Jabareen, Y. (2017). Social Sustainability: A New Conceptual Framework. Sustainability, 9(1), 68. https://doi.org/10.3390/su9010068El Espectador. (2021, septiembre 20). ELESPECTADOR.COM. ELESPECTADOR.COM. https://www.elespectador.com/judicial/megaproyecto-de-produccion-de-etanol-el-alcaravan-fue-un-fracaso-contraloria/Elkington, J. (1997). Cannibals with forks. The triple bottom line of 21st century, 73.Eskandarpour, M., Dejax, P., Miemczyk, J., & Péton, O. (2015). Sustainable supply chain network design: An optimization-oriented review. Omega, 54, 11-32. https://doi.org/10.1016/j.omega.2015.01.006Espinoza-Pérez, A. T., Camargo, M., Narváez-Rincón, P. C., & Alfaro-Marchant, M. (2017). Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis. Renewable and Sustainable Energy Reviews, 69, 350-359. https://doi.org/10.1016/j.rser.2016.11.084Esteso, A., Alemany, M. M. E., & Ortiz, A. (2018). Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models. International Journal of Production Research, 56(13), 4418-4446. https://doi.org/10.1080/00207543.2018.1447706Fahimnia, B., Sarkis, J., & Davarzani, H. (2015). Green supply chain management: A review and bibliometric analysis. International Journal of Production Economics, 162, 101-114. https://doi.org/10.1016/j.ijpe.2015.01.003Farahani, R. Z., Hekmatfar, M., Fahimnia, B., & Kazemzadeh, N. (2014). Hierarchical facility location problem: Models, classifications, techniques, and applications. Computers & Industrial Engineering, 68, 104-117. https://doi.org/10.1016/j.cie.2013.12.005Faria, L. F. F., Silva, J. E. A. R., Faria, L. F. F., & Silva, J. E. A. R. (2015). Effects of maintenance management procedures in sugarcane mechanic harvesting system equipment. Engenharia Agrícola, 35(6), 1187-1197. https://doi.org/10.1590/1809-4430-Eng.Agric.v35n6p1187-1197/2015Fathollahi-Fard, A. M., Hajiaghaei-Keshteli, M., & Mirjalili, S. (2018). Multi-objective stochastic closed-loop supply chain network design with social considerations. Applied Soft Computing, 71, 505-525. https://doi.org/10.1016/j.asoc.2018.07.025Fattahi, M., & Govindan, K. (2018). A multi-stage stochastic program for the sustainable design of biofuel supply chain networks under biomass supply uncertainty and disruption risk: A real-life case study. Transportation Research Part E: Logistics and Transportation Review, 118, 534-567. https://doi.org/10.1016/j.tre.2018.08.008Fedebiocombustibles. (2021, enero 1). Federación Nacional de Biocombustibles de Colombia, Marco Normativo de los biocombustibles en Colombia. fedebiocombustibles.com. http://www.fedebiocombustibles.com/v3/estadistica-mostrar_info-titulo-Alcohol_Carburante_(Etanol).htmFlorentino, H. de O., Irawan, C., Aliano, A. F., Jones, D. F., Cantane, D. R., & Nervis, J. J. (2018). A multiple objective methodology for sugarcane harvest management with varying maturation periods. Annals of Operations Research, 267(1-2), 153-177. https://doi.org/10.1007/s10479-017-2568-2Florentino, H. de O., Jones, D. F., Irawan, C. A., Ouelhadj, D., Khosravi, B., & Cantane, D. R. (2020). An optimization model for combined selecting, planting and harvesting sugarcane varieties. Annals of Operations Research. https://doi.org/10.1007/s10479-020-03610-yFlorio, M., & Colautti, S. (2005). A logistic growth theory of public expenditures: A study of five countries over 100 years. Public Choice, 122(3-4), 355-393. https://doi.org/10.1007/s11127-005-3900-yFurlan, F. F., Costa, C. B. B., de Castro Fonseca, G., de Pelegrini Soares, R., Secchi, A. R., da Cruz, A. J. G., & de Campos Giordano, R. (2012). Assessing the production of first and second generation bioethanol from sugarcane through the integration of global optimization and process detailed modeling. Computers & Chemical Engineering, 43, 1-9.Gao, J., & You, F. (2019). A stochastic game theoretic framework for decentralized optimization of multi-stakeholder supply chains under uncertainty. Computers & Chemical Engineering, 122, 31-46. https://doi.org/10.1016/j.compchemeng.2018.05.016Gatti, S. (2013). Project finance in theory and practice: Designing, structuring, and financing private and public projects. Academic Press.Ghaderi, H., Pishvaee, M. S., & Moini, A. (2016). Biomass supply chain network design: An optimization-oriented review and analysis. Industrial Crops and Products, 94, 972-1000. https://doi.org/10.1016/j.indcrop.2016.09.027Gheewala, S., Silalertruksa, T., Nilsalab, P., Mungkung, R., Perret, S., & Chaiyawannakarn, N. (2014). Water Footprint and Impact of Water Consumption for Food, Feed, Fuel Crops Production in Thailand. Water, 6(6), 1698-1718. https://doi.org/10.3390/w6061698Giannakis, M., & Papadopoulos, T. (2016). Supply chain sustainability: A risk management approach. International Journal of Production Economics, 171, 455-470. https://doi.org/10.1016/j.ijpe.2015.06.032Gilani, H., & Sahebi, H. (2020). A multi-objective robust optimization model to design sustainable sugarcane-to-biofuel supply network: The case of study. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00639-8Gnansounou, E., Pachón, E. R., Sinsin, B., Teka, O., Togbé, E., & Mahamane, A. (2020). Using agricultural residues for sustainable transportation biofuels in 2050: Case of West Africa. Bioresource Technology, 305, 123080. https://doi.org/10.1016/j.biortech.2020.123080Gobierno Digital Colombia. (2018). Datos abiertos Ministerio de Minas y energia Colombia. https://www.datos.gov.co/Minas-y-Energ-a/Tarifas-aplicadas-de-Gas-Natural/ek3f-5wn4/dataGovindan, K., Fattahi, M., & Keyvanshokooh, E. (2017). Supply chain network design under uncertainty: A comprehensive review and future research directions. European Journal of Operational Research, 263(1), 108-141. https://doi.org/10.1016/j.ejor.2017.04.009Govindan, K., Shaw, M., & Majumdar, A. (2020). Social Sustainability Tensions in Multi-tier Supply Chain: A Systematic Literature Review towards Conceptual Framework Development. Journal of Cleaner Production, 123075. https://doi.org/10.1016/j.jclepro.2020.123075Grimsey, D., & Lewis, M. (2007). Public private partnerships: The worldwide revolution in infrastructure provision and project finance. Edward Elgar Publishing.Grunow, M., Günther, H.-O., & Westinner, R. (2007). Supply optimization for the production of raw sugar. International Journal of Production Economics, 110(1-2), 224-239. https://doi.org/10.1016/j.ijpe.2007.02.019Guo, M., van Dam, K. H., Touhami, N. O., Nguyen, R., Delval, F., Jamieson, C., & Shah, N. (2020). Multi-level system modelling of the resource-food-bioenergy nexus in the global south. Energy, 197, 117196. https://doi.org/10.1016/j.energy.2020.117196Haberl, H., Wackernagel, M., & Wrbka, T. (2004). Land use and sustainability indicators. An introduction. Land Use Policy, 21(3), 193-198. https://doi.org/10.1016/j.landusepol.2003.10.004Hahn, M. H., & Ribeiro, R. V. (1999). Heuristic guided simulator for the operational planning of the transport of sugar cane. Journal of the Operational Research Society, 50(5), 451-459.Haj Hasan, A., & Avami, A. (2018). Comparative assessment of bioethanol supply chain: Insights from Iran. Biofuels, 1-9. https://doi.org/10.1080/17597269.2018.1496385Hall, J., Matos, S., & Silvestre, B. (2012). Understanding why firms should invest in sustainable supply chains: A complexity approach. International Journal of Production Research, 50(5), 1332-1348. https://doi.org/10.1080/00207543.2011.571930Hasani, A., & Khosrojerdi, A. (2016). Robust global supply chain network design under disruption and uncertainty considering resilience strategies: A parallel memetic algorithm for a real-life case study. Transportation Research Part E: Logistics and Transportation Review, 87, 20-52. https://doi.org/10.1016/j.tre.2015.12.009Henao, R., Sarache, W., & Gómez, I. (2019). Lean manufacturing and sustainable performance: Trends and future challenges. Journal of Cleaner Production, 208, 99-116. https://doi.org/10.1016/j.jclepro.2018.10.116Henao, R., Sarache, W., & Gomez, I. (2021). A social performance metrics framework for sustainable manufacturing. International Journal of Industrial and Systems Engineering, 38(2), 167-197.Higgins, A. (2006). Scheduling of road vehicles in sugarcane transport: A case study at an Australian sugar mill. European Journal of Operational Research, 170(3), 987-1000. https://doi.org/10.1016/j.ejor.2004.07.055Higgins, A., Antony, G., Sandell, G., Davies, I., Prestwidge, D., & Andrew, B. (2004). A framework for integrating a complex harvesting and transport system for sugar production. Agricultural Systems, 82(2), 99-115. https://doi.org/10.1016/j.agsy.2003.12.004Higgins, A., & Davies, I. (2005). A simulation model for capacity planning in sugarcane transport. Computers and Electronics in Agriculture, 47(2), 85-102. https://doi.org/10.1016/j.compag.2004.10.006Higgins, A. J. (1999). Optimizing cane supply decisions within a sugar mill region. Journal of Scheduling, 2(5), 229-244.Higgins, A. J. (2002). Australian Sugar Mills Optimize Harvester Rosters to Improve Production. Interfaces, 32(3), 15-25. https://doi.org/10.1287/inte.32.3.15.41Higgins, A. J., & Laredo, L. A. (2006). Improving harvesting and transport planning within a sugar value chain. Journal of the Operational Research Society, 57(4), 367-376. https://doi.org/10.1057/palgrave.jors.2602024Higgins, A. J., & Muchow, R. C. (2003). Assessing the potential benefits of alternative cane supply arrangements in the Australian sugar industry. Agricultural Systems, 76(2), 623-638.Higgins, A., Muchow, R. C., Rudd, A. V., & Ford, A. W. (1998). Optimising harvest date in sugar production: A case study for the Mossman mill region in Australia I. Development of operations research model and solution. Field Crops Research, 57, 153-162.Higgins, A., Thorburn, P., Archer, A., & Jakku, E. (2007). Opportunities for value chain research in sugar industries. Agricultural Systems, 94(3), 611-621. https://doi.org/10.1016/j.agsy.2007.02.011Hua, Z., Jun, L., Zhaonian, Y., Sanji, G., Yingying, Y., & Zhaoli, L. (2013). Agronomic techniques to sugarcane mechanical seeding [J]. Journal of Chinese Agricultural Mechanization, 1, 020.Huijbregts, M. A. J., Steinmann, Z. J. N., Elshout, P. M. F., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., & van Zelm, R. (2017). ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22(2), 138-147. https://doi.org/10.1007/s11367-016-1246-yIllukpitiya, P., Yanagida, J. F., Ogoshi, R., & Uehara, G. (2013). Sugar-ethanol-electricity co-generation in Hawai’i: An application of linear programming (LP) for optimizing strategies. Biomass and Bioenergy, 48, 203-212. https://doi.org/10.1016/j.biombioe.2012.11.003J. W. Mishoe, J. W. Jones, & G. J. Gascho. (1979). Harvesting Scheduling of Sugarcane for Optimum Biomass Production. Transactions of the ASAE, 22(6), 1299-1304. https://doi.org/10.13031/2013.35202Jaehn, F. (2016). Sustainable Operations. European Journal of Operational Research, 253(2), 243-264. https://doi.org/10.1016/j.ejor.2016.02.046Jahani, H., Abbasi, B., & Talluri, S. (2019). Supply Chain Network Redesign: A Technical Note on Optimising Financial Performance. Decision Sciences, deci.12374. https://doi.org/10.1111/deci.12374Jena, S. D., & Poggi, M. (2013). Harvest planning in the Brazilian sugar cane industry via mixed integer programming. European Journal of Operational Research, 230(2), 374-384. https://doi.org/10.1016/j.ejor.2013.04.011Jiao, Z., Higgins, A. J., & Prestwidge, D. B. (2005). An integrated statistical and optimisation approach to increasing sugar production within a mill region. Computers and Electronics in Agriculture, 48(2), 170-181. https://doi.org/10.1016/j.compag.2005.03.004Jin, S., Jeong, S., & Kim, K. (2017). A Linkage Model of Supply Chain Operation and Financial Performance for Economic Sustainability of Firm. Sustainability, 9(1), 139. https://doi.org/10.3390/su9010139Joelsson, E., Erdei, B., Galbe, M., & Wallberg, O. (2016). Techno-economic evaluation of integrated first- and second-generation ethanol production from grain and straw. Biotechnology for Biofuels, 9, 1. https://doi.org/10.1186/s13068-015-0423-8Jonker, J. G. G., Junginger, H. M., Verstegen, J. A., Lin, T., Rodríguez, L. F., Ting, K. C., Faaij, A. P. C., & van der Hilst, F. (2016). Supply chain optimization of sugarcane first generation and eucalyptus second generation ethanol production in Brazil. Applied Energy, 173, 494-510. https://doi.org/10.1016/j.apenergy.2016.04.069Junqueira, R. de Á. R., & Morabito, R. (2019). Modeling and solving a sugarcane harvest front scheduling problem. International Journal of Production Economics, 213, 150-160.Karp, S. G., Medina, J. D. C., Letti, L. A. J., Woiciechowski, A. L., de Carvalho, J. C., Schmitt, C. C., de Oliveira Penha, R., Kumlehn, G. S., & Soccol, C. R. (2021). Bioeconomy and biofuels: The case of sugarcane ethanol in Brazil. Biofuels, Bioproducts and Biorefining, n/a(n/a). https://doi.org/10.1002/bbb.2195Khamjan, W., Khamjan, S., & Pathumnakul, S. (2013). Determination of the locations and capacities of sugar cane loading stations in Thailand. Computers & Industrial Engineering, 66(4), 663-674. https://doi.org/10.1016/j.cie.2013.09.006Khan, S. A. R., Yu, Z., Golpira, H., Sharif, A., & Mardani, A. (2021). A state-of-the-art review and meta-analysis on sustainable supply chain management: Future research directions. Journal of Cleaner Production, 278, 123357. https://doi.org/10.1016/j.jclepro.2020.123357Khatiwada, D., Leduc, S., Silveira, S., & McCallum, I. (2016). Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil. Renewable Energy, 85, 371-386. https://doi.org/10.1016/j.renene.2015.06.009Kittilertpaisan, K., & Pathumnakul, S. (2017). Integrating a multiple crop year routing design for sugarcane harvesters to plant a new crop. Computers and Electronics in Agriculture, 136, 58-70. https://doi.org/10.1016/j.compag.2017.03.001Kostin, A. M., Guillén-Gosálbez, G., Mele, F. D., Bagajewicz, M. J., & Jiménez, L. (2010). Integrating pricing policies in the strategic planning of supply chains: A case study of the sugar cane industry in Argentina. En S. Pierucci & G. B. Ferraris (Eds.), Computer Aided Chemical Engineering (Vol. 28, pp. 103-108). Elsevier. https://doi.org/10.1016/S1570-7946(10)28018-5Kostin, A. M., Guillén-Gosálbez, G., Mele, F. D., Bagajewicz, M. J., & Jiménez, L. (2011). A novel rolling horizon strategy for the strategic planning of supply chains. Application to the sugar cane industry of Argentina. Computers & Chemical Engineering, 35(11), 2540-2563. https://doi.org/10.1016/j.compchemeng.2011.04.006Kostin, A. M., Guillén-Gosálbez, G., Mele, F. D., Bagajewicz, M. J., & Jiménez, L. (2012). Design and planning of infrastructures for bioethanol and sugar production under demand uncertainty. Chemical Engineering Research and Design, 90(3), 359-376. https://doi.org/10.1016/j.cherd.2011.07.013Kravanja, Z., & Čuček, L. (2013). Multi-objective optimisation for generating sustainable solutions considering total effects on the environment. Applied Energy, 101, 67-80. https://doi.org/10.1016/j.apenergy.2012.04.025Kulkarni, V. G. (2016). Modeling and analysis of stochastic systems. Chapman and Hall/CRC.Kumar, N., Patel, S. S., Chalodia, A. L., Vadaviya, O. U., Pandya, H. R., Pisal, R. R., Dakhore, K. K., & Patel, M. L. (2015). Markov chain and incomplete Gamma distribution analysis of weekly rainfall over Navsari region of south Gujarat. Mausam, 10.Kusumastuti, R. D., Donk, D. P. van, & Teunter, R. (2016). Crop-related harvesting and processing planning: A review. International Journal of Production Economics, 174, 76-92. https://doi.org/10.1016/j.ijpe.2016.01.010Le Gal, P.-Y., Le Masson, J., Bezuidenhout, C. N., & Lagrange, L. F. (2009). Coupled modelling of sugarcane supply planning and logistics as a management tool. Computers and Electronics in Agriculture, 68(2), 168-177. https://doi.org/10.1016/j.compag.2009.05.006Le Gal, P.-Y., Lyne, P. W. L., Meyer, E., & Soler, L.-G. (2008). Impact of sugarcane supply scheduling on mill sugar production: A South African case study. Agricultural Systems, 96(1), 64-74. https://doi.org/10.1016/j.agsy.2007.05.006Leduc, S., Starfelt, F., Dotzauer, E., Kindermann, G., McCallum, I., Obersteiner, M., & Lundgren, J. (2010). Optimal location of lignocellulosic ethanol refineries with polygeneration in Sweden. Energy, 35(6), 2709-2716. https://doi.org/10.1016/j.energy.2009.07.018Lejars, C., Le Gal, P.-Y., & Auzoux, S. (2008). A decision support approach for cane supply management within a sugar mill area. Computers and Electronics in Agriculture, 60(2), 239-249. https://doi.org/10.1016/j.compag.2007.08.008Liobikiene, G., Balezentis, T., Streimikiene, D., & Chen, X. (2019). Evaluation of bioeconomy in the context of strong sustainability. Sustainable Development, 27(5), 955-964. https://doi.org/10.1002/sd.1984Liu, L., Parlar, M., & Zhu, S. X. (2007). Pricing and Lead Time Decisions in Decentralized Supply Chains. Management Science, 53(5), 713-725. https://doi.org/10.1287/mnsc.1060.0653Liu, S., & Papageorgiou, L. G. (2018). Fair profit distribution in multi-echelon supply chains via transfer prices. Omega, 80, 77-94. https://doi.org/10.1016/j.omega.2017.08.010Londoño, L. (2017). Desempeño de la Agroindustria de la Caña en Colombia 2016-2017, Performance of the Agroindustry of the Sugarcane in Colombia 2016-2017 (pp. 1-32). http://www.asocana.org//documentos/2452017.pdfLonginidis, P., & Georgiadis, M. C. (2011). Integration of financial statement analysis in the optimal design of supply chain networks under demand uncertainty. International Journal of Production Economics, 129(2), 262-276. https://doi.org/10.1016/j.ijpe.2010.10.018Longinidis, P., & Georgiadis, M. C. (2013). Managing the trade-offs between financial performance and credit solvency in the optimal design of supply chain networks under economic uncertainty. Computers & Chemical Engineering, 48, 264-279. https://doi.org/10.1016/j.compchemeng.2012.09.019Longinidis, P., & Georgiadis, M. C. (2014). Integration of sale and leaseback in the optimal design of supply chain networks. Omega, 47, 73-89. https://doi.org/10.1016/j.omega.2013.08.004Longinidis, P., Georgiadis, M. C., & Kozanidis, G. (2015). Integrating Operational Hedging of Exchange Rate Risk in the Optimal Design of Global Supply Chain Networks. Industrial & Engineering Chemistry Research, 54(24), 6311-6325. https://doi.org/10.1021/acs.iecr.5b00349Lopez Milan, E., Miquel Fernandez, S., & Pla Aragones, L. M. (2006). Sugar cane transportation in Cuba, a case study. European Journal of Operational Research, 174(1), 374-386. https://doi.org/10.1016/j.ejor.2005.01.028Lowe, T. J., & Preckel, P. V. (2004). Decision Technologies for Agribusiness Problems: A Brief Review of Selected Literature and a Call for Research. Manufacturing & Service Operations Management, 6(3), 201-208. https://doi.org/10.1287/msom.1040.0051Macowski, D. H., Bonfim-Rocha, L., Orgeda, R., Camilo, R., & Ravagnani, M. A. S. S. (2020). Multi-objective optimization of the Brazilian industrial sugarcane scenario: A profitable and ecological approach. Clean Technologies and Environmental Policy, 22(3), 591-611. https://doi.org/10.1007/s10098-019-01802-0Mallawaarachchi, T., & Quiggin, J. (2001). Modelling socially optimal land allocations for sugar cane growing in North Queensland: A linked mathematical programming and choice modelling study. Australian Journal of Agricultural and Resource Economics, 45(3), 383-409. https://doi.org/10.1111/1467-8489.00149Marin, F., Jones, J. W., & Boote, K. J. (2017). A Stochastic Method for Crop Models: Including Uncertainty in a Sugarcane Model. Agronomy Journal, 109(2), 483. https://doi.org/10.2134/agronj2016.02.0103Martínez-Guido, SergioI., Betzabe González-Campos, J., Ponce-Ortega, JoséM., Nápoles-Rivera, F., & El-Halwagi, MahmoudM. (2016). Optimal reconfiguration of a sugar cane industry to yield an integrated biorefinery. Clean Technologies and Environmental Policy, 18(2), 553-562. https://doi.org/10.1007/s10098-015-1039-1Martinez-Hernandez, E. (2017). Trends in sustainable process design—From molecular to global scales. Current Opinion in Chemical Engineering, 17, 35-41. https://doi.org/10.1016/j.coche.2017.05.005Matindi, R., Masoud, M., Hobson, P., Kent, G., & Liu, S. Q. (2018). Harvesting and transport operations to optimise biomass supply chain and industrial biorefinery processes. International Journal of Industrial Engineering Computations, 265-288. https://doi.org/10.5267/j.ijiec.2017.9.001Matis, J. H., Saito, T., Grant, W. E., Iwig, W. C., & Ritchie, J. T. (1985). A Markov chain approach to crop yield forecasting. Agricultural Systems, 18(3), 171-187. https://doi.org/10.1016/0308-521X(85)90030-7Maxwell, D., & van der Vorst, R. (2003). Developing sustainable products and services. Journal of Cleaner Production, 11(8), 883-895. https://doi.org/10.1016/S0959-6526(02)00164-6Meemken, E.-M., Barrett, C. B., Michelson, H. C., Qaim, M., Reardon, T., & Sellare, J. (2021). Sustainability standards in global agrifood supply chains. Nature Food, 2(10), 758-765. https://doi.org/10.1038/s43016-021-00360-3Mele, F. D., Kostin, A. M., Guillén-Gosálbez, G., & Jiménez, L. (2011). Multiobjective Model for More Sustainable Fuel Supply Chains. A Case Study of the Sugar Cane Industry in Argentina. Industrial & Engineering Chemistry Research, 50(9), 4939-4958. https://doi.org/10.1021/ie101400gMelo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management – A review. European Journal of Operational Research, 196(2), 401-412. https://doi.org/10.1016/j.ejor.2008.05.007Messmann, L., Zender, V., Thorenz, A., & Tuma, A. (2020). How to quantify social impacts in strategic supply chain optimization: State of the art. Journal of Cleaner Production, 257, 120459. https://doi.org/10.1016/j.jclepro.2020.120459Meza-Palacios, R., Aguilar-Lasserre, A. A., Morales-Mendoza, L. F., Pérez-Gallardo, J. R., Rico-Contreras, J. O., & Avarado-Lassman, A. (2019). Life cycle assessment of cane sugar production: The environmental contribution to human health, climate change, ecosystem quality and resources in México. Journal of Environmental Science and Health, Part A, 54(7), 668-678. https://doi.org/10.1080/10934529.2019.1579537Ministerio de Ciencia, Tecnología e Innovación. (2019). Descripción de focos y líneas de investigación. https://minciencias.gov.co/sites/default/files/upload/convocatoria/anexo_1._descripcion_de_focos_y_lineas_de_investigacion.pdfMinisterio Minas y Energía. (2018). Resolución 40185. República de Colombia.Mohammadi, A., Abbasi, A., Alimohammadlou, M., Eghtesadifard, M., & Khalifeh, M. (2017). Optimal design of a multi-echelon supply chain in a system thinking framework: An integrated financial-operational approach. Computers & Industrial Engineering, 114, 297-315. https://doi.org/10.1016/j.cie.2017.10.019Morales Chávez, M. M., Sarache, W., & Costa, Y. (2018). Towards a comprehensive model of a biofuel supply chain optimization from coffee crop residues. Transportation Research Part E: Logistics and Transportation Review, 116, 136-162. https://doi.org/10.1016/j.tre.2018.06.001Morales Chavez, M. M., Sarache, W., Costa, Y., & Soto, J. (2020). Multiobjective stochastic scheduling of upstream operations in a sustainable sugarcane supply chain. Journal of Cleaner Production, 276, 123305. https://doi.org/10.1016/j.jclepro.2020.123305Morales-Chávez, M. M., Soto-Mejía, J. A., & Sarache, W. A. (2016). A mixed-integer linear programming model for harvesting, loading and transporting sugarcane. A case study in Peru. DYNA, 83(195), 173-179. https://doi.org/10.15446/dyna.v83n195.49490Mota, B., Gomes, M. I., Carvalho, A., & Barbosa-Povoa, A. P. (2015). Towards supply chain sustainability: Economic, environmental and social design and planning. Journal of Cleaner Production, 105, 14-27. https://doi.org/10.1016/j.jclepro.2014.07.052Muchow, R. C., Higgins, A. J., Rudd, A. V., & Ford, A. W. (1998). Optimising harvest date in sugar production: A case study for the Mossman mill region in Australia: II. Sensitivity to crop age and crop class distribution. Field Crops Research, 57(3), 243-251.Mutenurea, M., Čučekb, L., Isafiade, A. J., & Kravanjab, Z. (2016). Synthesis of South Africa’s Biomass to Bioethanol Supply Network. CHEMICAL ENGINEERING, 52.Mutran, V. M., Ribeiro, C. O., Nascimento, C. A. O., & Chachuat, B. (2020). Risk-conscious optimization model to support bioenergy investments in the Brazilian sugarcane industry. Applied Energy, 258, 113978. https://doi.org/10.1016/j.apenergy.2019.113978Oliveira, J. B., Lima, R. S., & Montevechi, J. A. B. (2016). Perspectives and relationships in Supply Chain Simulation: A systematic literature review. Simulation Modelling Practice and Theory, 62, 166-191. https://doi.org/10.1016/j.simpat.2016.02.001Ometto, A. R., Hauschild, M. Z., & Roma, W. N. L. (2009). Lifecycle assessment of fuel ethanol from sugarcane in Brazil. Int J Life Cycle Assess, 12.Osaki, M. R., & Seleghim Jr, P. (2017). Bioethanol and power from integrated second generation biomass: A Monte Carlo simulation. Energy Conversion and Management, 141, 274-284.Osmani, A., & Zhang, J. (2013). Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties. Energy, 59, 157-172. https://doi.org/10.1016/j.energy.2013.07.043Paiva, R. P. O., & Morabito, R. (2009). An optimization model for the aggregate production planning of a Brazilian sugar and ethanol milling company. Annals of Operations Research, 169(1), 117-130. https://doi.org/10.1007/s10479-008-0428-9Pashangpour, R., Faghihi, F., & Soleymani, S. (2018). Optimized scheduling for electric lift trucks in a sugarcane agro-industry based on thermal, biomass and solar resources. International Journal of Environmental Science and Technology, 15(11), 2349-2358.Pathumnakul S., & Nakrachata-Amon T. (2015). The Applications of Operations Research in Harvest Planning: A Case Study of the Sugarcane Industry in Thailand. Journal of Japan Industrial Management Association, 65(4E), 328-333. https://doi.org/10.11221/jima.65.328Pelletier, N., Ustaoglu, E., Benoit, C., Norris, G., Rosenbaum, E., Vasta, A., & Sala, S. (2018). Social sustainability in trade and development policy. The International Journal of Life Cycle Assessment, 23(3), 629-639. https://doi.org/10.1007/s11367-016-1059-zPereira, R. D., Badino, A. C., & Cruz, A. J. (2020). Framework Based on Artificial Intelligence to Increase Industrial Bioethanol Production. Energy & Fuels, 34(4), 4670-4677.Piewthongngam, K., Pathumnakul, S., & Setthanan, K. (2009). Application of crop growth simulation and mathematical modeling to supply chain management in the Thai sugar industry. Agricultural Systems, 102(1-3), 58-66. https://doi.org/10.1016/j.agsy.2009.07.002Ramirez, C. A. M. (2017). Asocaña. Sector Agroindustrial de la Caña. https://www.asocana.org/Ramirez, C. A. M. (2021a). Balance azucarero colombiano Asocaña 2000—2020 (toneladas). Asocaña - Sector Agroindustrial de la Caña. http://www.asocana.org/modules/documentos/5528.aspxRamirez, C. A. M. (2021b). Informe anual 2019—2020. Asocaña - Sector Agroindustrial de la Caña. http://www.asocana.org/modules/documentos/15398.aspxRojas, L. S. B. (2011). OPORTUNIDADES Y AMENAZAS DE LOS BIOCOMBUSTIBLES EN COLOMBIA [PONTIFICIA UNIVERSIDAD JAVERIANA]. https://repository.javeriana.edu.co/bitstream/handle/10554/12377/BuenoRojasLucySikint2011.pdf?sequence=1UPME. (2018). BOLETÍN ESTADÍSTICO DE MINAS Y ENERGÍA 2016—2018. Unidad de Planeación Minero Energética, UPME. Bogotá. https://www1.upme.gov.co/PromocionSector/SeccionesInteres/Documents/Boletines/Boletin_Estadistico_2018.pdfPitakaso, R., & Sethanan, K. (2019). Adaptive large neighborhood search for scheduling sugarcane inbound logistics equipment and machinery under a sharing infield resource system. Computers and Electronics in Agriculture, 158, 313-325. https://doi.org/10.1016/j.compag.2019.02.001Plà, L. M., Sandars, D. L., & Higgins, A. J. (2014). A perspective on operational research prospects for agriculture. Journal of the Operational Research Society, 65(7), 1078-1089. https://doi.org/10.1057/jors.2013.45Polo, A., Peña, N., Muñoz, D., Cañón, A., & Escobar, J. W. (2018). Robust design of a closed-loop supply chain under uncertainty conditions integrating financial criteria. Omega. https://doi.org/10.1016/j.omega.2018.09.003Poltroniere, S. C., Aliano Filho, A., Caversan, A. S., Balbo, A. R., & Florentino, H. de O. (2021). Integrated planning for planting and harvesting sugarcane and energy-cane for the production of sucrose and energy. Computers and Electronics in Agriculture, 184, 105956. https://doi.org/10.1016/j.compag.2020.105956Prasara-A, J., & Gheewala, S. H. (2016). Sustainability of sugarcane cultivation: Case study of selected sites in north-eastern Thailand. Journal of Cleaner Production, 134, 613-622. https://doi.org/10.1016/j.jclepro.2015.09.029Procaña. (2018). Colombian sugarcane Industry: Description. http://www.procana.org/new/quienes-somos/presentacion-del-sector.htmlQureshi, M. E., Qureshi, S. E., Bajracharya, K., & Kirby, M. (2008). Integrated Biophysical and Economic ModellingFramework to Assess Impacts of Alternative Groundwater Management Options. Water Resources Management, 22(3), 321-341. https://doi.org/10.1007/s11269-007-9164-1Qureshi, M. E., Qureshi, S. E., & Wegener, M. K. (2007). Economic implications of alternative mill mud management options in the Australian sugar industry. Agricultural Economics, 36(1), 113-122.Ramezani, M., Kimiagari, A. M., & Karimi, B. (2014). Closed-loop supply chain network design: A financial approach. Applied Mathematical Modelling, 38(15-16), 4099-4119. https://doi.org/10.1016/j.apm.2014.02.004Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W.-P., Suh, S., Weidema, B. P., & Pennington, D. W. (2004). Life cycle assessment. Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment International, 30(5), 701-720. https://doi.org/10.1016/j.envint.2003.11.005Renouf, M. A., Wegener, M. K., & Pagan, R. J. (2010). Life cycle assessment of Australian sugarcane production with a focus on sugarcane growing. The International Journal of Life Cycle Assessment, 15(9), 927-937. https://doi.org/10.1007/s11367-010-0226-xReynolds, C., Buckley, J., Weinstein, P., & Boland, J. (2014). Are the Dietary Guidelines for Meat, Fat, Fruit and Vegetable Consumption Appropriate for Environmental Sustainability? A Review of the Literature. Nutrients, 6(6), 2251-2265. https://doi.org/10.3390/nu6062251Rivera-Cadavid, L., Manyoma-Velásquez, P. C., & Manotas-Duque, D. F. (2019). Supply Chain Optimization for Energy Cogeneration Using Sugarcane Crop Residues (SCR). Sustainability, 11(23), 6565.Rosa, W. (Ed.). (2017). Transforming Our World: The 2030 Agenda for Sustainable Development. En A New Era in Global Health. Springer Publishing Company. https://doi.org/10.1891/9780826190123.ap02Ross, S. M. (2014). Introduction to probability models. Academic press.Rota, C., Pugliese, P., Hashem, S., & Zanasi, C. (2018). Assessing the level of collaboration in the Egyptian organic and fair trade cotton chain. Journal of Cleaner Production, 170, 1665-1676. https://doi.org/10.1016/j.jclepro.2016.10.011Sahebi, H., Nickel, S., & Ashayeri, J. (2014). Strategic and tactical mathematical programming models within the crude oil supply chain context—A review. Computers & Chemical Engineering, 68, 56-77. https://doi.org/10.1016/j.compchemeng.2014.05.008Santibañez-Aguilar, J. E., González-Campos, J. B., Ponce-Ortega, J. M., Serna-González, M., & El-Halwagi, M. M. (2014). Optimal planning and site selection for distributed multiproduct biorefineries involving economic, environmental and social objectives. Journal of Cleaner Production, 65, 270-294. https://doi.org/10.1016/j.jclepro.2013.08.004Santoro, E., Soler, E. M., & Cherri, A. C. (2017). Route optimization in mechanized sugarcane harvesting. Computers and Electronics in Agriculture, 141, 140-146. https://doi.org/10.1016/j.compag.2017.07.013Saranwong, S., & Likasiri, C. (2017). Bi-level programming model for solving distribution center problem: A case study in Northern Thailand’s sugarcane management. Computers & Industrial Engineering, 103, 26-39. https://doi.org/10.1016/j.cie.2016.10.031Sarkar, B., Mridha, B., Pareek, S., Sarkar, M., & Thangavelu, L. (2021). A flexible biofuel and bioenergy production system with transportation disruption under a sustainable supply chain network. Journal of Cleaner Production, 317, 128079. https://doi.org/10.1016/j.jclepro.2021.128079Sartori, M. M. P., de Oliveira Florentino, H., Basta, C., & Leão, A. L. (2001). Determination of the optimal quantity of crop residues for energy in sugarcane crop management using linear programming in variety selection and planting strategy. Energy, 26(11), 1031-1040.Scully, M. J., Norris, G. A., Alarcon Falconi, T. M., & MacIntosh, D. L. (2021). Carbon intensity of corn ethanol in the United States: State of the science. Environmental Research Letters, 16(4), 043001. https://doi.org/10.1088/1748-9326/abde08Semboloni, F. (2006). The CityDev Project: An Interactive Multi-agent Urban Model on the Web. En J. Portugali (Ed.), Complex Artificial Environments (pp. 155-163). Springer-Verlag. https://doi.org/10.1007/3-540-29710-3_10Semenzato, R. (1995). A simulation study of sugar cane harvesting. Agricultural Systems, 47(4), 427-437. https://doi.org/10.1016/0308-521X(95)92108-ISeuring, S., & Müller, M. (2008). From a literature review to a conceptual framework for sustainable supply chain management. Journal of Cleaner Production, 16(15), 1699-1710. https://doi.org/10.1016/j.jclepro.2008.04.020Shafie, S. M., Othman, Z., & Hami, N. (2020). Optimum location of biomass waste residue power plant in northern region: Economic and environmental assessment. International Journal of Energy Economics and Policy, 10(1), 150.Shapiro, A. (2003). Monte Carlo Sampling Methods. En Handbooks in Operations Research and Management Science (Vol. 10, pp. 353-425). Elsevier. https://doi.org/10.1016/S0927-0507(03)10006-0Shukla, M., & Jharkharia, S. (2013). Agri‐fresh produce supply chain management: A state‐of‐the‐art literature review. International Journal of Operations & Production Management, 33(2), 114-158. https://doi.org/10.1108/01443571311295608Sihombing, L., Latief, Y., Rarasati, A. D., & Wibowo, A. (2018). Utilizing uncertainty management to analyze the uncertainty of toll road land acquisition. International Journal of Civil Engineering and Technology, 9(6), 1221-1228. Scopus.Simchi-Levi, D., Chen, X., & Bramel, J. (2005). The logic of logistics. Theory, Algorithms, and Applications for Logistics and Supply Chain Management.Sørensen, C. G., & Bochtis, D. D. (2010). Conceptual model of fleet management in agriculture. Biosystems Engineering, 105(1), 41-50. https://doi.org/10.1016/j.biosystemseng.2009.09.009Soto-Silva, W. E., González-Araya, M. C., Oliva-Fernández, M. A., & Plà-Aragonés, L. M. (2017). Optimizing fresh food logistics for processing: Application for a large Chilean apple supply chain. Computers and Electronics in Agriculture, 136, 42-57. https://doi.org/10.1016/j.compag.2017.02.020Soto-Silva, W. E., Nadal-Roig, E., González-Araya, M. C., & Pla-Aragones, L. M. (2016). Operational research models applied to the fresh fruit supply chain. European Journal of Operational Research, 251(2), 345-355. https://doi.org/10.1016/j.ejor.2015.08.046Sowlati, T. (2016). Modeling of forest and wood residues supply chains for bioenergy and biofuel production. En Biomass Supply Chains for Bioenergy and Biorefining (pp. 167-190). Elsevier. https://doi.org/10.1016/B978-1-78242-366-9.00008-3Soysal, M., Bloemhof-Ruwaard, J. M., Meuwissen, M. P., & van der Vorst, J. G. (2012). A review on quantitative models for sustainable food logistics management. International Journal on Food System Dynamics, 3(2), 136-155.Standfield, L., Comans, T., & Scuffham, P. (2014). Markov modeling and discrete event simulation in health care: A systematic comparison. International Journal of Technology Assessment in Health Care, 30(2), 165-172. https://doi.org/10.1017/S0266462314000117Stray, B. J., van Vuuren, J. H., & Bezuidenhout, C. N. (2012). An optimisation-based seasonal sugarcane harvest scheduling decision support system for commercial growers in South Africa. Computers and Electronics in Agriculture, 83, 21-31. https://doi.org/10.1016/j.compag.2012.01.009Sun, F., Aguayo, M. M., Ramachandran, R., & Sarin, S. C. (2018). Biomass feedstock supply chain design–a taxonomic review and a decomposition-based methodology. International Journal of Production Research, 56(17), 5626-5659.Sun, O., & Fan, N. (2020). A Review on Optimization Methods for Biomass Supply Chain: Models and Algorithms, Sustainable Issues, and Challenges and Opportunities. Process Integration and Optimization for Sustainability. https://doi.org/10.1007/s41660-020-00108-9Teixeira, E. dos S., Rangel, S., Florentino, H. de O., & de Araujo, S. A. (2021). A review of mathematical optimization models applied to the sugarcane supply chain. International Transactions in Operational Research.Tsolakis, N. K., Keramydas, C. A., Toka, A. K., Aidonis, D. A., & Iakovou, E. T. (2014). Agrifood supply chain management: A comprehensive hierarchical decision-making framework and a critical taxonomy. Biosystems Engineering, 120, 47-64. https://doi.org/10.1016/j.biosystemseng.2013.10.014UN. (2017). United Nations sustainable development agenda. United Nations Sustainable Development. http://www.un.org/sustainabledevelopment/development-agenda/Valin, H., Sands, R. D., van der Mensbrugghe, D., Nelson, G. C., Ahammad, H., Blanc, E., Bodirsky, B., Fujimori, S., Hasegawa, T., Havlik, P., Heyhoe, E., Kyle, P., Mason-D’Croz, D., Paltsev, S., Rolinski, S., Tabeau, A., van Meijl, H., von Lampe, M., & Willenbockel, D. (2014). The future of food demand: Understanding differences in global economic models. Agricultural Economics, 45(1), 51-67. https://doi.org/10.1111/agec.12089van den Wall Bake, J. D., Junginger, M., Faaij, A., Poot, T., & Walter, A. (2009). Explaining the experience curve: Cost reductions of Brazilian ethanol from sugarcane. Biomass and Bioenergy, 33(4), 644-658. https://doi.org/10.1016/j.biombioe.2008.10.006van Eijck, J., Batidzirai, B., & Faaij, A. (2014). Current and future economic performance of first and second generation biofuels in developing countries. Applied Energy, 135, 115-141. https://doi.org/10.1016/j.apenergy.2014.08.015Verweij, B., Ahmed, S., Kleywegt, A. J., Nemhauser, G., & Shapiro, A. (2003). The Sample Average Approximation Method Applied to Stochastic Routing Problems: A Computational Study. Computational Optimization and Applications, 24(2), 289-333. https://doi.org/10.1023/A:1021814225969Will M. Bertrand, J., & Fransoo, J. C. (2002). Operations management research methodologies using quantitative modeling. International Journal of Operations & Production Management, 22(2), 241-264.Wu, D., Baron, O., & Berman, O. (2009). Bargaining in competing supply chains with uncertainty. European Journal of Operational Research, 197(2), 548-556.Yue, D., & You, F. (2014). Game-theoretic modeling and optimization of multi-echelon supply chain design and operation under Stackelberg game and market equilibrium. Computers & Chemical Engineering, 71, 347-361. https://doi.org/10.1016/j.compchemeng.2014.08.010Yue, D., You, F., & Snyder, S. W. (2014). Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges. Computers & Chemical Engineering, 66, 36-56. https://doi.org/10.1016/j.compchemeng.2013.11.016Zahraee, S. M. (2020). Biomass supply chain environmental and socio-economic analysis: 40-Years comprehensive review of methods, decision issues, sustainability challenges, and the way forward. Biomass and Bioenergy, 33.Zandi Atashbar, N., Labadie, N., & Prins, C. (2018). Modelling and optimisation of biomass supply chains: A review. International Journal of Production Research, 56(10), 3482-3506. https://doi.org/10.1080/00207543.2017.1343506Zheng, X.-X., Liu, Z., Li, K. W., Huang, J., & Chen, J. (2019). Cooperative game approaches to coordinating a three-echelon closed-loop supply chain with fairness concerns. International Journal of Production Economics, 212, 92-110. https://doi.org/10.1016/j.ijpe.2019.01.011Ziolkowska, J. R. (2020). Biofuels technologies: An overview of feedstocks, processes, and technologies. En Biofuels for a More Sustainable Future (pp. 1-19). Elsevier. https://doi.org/10.1016/B978-0-12-815581-3.00001-4Ministerio de Ciencia Tecnología e InnovaciónBibliotecariosEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-84675https://repositorio.unal.edu.co/bitstream/unal/82239/1/license.txtb577153cc0e11f0aeb5fc5005dc82d8aMD51ORIGINAL1110459365.2022.pdf1110459365.2022.pdfTesis de Doctorado en Ingeniería - Industria y Organizacionesapplication/pdf5163575https://repositorio.unal.edu.co/bitstream/unal/82239/2/1110459365.2022.pdf04b7aafdd43a6e774a6dba63a6fca384MD52THUMBNAIL1110459365.2022.pdf.jpg1110459365.2022.pdf.jpgGenerated Thumbnailimage/jpeg4164https://repositorio.unal.edu.co/bitstream/unal/82239/3/1110459365.2022.pdf.jpgd9513a82cae278126f30e59ae58644f9MD53unal/82239oai:repositorio.unal.edu.co:unal/822392023-08-09 23:03:39.633Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUGFydGUgMS4gIFTDqXJtaW5vcyBkZSBsYSBsaWNlbmNpYSBwYXJhIHB1YmxpY2FjacOzbiBkZSBvYnJhcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwuCgpMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yLCBjb25maWVyZW4gYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB1bmEgbGljZW5jaWEgbm8gZXhjbHVzaXZhLCBsaW1pdGFkYSB5IGdyYXR1aXRhIHNvYnJlIGxhIG9icmEgcXVlIHNlIGludGVncmEgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgYmFqbyBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6CgoKYSkJTG9zIGF1dG9yZXMgeS9vIGxvcyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBjb25maWVyZW4gYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB1bmEgbGljZW5jaWEgbm8gZXhjbHVzaXZhIHBhcmEgcmVhbGl6YXIgbG9zIHNpZ3VpZW50ZXMgYWN0b3Mgc29icmUgbGEgb2JyYTogaSkgcmVwcm9kdWNpciBsYSBvYnJhIGRlIG1hbmVyYSBkaWdpdGFsLCBwZXJtYW5lbnRlIG8gdGVtcG9yYWwsIGluY2x1eWVuZG8gZWwgYWxtYWNlbmFtaWVudG8gZWxlY3Ryw7NuaWNvLCBhc8OtIGNvbW8gY29udmVydGlyIGVsIGRvY3VtZW50byBlbiBlbCBjdWFsIHNlIGVuY3VlbnRyYSBjb250ZW5pZGEgbGEgb2JyYSBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gZXhpc3RlbnRlIGEgbGEgZmVjaGEgZGUgbGEgc3VzY3JpcGNpw7NuIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhLCB5IGlpKSBjb211bmljYXIgYWwgcMO6YmxpY28gbGEgb2JyYSBwb3IgY3VhbHF1aWVyIG1lZGlvIG8gcHJvY2VkaW1pZW50bywgZW4gbWVkaW9zIGFsw6FtYnJpY29zIG8gaW5hbMOhbWJyaWNvcywgaW5jbHV5ZW5kbyBsYSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZW4gYWNjZXNvIGFiaWVydG8uIEFkaWNpb25hbCBhIGxvIGFudGVyaW9yLCBlbCBhdXRvciB5L28gdGl0dWxhciBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHBhcmEgcXVlLCBlbiBsYSByZXByb2R1Y2Npw7NuIHkgY29tdW5pY2FjacOzbiBhbCBww7pibGljbyBxdWUgbGEgVW5pdmVyc2lkYWQgcmVhbGljZSBzb2JyZSBsYSBvYnJhLCBoYWdhIG1lbmNpw7NuIGRlIG1hbmVyYSBleHByZXNhIGFsIHRpcG8gZGUgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBiYWpvIGxhIGN1YWwgZWwgYXV0b3IgeS9vIHRpdHVsYXIgZGVzZWEgb2ZyZWNlciBzdSBvYnJhIGEgbG9zIHRlcmNlcm9zIHF1ZSBhY2NlZGFuIGEgZGljaGEgb2JyYSBhIHRyYXbDqXMgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIGN1YW5kbyBzZWEgZWwgY2Fzby4gRWwgYXV0b3IgeS9vIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIHByZXNlbnRlIGxpY2VuY2lhIG1lZGlhbnRlIHNvbGljaXR1ZCBlbGV2YWRhIGEgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBCaWJsaW90ZWNhcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYS4gCgpiKSAJTG9zIGF1dG9yZXMgeS9vIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBsYSBsaWNlbmNpYSBzZcOxYWxhZGEgZW4gZWwgbGl0ZXJhbCBhKSBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHBvciBlbCB0aWVtcG8gZGUgcHJvdGVjY2nDs24gZGUgbGEgb2JyYSBlbiB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8sIGVzdG8gZXMsIHNpbiBsaW1pdGFjacOzbiB0ZXJyaXRvcmlhbCBhbGd1bmEuCgpjKQlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IgbWFuaWZpZXN0YW4gZXN0YXIgZGUgYWN1ZXJkbyBjb24gcXVlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHNlIG90b3JnYSBhIHTDrXR1bG8gZ3JhdHVpdG8sIHBvciBsbyB0YW50bywgcmVudW5jaWFuIGEgcmVjaWJpciBjdWFscXVpZXIgcmV0cmlidWNpw7NuIGVjb27Ds21pY2EgbyBlbW9sdW1lbnRvIGFsZ3VubyBwb3IgbGEgcHVibGljYWNpw7NuLCBkaXN0cmlidWNpw7NuLCBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgY3VhbHF1aWVyIG90cm8gdXNvIHF1ZSBzZSBoYWdhIGVuIGxvcyB0w6lybWlub3MgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEgeSBkZSBsYSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGNvbiBxdWUgc2UgcHVibGljYS4KCmQpCVF1aWVuZXMgZmlybWFuIGVsIHByZXNlbnRlIGRvY3VtZW50byBkZWNsYXJhbiBxdWUgcGFyYSBsYSBjcmVhY2nDs24gZGUgbGEgb2JyYSwgbm8gc2UgaGFuIHZ1bG5lcmFkbyBsb3MgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsLCBpbmR1c3RyaWFsLCBtb3JhbGVzIHkgcGF0cmltb25pYWxlcyBkZSB0ZXJjZXJvcy4gRGUgb3RyYSBwYXJ0ZSwgIHJlY29ub2NlbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZSB5IHNlIGVuY3VlbnRyYSBleGVudGEgZGUgY3VscGEgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGfDum4gdGlwbyBkZSByZWNsYW1hY2nDs24gZW4gbWF0ZXJpYSBkZSBkZXJlY2hvcyBkZSBhdXRvciBvIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBnZW5lcmFsLiBQb3IgbG8gdGFudG8sIGxvcyBmaXJtYW50ZXMgIGFjZXB0YW4gcXVlIGNvbW8gdGl0dWxhcmVzIMO6bmljb3MgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGFzdW1pcsOhbiB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlIGxhIG9icmEuICAKCmYpCUF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3MgYWdyZWdhZG9yZXMgZGUgY29udGVuaWRvcywgYnVzY2Fkb3JlcyBhY2Fkw6ltaWNvcywgbWV0YWJ1c2NhZG9yZXMsIMOtbmRpY2VzIHkgZGVtw6FzIG1lZGlvcyBxdWUgc2UgZXN0aW1lbiBuZWNlc2FyaW9zIHBhcmEgcHJvbW92ZXIgZWwgYWNjZXNvIHkgY29uc3VsdGEgZGUgbGEgbWlzbWEuIAoKZykJRW4gZWwgY2FzbyBkZSBsYXMgdGVzaXMgY3JlYWRhcyBwYXJhIG9wdGFyIGRvYmxlIHRpdHVsYWNpw7NuLCBsb3MgZmlybWFudGVzIHNlcsOhbiBsb3MgcmVzcG9uc2FibGVzIGRlIGNvbXVuaWNhciBhIGxhcyBpbnN0aXR1Y2lvbmVzIG5hY2lvbmFsZXMgbyBleHRyYW5qZXJhcyBlbiBjb252ZW5pbywgbGFzIGxpY2VuY2lhcyBkZSBhY2Nlc28gYWJpZXJ0byBDcmVhdGl2ZSBDb21tb25zIHkgYXV0b3JpemFjaW9uZXMgYXNpZ25hZGFzIGEgc3Ugb2JyYSBwYXJhIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwgZGUgYWN1ZXJkbyBjb24gbGFzIGRpcmVjdHJpY2VzIGRlIGxhIFBvbMOtdGljYSBHZW5lcmFsIGRlIGxhIEJpYmxpb3RlY2EgRGlnaXRhbC4KCgpoKQlTZSBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIGNvbW8gcmVzcG9uc2FibGUgZGVsIHRyYXRhbWllbnRvIGRlIGRhdG9zIHBlcnNvbmFsZXMsIGRlIGFjdWVyZG8gY29uIGxhIGxleSAxNTgxIGRlIDIwMTIgZW50ZW5kaWVuZG8gcXVlIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQsIHkgc3UgdHJhdGFtaWVudG8gdGllbmUgdW5hIGZpbmFsaWRhZCBoaXN0w7NyaWNhLCBlc3RhZMOtc3RpY2EgbyBjaWVudMOtZmljYSBzZWfDum4gbG8gZGlzcHVlc3RvIGVuIGxhIFBvbMOtdGljYSBkZSBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLgoKCgpQYXJ0ZSAyLiBBdXRvcml6YWNpw7NuIHBhcmEgcHVibGljYXIgeSBwZXJtaXRpciBsYSBjb25zdWx0YSB5IHVzbyBkZSBvYnJhcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwuCgpTZSBhdXRvcml6YSBsYSBwdWJsaWNhY2nDs24gZWxlY3Ryw7NuaWNhLCBjb25zdWx0YSB5IHVzbyBkZSBsYSBvYnJhIHBvciBwYXJ0ZSBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB5IGRlIHN1cyB1c3VhcmlvcyBkZSBsYSBzaWd1aWVudGUgbWFuZXJhOgoKYS4JQ29uY2VkbyBsaWNlbmNpYSBlbiBsb3MgdMOpcm1pbm9zIHNlw7FhbGFkb3MgZW4gbGEgcGFydGUgMSBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBjb24gZWwgb2JqZXRpdm8gZGUgcXVlIGxhIG9icmEgZW50cmVnYWRhIHNlYSBwdWJsaWNhZGEgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB5IHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0byBwYXJhIHN1IGNvbnN1bHRhIHBvciBsb3MgdXN1YXJpb3MgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgIGEgdHJhdsOpcyBkZSBpbnRlcm5ldC4KCg==